
ABFAB J. Howlett
Internet-Draft JANET(UK)
Intended status: Informational S. Hartman
Expires: August 29, 2013 Painless Security
 H. Tschofenig
 Nokia Siemens Networks
 E. Lear
 Cisco Systems GmbH
 J. Schaad
 Soaring Hawk Consulting
 February 25, 2013

Application Bridging for Federated Access Beyond Web (ABFAB)
Architecture

draft-ietf-abfab-arch-05.txt

Abstract

 Over the last decade a substantial amount of work has occurred in the
 space of federated access management. Most of this effort has
 focused on two use-cases: network access and web-based access.
 However, the solutions to these use-cases that have been proposed and
 deployed tend to have few common building blocks in common.

 This memo describes an architecture that makes use of extensions to
 the commonly used security mechanisms for both federated and non-
 federated access management, including the Remote Authentication Dial
 In User Service (RADIUS) and the Diameter protocol, the Generic
 Security Service (GSS), the GS2 family, the Extensible Authentication
 Protocol (EAP) and the Security Assertion Markup Language (SAML).
 The architecture addresses the problem of federated access management
 to primarily non-web-based services, in a manner that will scale to
 large numbers of identity providers, relying parties, and
 federations.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Howlett, et al. Expires August 29, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft ABFAB Architecture February 2013

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 29, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Howlett, et al. Expires August 29, 2013 [Page 2]

Internet-Draft ABFAB Architecture February 2013

Table of Contents

1. Introduction . 4
1.1. Terminology . 5
1.1.1. Channel Binding 6

1.2. An Overview of Federation 7
1.3. Challenges for Contemporary Federation 10
1.4. An Overview of ABFAB-based Federation 11
1.5. Design Goals . 13

2. Architecture . 15
2.1. Relying Party to Identity Provider 16
2.1.1. AAA, RADIUS and Diameter 17
2.1.2. Discovery and Rules Determination 19
2.1.3. Routing and Technical Trust 20
2.1.4. AAA Security . 21
2.1.5. SAML Assertions 22

2.2. Client To Identity Provider 24
2.2.1. Extensible Authentication Protocol (EAP) 24
2.2.2. EAP Channel Binding 25

2.3. Client to Relying Party 26
2.3.1. GSS-API . 26
2.3.2. Protocol Transport 28
2.3.3. Reauthentication 28

3. Application Security Services 29
3.1. Authentication . 29
3.2. GSS-API Channel Binding 30
3.3. Host-Based Service Names 31
3.4. Additional GSS-API Services 33

4. Privacy Considerations . 34
4.1. Entities and their roles 34
4.2. Relationship between user and entities 35
4.3. Data and Identifiers in use 35
4.3.1. NAI . 35
4.3.2. Identity Information 36
4.3.3. Accounting Information 36
4.3.4. Collection and retention of data and identifiers . . . 36

4.4. User Participation . 37
5. Deployment Considerations 38
5.1. EAP Channel Binding 38
5.2. AAA Proxy Behavior . 38

6. Security Considerations 39
7. IANA Considerations . 41
8. Acknowledgments . 42
9. References . 43
9.1. Normative References 43
9.2. Informative References 43

 Editorial Comments .
 Authors' Addresses . 49

Howlett, et al. Expires August 29, 2013 [Page 3]

Internet-Draft ABFAB Architecture February 2013

1. Introduction

 The Internet uses numerous security mechanisms to manage access to
 various resources. These mechanisms have been generalized and scaled
 over the last decade through mechanisms such as Simple Authentication
 and Security Layer (SASL) with the Generic Security Server
 Application Program Interface (GSS-API) (known as the GS2 family)
 [RFC5801], Security Assertion Markup Language (SAML)
 [OASIS.saml-core-2.0-os], and the Authentication, Authorization, and
 Accounting (AAA) architecture as embodied in RADIUS [RFC2865] and
 Diameter [RFC3588].

 A Relying Party (RP) is the entity that manages access to some
 resource. The actor that is requesting access to that resource is
 often described as the Client. Many security mechanisms are
 manifested as an exchange of information between these actors. The
 RP is therefore able to decide whether the Client is authorized, or
 not.

 Some security mechanisms allow the RP to delegate aspects of the
 access management decision to an actor called the Identity Provider
 (IdP). This delegation requires technical signaling, trust and a
 common understanding of semantics between the RP and IdP. These
 aspects are generally managed within a relationship known as a
 'federation'. This style of access management is accordingly
 described as 'federated access management'.

 Federated access management has evolved over the last decade through
 specifications like SAML [OASIS.saml-core-2.0-os], OpenID [1], OAuth
 [RFC5849], [I-D.ietf-oauth-v2] and WS-Trust [WS-TRUST]. The benefits
 of federated access management include:

 Single or Simplified sign-on:

 An Internet service can delegate access management, and the
 associated responsibilities such as identity management and
 credentialing, to an organisation that already has a long-term
 relationship with the Subject. This is often attractive for
 Relying Parties who frequently do not want these responsibilities.
 The Subject also requires fewer credentials, which is also
 desirable.

 Data Minimization and User Participation:

 Often a Relying Party does not need to know the identity of a
 Subject to reach an access management decision. It is frequently
 only necessary for the Relying Party know specific attributes
 about the subject, for example, that the Subject is affiliated

https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3588
https://datatracker.ietf.org/doc/html/rfc5849

Howlett, et al. Expires August 29, 2013 [Page 4]

Internet-Draft ABFAB Architecture February 2013

 with a particular organisation or has a certain role or
 entitlement. Sometimes the RP only needs to know a pseudonym of
 the Subject.

 Prior to the release of attributes to the IdP from the IdP, the
 IdP will check configuration and policy to determine if the
 attributes are to be released. There is currently no direct
 client participation in this decision.

 Provisioning

 Sometimes a Relying Party needs, or would like, to know more about
 a subject than an affiliation or a pseudonym. For example, a
 Relying Party may want the Subject's email address or name. Some
 federated access management technologies provide the ability for
 the IdP to supply this information, either on request by the RP or
 unsolicited.

 This memo describes the Application Bridging for Federated Access
 Beyond the Web (ABFAB) architecture. This architecture makes use of
 extensions to the commonly used security mechanisms for both
 federated and non-federated access management, including the RADIUS
 and the Diameter protocols, the Generic Security Service (GSS), the
 GS2 family, the Extensible Authentication Protocol (EAP) and SAML.
 The architecture addresses the problem of federated access management
 primarily for non-web-based services. It does so in a manner that
 will scale to large numbers of identity providers, relying parties,
 and federations.

1.1. Terminology

 This document uses identity management and privacy terminology from
 [I-D.iab-privacy-considerations]. In particular, this document uses
 the terms identity provider, relying party, identifier, pseudonymity,
 unlinkability, and anonymity.

 In this architecture the IdP consists of the following components: an
 EAP server, a RADIUS or a Diameter server, and optionally a SAML
 Assertion service.

 This document uses the term Network Access Identifier (NAI), as
 defined in [RFC4282]. An NAI consists of a realm identifier, which
 is associated with an IdP and a username which is associated with a
 specific client of the IdP.

 One of the problems people will find with reading this document is
 that the terminology sometimes appears to be inconsistent. This is
 due the fact that the terms used by the different standards we are

https://datatracker.ietf.org/doc/html/rfc4282

Howlett, et al. Expires August 29, 2013 [Page 5]

Internet-Draft ABFAB Architecture February 2013

 picking up don't use the same terms. In general the document uses
 either a consistent term or the term associated with the standard
 under discussion as appropriate. For reference we include this table
 which maps the different terms into a single table.

 +----------+-----------+--------------------+-----------------------+
 | Protocol | Subject | Relying Party | Identity Provider |
 +----------+-----------+--------------------+-----------------------+
ABFAB	Client	Relying Party (RP)	Identity Provider
			(IdP)
	Initiator	Acceptor	
		Server	
SAML	Subject	Service Provider	Issuer
GSS-API	Initiator	Acceptor	
EAP	EAP peer		EAP server
AAA		AAA Client	AAA server
RADIUS	user	NAS	RADIUS server
		RADIUS client	
 +----------+-----------+--------------------+-----------------------+

 Note that in some cases a cell has been left empty, in these cases
 there is no direct name that represents this concept.

 Note to reviewers - I have most likely missed some entries in the
 table. Please provide me with both correct names from the protocol
 and missing names that are used in the text below.

1.1.1. Channel Binding

 This document uses the term channel binding with two different
 meanings.

 EAP channel binding, also called channel binding, is used to provide
 GSS-API naming semantics. Channel binding sends a set of attributes
 from the peer to the EAP server either as part of the EAP
 converstaion or as part of a secure association protocol. In
 addition, attributes are sent in the baackend protocol from the
 authenticator to the EAP server. The EAP server confirms the
 consistency of these attributes and provides the confirmation back to
 the peer.

Howlett, et al. Expires August 29, 2013 [Page 6]

Internet-Draft ABFAB Architecture February 2013

 GSS-API channel binding provides protection against man-in-the-middle
 attacks when GSS-API is used for authentication inside of some
 tunnel; it is similar to a facility called cryptographic binding in
 EAP. The binding works by each side deriving a cryptographic value
 from the tunnel itself and then using that cyrptographic value to
 prove to the otherside that it knows the value.

 See [RFC5056] for a discussion of the differences between these two
 facilities.

 Typically when considering channel binding, people think of channel
 binding in combination with mutual authentication. This is
 sufficiently common that without additional qualification channel
 binding should be assumed to imply mutual authentication. Without
 mutual authentication, only one party knows that the endpoints are
 correct. That's sometimes useful. Consider for example a user who
 wishes to access a protected resource from a shared whiteboard in a
 conference room. The whiteboard is the initiator; it does not need
 to actually authenticate that it is talking to the correct resource
 because the user will be able to recognize whether the displayed
 content is correct. If channel binding were used without mutual
 authentication, it would in effect be a request to only disclose the
 resource in the context of a particular channel. Such an
 authentication would be similar in concept to a holder-of-key SAML
 assertion. However, also note that while it is not happening in the
 protocol, mutual authentication is happening in the overall system:
 the user is able to visually authenticate the content. This is
 consistent with all uses of channel binding without protocol level
 mutual authentication found so far.

1.2. An Overview of Federation

 In the previous section we introduced the following actors:

 o the Client,

 o the Identity Provider, and

 o the Relying Party.

 One additional actor in can be an Individual. An individual is a
 human being that is using a client. Individuals may or may not exist
 in any given deployment. The client may be either a front end on an
 individual or an independent automated entity.

 These entities and their relationships are illustrated graphically in
 Figure 1.

https://datatracker.ietf.org/doc/html/rfc5056

Howlett, et al. Expires August 29, 2013 [Page 7]

Internet-Draft ABFAB Architecture February 2013

 ,----------\ ,---------\
 | Identity | Federation | Relying |
 | Provider + <-------------------> + Party |
 `----------' '---------'
 <
 \
 \ Authentication
 \
 \
 \
 \
 \ +---------+
 \ | | O
 v| Client | \|/ Individual
 | | |
 +---------+ / \

 Figure 1: Entities and their Relationships

 The relationships between the entities in Figure 1 are:

 Federation

 The Identity Provider and the Relying Parties are part of a
 Federation. The relationship may be direct (they have an explicit
 trust relationship) or transitive (the trust releationship is
 mediated by one or more entities). The federation relationship is
 governed by a federation agreement. Within a single federation,
 there may be multiple Identity Providers as well as multiple
 Relying Parties. A federation is governed by a federation
 agreement.

 Authentication

 There is a direct relationship between the Client and the Identity
 Provider by which the entities trust and can securely authenticate
 each other.

 A federation agreement typically encompasses operational
 specifications and legal rules:

 Operational Specifications:

 These includes the technical specifications (e.g. protocols used
 to communicate between the three parties), process standards,
 policies, identity proofing, credential and authentication
 algorithm requirements, performance requirements, assessment and
 audit criteria, etc. The goal of operational specifications is to

Howlett, et al. Expires August 29, 2013 [Page 8]

Internet-Draft ABFAB Architecture February 2013

 provide enough definition that the system works and
 interoperability is possible.

 Legal Rules:

 The legal rules take the legal framework into consideration and
 provides contractual obligations for each entity. The rules
 define the responsibilities of each party and provide further
 clarification of the operational specifications. These legal
 rules regulate the operational specifications, make operational
 specifications legally binding to the participants, define and
 govern the rights and responsibilities of the participants. The
 legal rules may, for example, describe liability for losses,
 termination rights, enforcement mechanisms, measures of damage,
 dispute resolution, warranties, etc.

 The Operational Specifications can demand the usage of a
 sophisticated technical infrastructure, including requirements on the
 message routing intermediaries, to offer the required technical
 functionality. In other environments, the Operational Specifications
 require fewer technical components in order to meet the required
 technical functionality.

 The Legal Rules include many non-technical aspects of federation,
 such as business practices and legal arrangements, which are outside
 the scope of the IETF. The Legal Rules can still have an impact the
 architectural setup or on how to ensure the dynamic establishment of
 trust.

 While a federation agreement is often discussed within the context of
 formal relationships, such as between an enterprise and an employee
 or a government and a citizen, a federation agreement does not have
 to require any particular level of formality. For an IdP and a
 Client, it is sufficient for a relationship to be established by
 something as simple as using a web form and confirmation email. For
 an IdP and an RP, it is sufficient for the IdP to publish contact
 information along with a public key and for the RP to use that data.
 With in the framework of ABFAB, it will generally be required that a
 mechanism exists for the IdP to be able to trust the identity of the
 RP, if this is not present then the IdP cannot provide the assurances
 to the client that the identity of the RP has been established.

 The nature of federation dictates that there is some form of
 relationship between the identity provider and the relying party.
 This is particularly important when the relying party wants to use
 information obtained from the identity provider for access management
 decisions and when the identity provider does not want to release
 information to every relying party (or only under certain

Howlett, et al. Expires August 29, 2013 [Page 9]

Internet-Draft ABFAB Architecture February 2013

 conditions).

 While it is possible to have a bilateral agreement between every IdP
 and every RP; on an Internet scale this setup requires the
 introduction of the multi-lateral federation concept, as the
 management of such pair-wise relationships would otherwise prove
 burdensome.

 The IdP will typically have a long-term relationship with the Client.
 This relationship typically involves the IdP positively identifying
 and credentialing the Client (for example, at time of employment
 within an organization). When dealing with individuals, this process
 is called identity proofing [NIST-SP.800-63]. The relationship will
 often be instantiated within an agreement between the IdP and the
 Client (for example, within an employment contract or terms of use
 that stipulates the appropriate use of credentials and so forth).

 The nature and quality of the relationship between the Subject and
 the IdP is an important contributor to the level of trust that an RP
 may attribute to an assertion describing a Client made by an IdP.
 This is sometimes described as the Level of Assurance
 [NIST-SP.800-63].

 Federation does not require an a priori relationship or a long-term
 relationship between the RP and the Client; it is this property of
 federation that yields many of its benefits. However, federation
 does not preclude the possibility of a pre-existing relationship
 between the RP and the Client, nor that they may use the introduction
 to create a new long-term relationship independent of the federation.

 Finally, it is important to reiterate that in some scenarios there
 might indeed be an Individual behind the Client and in other cases
 the Client may be autonomous.

1.3. Challenges for Contemporary Federation

 As the number of federated services has proliferated, the role of the
 individual can become ambiguous in certain circumstances. For
 example, a school might provide online access for a student's grades
 to their parents for review, and to the student's teacher for
 modification. A teacher who is also a parent must clearly
 distinguish her role upon access.

 Similarly, as the number of federations proliferates, it becomes
 increasingly difficult to discover which identity provider(s) a user
 is associated with. This is true for both the web and non-web case,
 but is particularly acute for the latter as many non-web
 authentication systems are not semantically rich enough on their own

Howlett, et al. Expires August 29, 2013 [Page 10]

Internet-Draft ABFAB Architecture February 2013

 to allow for such ambiguities. For instance, in the case of an email
 provider, the use of SMTP and IMAP protocols do not have the ability
 for the server to get additional information, beyond the clients NAI,
 in order to provide additional input to decide between multiple
 federations it may be associated with. However, the building blocks
 do exist to add this functionality.

1.4. An Overview of ABFAB-based Federation

 The previous section described the general model of federation, and
 its the application of federated access management. This section
 provides a brief overview of ABFAB in the context of this model.

 In this example, a client is attempting to connect to a server in
 order to either get access to some data or perform some type of
 transaction. In order for the client to mutually authenticate with
 the server, the following steps are taken in an ABFAB federated
 architecture:

 1. Client Configuration: The Client Application is configured with
 an NAI assigned by the IdP. It is also configured with any
 keys, certificates, passwords or other secret and public
 information needed to run the EAP protocols between it and the
 IdP.

 2. Authentication mechanism selection: The GSS-EAP GSS-API
 mechanism is selected for authentication/authorization.

 3. Client provides an NAI to RP: The client application sets up a
 transport to the RP and begins the GSS-EAP authentication. In
 response, the RP sends an EAP request message (nested in the
 GSS-EAP protocol) asking for the Client's name. The Client
 sends an EAP response with an NAI name form that at a minimum,
 contains the realm portion of it's full NAI.

 4. Discovery of federated IdP: The RP uses pre-configured
 information or a federation proxy to determine what IdP to use
 based on policy and the realm portion of the provided Client
 NAI. This is discussed in detail below (Section 2.1.2).

 5. Request from Relying Party to IdP: Once the RP knows who the IdP
 is, it (or its agent) will send a RADIUS/Diameter request to the
 IdP. The RADIUS/Diameter access request encapsulates the EAP
 response. At this stage, the RP will likely have no idea who
 the client is. The RP sends its identity to the IdP in AAA
 attributes, and it may send a SAML Attribute Requests in a AAA
 attribute. The AAA network checks that the identity claimed by
 the RP is valid.

Howlett, et al. Expires August 29, 2013 [Page 11]

Internet-Draft ABFAB Architecture February 2013

 6. IdP begins EAP with the client: The IdP sends an EAP message to
 the client with an EAP method to be run. The IdP may re-request
 the clients name in this message, but this is unexpected
 behavior. The available and appropriate methods are discussed
 below in this memo (Section 2.2.1).

 7. The EAP protocol is run: A bunch of EAP messages are passed
 between the client (EAP peer) and the IdP (EAP server), until
 the result of the authentication protocol is determined. The
 number and content of those messages depends on the EAP method
 selected. If the IdP is unable to authenticate the client, the
 IdP sends a EAP failure message to the RP. As part of the EAP
 protocol, the client sends a channel bindings EAP message to the
 IdP (Section 2.2.2). In the channel binding message the client
 identifies, among other things, the RP to which it is attempting
 to authenticate. The IdP checks the channel binding data from
 the client with that provided by the RP via the AAA protocol.
 If the bindings do not match the IdP sends an EAP failure
 message to the RP.

 8. Successful EAP Authentication: At this point, the IdP (EAP
 server) and client (EAP peer) have mutually authenticated each
 other. As a result, the subject and the IdP hold two
 cryptographic keys: a Master Session Key (MSK), and an Extended
 MSK (EMSK). At this point the client has a level of assurance
 about the identity of the RP based on the name checking the IdP
 has done using the RP naming information from the AAA framework
 and from the client (by the channel binding data).

 9. Local IdP Policy Check: At this stage, the IdP checks local
 policy to determine whether the RP and client are authorized for
 a given transaction/service, and if so, what if any, attributes
 will be released to the RP. If the IdP gets a policy failure,
 it sends an EAP failure message to the RP.[anchor4] (The RP will
 have done its policy checks during the discovery process.)

 10. IdP provide the RP with the MSK: The IdP sends a positive result
 EAP to the RP, along with an optional set of AAA attributes
 associated with the client (usually as one or more SAML
 assertions). In addition, the EAP MSK is returned to the RP.

 11. RP Processes Results: When the RP receives the result from the
 IdP, it should have enough information to either grant or refuse
 a resource access request. It may have information that
 associates the client with specific authorization identities.
 If additional attributes are needed from the IdP the RP may make
 a new SAML Request to the IdP. It will apply these results in
 an application-specific way.

Howlett, et al. Expires August 29, 2013 [Page 12]

Internet-Draft ABFAB Architecture February 2013

 12. RP returns results to client: Once the RP has a response it must
 inform the client application of the result. If all has gone
 well, all are authenticated, and the application proceeds with
 appropriate authorization levels. The client can now complete
 the authentication of the RP by the use of the EAP MSK value.

 An example communication flow is given below:

 Relying Client Identity
 Party App Provider

 | (1) | Client Configuration
 | | |
 |<-----(2)----->| | Mechanism Selection
 | | |
 |<-----(3)-----<| | NAI transmitted to RP
 | | |
 |<=====(4)====================>| Discovery
 | | |
 |>=====(5)====================>| Access request from RP to IdP
 | | |
 | |< - - (6) - -<| EAP method to Client
 | | |
 | |< - - (7) - ->| EAP Exchange to authenticate
 | | | Client
 | | |
 | | (8 & 9) Local Policy Check
 | | |
 |<====(10)====================<| IdP Assertion to RP
 | | |
 (11) | | RP processes results
 | | |
 |>----(12)----->| | Results to client app.

 ----- = Between Client App and RP
 ===== = Between RP and IdP
 - - - = Between Client App and IdP

1.5. Design Goals

 Our key design goals are as follows:

Howlett, et al. Expires August 29, 2013 [Page 13]

Internet-Draft ABFAB Architecture February 2013

 o Each party of a transaction will be authenticated, although
 perhaps not identified, and the client will be authorized for
 access to a specific resource.

 o Means of authentication is decoupled so as to allow for multiple
 authentication methods.

 o Hence, the architecture requires no sharing of long term private
 keys between clients and servers.

 o The system will scale to large numbers of identity providers,
 relying parties, and users.

 o The system will be designed primarily for non-Web-based
 authentication.

 o The system will build upon existing standards, components, and
 operational practices.

 Designing new three party authentication and authorization protocols
 is hard and fraught with risk of cryptographic flaws. Achieving
 widespead deployment is even more difficult. A lot of attention on
 federated access has been devoted to the Web. This document instead
 focuses on a non-Web-based environment and focuses on those protocols
 where HTTP is not used. Despite the increased excitement for
 layering every protocol on top of HTTP there are still a number of
 protocols available that do not use HTTP-based transports. Many of
 these protocols are lacking a native authentication and authorization
 framework of the style shown in Figure 1.

Howlett, et al. Expires August 29, 2013 [Page 14]

Internet-Draft ABFAB Architecture February 2013

2. Architecture

 We have already introduced the federated access architecture, with
 the illustration of the different actors that need to interact, but
 did not expand on the specifics of providing support for non-Web
 based applications. This section details this aspect and motivates
 design decisions. The main theme of the work described in this
 document is focused on re-using existing building blocks that have
 been deployed already and to re-arrange them in a novel way.

 Although this architecture assumes updates to the relying party, the
 client application, and the Identity Provider, those changes are kept
 at a minimum. A mechanism that can demonstrate deployment benefits
 (based on ease of update of existing software, low implementation
 effort, etc.) is preferred and there may be a need to specify
 multiple mechanisms to support the range of different deployment
 scenarios.

 There are a number of ways for encapsulating EAP into an application
 protocol. For ease of integration with a wide range of non-Web based
 application protocols the usage of the GSS-API was chosen. A
 description of the technical specification can be found in
 [I-D.ietf-abfab-gss-eap]. Other alternatives exist as well and may
 be considered later, such as "TLS using EAP Authentication"
 [I-D.nir-tls-eap]. [anchor7]

 The architecture consists of several building blocks, which is shown
 graphically in Figure 2. In the following sections, we discuss the
 data flow between each of the entities, the protocols used for that
 data flow and some of the trade-offs made in choosing the protocols.

Howlett, et al. Expires August 29, 2013 [Page 15]

Internet-Draft ABFAB Architecture February 2013

 +--------------+
 | Identity |
 | Provider |
 | (IdP) |
 +-^----------^-+
 * EAP o RADIUS/
 * o Diameter
 --v----------v--
 /// \\\
 // \\
 | Federation |
 | Substrate |
 \\ //
 \\\ ///
 --^----------^--
 * EAP o RADIUS/
 * o Diameter
 +-------------+ +-v----------v--+
Client	EAP/EAP Method	Relying Party
Application	<****************>	(RP)
	GSS-API	
	<---------------->	
	Application	
	Protocol	
	<================>	
 +-------------+ +---------------+

 Legend:

 <****>: Client-to-IdP Exchange
 <---->: Client-to-RP Exchange
 <oooo>: RP-to-IdP Exchange
 <====>: Protocol through which GSS-API/GS2 exchanges are tunneled

 Figure 2: ABFAB Protocol Instantiation

2.1. Relying Party to Identity Provider

 Communications between the Relying Party and the Identity Provider is
 done by the federation substrate. This communication channel is
 responsible for:

 o Establishing the trust relationship between the RP and the IdP.

 o Determining the rules governing the relationship.

Howlett, et al. Expires August 29, 2013 [Page 16]

Internet-Draft ABFAB Architecture February 2013

 o Conveying authentication packets from the client to the IdP and
 back.

 o Providing the means of establishing a trust relationship between
 the RP and the client.

 o Providing a means for the RP to obtain attributes about the client
 from the IdP.

 The ABFAB working group has chosen the AAA framework for the messages
 transported between the RP and IdP. The AAA framework supports the
 requirements stated above as follows:

 o The AAA backbone supplies the trust relationship between the RP
 and the IdP.

 o The agreements governing a specific AAA backbone contains the
 rules governing the relationships within the AAA federation.

 o A method exists for carrying EAP packets within RADIUS [RFC3579]
 and Diameter [RFC4072].

 o The use of EAP channel binding [RFC6677] along with the core ABFAB
 protocol provide the pieces necessary to establish the identities
 of the RP and the client, while EAP provides the cryptographic
 methods for the RP and the client to validate they are talking to
 each other.

 o A method exists for carrying SAML packets within RADIUS
 [I-D.ietf-abfab-aaa-saml] and Diameter (work in progress) which
 allows the RP to query attributes about the client from the IdP.

 Future protocols that support the same framework but do different
 routing may be used in the future. Once such effort is to setup a
 framework that creates a trusted point-to-point channel on the fly.

2.1.1. AAA, RADIUS and Diameter

 Interestingly, for network access authentication the usage of the AAA
 framework with RADIUS [RFC2865] and Diameter [RFC3588] was quite
 successful from a deployment point of view. To map the terminology
 used in Figure 1 to the AAA framework the IdP corresponds to the AAA
 server, the RP corresponds to the AAA client, and the technical
 building blocks of a federation are AAA proxies, relays and redirect
 agents (particularly if they are operated by third parties, such as
 AAA brokers and clearing houses). The front-end, i.e. the end host
 to AAA client communication, is in case of network access
 authentication offered by link layer protocols that forward

https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc4072
https://datatracker.ietf.org/doc/html/rfc6677
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3588

Howlett, et al. Expires August 29, 2013 [Page 17]

Internet-Draft ABFAB Architecture February 2013

 authentication protocol exchanges back-and-forth. An example of a
 large scale RADIUS-based federation is EDUROAM [2].

 By using the AAA framework, ABFAB gets a lot of mileage as many of
 the federation agreements already exist and merely need to be
 expanded to cover the ABFAB additions. The AAA framework has already
 addressed some of the problems outlined above. For example,

 o It already has a method for routing requests based on a domain.

 o It already has an extensible architecture allowing for new
 attributes to be defined and transported.

 o Pre-existing relationships can be re-used.

 The astute reader will notice that RADIUS and Diameter have
 substantially similar characteristics. Why not pick one? RADIUS and
 Diameter are deployed in different environments. RADIUS can often be
 found in enterprise and university networks, and is also in use by
 fixed network operators. Diameter, on the other hand, is deployed by
 mobile operators. Another key difference is that today RADIUS is
 largely transported upon UDP. We leave as a deployment decision,
 which protocol will be appropriate. The protocol defines all the
 necessary new AAA attributes as RADIUS attributes. A future document
 would defined the same AAA attributes for a Diameter environment. We
 also note that there exist proxies which convert from RADIUS to
 Diameter and back. This makes it possible for both to be deployed in
 a single federation substrate.

 Through the integrity protection mechanisms in the AAA framework, the
 identity provider can establish technical trust that messages are
 being sent by the appropriate relying party. Any given interaction
 will be associated with one federation at the policy level. The
 legal or business relationship defines what statements the identity
 provider is trusted to make and how these statements are interpreted
 by the relying party. The AAA framework also permits the relying
 party or elements between the relying party and identity provider to
 make statements about the relying party.

 The AAA framework provides transport for attributes. Statements made
 about the subject by the identity provider, statements made about the
 relying party and other information are transported as attributes.

 One demand that the AAA substrate makes of the upper layers is that
 they must properly identify the end points of the communication. It
 must be possible for the AAA client at the RP to determine where to
 send each RADIUS or Diameter message. Without this requirement, it
 would be the RP's responsibility to determine the identity of the

Howlett, et al. Expires August 29, 2013 [Page 18]

Internet-Draft ABFAB Architecture February 2013

 client on its own, without the assistance of an IdP. This
 architecture makes use of the Network Access Identifier (NAI), where
 the IdP is indicated by the realm component [RFC4282]. The NAI is
 represented and consumed by the GSS-API layer as GSS_C_NT_USER_NAME
 as specified in [RFC2743]. The GSS-API EAP mechanism includes the
 NAI in the EAP Response/Identity message.

2.1.2. Discovery and Rules Determination

 While we are using the AAA protocols to communicate with the IdP, the
 RP may have multiple federation substrates to select from. The RP
 has a number of criteria that it will use in selecting which of the
 different federations to use:

 o The federation selected must be able to communicate with the IdP.

 o The federation selected must match the business rules and
 technical policies required for the RP security requirements.

 The RP needs to discover which federation will be used to contact the
 IdP. The first selection criteria in discovery is going to be the
 name of the IdP to be contacted. The second selection criteria in
 discovery is going to be the set of business rules and technical
 policies governing the relationship; this is called rules
 determination. The RP also needs to establish technical trust in the
 communications with the IdP.

 Rules determination covers a broad range of decisions about the
 exchange. One of these is whether the given RP is permitted to talk
 to the IdP using a given federation at all, so rules determination
 encompasses the basic authorization decision. Other factors are
 included, such as what policies govern release of information about
 the principal to the RP and what policies govern the RP's use of this
 information. While rules determination is ultimately a business
 function, it has significant impact on the technical exchanges. The
 protocols need to communicate the result of authorization. When
 multiple sets of rules are possible, the protocol must disambiguate
 which set of rules are in play. Some rules have technical
 enforcement mechanisms; for example in some federations
 intermediaries validate information that is being communicated within
 the federation.

 At the time of writing no protocol mechanism has been specified to
 allow a AAA client to determine whether a AAA proxy will indeed be
 able to route AAA requests to a specific IdP. The AAA routing is
 impacted by business rules and technical policies that may be quite
 complex and atpresent time, the route selection is based on manual
 configuration.

https://datatracker.ietf.org/doc/html/rfc4282
https://datatracker.ietf.org/doc/html/rfc2743

Howlett, et al. Expires August 29, 2013 [Page 19]

Internet-Draft ABFAB Architecture February 2013

2.1.3. Routing and Technical Trust

 Several approaches to having messages routed through the federation
 substrate are possible. These routing methods can most easily be
 classified based on the mechanism for technical trust that is used.
 The choice of technical trust mechanism constrains how rules
 determination is implemented. Regardless of what deployment strategy
 is chosen, it is important that the technical trust mechanism be able
 to validate the names of both parties to the exchange. The trust
 mechanism must to ensure that the entity acting as IdP for a given
 NAI is permitted to be the IdP for that realm, and that any service
 name claimed by the RP is permitted to be claimed by that entity.
 Here are the categories of technical trust determination:

 AAA Proxy:
 The simplest model is that an RP supports a request directly to an
 AAA proxy. The hop-by-hop integrity protection of the AAA fabric
 provides technical trust. An RP can submit a request directly to
 a federation. Alternatively, a federation disambiguation fabric
 can be used. Such a fabric takes information about what
 federations the RP is part of and what federations the IdP is part
 of and routes a message to the appropriate federation. The
 routing of messages across the fabric plus attributes added to
 requests and responses provides rules determination. For example,
 when a disambiguation fabric routes a message to a given
 federation, that federation's rules are chosen. Name validation
 is enforced as messages travel across the fabric. The entities
 near the RP confirm its identity and validate names it claims.
 The fabric routes the message towards the appropriate IdP,
 validating the IdP's name in the process. The routing can be
 statically configured. Alternatively a routing protocol could be
 developed to exchange reachability information about given IdPs
 and to apply policy across the AAA fabric. Such a routing
 protocol could flood naming constraints to the appropriate points
 in the fabric.

 Trust Broker:
 Instead of routing messages through AAA proxies, some trust broker
 could establish keys between entities near the RP and entities
 near the IdP. The advantage of this approach is efficiency of
 message handling. Fewer entities are needed to be involved for
 each message. Security may be improved by sending individual
 messages over fewer hops. Rules determination involves decisions
 made by trust brokers about what keys to grant. Also, associated
 with each credential is context about rules and about other
 aspects of technical trust including names that may be claimed. A
 routing protocol similar to the one for AAA proxies is likely to
 be useful to trust brokers in flooding rules and naming

Howlett, et al. Expires August 29, 2013 [Page 20]

Internet-Draft ABFAB Architecture February 2013

 constraints.

 Global Credential:
 A global credential such as a public key and certificate in a
 public key infrastructure can be used to establish technical
 trust. A directory or distributed database such as the Domain
 Name System is used by the RP to discover the endpoint to contact
 for a given NAI. Either the database or certificates can provide
 a place to store information about rules determination and naming
 constraints. Provided that no intermediates are required (or
 appear to be required) and that the RP and IdP are sufficient to
 enforce and determine rules, rules determination is reasonably
 simple. However applying certain rules is likely to be quite
 complex. For example if multiple sets of rules are possible
 between an IdP and RP, confirming the correct set is used may be
 difficult. This is particularly true if intermediates are
 involved in making the decision. Also, to the extent that
 directory information needs to be trusted, rules determination may
 be more complex.

 Real-world deployments are likely to be mixtures of these basic
 approaches. For example, it will be quite common for an RP to route
 traffic to a AAA proxy within an organization. That proxy could then
 use any of the three methods to get closer to the IdP. It is also
 likely that rather than being directly reachable, the IdP may have a
 proxy on the edge of its organization. Federations will likely
 provide a traditional AAA proxy interface even if they also provide
 another mechanism for increased efficiency or security.

2.1.4. AAA Security

 For the AAA framework there are two different places where security
 needs to be examined. The first is the security that is in place for
 the links in the AAA backbone being used. The second is the nodes
 that the backbone consists of.

 The default link security for RADIUS is showing it's age as it uses
 MD5 and a shared secret to both obfuscate passwords and to provide
 integrity on the RADIUS messages. In many environments this is
 considered to be insufficient, especially as not all attributes are
 obfuscated and can thus leak information to a passive eavesdropper.
 The use of RADIUS with TLS [RFC6614] and/or DTLS
 [I-D.ietf-radext-dtls] addresses these attacks. The same level of
 security is included in the base Diameter specifications.

 TBD - Put in text - Not all nodes can be eliminated - proxy nodes may
 be required Trust router looks for a way to shorten the list of inner
 nodes. Reference DYNAMIC and say that it does or does not help and

https://datatracker.ietf.org/doc/html/rfc6614

Howlett, et al. Expires August 29, 2013 [Page 21]

Internet-Draft ABFAB Architecture February 2013

 why. Talk about Diameter in the same context - does it have the same
 set of issues or not?

2.1.5. SAML Assertions

 For the traditional use of AAA frameworks, network access, the only
 requirement that was necessary to grant access was an affirmative
 response from the IdP. In the ABFAB world, the RP may need to get
 additional information about the client before granting access.
 ABFAB therefore has a requirement that it can transport an arbitrary
 set of attributes about the client from the IdP to the RP.

 Security Assertions Markup Language (SAML) [OASIS.saml-core-2.0-os]
 was designed in order to carry an extensible set of attributes about
 a subject. Since SAML is extensible in the attribute space, ABFAB
 has no immediate needs to update the core SAML specifications for our
 work. It will be necessary to update IdPs that need to return SAML
 assertions to IdPs and for both the IdP and the RP to implement a new
 SAML profile designed to carry SAML assertions in AAA. The new
 profile can be found in RFCXXXX [I-D.ietf-abfab-aaa-saml]. As SAML
 statements will frequently be large, RADIUS servers and clients that
 deal with SAML statements will need to implement RFC XXXX
 [I-D.perez-radext-radius-fragmentation]

 There are several issues that need to be highlighted:

 o The security of SAML assertions.

 o Namespaces and mapping of SAML attributes.

 o Subject naming of entities.

 o Making multiple queries about the subject(s).

 o Level of Assurance for authentication.

 SAML assertions have an optional signature that can be used to
 protect and provide origination of the assertion. These signatures
 are normally based on asymmetric key operations and require that the
 verifier be able to check not only the cryptographic operation, but
 also the binding of the originators name and the public key. In a
 federated environment it will not always be possible for the RP to
 validate the binding, for this reason the technical trust established
 in the federation is used as an alternate method of validating the
 origination and integrity of the SAML Assertion.

 Attributes placed in SAML assertions can have different namespaces
 assigned to the same name. In many, but not all, cases the

Howlett, et al. Expires August 29, 2013 [Page 22]

Internet-Draft ABFAB Architecture February 2013

 federation agreements will determine what attributes can be used in a
 SAML statement. This means that the RP needs to map from the
 federation names, types and semantics into the ones that the policies
 of the RP are written in. In other cases the federation substrate
 may modify the SAML assertions in transit to do the necessary
 namespace, naming and semantic mappings as the assertion crosses the
 different boundaries in the federation. If the proxies are modifying
 the SAML Assertion, then will obviously remove any signatures on the
 SAML assertions as they would no longer validate. In this case the
 technical trust is the required mechanism for validating the
 integrity of the assertion. Finally, the attributes may still be in
 the namespace of the originating IdP. When this occurs the RP will
 need to get the required mapping operations from the federation
 agreements and do the appropriate mappings itself.

 As of this writing, no one has defined a SAML name format that
 corresponds to the NAI structure defined by RFC 4282 [RFC4282]. This
 means that there is no method to directly place the same NAI used in
 RADIUS or Diameter as the subject name of a SAML assertion. It is a
 requirement on the EAP server that it validate that the subject of
 the SAML name, if any, is equivalent to the subject identified by the
 NAI used in the RADIUS or Diameter session.

 RADIUS has the ability to deal with multiple SAML queries for those
 EAP Servers which follow RFC 5080 [RFC5080]. In this case a State
 attribute will always been returned with the Access-Accept. The EAP
 client can then send a new Access-Request with the State attribute
 and the new SAML request Multiple SAML queries can them be done by
 making a new Access-Request using the State attribute returned in the
 last Access-Accept to link together the different RADIUS sessions.

 Some RPs need to ensure that specfic criteria are met during the
 authentication process. This need is met by using Levels of
 Assurance. The way a Level of Assurance is communicated to from the
 RP to the EAP server is by the use of a SAML Authentication Request
 using the Authentication Profile from RFC XXX
 [I-D.ietf-abfab-aaa-saml] When crossing boundaries between different
 federations, either the policy specfied will need to be shared
 between the two federations, the policy will need to be mapped by the
 proxy server on the boundary or the proxy server on the boundary will
 need to supply infomration the EAP server so that it can do the
 required mapping. If this mapping is not done, then the EAP server
 will not be able to enforce the desired Level of Assurance as it will
 not understand the policy requirements.

https://datatracker.ietf.org/doc/html/rfc4282
https://datatracker.ietf.org/doc/html/rfc4282
https://datatracker.ietf.org/doc/html/rfc5080
https://datatracker.ietf.org/doc/html/rfc5080

Howlett, et al. Expires August 29, 2013 [Page 23]

Internet-Draft ABFAB Architecture February 2013

2.2. Client To Identity Provider

 Looking at the communications between the client and the IdP, the
 following items need to be dealt with:

 o The client and the IdP need to mutually authenticate each other.

 o The client and the IdP need to mutually agree on the identity of
 the RP.

 ABFAB selected EAP for the purposes of mutual authentication and
 assisted in creating some new EAP channel binding documents for
 dealing with determining the identity of the RP. A framework for the
 channel binding mechanism has been defined in RFC 6677 [RFC6677] that
 allows the IdP to check the identity of the RP provided by the AAA
 framework with that provided by the client.

2.2.1. Extensible Authentication Protocol (EAP)

 Traditional web federation does not describe how a subject interacts
 with an identity provider for authentication. As a result, this
 communication is not standardized. There are several disadvantages
 to this approach. Since the communication is not standardized, it is
 difficult for machines to correctly enter their credentials with
 different authentications, where Individuals can correctly identify
 the entyr mechanism on the fly. The use of browsers for
 authentication restricts the deployment of more secure forms of
 authentication beyond plaintext username and password known by the
 server. In a number of cases the authentication interface may be
 presented before the subject has adequately validated they are
 talking to the intended server. By giving control of the
 authentication interface to a potential attacker, then the security
 of the system may be reduced and phishing opportunities introduced.

 As a result, it is desirable to choose some standardized approach for
 communication between the subject's end-host and the identity
 provider. There are a number of requirements this approach must
 meet.

 Experience has taught us one key security and scalability
 requirement: it is important that the relying party not get
 possession of the long-term secret of the client. Aside from a
 valuable secret being exposed, a synchronization problem can develop
 when the client changes keys with the IdP.

 Since there is no single authentication mechanism that will be used
 everywhere there is another associated requirement: The
 authentication framework must allow for the flexible integration of

https://datatracker.ietf.org/doc/html/rfc6677
https://datatracker.ietf.org/doc/html/rfc6677

Howlett, et al. Expires August 29, 2013 [Page 24]

Internet-Draft ABFAB Architecture February 2013

 authentication mechanisms. For instance, some IdPs require hardware
 tokens while others use passwords. A service provider wants to
 provide support for both authentication methods, and other methods
 from IdPs not yet seen.

 Fortunately, these requirements can be met by utilizing standardized
 and successfully deployed technology, namely by the Extensible
 Authentication Protocol (EAP) framework [RFC3748]. Figure 2
 illustrates the integration graphically.

 EAP is an end-to-end framework; it provides for two-way communication
 between a peer (i.e,service client or principal) through the
 authenticator (i.e., service provider) to the back-end (i.e.,
 identity provider). Conveniently, this is precisely the
 communication path that is needed for federated identity. Although
 EAP support is already integrated in AAA systems (see [RFC3579] and
 [RFC4072]) several challenges remain:

 o The first is how to carry EAP payloads from the end host to the
 relying party.

 o Another is to verify statements the relying party has made to the
 subject, confirm these statements are consistent with statements
 made to the identity provider and confirm all the above are
 consistent with the federation and any federation-specific policy
 or configuration.

 o Another challenge is choosing which identity provider to use for
 which service.

 The EAP method used for ABFAB needs to meet the following
 requirements:

 o It needs to provide mutual authentication of the client and IdP.

 o It needs to support channel binding.

 As of this writing, the only EAP method that meets these criteria is
 TEAP [I-D.ietf-emu-eap-tunnel-method] either alone (if client
 certificates are used) or with an inner EAP method that does mutual
 authentication.

2.2.2. EAP Channel Binding

 EAP channel binding is easily confused with a facility in GSS-API
 also called channel binding. GSS-API channel binding provides
 protection against man-in-the-middle attacks when GSS-API is used as
 authentication inside some tunnel; it is similar to a facility called

https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc4072

Howlett, et al. Expires August 29, 2013 [Page 25]

Internet-Draft ABFAB Architecture February 2013

 cryptographic binding in EAP. See [RFC5056] for a discussion of the
 differences between these two facilities and Section 6.1 for how GSS-
 API channel binding is handled in this mechanism.

 The client knows, in theory, the name of the RP that it attempted to
 connect to, however in the event that an attacker has intercepted the
 protocol, the client and the IdP need to be able to detect this
 situation. A general overview of the problem along with a
 recommended way to deal with the channel binding issues can be found
 in RFC 6677 [RFC6677].

 Since that document was published, a number of possible attacks were
 found and methods to address these attacks have been outlined in
 [I-D.ietf-emu-crypto-bind].

2.3. Client to Relying Party

 The final set of interactions between parties to consider are those
 between the client and the RP. In some ways this is the most complex
 set since at least part of it is outside the scope of the ABFAB work.
 The interactions between these parties include:

 o Running the protocol that implements the service that is provided
 by the RP and desired by the client.

 o Authenticating the client to the RP and the RP to the client.

 o Providing the necessary security services to the service protocol
 that it needs beyond authentication.

 o Deal with client re-authentication where desired.

2.3.1. GSS-API

 One of the remaining layers is responsible for integration of
 federated authentication into the application. There are a number of
 approaches that applications have adopted for security. So, there
 may need to be multiple strategies for integration of federated
 authentication into applications. However, we have started with a
 strategy that provides integration to a large number of application
 protocols.

 Many applications such as SSH [RFC4462], NFS [RFC2203], DNS [RFC3645]
 and several non-IETF applications support the Generic Security
 Services Application Programming Interface [RFC2743]. Many
 applications such as IMAP, SMTP, XMPP and LDAP support the Simple
 Authentication and Security Layer (SASL) [RFC4422] framework. These
 two approaches work together nicely: by creating a GSS-API mechanism,

https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc6677
https://datatracker.ietf.org/doc/html/rfc6677
https://datatracker.ietf.org/doc/html/rfc4462
https://datatracker.ietf.org/doc/html/rfc2203
https://datatracker.ietf.org/doc/html/rfc3645
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc4422

Howlett, et al. Expires August 29, 2013 [Page 26]

Internet-Draft ABFAB Architecture February 2013

 SASL integration is also addressed. In effect, using a GSS-API
 mechanism with SASL simply requires placing some headers on the front
 of the mechanism and constraining certain GSS-API options.

 GSS-API is specified in terms of an abstract set of operations which
 can be mapped into a programming language to form an API. When
 people are first introduced to GSS-API, they focus on it as an API.
 However, from the prospective of authentication for non-web
 applications, GSS-API should be thought of as a protocol not an API.
 It consists of some abstract operations such as the initial context
 exchange, which includes two sub-operations (gss_init_sec_context and
 gss_accept_sec_context). An application defines which abstract
 operations it is going to use and where messages produced by these
 operations fit into the application architecture. A GSS-API
 mechanism will define what actual protocol messages result from that
 abstract message for a given abstract operation. So, since this work
 is focusing on a particular GSS-API mechanism, we generally focus on
 protocol elements rather than the API view of GSS-API.

 The API view has significant value. Since the abstract operations
 are well defined, the set of information that a mechanism gets from
 the application is well defined. Also, the set of assumptions the
 application is permitted to make is generally well defined. As a
 result, an application protocol that supports GSS-API or SASL is very
 likely to be usable with a new approach to authentication including
 this one with no required modifications. In some cases, support for
 a new authentication mechanism has been added using plugin interfaces
 to applications without the application being modified at all. Even
 when modifications are required, they can often be limited to
 supporting a new naming and authorization model. For example, this
 work focuses on privacy; an application that assumes it will always
 obtain an identifier for the principal will need to be modified to
 support anonymity, unlinkability or pseudonymity.

 So, we use GSS-API and SASL because a number of the application
 protocols we wish to federate support these strategies for security
 integration. What does this mean from a protocol standpoint and how
 does this relate to other layers? This means we need to design a
 concrete GSS-API mechanism. We have chosen to use a GSS-API
 mechanism that encapsulates EAP authentication. So, GSS-API (and
 SASL) encapsulate EAP between the end-host and the service. The AAA
 framework encapsulates EAP between the relying party and the identity
 provider. The GSS-API mechanism includes rules about how principals
 and services are named as well as per-message security and other
 facilities required by the applications we wish to support.

Howlett, et al. Expires August 29, 2013 [Page 27]

Internet-Draft ABFAB Architecture February 2013

2.3.2. Protocol Transport

 The transport of data between the client and the relying party is not
 provided by GSS-API. GSS-API creates and consumes messages, but it
 does not provide the transport itself, instead the protocol using
 GSS-API needs to provide the transport. In many cases HTTP or HTTPS
 is used for this transport, but other transports are perfectly
 acceptable. The core GSS-API document [RFC2743] provides some
 details on what requirements exist.

 In addition we highlight the following:

 o The transport does not need to provide either privacy or
 integrity. After GSS-EAP has finished negotiation, GSS-API can be
 used to provide both services. If the negotiation process itself
 needs protection from eavesdroppers then the transport would need
 to provide the necessary services.

 o The transport needs to provide reliable transport of the messages.

 o The transport needs to ensure that tokens are delivered in order
 during the negotiation process.

 o GSS-API messages need to be delivered atomically. If the
 transport breaks up a message it must also reassemble the message
 before delivery.

2.3.3. Reauthentication

 TBD.

https://datatracker.ietf.org/doc/html/rfc2743

Howlett, et al. Expires August 29, 2013 [Page 28]

Internet-Draft ABFAB Architecture February 2013

3. Application Security Services

 One of the key goals is to integrate federated authentication into
 existing application protocols and where possible, existing
 implementations of these protocols. Another goal is to perform this
 integration while meeting the best security practices of the
 technologies used to perform the integration. This section describes
 security services and properties required by the EAP GSS-API
 mechanism in order to meet these goals. This information could be
 viewed as specific to that mechanism. However, other future
 application integration strategies are very likely to need similar
 services. So, it is likely that these services will be expanded
 across application integration strategies if new application
 integration strategies are adopted.

3.1. Authentication

 GSS-API provides an optional security service called mutual
 authentication. This service means that in addition to the initiator
 providing (potentially anonymous or pseudonymous) identity to the
 acceptor, the acceptor confirms its identity to the initiator.
 Especially for the ABFAB context, this service is confusingly named.
 We still say that mutual authentication is provided when the identity
 of an acceptor is strongly authenticated to an anonymous initiator.

RFC 2743, unfortunately, does not explicitly talk about what mutual
 authentication means. Within this document we therefore define it
 as:

 o If a target name is configured for the initiator, then the
 initiator trusts that the supplied target name describes the
 acceptor. This implies both that appropriate cryptographic
 exchanges took place for the initiator to make such a trust
 decision, and that after evaluating the results of these
 exchanges, the initiator's policy trusts that the target name is
 accurate.

 o If no target name is configured for the initiator, then the
 initiator trusts that the acceptor name, supplied by the acceptor,
 correctly names the entity it is communicating with.

 o Both the initiator and acceptor have the same key material for
 per-message keys and both parties have confirmed they actually
 have the key material. In EAP terms, there is a protected
 indication of success.

 Mutual authentication is an important defense against certain aspects
 of phishing. Intuitively, clients would like to assume that if some

https://datatracker.ietf.org/doc/html/rfc2743

Howlett, et al. Expires August 29, 2013 [Page 29]

Internet-Draft ABFAB Architecture February 2013

 party asks for their credentials as part of authentication,
 successfully gaining access to the resource means that they are
 talking to the expected party. Without mutual authentication, the
 server could "grant access" regardless of what credentials are
 supplied. Mutual authentication better matches this user intuition.

 It is important, therefore, that the GSS-EAP mechanism implement
 mutual authentication. That is, an initiator needs to be able to
 request mutual authentication. When mutual authentication is
 requested, only EAP methods capable of providing the necessary
 service can be used, and appropriate steps need to be taken to
 provide mutual authentication. While a broader set of EAP methods
 could be supported by not requiring mutual authentication, it was
 decided that the client needs to always have the ability to request
 it. In some cases the IdP and the RP will not support mutual
 authentication, however the client will always be able to detect this
 and make an appropriate security decision.

 The AAA infrastructure MAY hide the initiator's identity from the
 GSS-API acceptor, providing anonymity between the initiator and the
 acceptor. At this time, whether the identity is disclosed is
 determined by EAP server policy rather than by an indication from the
 initiator. Also, initiators are unlikely to be able to determine
 whether anonymous communication will be provided. For this reason,
 initiators are unlikely to set the anonymous return flag from
 GSS_Init_Sec_context.

3.2. GSS-API Channel Binding

 [RFC5056] defines a concept of channel binding to which is used
 prevent man-in-the-middle attacks. The channel binding works by
 taking a cryptographic value from the transport security and checks
 that both sides of the GSS-API conversation know this value.
 Transport Layer Security (TLS) is the most common transport security
 layer used for this purpose.

 It needs to be stressed that RFC 5056 channel binding (also called
 GSS-API channel binding when GSS-API is involved) is not the same
 thing as EAP channel binding. GSS-API channel binding is used for
 detecting Man-In-The-Middle attacks. EAP channel binding is used for
 mututal authentication and acceptor naming checks. Details are
 discussed in the mechanisms specification [I-D.ietf-abfab-gss-eap].
 A fuller discription of the differences between the factilities cn be
 found in RFC 5056 [RFC5056].

 The use of TLS can provide both encryption and integrity on the
 channel. It is common to provide SASL and GSS-API with these other
 security services.

https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5056

Howlett, et al. Expires August 29, 2013 [Page 30]

Internet-Draft ABFAB Architecture February 2013

 On of the benifits that the use of TLS provides, is that client has
 the ability to validate the name of the server. However this
 validation is predicated on on a couple of things. The TLS sessions
 needs to be using certificates and not be an anonymous session. The
 client and the TLS need to share a common trust point for the
 certificate used in validating the server. TLS provides its own
 server authentication. However there are a variety of situations
 where this authentication is not checked for policy or usability
 reasons. Even when it is checked, if the trust infrastructure behind
 the TLS authentication is different from the trust infrastructure
 behind the GSS-API mutual authentication then confirming the end-
 points using both trust infrastructures is likely to enhance
 security. If the endpoints of the GSS-API authentication are
 different than the endpoints of the lower layer, this is a strong
 indication of a problem such as a man-in-the-middle attack. Channel
 binding provides a facility to determine whether these endpoints are
 the same.

 The GSS-EAP mechanism needs to support channel binding. When an
 application provides channel binding data, the mechanism needs to
 confirm this is the same on both sides consistent with the GSS-API
 specification.

3.3. Host-Based Service Names

 IETF security mechanisms typically take a host name and perhaps a
 service, entered by a user, and make some trust decision about
 whether the remote party in the interaction is the intended party.
 This decision can be made by the use of certificates, pre-configured
 key information or a previous leap of trust. GSS-API has defined a
 relatively flexible name convention, however most of the IETF
 applications that use GSS-API (including SSH, NFS, IMAP, LDAP and
 XMPP) have chosen to use a more restricted naming convention based on
 the host name. The GSS-EAP mechanism needs to support host-based
 service names in order to work with existing IETF protocols.

 The use of host-based service names leads to a challenging trust
 delegation problem. Who is allowed to decide whether a particular
 host name maps to a specific entity. Possible solutions to this
 problem have been looked at.

 The public-key infrastructure (PKI) used by the web has chosen to
 have a number of trust anchors (root certificate authorities) each
 of which can map any host name to a public key.

 A number of GSS-API mechanisms, such as Kerberos [RFC1964], have
 split the problem into two parts. A new concept called a realm is
 introduced, the realm is responsible for host mapping within that

https://datatracker.ietf.org/doc/html/rfc1964

Howlett, et al. Expires August 29, 2013 [Page 31]

Internet-Draft ABFAB Architecture February 2013

 realm. The mechanism then decides what realm is responsible for a
 given name. This is the approach adopted by ABFAB.

 GSS-EAP defines a host naming convention that takes into account the
 host name, the realm, the service and the service parameters. An
 example of GSS-API service name is "xmpp/foo@example.com". This
 identifies the XMPP service on the host foo in the realm example.com.
 Any of the components, except for the service name may be omitted
 from a name. When omitted, then a local default would be used for
 that component of the name.

 While there is no requirement that realm names map to Fully Qualified
 Domain Names (FQDN) within DNS, in practice this is normally true.
 Doing so allows for the realm portion of service names and the
 portion of NAIs to be the same. It also allows for the use of DNS in
 locating the host of a service while establishing the transport
 channel between the client and the relying party.

 It is the responsibility of the application to determine the server
 that it is going to communicate with, GSS-API has the ability to help
 confirm that the server is the desired server but not to determine
 the name of the server to use. It is also the responsibility of the
 application to determine how much of the information identifying the
 service needs to be validated by the ABFAB system. The information
 that needs to be validated is used to build up the service name
 passed into the GSS-EAP mechanism. What information is to be
 validated will depend on both what information was provided by the
 client, and what information is considered significant. If the
 client only cares about getting a specific service, then the host and
 realm that provides the service does not need to be validated.

 In many cases applications may retrieve information about providers
 of services from DNS. When Service Records (SRV) and Naming
 Authority Pointer (NAPTR) records are used to help find a host that
 provides a service, the security requirements on the referrals is
 going to interact with the information used in the service name. If
 the a host name is returned from the DNS referrals, and the host name
 is to be validated by GS-EAP, then it makes sense that the referrals
 themselves should be secure. On the other hand, if the host name
 returned is not validated, i.e. only the service is passed in, then
 it is less important that the host name be obtained in a secure
 manner.

 Another issue that needs to be addressed for host-based service names
 is that they do not work ideally when different instances of a
 service are running on different ports. If the services are
 equivalent, then it does not matter. However if there are
 substantial differences in the quality of the service that

Howlett, et al. Expires August 29, 2013 [Page 32]

Internet-Draft ABFAB Architecture February 2013

 information needs to be part of the validation process. If one has
 just a host name and not a port in the information being validated,
 then this is not going to be a successful strategy.

3.4. Additional GSS-API Services

 GSS-API provides per-message security services that can provide
 confidentiality and/or integrity. Some IETF protocols such as NFS
 and SSH take advantage of these services. As a result GSS-EAP needs
 to support these services. As with mutual authentication, per-
 message services will limit the set of EAP methods that can be used
 to those that generate a Master Session Key (MSK). Any EAP method
 that produces an MSK is able to support per-message security services
 described in [RFC2743].

 GSS-API provides a pseudo-random function. This function generates a
 pseudo-random sequence using the shared private key as the seed for
 the bytes generated. This provides an algorithm that both the
 initiator and acceptor can run in order to arrive at the same key
 value. The use of this feature allows for an application to generate
 keys or other shared secrets for use in other places in the protocol.
 In this regards, it is similar in concept to the TLS extractor (RFC

5705 [RFC5705].). While no current IETF protocols require this, non-
 IETF protocols are expected to take advantage of this in the near
 future. Additionally, a number of protocols have found the TLS
 extractor to be useful in this regards so it is highly probably that
 IETF protocols may also start using this feature.

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705

Howlett, et al. Expires August 29, 2013 [Page 33]

Internet-Draft ABFAB Architecture February 2013

4. Privacy Considerations

 ABFAB, as an architecture designed to enable federated authentication
 and allow for the secure transmission of identity information between
 entities, obviously requires careful consideration around privacy and
 the potential for privacy violations.

 This section examines the privacy related information presented in
 this document, summarising the entities that are involved in ABFAB
 communications and what exposure they have to identity information.
 In discussing these privacy considerations in this section, we use
 terminology and ideas from [I-D.iab-privacy-considerations].

 Note that the ABFAB architecture uses at its core several existing
 technologies and protocols; detailed privacy discussion around these
 is not examined. This section instead focuses on privacy
 considerations specifically related to overall architecture and usage
 of ABFAB.

4.1. Entities and their roles

 In an ABFAB environment, there are four distinct types of entities
 involved in communication paths. Figure 2 shows the ABFAB
 architecture with these entity types. We have:

 o The client application: usually a piece of software running on a
 user's device. This communicates with a service (the Relying
 Party) that the user wishes to interact with.

 o The Identity Provider: The home AAA server for the user.

 o The Relying Party: The service the user wishes to connect to.

 o The federation substrate: A set of entities through which messages
 pass on their path between RP and AAA server.

 As described in detail earlier in this document, when a user wishes
 to access a Relying Party, a secure tunnel is set up between their
 client application and their Identity Provider (via the Relying Party
 and the federation substrate) through which credentials are
 exchanged. An indication of success or failure, alongside a set of
 AAA attributes about a principal is then passed from the Identity
 Provider to the Relying Party (usually in the form of a SAML
 assertion).

Howlett, et al. Expires August 29, 2013 [Page 34]

Internet-Draft ABFAB Architecture February 2013

4.2. Relationship between user and entities

 o Between User and Identity Provider - the identity Provider is an
 entity the user will have a direct relationship with, created when
 the organisation that operates the entity provisioned and
 exchanged the user's credentials. Privacy and data protection
 guarantees may form a part of this relationship.

 o Between User and Relying Party - the Relying Party is an entity
 the user may or may not have a direct relationship with, depending
 on the service in question. Some services may only be offered to
 those users where such a direct relationship exists (for
 particularly sensitive services, for example), while some may not
 require this and would instead be satisfied with basic federation
 trust guarantees between themselves and the Identity Provider).
 This may well include the option that the user stays anonymous
 with respect to the Relying Party (though obviously not to the
 Identity Provider). If attempting to preserve privacy through the
 mitigation of data minimisation, then the only attribute
 information about individuals exposed to the Relying Party should
 be that which is strictly necessary for the operation of the
 service.

 o Between User and Federation substrate - the user is highly likely
 to have no knowledge of, or relationship with, any entities
 involved with the federation substrate (not that the Identity
 Provider and/or Relying Party may, however). Knowledge of
 attribute information about individuals for these entities is not
 necessary, and thus such information should be protected in such a
 way as to prevent access to this information from being possible.

4.3. Data and Identifiers in use

 In the ABFAB architecture, there are a few different types of data
 and identifiers in use.

4.3.1. NAI

 In order for the Relying Party to be able to route messages to enable
 an EAP transaction to occur between client application and the
 correct identity Provider, it is necessary for the client application
 to provide enough information to the Relying Party to enable the
 identification of the correct Identity Provider. This takes the form
 of an Network Access Identifier (NAI) (as specified in [RFC4282]).
 Note that an NAI can have inner and outer forms in a AAA
 architecture.

https://datatracker.ietf.org/doc/html/rfc4282

Howlett, et al. Expires August 29, 2013 [Page 35]

Internet-Draft ABFAB Architecture February 2013

 o The outer part of NAI is exposed to the Relying Party; this can
 simply contain realm information. Doing so (i.e. not including
 user identification details such as a username) minimises the data
 given to the Relying Part to that which is purely necessary to
 support the necessary routing decision.

 o The inner part of NAI is sent through the secure tunnel as
 established by the EAP protocol; this form of the NAI will contain
 credentials for the user suitable for authenticating them
 successfully (e.g. a username and password). Since the entire
 purpose of the secure tunnel is to protect communications between
 client application (EAP client) and Identity Provider (EAP
 server), then it is considered secure from eavesdroppers or
 malicious intermediaries and no further privacy discussion is
 necessary.

4.3.2. Identity Information

 As a part of the ABFAB process, after a successful authentication has
 occurred between client application and Identity Provider, an
 indication of this success is sent to the Relying Party. Alongside
 this message, information about the user may be returned through AAA
 attributes, usually in form of a SAML assertion. This information is
 arbitrary and may include either only attributes that prevent an
 individual from being identified by the Relying Party (thus enabling
 anonymous or pseudonymous access) or attributes that contain
 personally identifiable information.

 Depending on the method used, this information carried through AAA
 attributes may or may not be accessible to intermediaries involved in
 communications - e.g. in the case of RADIUS and unencrypted SAML,
 these headers are plain text and could be seen by any observer,
 whereas if using RADSEC or encrypted SAML, these headers are
 protected from observers. Obviously, where the protection of the
 privacy of an individual is required then this information needs to
 be protected by some appropriate means.

4.3.3. Accounting Information

 Alongside the core authentication and authorization that occurs in
 AAA communications, accounting information about resource consumption
 may be delivered as part of the accounting exchange during the
 lifetime of the granted application session.

4.3.4. Collection and retention of data and identifiers

 In cases where Relying Parties do not require to identify a
 particular individual when an individual wishes to make use of their

Howlett, et al. Expires August 29, 2013 [Page 36]

Internet-Draft ABFAB Architecture February 2013

 service, the ABFAB architecture enable anonymous or pseudonymous
 access. Thus data and identifiers other than pseudonyms and
 unlinkable attribute information need not be stored and retained.

 However, in cases where Relying Parties require the ability to
 identify a particular individual (e.g. so they can link this identity
 information to a particular account in their service, or where
 identity information is required for audit purposes), the service
 will need to collect and store such information, and to retain it for
 as long as they require. Deprovisioning of such accounts and
 information is out of scope for ABFAB, but obviously for privacy
 protection any identifiers collected should be deleted when they are
 no longer needed.

4.4. User Participation

 In the ABFAB architecture, by its very nature users are active
 participants in the sharing of their identifiers as they initiate the
 communications exchange every time they wish to access a server.
 They are, however, not involved in control of the set of information
 related to them that transmitted from Identity Provider to Relying
 Party for authorisation purposes.

Howlett, et al. Expires August 29, 2013 [Page 37]

Internet-Draft ABFAB Architecture February 2013

5. Deployment Considerations

5.1. EAP Channel Binding

 Discuss the implications of needing EAP channel binding.

5.2. AAA Proxy Behavior

 Discuss deployment implications of our proxy requirements.

Howlett, et al. Expires August 29, 2013 [Page 38]

Internet-Draft ABFAB Architecture February 2013

6. Security Considerations

 This document describes the architecture for Application Bridging for
 Federated Access Beyond Web (ABFAB) and security is therefore the
 main focus. This section highlights the main communication channels
 and their security properties:

 Client-to-RP Channel:

 The channel binding material is provided by any certificates and
 the final message (i.e., a cryptographic token for the channel).
 Authentication may be provided by the RP to the client but a
 deployment without authentication at the TLS layer is possible as
 well. In addition, there is a channel between the GSS requestor
 and the GSS acceptor, but the keying material is provided by a
 "third party" to both entities. The client can derive keying
 material locally, but the RP gets the material from the IdP. In
 the absence of a transport that provides encryption and/or
 integrity, the channel between the client and the RP has no
 ability to have any cryptographic protection until the EAP
 authentication has been completed and the MSK is transfered from
 the IdP to the RP.

 RP-to-IdP Channel:

 The security of this communication channel is mainly provided by
 the functionality offered via RADIUS and Diameter. At the time of
 writing there are no end-to-end security mechanisms standardized
 and thereby the architecture has to rely on hop-by-hop security
 with trusted AAA entities or, as an alternative but possible
 deployment variant, direct communication between the AAA client to
 the AAA server. Note that the authorization result the IdP
 provides to the RP in the form of a SAML assertion may, however,
 be protected such that the SAML related components are secured
 end-to-end.

 The MSK is transported from the IdP to the RP over this channel.
 As no end-to-end security is provided by AAA, all AAA entities on
 the path between the RP and IdP have the ability to eavesdrop if
 no additional security measures are taken. One such measure is to
 use a transport between the client and the IdP that provides
 confidentiality.

 Client-to-IdP Channel:

 This communication interaction is accomplished with the help of
 EAP and EAP methods. The offered security protection will depend
 on the EAP method that is chosen but a minimum requirement is to

Howlett, et al. Expires August 29, 2013 [Page 39]

Internet-Draft ABFAB Architecture February 2013

 offer mutual authentication, and key derivation. The IdP is
 responsible during this process to determine that the RP that is
 communication to the client over the RP-to-IdP channel is the same
 one talking to the IdP. This is accomplished via the EAP channel
 binding.

 Partial list of issues to be addressed in this section: Privacy,
 SAML, Trust Anchors, EAP Algorithm Selection, Diameter/RADIUS/AAA
 Issues, Naming of Entities, Protection of passwords, Channel Binding,
 End-point-connections (TLS), Proxy problems

 When a psuedonym is generated as a unique long term identifier for a
 Subject by an IdP, care MUST be taken in the algorithm that it cannot
 easily be reverse engineered by the service provider. If it can be
 reversed then the service provider can consult an oracle to determine
 if a given unique long term identifier is associated with a different
 known identifier.

Howlett, et al. Expires August 29, 2013 [Page 40]

Internet-Draft ABFAB Architecture February 2013

7. IANA Considerations

 This document does not require actions by IANA.

Howlett, et al. Expires August 29, 2013 [Page 41]

Internet-Draft ABFAB Architecture February 2013

8. Acknowledgments

 We would like to thank Mayutan Arumaithurai and Klaas Wierenga for
 their feedback. Additionally, we would like to thank Eve Maler,
 Nicolas Williams, Bob Morgan, Scott Cantor, Jim Fenton, Paul Leach,
 and Luke Howard for their feedback on the federation terminology
 question.

 Furthermore, we would like to thank Klaas Wierenga for his review of
 the pre-00 draft version.

Howlett, et al. Expires August 29, 2013 [Page 42]

Internet-Draft ABFAB Architecture February 2013

9. References

9.1. Normative References

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",

RFC 2865, June 2000.

 [RFC3588] Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and J.
 Arkko, "Diameter Base Protocol", RFC 3588, September 2003.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, "Extensible Authentication Protocol (EAP)",

RFC 3748, June 2004.

 [RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579, September 2003.

 [RFC4072] Eronen, P., Hiller, T., and G. Zorn, "Diameter Extensible
 Authentication Protocol (EAP) Application", RFC 4072,
 August 2005.

 [RFC4282] Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
 Network Access Identifier", RFC 4282, December 2005.

 [I-D.ietf-abfab-gss-eap]
 Hartman, S. and J. Howlett, "A GSS-API Mechanism for the
 Extensible Authentication Protocol",

draft-ietf-abfab-gss-eap-09 (work in progress),
 August 2012.

 [I-D.ietf-abfab-aaa-saml]
 Howlett, J. and S. Hartman, "A RADIUS Attribute, Binding
 and Profiles for SAML", draft-ietf-abfab-aaa-saml-04 (work
 in progress), October 2012.

 [RFC6677] Hartman, S., Clancy, T., and K. Hoeper, "Channel-Binding
 Support for Extensible Authentication Protocol (EAP)
 Methods", RFC 6677, July 2012.

9.2. Informative References

 [RFC2903] de Laat, C., Gross, G., Gommans, L., Vollbrecht, J., and
 D. Spence, "Generic AAA Architecture", RFC 2903,

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3588
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc4072
https://datatracker.ietf.org/doc/html/rfc4282
https://datatracker.ietf.org/doc/html/draft-ietf-abfab-gss-eap-09
https://datatracker.ietf.org/doc/html/draft-ietf-abfab-aaa-saml-04
https://datatracker.ietf.org/doc/html/rfc6677
https://datatracker.ietf.org/doc/html/rfc2903

Howlett, et al. Expires August 29, 2013 [Page 43]

Internet-Draft ABFAB Architecture February 2013

 August 2000.

 [I-D.nir-tls-eap]
 Nir, Y., Sheffer, Y., Tschofenig, H., and P. Gutmann, "A
 Flexible Authentication Framework for the Transport Layer
 Security (TLS) Protocol using the Extensible
 Authentication Protocol (EAP)", draft-nir-tls-eap-13 (work
 in progress), December 2011.

 [I-D.ietf-oauth-v2]
 Hardt, D., "The OAuth 2.0 Authorization Framework",

draft-ietf-oauth-v2-31 (work in progress), August 2012.

 [I-D.iab-privacy-considerations]
 Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols",

draft-iab-privacy-considerations-03 (work in progress),
 July 2012.

 [I-D.perez-radext-radius-fragmentation]
 Perez-Mendez, A., Lopez, R., Pereniguez-Garcia, F., Lopez-
 Millan, G., Lopez, D., and A. DeKok, "Support of
 fragmentation of RADIUS packets",

draft-perez-radext-radius-fragmentation-05 (work in
 progress), February 2013.

 [RFC4017] Stanley, D., Walker, J., and B. Aboba, "Extensible
 Authentication Protocol (EAP) Method Requirements for
 Wireless LANs", RFC 4017, March 2005.

 [RFC5106] Tschofenig, H., Kroeselberg, D., Pashalidis, A., Ohba, Y.,
 and F. Bersani, "The Extensible Authentication Protocol-
 Internet Key Exchange Protocol version 2 (EAP-IKEv2)
 Method", RFC 5106, February 2008.

 [RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism",
RFC 1964, June 1996.

 [RFC2203] Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol
 Specification", RFC 2203, September 1997.

 [RFC3645] Kwan, S., Garg, P., Gilroy, J., Esibov, L., Westhead, J.,
 and R. Hall, "Generic Security Service Algorithm for
 Secret Key Transaction Authentication for DNS (GSS-TSIG)",

RFC 3645, October 2003.

 [RFC2138] Rigney, C., Rigney, C., Rubens, A., Simpson, W., and S.

https://datatracker.ietf.org/doc/html/draft-nir-tls-eap-13
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-31
https://datatracker.ietf.org/doc/html/draft-iab-privacy-considerations-03
https://datatracker.ietf.org/doc/html/draft-perez-radext-radius-fragmentation-05
https://datatracker.ietf.org/doc/html/rfc4017
https://datatracker.ietf.org/doc/html/rfc5106
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2203
https://datatracker.ietf.org/doc/html/rfc3645

Howlett, et al. Expires August 29, 2013 [Page 44]

Internet-Draft ABFAB Architecture February 2013

 Willens, "Remote Authentication Dial In User Service
 (RADIUS)", RFC 2138, April 1997.

 [RFC4462] Hutzelman, J., Salowey, J., Galbraith, J., and V. Welch,
 "Generic Security Service Application Program Interface
 (GSS-API) Authentication and Key Exchange for the Secure
 Shell (SSH) Protocol", RFC 4462, May 2006.

 [RFC4422] Melnikov, A. and K. Zeilenga, "Simple Authentication and
 Security Layer (SASL)", RFC 4422, June 2006.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

 [RFC5080] Nelson, D. and A. DeKok, "Common Remote Authentication
 Dial In User Service (RADIUS) Implementation Issues and
 Suggested Fixes", RFC 5080, December 2007.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, March 2010.

 [RFC5801] Josefsson, S. and N. Williams, "Using Generic Security
 Service Application Program Interface (GSS-API) Mechanisms
 in Simple Authentication and Security Layer (SASL): The
 GS2 Mechanism Family", RFC 5801, July 2010.

 [RFC5849] Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC 5849,
 April 2010.

 [RFC6614] Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
 "Transport Layer Security (TLS) Encryption for RADIUS",

RFC 6614, May 2012.

 [OASIS.saml-core-2.0-os]
 Cantor, S., Kemp, J., Philpott, R., and E. Maler,
 "Assertions and Protocol for the OASIS Security Assertion
 Markup Language (SAML) V2.0", OASIS Standard saml-core-
 2.0-os, March 2005.

 [RFC2904] Vollbrecht, J., Calhoun, P., Farrell, S., Gommans, L.,
 Gross, G., de Bruijn, B., de Laat, C., Holdrege, M., and
 D. Spence, "AAA Authorization Framework", RFC 2904,
 August 2000.

 [I-D.ietf-emu-crypto-bind]
 Hartman, S., Wasserman, M., and D. Zhang, "EAP Mutual
 Cryptographic Binding", draft-ietf-emu-crypto-bind-02
 (work in progress), February 2013.

https://datatracker.ietf.org/doc/html/rfc2138
https://datatracker.ietf.org/doc/html/rfc4462
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5080
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc6614
https://datatracker.ietf.org/doc/html/rfc2904
https://datatracker.ietf.org/doc/html/draft-ietf-emu-crypto-bind-02

Howlett, et al. Expires August 29, 2013 [Page 45]

Internet-Draft ABFAB Architecture February 2013

 [I-D.ietf-emu-eap-tunnel-method]
 Zhou, H., Cam-Winget, N., Salowey, J., and S. Hanna,
 "Tunnel EAP Method (TEAP) Version 1",

draft-ietf-emu-eap-tunnel-method-05 (work in progress),
 February 2013.

 [I-D.ietf-radext-dtls]
 DeKok, A., "DTLS as a Transport Layer for RADIUS",

draft-ietf-radext-dtls-03 (work in progress),
 January 2013.

 [WS-TRUST]
 Lawrence, K., Kaler, C., Nadalin, A., Goodner, M., Gudgin,
 M., Barbir, A., and H. Granqvist, "WS-Trust 1.4", OASIS
 Standard ws-trust-200902, February 2009, <http://

docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html>.

 [NIST-SP.800-63]
 Burr, W., Dodson, D., and W. Polk, "Electronic
 Authentication Guideline", NIST Special
 Publication 800-63, April 2006.

https://datatracker.ietf.org/doc/html/draft-ietf-emu-eap-tunnel-method-05
https://datatracker.ietf.org/doc/html/draft-ietf-radext-dtls-03
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html

Howlett, et al. Expires August 29, 2013 [Page 46]

Internet-Draft ABFAB Architecture February 2013

URIs

 [1] <http://www.openid.net>

 [2] <http://www.eduroam.org>

Howlett, et al. Expires August 29, 2013 [Page 47]

http://www.openid.net
http://www.eduroam.org

Internet-Draft ABFAB Architecture February 2013

Editorial Comments

 [anchor4] JLS: Should this be an EAP failure to the client as well?

 [anchor7] JLS: I don't believe this is a true statement - check it
 with Josh and Sam.

Howlett, et al. Expires August 29, 2013 [Page 48]

Internet-Draft ABFAB Architecture February 2013

Authors' Addresses

 Josh Howlett
 JANET(UK)
 Lumen House, Library Avenue, Harwell
 Oxford OX11 0SG
 UK

 Phone: +44 1235 822363
 Email: Josh.Howlett@ja.net

 Sam Hartman
 Painless Security

 Phone:
 Email: hartmans-ietf@mit.edu

 Hannes Tschofenig
 Nokia Siemens Networks
 Linnoitustie 6
 Espoo 02600
 Finland

 Phone: +358 (50) 4871445
 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

 Eliot Lear
 Cisco Systems GmbH
 Richtistrasse 7
 Wallisellen, ZH CH-8304
 Switzerland

 Phone: +41 44 878 9200
 Email: lear@cisco.com

 Jim Schaad
 Soaring Hawk Consulting

 Email: ietf@augustcellars.com

http://www.tschofenig.priv.at

Howlett, et al. Expires August 29, 2013 [Page 49]

