
Network Working Group S. Hartman, Ed.
Internet-Draft Painless Security
Intended status: Standards Track J. Howlett
Expires: February 14, 2013 JANET
 August 13, 2012

A GSS-API Mechanism for the Extensible Authentication Protocol
draft-ietf-abfab-gss-eap-09.txt

Abstract

 This document defines protocols, procedures, and conventions to be
 employed by peers implementing the Generic Security Service
 Application Program Interface (GSS-API) when using the Extensible
 Authentication Protocol mechanism. Through the GS2 family of
 mechanisms defined in RFC 5801, these protocols also define how
 Simple Authentication and Security Layer (SASL, RFC 4422)
 applications use the Extensible Authentication Protocol.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 14, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Hartman & Howlett Expires February 14, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft EAP GSS-API August 2012

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Discovery . 5
1.2. Authentication . 5
1.3. Secure Association Protocol 6

2. Requirements notation . 8
3. EAP Channel Binding and Naming 9
3.1. Mechanism Name Format 9
3.2. Internationalization of Names 12
3.3. Exported Mechanism Names 12
3.4. Acceptor Name RADIUS AVP 13
3.5. Proxy Verification of Acceptor Name 13

4. Selection of EAP Method 15
5. Context Tokens . 16
5.1. Mechanisms and Encryption Types 17
5.2. Processing received tokens 17
5.3. Error Subtokens . 18
5.4. Initial State . 18
5.4.1. Vendor Subtoken 19
5.4.2. Acceptor Name Request 19
5.4.3. Acceptor Name Response 19

5.5. Authenticate State . 20
5.5.1. EAP Request Subtoken 21
5.5.2. EAP Response Subtoken 21

5.6. Extension State . 21
5.6.1. Flags Subtoken . 22
5.6.2. GSS Channel Bindings Subtoken 22
5.6.3. MIC Subtoken . 23

5.7. Example Token . 24
5.8. Context Options . 24

6. Acceptor Services . 26
6.1. GSS-API Channel Binding 26
6.2. Per-message security 27
6.3. Pseudo Random Function 27

7. Iana Considerations . 28
7.1. OID Registry . 28
7.2. RFC 4121 Token Identifiers 29
7.3. GSS EAP Subtoken Types 29
7.4. RADIUS Attribute Assignments 30
7.5. Registration of the EAP-AES128 SASL Mechanisms 31
7.6. GSS EAP Errors . 31
7.7. GSS EAP Context Flags 32

https://datatracker.ietf.org/doc/html/rfc4121

Hartman & Howlett Expires February 14, 2013 [Page 2]

Internet-Draft EAP GSS-API August 2012

8. Security Considerations 34
9. Acknowledgements . 36
10. References . 37
10.1. Normative References 37
10.2. Informative References 38

Appendix A. Pre-Publication RADIUS VSA 40
 Authors' Addresses . 41

Hartman & Howlett Expires February 14, 2013 [Page 3]

Internet-Draft EAP GSS-API August 2012

1. Introduction

 ABFAB [I-D.ietf-abfab-arch] describes an architecture for providing
 federated access management to applications using the Generic
 Security Services Application Programming Interface (GSS-API)
 [RFC2743] and Simple Authentication and Security Layers (SASL)
 [RFC4422]. This specification provides the core mechanism for
 bringing federated authentication to these applications.

 The Extensible Authentication Protocol (EAP) [RFC3748] defines a
 framework for authenticating a network access client and server in
 order to gain access to a network. A variety of different EAP
 methods are in wide use; one of EAP's strengths is that for most
 types of credentials in common use, there is an EAP method that
 permits the credential to be used.

 EAP is often used in conjunction with a backend Authentication ,
 Authorization and Accounting (AAA) server via RADIUS [RFC3579] or
 Diameter [RFC4072]. In this mode, the Network Access Server (NAS)
 simply tunnels EAP packets over the backend authentication protocol
 to a home EAP/AAA server for the client. After EAP succeeds, the
 backend authentication protocol is used to communicate key material
 to the NAS. In this mode, the NAS need not be aware of or have any
 specific support for the EAP method used between the client and the
 home EAP server. The client and EAP server share a credential that
 depends on the EAP method; the NAS and AAA server share a credential
 based on the backend authentication protocol in use. The backend
 authentication server acts as a trusted third party enabling network
 access even though the client and NAS may not actually share any
 common authentication methods. As described in the architecture
 document, using AAA proxies, this mode can be extended beyond one
 organization to provide federated authentication for network access.

 The GSS-API provides a generic framework for applications to use
 security services including authentication and per-message data
 security. Between protocols that support GSS-API directly or
 protocols that support SASL [RFC4422], many application protocols can
 use GSS-API for security services. However, with the exception of
 Kerberos [RFC4121], few GSS-API mechanisms are in wide use on the
 Internet. While GSS-API permits an application to be written
 independent of the specific GSS-API mechanism in use, there is no
 facility to separate the server from the implementation of the
 mechanism as there is with EAP and backend authentication servers.

 The goal of this specification is to combine GSS-API's support for
 application protocols with EAP/AAA's support for common credential
 types and for authenticating to a server without requiring that
 server to specifically support the authentication method in use. In

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc4072
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4121

Hartman & Howlett Expires February 14, 2013 [Page 4]

Internet-Draft EAP GSS-API August 2012

 addition, this specification supports the architectural goal of
 transporting attributes about subjects to relying parties. Together
 this combination will provide federated authentication and
 authorization for GSS-API applications. This specification meets the
 applicability requirements for EAP to application authentication
 [I-D.ietf-abfab-eapapplicability].

 This mechanism is a GSS-API mechanism that encapsulates an EAP
 conversation. From the perspective of RFC 3748, this specification
 defines a new lower-layer protocol for EAP. From the perspective of
 the application, this specification defines a new GSS-API mechanism.

Section 1.3 of [RFC5247] outlines the typical conversation between
 EAP peers where an EAP key is derived:

 o Phase 0: Discovery

 o Phase 1: Authentication

 o 1a: EAP authentication

 o 1b: AAA Key Transport (optional)

 o Phase 2: Secure Association Protocol

 o 2a: Unicast Secure Association

 o 2b: Multicast Secure Association (optional)

1.1. Discovery

 GSS-API peers discover each other and discover support for GSS-API in
 an application-dependent mechanism. SASL [RFC4422] describes how
 discovery of a particular SASL mechanism such as a GSS-API mechanism
 is conducted. The Simple and Protected Negotiation mechanism
 (SPNEGO) [RFC4178] provides another approach for discovering what
 GSS-API mechanisms are available. The specific approach used for
 discovery is out of scope for this mechanism.

1.2. Authentication

 GSS-API authenticates a party called the GSS-API initiator to the
 GSS-API acceptor, optionally providing authentication of the acceptor
 to the initiator. Authentication starts with a mechanism-specific
 message called a context token sent from the initiator to the
 acceptor. The acceptor responds, followed by the initiator, and so
 on until authentication succeeds or fails. GSS-API context tokens
 are reliably delivered by the application using GSS-API. The

https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc5247#section-1.3
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4178

Hartman & Howlett Expires February 14, 2013 [Page 5]

Internet-Draft EAP GSS-API August 2012

 application is responsible for in-order delivery and retransmission.

 EAP authenticates a party called a peer to a party called the EAP
 server. A third party called an EAP passthrough authenticator may
 decapsulate EAP messages from a lower layer and reencapsulate them
 into an AAA protocol. The term EAP authenticator refers to whichever
 of the passthrough authenticator or EAP server receives the lower-
 layer EAP packets. The first EAP message travels from the
 authenticator to the peer; a GSS-API message is sent from the
 initiator to acceptor to prompt the authenticator to send the first
 EAP message. The EAP peer maps onto the GSS-API initiator. The role
 of the GSS-API acceptor is split between the EAP authenticator and
 the EAP server. When these two entities are combined, the division
 resembles GSS-API acceptors in other mechanisms. When a more typical
 deployment is used and there is a passthrough authenticator, most
 context establishment takes place on the EAP server and per-message
 operations take place on the authenticator. EAP messages from the
 peer to the authenticator are called responses; messages from the
 authenticator to the peer are called requests.

 Because GSS-API applications provide guaranteed delivery of context
 tokens, the EAP retransmission timeout MUST be infinite and the EAP
 layer MUST NOT retransmit a message.

 This specification permits a GSS-API acceptor to hand-off the
 processing of the EAP packets to a remote EAP server by using AAA
 protocols such as RADIUS, RadSec or Diameter. In this case, the GSS-
 API acceptor acts as an EAP pass-through authenticator. The pass-
 through authenticator is responsible for retransmitting AAA messages
 if a response is not received from the AAA server. If a response
 cannot be recieved, then the authenticator generates an error at the
 GSS-API level. If EAP authentication is successful, and where the
 chosen EAP method supports key derivation, EAP keying material may
 also be derived. If an AAA protocol is used, this can also be used
 to replicate the EAP Key from the EAP server to the EAP
 authenticator.

 See Section 5 for details of the authentication exchange.

1.3. Secure Association Protocol

 After authentication succeeds, GSS-API provides a number of per-
 message security services that can be used:

 GSS_Wrap() provides integrity and optional confidentiality for a
 message.

Hartman & Howlett Expires February 14, 2013 [Page 6]

Internet-Draft EAP GSS-API August 2012

 GSS_GetMIC() provides integrity protection for data sent
 independently of the GSS-API

 GSS_Pseudo_random [RFC4401] provides key derivation functionality.

 These services perform a function similar to secure association
 protocols in network access. Like secure association protocols,
 these services need to be performed near the authenticator/acceptor
 even when a AAA protocol is used to separate the authenticator from
 the EAP server. The key used for these per-message services is
 derived from the EAP key; the EAP peer and authenticator derive this
 key as a result of a successful EAP authentication. In the case that
 the EAP authenticator is acting as a pass-through it obtains it via
 the AAA protocol. See Section 6 for details.

https://datatracker.ietf.org/doc/html/rfc4401

Hartman & Howlett Expires February 14, 2013 [Page 7]

Internet-Draft EAP GSS-API August 2012

2. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Hartman & Howlett Expires February 14, 2013 [Page 8]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft EAP GSS-API August 2012

3. EAP Channel Binding and Naming

 EAP authenticates a user to a realm. The peer knows that it has
 exchanged authentication with an EAP server in a given realm. Today,
 the peer does not typically know which NAS it is talking to securely.
 That is often fine for network access. However privileges to
 delegate to a chat server seem very different than privileges for a
 file server or trading site. Also, an EAP peer knows the identity of
 the home realm, but perhaps not even the visited realm.

 In contrast, GSS-API takes a name for both the initiator and acceptor
 as inputs to the authentication process. When mutual authentication
 is used, both parties are authenticated. The granularity of these
 names is somewhat mechanism dependent. In the case of the Kerberos
 mechanism, the acceptor name typically identifies both the protocol
 in use (such as IMAP) and the specific instance of the service being
 connected to. The acceptor name almost always identifies the
 administrative domain providing service.

 An EAP GSS-API mechanism needs to provide GSS-API naming semantics in
 order to work with existing GSS-API applications. EAP channel
 binding [I-D.ietf-emu-chbind] is used to provide GSS-API naming
 semantics. Channel binding sends a set of attributes from the peer
 to the EAP server either as part of the EAP conversation or as part
 of a secure association protocol. In addition, attributes are sent
 in the backend authentication protocol from the authenticator to the
 EAP server. The EAP server confirms the consistency of these
 attributes. Confirming attribute consistency also involves checking
 consistency against a local policy database as discussed in

Section 3.5. In particular, the peer sends the name of the acceptor
 it is authenticating to as part of channel binding. The acceptor
 sends its full name as part of the backend authentication protocol.
 The EAP server confirms consistency of the names.

 EAP channel binding is easily confused with a facility in GSS-API
 also called channel binding. GSS-API channel binding provides
 protection against man-in-the-middle attacks when GSS-API is used as
 authentication inside some tunnel; it is similar to a facility called
 cryptographic binding in EAP. See [RFC5056] for a discussion of the
 differences between these two facilities and Section 6.1 for how GSS-
 API channel binding is handled in this mechanism.

3.1. Mechanism Name Format

 Before discussing how the initiator and acceptor names are validated
 in the AAA infrastructure, it is necessary to discuss what composes a
 name for an EAP GSS-API mechanism. GSS-API permits several types of
 generic names to be imported using GSS_Import_name(). Once a

https://datatracker.ietf.org/doc/html/rfc5056

Hartman & Howlett Expires February 14, 2013 [Page 9]

Internet-Draft EAP GSS-API August 2012

 mechanism is chosen, these names are converted into a mechanism-
 specific name called a "Mechanism Name". Note that a Mechanism Name
 is the name of an initiator or acceptor, not of a GSS-API mechanism.
 This section first discusses the mechanism name form and then
 discusses what name forms are supported.

 The string representation of the GSS-EAP mechanism name has the
 following ABNF [RFC5234] representation:

 char-normal = %x00-2E/%x30-3F/%x41-5B/%x5D-FF
 char-escaped = "\" %x2F / "\" %x40 / "\" %x5C
 name-char = char-normal / char-escaped
 name-string = 1*name-char
 user-or-service = name-string
 host = [name-string]
 realm = name-string
 service-specific = name-string
 service-specifics = service-specific 0*("/" service-specifics)
 name = user-or-service ["/" host ["/" service-specifics]] ["@"
 realm]

 Special characters appearing in a name can be backslash escaped to
 avoid their special meanings. For example "\\" represents a literal
 backslash. This escaping mechanism is a property of the string
 representation; if the components of a name are transported in some
 mechanism that will keep them separate without backslash escaping,
 then backslash SHOULD have no special meaning.

 The user-or-service component is similar to the portion of a network
 access identifier (NAI) before the '@' symbol for initiator names and
 the service name from the registry of GSS-API host-based services in
 the case of acceptor names [GSS-IANA]. The NAI specification
 provides rules for encoding and string preparation in order to
 support internationalization of NAIs; implementations of this
 mechanism MUST NOT prepare the user-or-service according to these
 rules; see Section 3.2 for internationalization of this mechanism.
 The host portion is empty for initiators and typically contains the
 domain name of the system on which an acceptor service is running.
 Some services MAY require additional parameters to distinguish the
 entity being authenticated against. Such parameters are encoded in
 the service-specifics portion of the name. The EAP server MUST
 reject authentication of any acceptor name that has a non-empty
 service-specifics component unless the EAP server understands the
 service-specifics and authenticates them. The interpretation of the
 service-specifics is scoped by the user-or-service portion. The
 realm is similar to the the realm portion of a NAI for initiator
 names; again the NAI specification's internationalization rules MUST
 NOT be applied to the realm. The realm is the administrative realm

https://datatracker.ietf.org/doc/html/rfc5234

Hartman & Howlett Expires February 14, 2013 [Page 10]

Internet-Draft EAP GSS-API August 2012

 of a service for an acceptor name.

 The string representation of this name form is designed to be
 generally compatible with the string representation of Kerberos names
 defined in [RFC1964].

 The GSS_C_NT_USER_NAME form represents the name of an individual
 user. From the standpoint of this mechanism it may take the form
 either of an undecorated user name or a name semantically similar to
 a network access identifier (NAI) [RFC4282]. The name is split at
 the first at-sign ('@') into the part preceeding the realm which is
 the user-or-service portion of the mechanism name and the realm
 portion which is the realm portion of the mechanism name.

 The GSS_C_NT_HOSTBASED_SERVICE name form represents a service running
 on a host; it is textually represented as "service@host". This name
 form is required by most SASL profiles and is used by many existing
 applications that use the Kerberos GSS-API mechanism. While support
 for this name form is critical, it presents an interesting challenge
 in terms of EAP channel binding. Consider a case where the server
 communicates with a "server proxy," or a AAA server near the server.
 That server proxy communicates with the EAP server. The EAP server
 and server proxy are in different administrative realms. The server
 proxy is in a position to verify that the request comes from the
 indicated host. However the EAP server cannot make this
 determination directly. So, the EAP server needs to determine
 whether to trust the server proxy to verify the host portion of the
 acceptor name. This trust decision depends both on the host name and
 the realm of the server proxy. In effect, the EAP server decides
 whether to trust that the realm of the server proxy is the right
 realm for the given hostname and then makes a trust decision about
 the server proxy itself. The same problem appears in Kerberos:
 there, clients decide what Kerberos realm to trust for a given
 hostname. The service portion of this name is imported into the
 user-or-service portion of the mechanism name; the host portion is
 imported into the host portion of the mechanism name. The realm
 portion is empty. However, authentication will typically fail unless
 some AAA component indicates the realm to the EAP server. If the
 application server knows its realm, then it should be indicated in
 the outgoing AAA request. Otherwise, a proxy SHOULD add the realm.
 An alternate form of this name type MAY be used on acceptors; in this
 case the name form is "service" with no host component. This is
 imported with the service as user-or-service and an empty host and
 realm portion. This form is useful when a service is unsure which
 name an initiator knows it by.

 If the null name type or the GSS_EAP_NT_EAP_NAME (OID
 1.3.6.1.5.5.15.2.1) (see Section 7.1) is imported, then the string

https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc4282

Hartman & Howlett Expires February 14, 2013 [Page 11]

Internet-Draft EAP GSS-API August 2012

 representation above should be directly imported. Mechanisms MAY
 support the GSS_KRB5_NT_KRB5_PRINCIPAL_NAME name form with the OID
 {iso(1) member-body(2) United States(840) mit(113554) infosys(1)
 gssapi(2) krb5(2) krb5_name(1)}. In many circumstances, Kerberos
 GSS-API mechanism names will behave as expected when used with the
 GSS-API EAP mechanism, but there are some differences that may cause
 some confusion. If an implementation does support importing Kerberos
 names it SHOULD fail the import if the Kerberos name is not
 syntactically a valid GSS-API EAP mechanism name as defined in this
 section.

3.2. Internationalization of Names

 For the most part, GSS-EAP names are transported in other protocols;
 those protocols define the internationalization semantics. For
 example, if an AAA server wishes to communicate the user-or-service
 portion of the initiator name to an acceptor, it does so using
 existing mechanisms in the AAA protocol. Existing
 internationalization rules are applied. Similarly, within an
 application, existing specifications such as [RFC5178] define the
 encoding of names that are imported and displayed with the GSS-API.

 This mechanism does introduce a few cases where name components are
 sent. In these cases the encoding of the string is UTF-8. Senders
 SHOULD NOT normalize or map strings before sending. These strings
 include RADIUS attributes introduced in Section 3.4.

 When comparing the host portion of a GSS-EAP acceptor name supplied
 in EAP channel binding by a peer to that supplied by an acceptor, EAP
 servers SHOULD prepare the host portion according to [RFC5891] prior
 to comparison. Applications MAY prepare domain names prior to
 importing them into this mechanism.

3.3. Exported Mechanism Names

 GSS-API provides the GSS_Export_name call. This call can be used to
 export the binary representation of a name. This name form can be
 stored on access control lists for binary comparison.

 The exported name token MUST use the format described in section 3.2
 of RFC 2743. The mechanism specific portion of this name token is
 the string format of the mechanism name described in Section 3.1.

RFC 2744 [RFC2744] places the requirement that the result of
 importing a name, canonicalizing it to a Mechanism Name and then
 exporting it needs to be the same as importing that name, obtaining
 credentials for that principal, initiating a context with those
 credentials and exporting the name on the acceptor. In practice, GSS

https://datatracker.ietf.org/doc/html/rfc5178
https://datatracker.ietf.org/doc/html/rfc5891
https://datatracker.ietf.org/doc/html/rfc2743#section-3.2
https://datatracker.ietf.org/doc/html/rfc2743#section-3.2
https://datatracker.ietf.org/doc/html/rfc2744
https://datatracker.ietf.org/doc/html/rfc2744

Hartman & Howlett Expires February 14, 2013 [Page 12]

Internet-Draft EAP GSS-API August 2012

 mechanisms often, but not always meet this requirement. For names
 expected to be used as initiator names, this requirement is met.
 However, permitting empty host and realm components when importing
 hostbased services may make it possible for an imported name to
 differ from the exported name actually used. Other mechanisms such
 as Kerberos have similar situations where imported and exported names
 may differ.

3.4. Acceptor Name RADIUS AVP

 See Section 7.4 for registrations of RADIUS attribute types to carry
 the acceptor service name. All the attribute types registered in
 that section are strings. See Section 3.1 for details of the values
 in a name.

 If RADIUS is used as an AAA transport, the acceptor MUST send the
 acceptor name in these attribute types. That is, the acceptor
 decomposes its name and sends any non-empty portion as a RADIUS
 attribute. With the exception of the service-specifics portion of
 the name, the backslash escaping mechanism is not used in RADIUS
 attributes; backslash has no special meaning. In the service-
 specifics portion, a literal "/" separates components. In this one
 attribute, "\/" indicates a slash character that does not separate
 components and "\\" indicates a literal backslash character.

 The initiator MUST require that the EAP method in use support channel
 binding and MUST send the acceptor name as part of the channel
 binding data. The client MUST NOT indicate mutual authentication in
 the result of GSS_Init_Sec_Context unless all name elements that the
 client supplied are in a successful channel binding response. For
 example, if the client supplied a hostname in channel binding data,
 the hostname MUST be in a successful channel binding response.

 If an empty target name is supplied to GSS_Init_Sec_Context, the
 initiator MUST fail context establishment unless the acceptor
 supplies the acceptor name response (Section 5.4.3). If a null
 target name is supplied, the initiator MUST use this response to
 populate EAP channel bindings.

3.5. Proxy Verification of Acceptor Name

 Proxies may play a role in verification of the acceptor identity.
 For example, an AAA proxy near the acceptor may be in a position to
 verify the acceptor hostname, while the EAP server is likely to be
 too distant to reliably verify this on its own.

 The EAP server or some proxy trusted by the EAP server is likely to
 be in a position to verify the acceptor realm. In effect, this proxy

Hartman & Howlett Expires February 14, 2013 [Page 13]

Internet-Draft EAP GSS-API August 2012

 is confirming that the right AAA credential is used for the claimed
 realm and thus that the acceptor is in the organization it claims to
 be part of. This proxy is also typically trusted by the EAP server
 to make sure that the hostname claimed by the acceptor is a
 reasonable hostname for the realm of the acceptor.

 A proxy close to the EAP server is unlikely to be in a position to
 confirm that the acceptor is claiming the correct hostname. Instead
 this is typically delegated to a proxy near the acceptor. That proxy
 is typically expected to verify the acceptor hostname and to verify
 the appropriate AAA credential for that host is used. Such a proxy
 may insert the acceptor realm if it is absent, permitting realm
 configuration to be at the proxy boundary rather than on acceptors.

 Ultimately specific proxy behavior is a matter for deployment. The
 EAP server MUST assure that the appropriate validation has been done
 before including acceptor name attributes in a successful channel
 binding response. If the acceptor service is included the EAP server
 asserts that the service is plausible for the acceptor. If the
 acceptor hostname is included the EAP server asserts that the
 acceptor hostname is verified. If the realm is included the EAP
 server asserts that the realm has been verified, and if the hostname
 was also included, that the realm and hostname are consistent. Part
 of this verification MAY be delegated to proxies, but the EAP server
 configuration MUST guarantee that the combination of proxies meets
 these requirements. Typically such delegation will involve business
 or operational measures such as cross-organizational agreements as
 well as technical measures.

 It is likely that future technical work will be needed to communicate
 what verification has been done by proxies along the path. Such
 technical measures will not release the EAP server from its
 responsibility to decide whether proxies on the path should be
 trusted to perform checks delegated to them. However technical
 measures could prevent misconfigurations and help to support diverse
 environments.

Hartman & Howlett Expires February 14, 2013 [Page 14]

Internet-Draft EAP GSS-API August 2012

4. Selection of EAP Method

 EAP does not provide a facility for an EAP server to advertise what
 methods are available to a peer. Instead, a server starts with its
 preferred method selection. If the peer does not accept that method,
 the peer sends a NAK response containing the list of methods
 supported by the client.

 Providing multiple facilities to negotiate which security mechanism
 to use is undesirable. Section 7.3 of [RFC4462]describes the problem
 referencing the SSH key exchange negotiation and the SPNEGO GSS-API
 mechanism. If a client preferred an EAP method A, a non-EAP
 authentication mechanism B, and then an EAP method C, then the client
 would have to commit to using EAP before learning whether A is
 actually supported. Such a client might end up using C when B is
 available.

 The standard solution to this problem is to perform all the
 negotiation at one layer. In this case, rather than defining a
 single GSS-API mechanism, a family of mechanisms should be defined.
 Each mechanism corresponds to an EAP method. The EAP method type
 should be part of the GSS-API OID. Then, a GSS-API rather than EAP
 facility can be used for negotiation.

 Unfortunately, using a family of mechanisms has a number of problems.
 First, GSS-API assumes that both the initiator and acceptor know the
 entire set of mechanisms that are available. Some negotiation
 mechanisms are driven by the client; others are driven by the server.
 With EAP GSS-API, the acceptor does not know what methods the EAP
 server implements. The EAP server that is used depends on the
 identity of the client. The best solution so far is to accept the
 disadvantages of multi-layer negotiation and commit to using EAP GSS-
 API before a specific EAP method. This has two main disadvantages.
 First, authentication may fail when other methods might allow
 authentication to succeed. Second, a non-optimal security mechanism
 may be chosen.

https://datatracker.ietf.org/doc/html/rfc4462#section-7.3

Hartman & Howlett Expires February 14, 2013 [Page 15]

Internet-Draft EAP GSS-API August 2012

5. Context Tokens

 All context establishment tokens emitted by the EAP mechanism SHALL
 have the framing described in section 3.1 of [RFC2743], as
 illustrated by the following pseudo-ASN.1 structures:

 GSS-API DEFINITIONS ::=
 BEGIN

 MechType ::= OBJECT IDENTIFIER
 -- representing EAP mechanism
 GSSAPI-Token ::=
 -- option indication (delegation, etc.) indicated within
 -- mechanism-specific token
 [APPLICATION 0] IMPLICIT SEQUENCE {
 thisMech MechType,
 innerToken ANY DEFINED BY thisMech
 -- contents mechanism-specific
 -- ASN.1 structure not required
 }
 END

 The innerToken field starts with a 16-bit network byte order token
 type identifier. The remainder of the innerToken field is a set of
 type-length-value subtokens. The following figure describes the
 structure of the inner token:

 +----------------+--------------------------+
 | Octet Position | Description |
 +----------------+--------------------------+
 | 0..1 | token ID |
 | | |
 | 2..5 | first subtoken type |
 | | |
 | 6..9 | length of first subtoken |
 | | |
 | 10..10+n-1 | first subtoken body |
 | | |
 | 10+n..10+n+3 | second subtoken type |
 +----------------+--------------------------+

 The inner token continues with length, second subtoken body, and so
 forth. If a subtoken type is present, its length and body MUST be
 present.

 Structure of Inner Token

 The length is a four-octet length of the subtoken body in network

https://datatracker.ietf.org/doc/html/rfc2743#section-3.1

Hartman & Howlett Expires February 14, 2013 [Page 16]

Internet-Draft EAP GSS-API August 2012

 byte order. The length does not include the length of the type field
 or the length field; the length only covers the body.

 Tokens from the initiator to acceptor use an inner token type with ID
 06 01; tokens from acceptor to initiator use an inner token type with
 ID 06 02. These token types are registered in the registry of RFC

4121 token types; see Section 7.2.

 See Section 5.7 for the encoding of a complete token. The following
 sections discuss how mechanism OIDs are chosen and the state machine
 that defines what subtokens are permitted at each point in the
 context establishment process.

5.1. Mechanisms and Encryption Types

 This mechanism family uses the security services of the Kerberos
 cryptographic framework [RFC3961]. The root of the OID ARC for
 mechanisms described in this document is 1.3.6.1.5.5.15.1.1; a
 Kerberos encryption type number [RFC3961] is appended to that root
 OID to form a mechanism OID. As such, a particular encryption type
 needs to be chosen. By convention, there is a single object
 identifier arc for the EAP family of GSS-API mechanisms. A specific
 mechanism is chosen by adding the numeric Kerberos encryption type
 number to the root of this arc. However, in order to register the
 SASL name, the specific usage with a given encryption type needs to
 be registered. This document defines the EAP-AES128 GSS-API
 mechanism.

5.2. Processing received tokens

 Whenever a context token is received, the receiver performs the
 following checks. First the receiver confirms the object identifier
 is that of the mechanism being used. The receiver confirms that the
 token type corresponds to the role of the peer: acceptors will only
 process initiator tokens and initiators will only process acceptor
 tokens.

 Implementations of this mechanism maintain a state machine for the
 context establishment process. Both the initiator and acceptor start
 out in the initial state; see Section 5.4 for a description of this
 state. Associated with each state are a set of subtoken types that
 are processed in that state and rules for processing these subtoken
 types. The reciever examines the subtokens in order, processing any
 that are appropriate for the current state. Unknown subtokens or
 subtokens that are not expected in the current state are ignored if
 their critical bit (see below) is clear.

 A state may have a set of required subtoken types. If a subtoken

https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961

Hartman & Howlett Expires February 14, 2013 [Page 17]

Internet-Draft EAP GSS-API August 2012

 type is required by the current state but no subtoken of that type is
 present, then the context establishment MUST fail.

 The most-significant bit (0x80000000) in a subtoken type is the
 critical bit. If a subtoken with this bit set in the type is
 received, the receiver MUST fail context establishment unless the
 subtoken is understood and processed for the current state.

 The subtoken type MUST be unique within a given token.

5.3. Error Subtokens

 The acceptor may always end the exchange by generating an error
 subtoken. The error subtoken has the following format:

 +--------+--+
 | Pos | Description |
 +--------+--+
0..3	0x80 00 00 01
4..7	length of error token
8..11	major status from RFC 2744 as 32-bit network byte order
12..15	GSS EAP error code as 32-bit network byte order; see
	Section 7.6
 +--------+--+

 Initiators MUST ignore octets beyond the GSS EAP error code for
 future extensibility. As indicated, the error token is always marked
 critical.

5.4. Initial State

 Both the acceptor and initiator start the context establishment
 process in the initial state.

 The initiator sends a token to the acceptor. It MAY be empty; no
 subtokens are required in this state. Alternatively the initiator
 MAY include a vendor ID subtoken or an acceptor name request
 subtoken.

 The acceptor responds to this message. It MAY include an acceptor
 name response subtoken. It MUST include a first eap request; this is
 an EAP request/identity message (see Section 5.5.1 for the format of
 this subtoken).

 The initiator and acceptor then transition to authenticate state.

https://datatracker.ietf.org/doc/html/rfc2744

Hartman & Howlett Expires February 14, 2013 [Page 18]

Internet-Draft EAP GSS-API August 2012

5.4.1. Vendor Subtoken

 The vendor ID token has type 0x0000000B and the following structure:

 +-------------+------------------------+
 | Pos | Description |
 +-------------+------------------------+
 | 0..3 | 0x0000000B |
 | | |
 | 4..7 | length of vendor token |
 | | |
 | 8..8+length | Vendor ID string |
 +-------------+------------------------+

 The vendor ID string is an UTF-8 string describing the vendor of this
 implementation. This string is unstructured and for debugging
 purposes only.

5.4.2. Acceptor Name Request

 The acceptor name request token is sent from the initiator to the
 acceptor indicating that the initiator wishes a particular acceptor
 name. This is similar to TLS Server Name Indication [RFC6066] which
 permits a client to indicate which one of a number of virtual
 services to contact. The structure is as follows:

 +------+------------------------------+
 | Pos | Description |
 +------+------------------------------+
 | 0..3 | 0x00000002 |
 | | |
 | 4..7 | Length of subtoken |
 | | |
 | 8..n | string form of acceptor name |
 +------+------------------------------+

 It is likely that channel binding and thus authentication will fail
 if the acceptor does not choose a name that is a superset of this
 name. That is, if a hostname is sent, the acceptor needs to be
 willing to accept this hosntame.

5.4.3. Acceptor Name Response

 The acceptor name response subtoken indicates what acceptor name is
 used. This is useful for example if the initiator supplied no target
 name to context initialization. This allows the initiator to learn
 the acceptor name. EAP channel bindings will provide confirmation
 that the acceptor is accurately naming itself.

https://datatracker.ietf.org/doc/html/rfc6066

Hartman & Howlett Expires February 14, 2013 [Page 19]

Internet-Draft EAP GSS-API August 2012

 this token is sent from the acceptor to initiator. In the Initial
 state, this token would typically be sent if the acceptor name
 request is absent, because if the initiator already sent an acceptor
 name then the initiator knows what acceptor it wishes to contact.
 This subtoken is also sent in extensions state Section 5.6 so the
 initiator can protect against a man-in-the-middle modifying the
 acceptor name request subtoken.

 +------+------------------------------+
 | Pos | Description |
 +------+------------------------------+
 | 0..3 | 0x00000003 |
 | | |
 | 4..7 | Length of subtoken |
 | | |
 | 8..n | string form of acceptor name |
 +------+------------------------------+

5.5. Authenticate State

 In this state, the acceptor sends EAP requests to the initiator and
 the initiator generates EAP responses. The goal of the state is to
 perform a successful EAP authentication. Since the acceptor sends an
 identity request at the end of the initial state, the first half-
 round-trip in this state is a response to that request from the
 initiator.

 The EAP conversation can end in a number of ways:

 o If the EAP state machine generates an EAP success message, then
 the EAP authenticator believes the authentication is successful.
 The Acceptor MUST confirm that a key has been derived (Section

7.10 of [RFC3748]). The acceptor MUST confirm that this success
 indication is consistent with any protected result indication for
 combined authenticators and with AAA indication of success for
 pass-through authenticators. If any of these checks fail, the
 acceptor MUST send an error subtoken and fail the context
 establishment. If these checks succeed the acceptor sends the
 success message using the EAP Request subtoken type and
 transitions to Extensions state. If the initiator receives an EAP
 Success message, it confirms that a key has been derived and that
 the EAP success is consistent with any protected result
 indication. If so, it transitions to Extensions state.
 Otherwise, it returns an error to the caller of
 GSS_Init_Sec_context without producing an output token.

 o If the acceptor receives an EAP failure, then the acceptor sends
 this in the Eap Request subtoken type. If the initiator receives

https://datatracker.ietf.org/doc/html/rfc3748#section-7.10
https://datatracker.ietf.org/doc/html/rfc3748#section-7.10

Hartman & Howlett Expires February 14, 2013 [Page 20]

Internet-Draft EAP GSS-API August 2012

 an EAP Failure, it returns GSS failure.

 o If there is some other error, the acceptor MAY return an error
 subtoken.

5.5.1. EAP Request Subtoken

 The EAP Request subtoken is sent from the acceptor to the initiator.
 This subtoken is always critical and is REQUIRED in the
 authentication state.

 +-------------+-----------------------+
 | Pos | Description |
 +-------------+-----------------------+
 | 0..3 | 0x80000005 |
 | | |
 | 4..7 | Length of EAP message |
 | | |
 | 8..8+length | EAP message |
 +-------------+-----------------------+

5.5.2. EAP Response Subtoken

 This subtoken is REQUIRED in authentication state messages from the
 initiator to the acceptor. It is always critical.

 +-------------+-----------------------+
 | Pos | Description |
 +-------------+-----------------------+
 | 0..3 | 0x80000004 |
 | | |
 | 4..7 | Length of EAP message |
 | | |
 | 8..8+length | EAP message |
 +-------------+-----------------------+

5.6. Extension State

 After EAP success, the initiator sends a token to the acceptor
 including additional subtokens that negotiate optional features or
 provide GSS-API channel binding (see Section 6.1). The acceptor then
 responds with a token to the initiator. When the acceptor produces
 its final token it returns GSS_S_COMPLETE; when the initiator
 consumes this token it returns GSS_S_COMPLETE if no errors are
 detected.

 The acceptor SHOULD send an acceptor name response (Section 5.4.3) so
 that the initiator can get a copy of the acceptor name protected by

Hartman & Howlett Expires February 14, 2013 [Page 21]

Internet-Draft EAP GSS-API August 2012

 the MIC subtoken.

 Both the initiator and acceptor MUST include and verify a MIC
 subtoken to protect the extensions exchange.

5.6.1. Flags Subtoken

 This token is sent to convey initiator flags to the acceptor. The
 flags are sent as a 32-bit integer in network byte order. The only
 flag defined so far is GSS_C_MUTUAL_FLAG, indicating that the
 initiator successfully performed mutual authentication of the
 acceptor. This flag is communicated to the acceptor because some
 protocols [RFC4462] require the acceptor to know whether the
 initiator has confirmed its identity. This flag has the value 0x2 to
 be consistent with RFC 2744.

 +-------+-----------------------+
 | Pos | Description |
 +-------+-----------------------+
 | 0..3 | 0x0000000C |
 | | |
 | 4..7 | length of flags token |
 | | |
 | 8..11 | flags |
 +-------+-----------------------+

 Initiators MUST send 4 octets of flags. Acceptors MUST ignore flag
 octets beyond the first 4 and MUST ignore flag bits other than
 GSS_C_MUTUAL_FLAG. Initiators MUST send undefined flag bits as zero.

5.6.2. GSS Channel Bindings Subtoken

 This token is always critical when sent. It is sent from the
 initiator to the acceptor. The contents of this token are an RFC

3961 get_mic token of the application data from the GSS channel
 bindings structure passed into the context establishment call.

 +-------------+---+
 | Pos | Description |
 +-------------+---+
 | 0..3 | 0x80000006 |
 | | |
 | 4..7 | length of token |
 | | |
 | 8..8+length | get_mic of channel binding application data |
 +-------------+---+

 Again, only the application data is sent in the channel binding. Any

https://datatracker.ietf.org/doc/html/rfc4462
https://datatracker.ietf.org/doc/html/rfc2744
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961

Hartman & Howlett Expires February 14, 2013 [Page 22]

Internet-Draft EAP GSS-API August 2012

 initiator and acceptor addresses passed by an application into
 context establishment calls are ignored and not sent over the wire.
 The checksum type of the get_mic token SHOULD be the mandatory to
 implement checksum type of the Context Root Key (CRK.) The key to
 use is the CRK and the key usage is 60 (KEY_USAGE_GSSEAP_CHBIND_MIC).
 An acceptor MAY accept any MIC in the channel bindings subtoken if
 the channel bindings input to GSS_Accept_Sec_context is not provided.
 If the channel binding input to GSS_Accept_Sec_context is provided,
 the acceptor MUST return failure if the channel binding MIC in a
 received channel binding subtoken fails to verify.

 The initiator MUST send this token if channel bindings including
 application data are passed into GSS_Init_Sec_context and MUST NOT
 send this token otherwise.

5.6.3. MIC Subtoken

 This token MUST be the last subtoken in the tokens sent in Extensions
 state. This token is sent both by the initiator and acceptor.

 +-------------+--+
 | Pos | Description |
 +-------------+--+
 | 0..3 | 0x8000000D for initiator 0x8000000E for acceptor |
 | | |
 | 4..7 | Length of RFC 3961 MIC token |
 | | |
 | 8..8+length | RFC 3961 result of get_mic |
 +-------------+--+

 As with any call to get_mic, a token is produced as described in RFC
3961 using the CRK Section 6 as the key and the mandatory checksum

 type for the encryption type of the CRK as the checksum type. The
 key usage is 61 (KEY_USAGE_GSSEAP_ACCTOKEN_MIC) for the subtoken from
 the acceptor to the initiator and 62 (KEY_USAGE_GSSEAP_INITTOKEN_MIC)
 for the subtoken from the initiator to the acceptor. The input is as
 follows:

 1. The DER-encoded object identifier of the mechanism in use; this
 value starts with 0x06 (the tag for object identifier). When
 encoded in an RFC 2743 context token, the object identifier is
 preceeded by the tag and length for [Application 0] SEQUENCE.
 This tag and the length of the overall token is not included;
 only the tag, length and value of the object identifier itself.

 2. A 16-bit token type in network byte order of the RFC 4121 token
 identifier (0x0601 for initiator, 0x0602 for acceptor).

https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc4121

Hartman & Howlett Expires February 14, 2013 [Page 23]

Internet-Draft EAP GSS-API August 2012

 3. For each subtoken other than the MIC subtoken itself in the order
 the subtokens appear in the token:

 1. A four octet subtoken type in network byte order

 2. A four byte length in network byte order

 3. Length octets of value from that subtoken

5.7. Example Token

 +----+------+----+------+-----+-------------------------+
 | 60 | 23 | 06 | 09 | 2b | 06 01 05 05 0f 01 01 11 |
 +----+------+----+------+-----+-------------------------+
 |App0|Token |OID |OID | 1 3 | 6 1 5 5 15 1 1 17 |
 |Tag |length|Tag |length| Mechanism object id |
 +----+------+----+------+-------------------------------+

 +----------+-------------+-------------+
 | 06 01 | 00 00 00 02 | 00 00 00 0e |
 +----------+-------------|-------------|
 |Initiator | Acceptor | Length |
 |context | name | (14 octets) |
 |token id | request | |
 +----------+-------------+-------------+

 +---+
 | 68 6f 73 74 2f 6c 6f 63 61 6c 68 6f 73 74 |
 +---+
 | String form of acceptor name |
 | "host/localhost" |
 +---+

 Example Initiator Token

5.8. Context Options

 GSS-API provides a number of optional per-context services requested
 by flags on the call to GSS_Init_sec_context and indicated as outputs
 from both GSS_Init_sec_context and GSS_Accept_sec_context. This
 section describes how these services are handled. Which services the
 client selects in the call to GSS_Init_sec_context controls what EAP
 methods MAY be used by the client. Section 7.2 of RFC 3748 describes
 a set of security claims for EAP. As described below, the selected
 GSS options place requirements on security claims that MUST be met.

https://datatracker.ietf.org/doc/html/rfc3748#section-7.2

Hartman & Howlett Expires February 14, 2013 [Page 24]

Internet-Draft EAP GSS-API August 2012

 This GSS mechanism MUST only be used with EAP methods that provide
 dictionary attack resistance. Typically dictionary attack resistance
 is obtained by using an EAP tunnel method to tunnel an inner method
 in TLS.

 The EAP method MUST support key derivation. Integrity,
 confidentiality, sequencing and replay detection MUST be indicated in
 the output of GSS_Init_Sec_Context and GSS_Accept_Sec_context
 regardless of which services are requested.

 The PROT_READY service defined in Section 1.2.7 of [RFC2743] is never
 available with this mechanism. Implementations MUST NOT offer this
 flag or permit per-message security services to be used before
 context establishment.

 The EAP method MUST support mutual authentication and channel
 binding. See Section 3.4 for details on what is required for
 successful mutual authentication. Regardless of whether mutual
 authentication is requested, the implementation MUST include channel
 bindings in the EAP authentication. If mutual authentication is
 requested and successful mutual authentication takes place as defined
 in Section 3.4, the initiator MUST send a flags subtoken

Section 5.6.1 in Extensions state.

https://datatracker.ietf.org/doc/html/rfc2743#section-1.2.7

Hartman & Howlett Expires February 14, 2013 [Page 25]

Internet-Draft EAP GSS-API August 2012

6. Acceptor Services

 The context establishment process may be passed through to a EAP
 server via a backend authentication protocol. However after the EAP
 authentication succeeds, security services are provided directly by
 the acceptor.

 This mechanism uses an RFC 3961 cryptographic key called the context
 root key (CRK). The CRK is derived from the GMSK (GSS-API MSK). The
 GMSK is the result of the random-to-key [RFC3961] operation of the
 encryption type of this mechanism consuming the appropriate number of
 bits from the EAP master session key. For example for aes128-cts-
 hmac-sha1-96, the random-to-key operation consumes 16 octets of key
 material; thus the first 16 bytes of the master session key are input
 to random-to-key to form the GMSK. If the MSK is too short,
 authentication MUST fail.

 In the following, pseudo-random is the RFC 3961 pseudo-random
 operation for the encryption type of the GMSK and random-to-key is
 the RFC 3961 random-to-key operation for the enctype of the
 mechanism. The truncate function takes the initial l bits of its
 input. The goal in constructing a CRK is to call the pseudo-random
 function enough times to produce the right number of bits of output
 and discard any excess bits of output.

 The CRK is derived from the GMSK using the following procedure

 Tn = pseudo-random(GMSK, n || "rfc4121-gss-eap")
 CRK = random-to-key(truncate(L, T0 || T1 || .. || Tn))
 L = random-to-key input size

 Where n is a 32-bit integer in network byte order starting at 0 and
 incremented to each call to the pseudo_random operation.

6.1. GSS-API Channel Binding

 GSS-API channel binding [RFC5554] is a protected facility for
 exchanging a cryptographic name for an enclosing channel between the
 initiator and acceptor. The initiator sends channel binding data and
 the acceptor confirms that channel binding data has been checked.

 The acceptor SHOULD accept any channel binding provided by the
 initiator if null channel bindings are passed into
 gss_accept_sec_context. Protocols such as HTTP Negotiate [RFC4559]
 depend on this behavior of some Kerberos implementations.

 As discussed, the GSS channel bindings subtoken is sent in the
 extensions state.

https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc5554
https://datatracker.ietf.org/doc/html/rfc4559

Hartman & Howlett Expires February 14, 2013 [Page 26]

Internet-Draft EAP GSS-API August 2012

6.2. Per-message security

 The per-message tokens of section 4 of RFC 4121 are used. The CRK
 SHALL be treated as the initiator sub-session key, the acceptor sub-
 session key and the ticket session key.

6.3. Pseudo Random Function

 The pseudo random function defined in [RFC4402] is used to provide
 GSS_Pseudo_Random functionality to applications.

Hartman & Howlett Expires February 14, 2013 [Page 27]

https://datatracker.ietf.org/doc/html/rfc4121#section-4
https://datatracker.ietf.org/doc/html/rfc4402

Internet-Draft EAP GSS-API August 2012

7. Iana Considerations

 This specification creates a number of IANA registries.

7.1. OID Registry

 IANA is requested to create a registry of ABFAB object identifiers
 titled "Object Identifiers for Application Bridging for federated
 Access". The initial contents of the registry are specified below.
 The registration policy is IETF review or IESG approval. Early
 allocation is permitted. IANA is requested to update the reference
 for the root of this OID delegation to point to the newly created
 registry.

Prefix: iso.org.dod.internet.security.mechanisms.abfab (1.3.6.1.5.5.15)

Decimal Name Description References
------- ---- ------------------------------------ ----------
 0 Reserved Reserved
 1 mechanisms A sub-arc containing ABFAB mechanisms
 2 nametypes A sub-arc containing ABFAB GSS-API Name Types

 NOTE: the following mechanisms registry are the root of the OID for
 the mechanism in question. As discussed in Section 5.1
 [draft-ietf-abbfab-gss-eap], a Kerberos encryption type number
 [RFC3961] is appended to the mechanism version OID below to form the
 OID of a specific mechanism.

Prefix: iso.org.dod.internet.security.mechanisms.abfab.mechanisms
 (1.3.6.1.5.5.15.1)

Decimal Name Description References
------- ---- ------------------------------------ ----------
 0 Reserved Reserved
 1 gss-eap-v1 The GSS-EAP mechanism [this spec

Prefix: iso.org.dod.internet.security.mechanisms.abfab.nametypes
 (1.3.6.1.5.5.15.2)

Decimal Name Description References
------- ---- ------------------------------------ ----------
 0 Reserved Reserved
 1 GSS_EAP_NT_EAP_NAME sect 3.1

https://datatracker.ietf.org/doc/html/draft-ietf-abbfab-gss-eap
https://datatracker.ietf.org/doc/html/rfc3961

Hartman & Howlett Expires February 14, 2013 [Page 28]

Internet-Draft EAP GSS-API August 2012

7.2. RFC 4121 Token Identifiers

 In the top level registry titled "Kerberos V GSS-API Mechanism
 Parameters," a sub-registry called "Kerberos GSS-API Token Type
 Identifiers" is created; the overall reference for this subregistry
 is section 4.1 of RFC 4121. The allocation procedure is expert
 review [RFC5226]. The expert's primary job is to make sure that
 token type identifiers are requested by an appropriate requester for
 the RFC 4121 mechanism in which they will be used and that multiple
 values are not allocated for the same purpose. For RFC 4121 and this
 mechanism, the expert is currently expected to make allocations for
 token identifiers from documents in the IETF stream; effectively for
 these mechanisms the expert currently confirms the allocation meets
 the requirements of the IETF review process.

 The ID field is a hexadecimal token identifier specified in network
 byte order.

 The initial registrations are as follows:

 +-------+---------------------------------+-----------------------+
 | ID | Description | Reference |
 +-------+---------------------------------+-----------------------+
 | 01 00 | KRB_AP_REQ | RFC 4121 sect 4.1 |
 | | | |
 | 02 00 | KRB_AP_REP | RFC 4121 sect 4.1 |
 | | | |
 | 03 00 | KRB_ERROR | RFC 4121 sect 4.1 |
 | | | |
 | 04 04 | MIC tokens | RFC 4121 sect 4.2.6.1 |
 | | | |
 | 05 04 | wrap tokens | RFC 4121 sect 4.2.6.2 |
 | | | |
 | 06 01 | GSS-EAP initiator context token | Section 5 |
 | | | |
 | 06 02 | GSS EAP acceptor context token | Section 5 |
 +-------+---------------------------------+-----------------------+

7.3. GSS EAP Subtoken Types

 This document creates a top level registry called "The Extensible
 Authentication Protocol Mechanism for the Generic Security Services
 Application Programming Interface (GSS-EAP) Parameters". In any
 short form of that name, including any URI for this registry, it is
 important that the string GSS come before the string EAP; this will
 help to distinguish registries if EAP methods for performing GSS-API
 authentication are ever defined.

https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4121#section-4.1
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4121

Hartman & Howlett Expires February 14, 2013 [Page 29]

Internet-Draft EAP GSS-API August 2012

 In this registry is a subregistry of subtoken types; identifiers are
 32-bit integers; the upper bit (0x80000000) is reserved as a critical
 flag and should not be indicated in the registration. Assignments of
 GSS EAP subtoken types are made by expert review. The expert is
 expected to require a public specification of the subtoken similar in
 detail to registrations given in this document. The security of GSS-
 EAP depends on making sure that subtoken information has adequate
 protection and that the overall mechanism continues to be secure.
 Examining the security and architectural consistency of the proposed
 registration is the primary responsibility of the expert.

 +------------+--------------------------+---------------+
 | Type | Description | Reference |
 +------------+--------------------------+---------------+
 | 0x00000001 | Error | Section 5.3 |
 | | | |
 | 0x0000000B | Vendor | Section 5.4.1 |
 | | | |
 | 0x00000002 | Acceptor name request | Section 5.4.2 |
 | | | |
 | 0x00000003 | Acceptor name response | Section 5.4.3 |
 | | | |
 | 0x00000005 | EAP request | Section 5.5.1 |
 | | | |
 | 0x00000004 | EAP response | Section 5.5.2 |
 | | | |
 | 0x0000000C | Flags | Section 5.6.1 |
 | | | |
 | 0x00000006 | GSS-API channel bindings | Section 5.6.2 |
 | | | |
 | 0x0000000D | Initiator MIC | Section 5.6.3 |
 | | | |
 | 0x0000000E | Acceptor MIC | Section 5.6.3 |
 +------------+--------------------------+---------------+

7.4. RADIUS Attribute Assignments

 The following RADIUS attribute type values [RFC3575] are assigned.
 The assignment rules in section 10.3 of
 [I-D.ietf-radext-radius-extensions] may be used if that specification
 is approved when IANA actions for this specification are processed.

https://datatracker.ietf.org/doc/html/rfc3575

Hartman & Howlett Expires February 14, 2013 [Page 30]

Internet-Draft EAP GSS-API August 2012

 +--------------------------------+-----------+----------------------+
 | Name | Attribute | Description |
 +--------------------------------+-----------+----------------------+
GSS-Acceptor-Service-Name	TBD1	user-or-service
		portion of name
GSS-Acceptor-Host-Name	TBD2	host portion of name
GSS-Acceptor-Service-specifics	TBD3	service-specifics
		portion of name
GSS-Acceptor-Realm-Name	TBD4	Realm portion of
		name
 +--------------------------------+-----------+----------------------+

7.5. Registration of the EAP-AES128 SASL Mechanisms

 Subject: Registration of SASL mechanisms
 EAP-AES128 and EAP-AES128-PLUS

 SASL mechanism names: EAP-AES128 and EAP-AES128-PLUS

 Security considerations: See RFC 5801 and draft-ietf-abfab-gss-eap

 Published specification (recommended): draft-ietf-abfab-gss-eap

 Person & email address to contact for further information:
 Abfab Working Group abfab@ietf.org

 Intended usage: common

 Owner/Change controller: iesg@ietf.org

 Note: This mechanism describes the GSS-EAP mechanism used with
 the aes128-cts-hmac-sha1-96 enctype. The GSS-API OID for this
 mechanism is 1.3.6.1.5.5.15.1.1.17
 As described in RFC 5801 a PLUS varient of this mechanism is
 also required.

7.6. GSS EAP Errors

 A new subregistry is created in the GSS EAP parameters registry
 titled "Error Codes". The error codes in this registry are unsigned
 32-bit numbers. Values less than or equal to 127 are assigned by
 standards action. Values 128 through 255 are assigned with the
 specification required assignment policy. Values greater than 255
 are reserved; updates to registration policy may make these values
 available for assignment and implementations MUST be prepared to

https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/draft-ietf-abfab-gss-eap
https://datatracker.ietf.org/doc/html/draft-ietf-abfab-gss-eap
https://datatracker.ietf.org/doc/html/rfc5801

Hartman & Howlett Expires February 14, 2013 [Page 31]

Internet-Draft EAP GSS-API August 2012

 receive them.

 This table provides the initial contents of the registry.

 +-------+--+
 | Value | Description |
 +-------+--+
 | 0 | Reserved |
 | | |
 | 1 | Buffer is incorrect size |
 | | |
 | 2 | Incorrect mechanism OID |
 | | |
 | 3 | Token is corrupted |
 | | |
 | 4 | Token is truncated |
 | | |
 | 5 | Packet received by direction that sent it |
 | | |
 | 6 | Incorrect token type identifier |
 | | |
 | 7 | Unhandled critical subtoken received |
 | | |
 | 8 | Missing required subtoken |
 | | |
 | 9 | Duplicate subtoken type |
 | | |
 | 10 | Received unexpected subtoken for current state xxx |
 | | |
 | 11 | EAP did not produce a key |
 | | |
 | 12 | EAP key too short |
 | | |
 | 13 | Authentication rejected |
 | | |
 | 14 | AAA returned an unexpected message type |
 | | |
 | 15 | AAA response did not include EAP request |
 | | |
 | 16 | Generic AAA failure |
 +-------+--+

7.7. GSS EAP Context Flags

 A new sub-registry is created in the GSS EAP parameters registry.
 This registry holds registrations of flag bits sent in the flags
 subtoken Section 5.6.1. There are 32 flag bits available for
 registration represented as hexadecimal numbers from the most-

Hartman & Howlett Expires February 14, 2013 [Page 32]

Internet-Draft EAP GSS-API August 2012

 significant bit 0x80000000 to the least significant bit 0x1. The
 registration policy for this registry is IETF review or in
 exceptional cases IESG approval. The following table indicates
 initial registrations; all other values are available for assignment.

 +------+-------------------+---------------+
 | Flag | Name | Reference |
 +------+-------------------+---------------+
 | 0x2 | GSS_C_MUTUAL_FLAG | Section 5.6.1 |
 +------+-------------------+---------------+

Hartman & Howlett Expires February 14, 2013 [Page 33]

Internet-Draft EAP GSS-API August 2012

8. Security Considerations

RFC 3748 discusses security issues surrounding EAP. RFC 5247
 discusses the security and requirements surrounding key management
 that leverages the AAA infrastructure. These documents are critical
 to the security analysis of this mechanism.

RFC 2743 discusses generic security considerations for the GSS-API.
RFC 4121 discusses security issues surrounding the specific per-

 message services used in this mechanism.

 As discussed in Section 4, this mechanism may introduce multiple
 layers of security negotiation into application protocols. Multiple
 layer negotiations are vulnerable to a bid-down attack when a
 mechanism negotiated at the outer layer is preferred to some but not
 all mechanisms negotiated at the inner layer; see section 7.3 of
 [RFC4462] for an example. One possible approach to mitigate this
 attack is to construct security policy such that the preference for
 all mechanisms negotiated in the inner layer falls between
 preferences for two outer layer mechanisms or falls at one end of the
 overall ranked preferences including both the inner and outer layer.
 Another approach is to only use this mechanism when it has
 specifically been selected for a given service. The second approach
 is likely to be common in practice because one common deployment will
 involve an EAP supplicant interacting with a user to select a given
 identity. Only when an identity is successfully chosen by the user
 will this mechanism be attempted.

 EAP channel binding is used to give the GSS-API initiator confidence
 in the identity of the GSS-API acceptor. Thus, the security of this
 mechanism depends on the use and verification of EAP channel binding.
 Today EAP channel binding is in very limited deployment. If EAP
 channel binding is not used, then the system may be vulnerable to
 phishing attacks where a user is diverted from one service to
 another. If the EAP method in question supports mutual
 authentication then users can only be diverted between servers that
 are part of the same AAA infrastructure. For deployments where
 membership in the AAA infrastructure is limited, this may serve as a
 significant limitation on the value of phishing as an attack. For
 other deployments, use of EAP channel binding is critical to avoid
 phishing. These attacks are possible with EAP today although not
 typically with common GSS-API mechanisms. For this reason,
 implementations are required to implement and use EAP channel
 binding; see Section 3 for details.

 The security considerations of EAP channel binding
 [I-D.ietf-emu-chbind] describe the security properties of channel
 binding. Two attacks are worth calling out here. First, when a

https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc5247
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4462#section-7.3
https://datatracker.ietf.org/doc/html/rfc4462#section-7.3

Hartman & Howlett Expires February 14, 2013 [Page 34]

Internet-Draft EAP GSS-API August 2012

 tunneled EAP method is used, it is critical that the channel binding
 be performed with an EAP server trusted by the peer. With existing
 EAP methods this typically requires validating the certificate of the
 server tunnel endpoint back to a trust anchor and confirming the name
 of the entity who is a subject of that certificate. EAP methods may
 suffer from bid-down attacks where an attacker can cause a peer to
 think that a particular EAP server does not support channel binding.
 This does not directly cause a problem because mutual authentication
 is only offered at the GSS-API level when channel binding to the
 server's identity is successful. However when an EAP method is not
 vulnerable to these bid-down attacks, additional protection is
 available. This mechanism will benefit significantly from new strong
 EAP methods such as [I-D.ietf-emu-eap-tunnel-method].

 Every proxy in the AAA chain from the authenticator to the EAP server
 needs to be trusted to help verify channel bindings and to protect
 the integrity of key material. GSS-API applications may be built to
 assume a trust model where the acceptor is directly responsible for
 authentication. However, GSS-API is definitely used with trusted-
 third-party mechanisms such as Kerberos.

 RADIUS does provide a weak form of hop-by-hop confidentiality of key
 material based on using MD5 as a stream cipher. Diameter can use TLS
 or IPsec but has no mandatory-to-implement confidentiality mechanism.
 Operationally, protecting key material as it is transported between
 the IDP and RP is critical to per-message security and verification
 of GSS-API channel binding [RFC5056]. Mechanisms such as RADIUS over
 TLS [I-D.ietf-radext-radsec] provide significantly better protection
 of key material than the base RADIUS specification.

https://datatracker.ietf.org/doc/html/rfc5056

Hartman & Howlett Expires February 14, 2013 [Page 35]

Internet-Draft EAP GSS-API August 2012

9. Acknowledgements

 Luke Howard, Jim Schaad, Alejandro Perez Mendez, Alexey Melnikov and
 Sujing Zhou provided valuable reviews of this document.

 Rhys Smith provided the text for the OID registry section. Sam
 Hartman's work on this draft has been funded by JANET.

Hartman & Howlett Expires February 14, 2013 [Page 36]

Internet-Draft EAP GSS-API August 2012

10. References

10.1. Normative References

 [GSS-IANA]
 IANA, "GSS-API Service Name Registry", <http://

www.iana.org/assignments/gssapi-service-names/
gssapi-service-names.xhtml>.

 [I-D.ietf-abfab-eapapplicability]
 Winter, S. and J. Salowey, "Update to the EAP
 Applicability Statement for ABFAB",

draft-ietf-abfab-eapapplicability-00 (work in progress),
 July 2012.

 [I-D.ietf-emu-chbind]
 Hartman, S., Clancy, T., and K. Hoeper, "Channel Binding
 Support for EAP Methods", draft-ietf-emu-chbind-16 (work
 in progress), May 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC2744] Wray, J., "Generic Security Service API Version 2 :
 C-bindings", RFC 2744, January 2000.

 [RFC3575] Aboba, B., "IANA Considerations for RADIUS (Remote
 Authentication Dial In User Service)", RFC 3575,
 July 2003.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, "Extensible Authentication Protocol (EAP)",

RFC 3748, June 2004.

 [RFC3961] Raeburn, K., "Encryption and Checksum Specifications for
 Kerberos 5", RFC 3961, February 2005.

 [RFC4121] Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
 Version 5 Generic Security Service Application Program
 Interface (GSS-API) Mechanism: Version 2", RFC 4121,
 July 2005.

 [RFC4282] Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
 Network Access Identifier", RFC 4282, December 2005.

http://www.iana.org/assignments/gssapi-service-names/gssapi-service-names.xhtml
http://www.iana.org/assignments/gssapi-service-names/gssapi-service-names.xhtml
http://www.iana.org/assignments/gssapi-service-names/gssapi-service-names.xhtml
https://datatracker.ietf.org/doc/html/draft-ietf-abfab-eapapplicability-00
https://datatracker.ietf.org/doc/html/draft-ietf-emu-chbind-16
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2744
https://datatracker.ietf.org/doc/html/rfc3575
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4282

Hartman & Howlett Expires February 14, 2013 [Page 37]

Internet-Draft EAP GSS-API August 2012

 [RFC4401] Williams, N., "A Pseudo-Random Function (PRF) API
 Extension for the Generic Security Service Application
 Program Interface (GSS-API)", RFC 4401, February 2006.

 [RFC4402] Williams, N., "A Pseudo-Random Function (PRF) for the
 Kerberos V Generic Security Service Application Program
 Interface (GSS-API) Mechanism", RFC 4402, February 2006.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5554] Williams, N., "Clarifications and Extensions to the
 Generic Security Service Application Program Interface
 (GSS-API) for the Use of Channel Bindings", RFC 5554,
 May 2009.

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891, August 2010.

10.2. Informative References

 [I-D.ietf-abfab-arch]
 Howlett, J., Hartman, S., Tschofenig, H., Lear, E., and J.
 Schaad, "Application Bridging for Federated Access Beyond
 Web (ABFAB) Architecture", draft-ietf-abfab-arch-03 (work
 in progress), July 2012.

 [I-D.ietf-emu-eap-tunnel-method]
 Zhou, H., Cam-Winget, N., Salowey, J., and S. Hanna,
 "Tunnel EAP Method (TEAP) Version 1",

draft-ietf-emu-eap-tunnel-method-03 (work in progress),
 June 2012.

 [I-D.ietf-krb-wg-gss-cb-hash-agility]
 Emery, S., "Kerberos Version 5 GSS-API Channel Binding
 Hash Agility", draft-ietf-krb-wg-gss-cb-hash-agility-10
 (work in progress), January 2012.

 [I-D.ietf-radext-radius-extensions]
 DeKok, A. and A. Lior, "Remote Authentication Dial In User
 Service (RADIUS) Protocol Extensions",

draft-ietf-radext-radius-extensions-06 (work in progress),
 June 2012.

 [I-D.ietf-radext-radsec]

https://datatracker.ietf.org/doc/html/rfc4401
https://datatracker.ietf.org/doc/html/rfc4402
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5554
https://datatracker.ietf.org/doc/html/rfc5891
https://datatracker.ietf.org/doc/html/draft-ietf-abfab-arch-03
https://datatracker.ietf.org/doc/html/draft-ietf-emu-eap-tunnel-method-03
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-gss-cb-hash-agility-10
https://datatracker.ietf.org/doc/html/draft-ietf-radext-radius-extensions-06

Hartman & Howlett Expires February 14, 2013 [Page 38]

Internet-Draft EAP GSS-API August 2012

 Wierenga, K., McCauley, M., Winter, S., and S. Venaas,
 "Transport Layer Security (TLS) encryption for RADIUS",

draft-ietf-radext-radsec-12 (work in progress),
 February 2012.

 [RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism",
RFC 1964, June 1996.

 [RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579, September 2003.

 [RFC4072] Eronen, P., Hiller, T., and G. Zorn, "Diameter Extensible
 Authentication Protocol (EAP) Application", RFC 4072,
 August 2005.

 [RFC4178] Zhu, L., Leach, P., Jaganathan, K., and W. Ingersoll, "The
 Simple and Protected Generic Security Service Application
 Program Interface (GSS-API) Negotiation Mechanism",

RFC 4178, October 2005.

 [RFC4422] Melnikov, A. and K. Zeilenga, "Simple Authentication and
 Security Layer (SASL)", RFC 4422, June 2006.

 [RFC4462] Hutzelman, J., Salowey, J., Galbraith, J., and V. Welch,
 "Generic Security Service Application Program Interface
 (GSS-API) Authentication and Key Exchange for the Secure
 Shell (SSH) Protocol", RFC 4462, May 2006.

 [RFC4559] Jaganathan, K., Zhu, L., and J. Brezak, "SPNEGO-based
 Kerberos and NTLM HTTP Authentication in Microsoft
 Windows", RFC 4559, June 2006.

 [RFC5178] Williams, N. and A. Melnikov, "Generic Security Service
 Application Program Interface (GSS-API)
 Internationalization and Domain-Based Service Names and
 Name Type", RFC 5178, May 2008.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",

RFC 5247, August 2008.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

https://datatracker.ietf.org/doc/html/draft-ietf-radext-radsec-12
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc4072
https://datatracker.ietf.org/doc/html/rfc4178
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4462
https://datatracker.ietf.org/doc/html/rfc4559
https://datatracker.ietf.org/doc/html/rfc5178
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5247
https://datatracker.ietf.org/doc/html/rfc6066

Hartman & Howlett Expires February 14, 2013 [Page 39]

Internet-Draft EAP GSS-API August 2012

Appendix A. Pre-Publication RADIUS VSA

 As described in Section 3.4, RADIUS attributes are used to carry the
 acceptor name when this family of mechanisms is used with RADIUS.
 Prior to publication of this specification, a vendor-specific RADIUS
 attribute was used. This non-normative appendix documents that
 attribute as it may be seen from older implementations.

 Prior to IANA assignment, GSS-EAP used a RADIUS vendor-specific
 attribute for carrying the acceptor name. The VSA with enterprise ID
 25622 is formatted as a VSA according to the recommendation in the
 RADIUS specification. The following sub-attributes are defined:

 +--------------------------------+-----------+----------------------+
 | Name | Attribute | Description |
 +--------------------------------+-----------+----------------------+
GSS-Acceptor-Service-Name	128	user-or-service
		portion of name
GSS-Acceptor-Host-Name	129	host portion of name
GSS-Acceptor-Service-specifics	130	service-specifics
		portion of name
GSS-Acceptor-Realm-Name	131	Realm portion of
		name
 +--------------------------------+-----------+----------------------+

Hartman & Howlett Expires February 14, 2013 [Page 40]

Internet-Draft EAP GSS-API August 2012

Authors' Addresses

 Sam Hartman (editor)
 Painless Security

 Email: hartmans-ietf@mit.edu

 Josh Howlett
 JANET

 Email: josh.howlett@ja.net

Hartman & Howlett Expires February 14, 2013 [Page 41]

