
Internet Draft M. Duerst
<draft-ietf-acap-langtag-00.txt> University of Zurich
Expires in six months June 1997

Two Alternative Proposals for Language Taging in ACAP

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working doc-
 uments of the Internet Engineering Task Force (IETF), its areas, and
 its working groups. Note that other groups may also distribute work-
 ing documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months. Internet-Drafts may be updated, replaced, or obsoleted by
 other documents at any time. It is not appropriate to use Internet-
 Drafts as reference material or to cite them other than as a "working
 draft" or "work in progress".

 To learn the current status of any Internet-Draft, please check the
 1id-abstracts.txt listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net (US East Coast), nic.nordu.net
 (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
 Rim).

Abstract

 For various computing applications, it is helpful to know the lan-
 guage of the text being processed. This can be the case even if oth-
 erwise only pure character sequences (so-called plain text) are han-
 dled. From several sides, the need for such a scheme for ACAP has
 been claimed. One specific scheme, called MLSF, has also been pro-
 posed, see draft-ietf-acap-mlsf-01.txt for details. This document
 proposes two alternatives to MLSF. One alternative is using
 text/enriched-like markup. The second alternative is using a special
 tag-introduction character. Advantages and disadvantages of the var-
 ious proposals are discussed. Some general comments about the topic
 of language tagging are given in the introduction.

1. Introduction

 This introduction contains some considerations about language infor-
 mation that should help to better understand why and where language

 Expires in six months [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-acap-langtag-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-acap-mlsf-01.txt

Internet Draft Alternative Language Tagings for ACAP May 1997

 information can be beneficial. They are intended for general informa-
 tion, and are not directly related to the specifics of the proposals
 made in this document.

1.1 Multilingual Text

 It is sometimes claimed that text, in order to be multilingual, has
 to contain language information of some kind or another. This is
 definitely not the case. Multilingual text has existed for centuries
 on paper and other writing materials, and for decades in computers,
 without language information. A huan reader with the necessary lan-
 guage background is always able to understand a multilingual text
 without explicitly being told which language each word or character
 belongs to. In some cases, there may be ambiguities, but this is
 either intended, such as in a pun or joke, it is because the reader
 is not fully familliar with the involved languages, or it is because
 the writer was no precise enough.

 The overwhelming majority of characters always has been used in vari-
 ous languages, and a character per se therefore cannot be associated
 to a single language. This likewise applies to words (and sometimes
 even phrases) out of context.

1.2 Language Taging

 While the human reader does not need special language information,
 such information can be useful for the purpose of automatic process-
 ing of various kinds. These in particular include indexing and
 searching, text-to-speech conversion, other conversion operations
 such as case conversion and transliteration, spelling and grammar
 checks, and high-quality typography.

 Two other operations are frequently mentionned as benefiting from
 language information: Sorting and machine translation. However, in
 the case of sorting, this has to occur according to the expectations
 of the viewer, frequently encapsulated as a so-called locale. The
 language of each of the items being sorted is not relevant. In the
 case of machine translation, the knowledge and effort to translate a
 language is by magnitudes higher than the knowledge needed to decide
 whether a certain word or sentence belong to a given language.
 Explicit language information is therefore of marginal importance.
 This also applies to other operations, such as text-to-speech conver-
 sion, in particular for high quality and for languages with a compli-
 cated relationship between spelling and pronounciation (such as
 English).

 Expires in six months [Page 2]

Internet Draft Alternative Language Tagings for ACAP May 1997

1.2 CJK(V) Glyph Disambiguation

 The reason one hears most for the necessity of language information
 is the need to disambiguate CJK(V) ideographic glyphs, i.e. to select
 specific typographic variants of certain ideographic characters,
 variants which can differ somewhat between Chinese (simplified or
 traditional), Japanese, Korean, or classical Vietnamese. Some such
 distinctions can indeed be made by using language information to
 indicate typographic tradition. However, the usefullness of this
 approach is limited by a series of facts that are not all very widely
 known:

 - Even if a glyph is by mistake taken from another typographic tra-
 dition, readability, in particular in context, is never affected.

 - In running text, the differences resulting from the use of differ-
 ent fonts (e.g. Song-style font vs. Mincho-style) as well as from
 different weights of the same font are much more visible than the
 differences resulting from glyph variant details.

 - In many fonts, glyphs vary, for sund aestetic and historic rea-
 sons, to a similar or higher degree than that exhibited in the
 "reference" glyphs for each typographic tradition as given in [ISO
 10646]. This applies to print, but even more to handwriting.

 - National standards explicitly or implicitly allow for a certain
 variance of glyph shapes. In particular, the newest edition of the
 basic Japanese character standard, JIS X 0208-1997 [JIS1997],
 explicitly mentionnes a large number of permitted variants (pp.
 12-22) for Mincho fonts only. It also explicitly allows a list of
 29 much wider-reaching variants as a consequence of some unfortu-
 nate changes to the standard in 1983 (p. 22).

 - Long-standing typographic practice does not use special glyph
 variants for representing short inclusions of foreign origin (such
 as names of persons, places, or institutions) in native text.

 - Some glyph variants are seen by some persons as explicit proper-
 ties of their names. Identifying a name by a particular language
 and assuming that this implies a particular typographic tradition
 can in some cases lead to the desired result. However, the results
 cannot be guaranteed due to design differences between different
 fonts used in the same typographic tradition, and due to the fact
 that even national standards glyph standards considerably unify
 glyph variants.

 All the above facts clearly limit the usefullness of language tags
 for CJK(V) glyph variant selection. Language taging should therefore

 Expires in six months [Page 3]

Internet Draft Alternative Language Tagings for ACAP May 1997

 not be advertized as a comprehensive solution to the various problems
 of CJK(V) glyph variant selection.

2. A Text/Enriched-like Notation for Language Tags (TELT)

 This section specifies a text/enriched-like notation for language
 tags, leading to a format simmilar to text/enriched. It can be used
 with any character encoding that contains the necessary subset of the
 US-ASCII character repertoire.

 Language tags are of the form "<LANG=xxxxx>" where xxxxx is a lan-
 guage tag as defined in [RFC1766], with all letters written in upper
 case. No whitespace of any kind is allowed between "<" and ">".

 Language alternatives are started by "<ALTLANG>". Again, no whites-
 pace is allowed between "<" and ">".

 The use of the character sequences "<LANG=" and "<ALTLANG>" is not
 allowed in the text itself. Code to convert from this notation to
 MLSF and back and to test for false positives in plain text search is
 given in an appendix.

3. Language Tags using a Start Tag Character (STLT)

 This method of language taging is only useable with character encod-
 ings that can represent the BMP of the Universal Character Set
 [ISO10646]. For the purpose of illustration, the character PILCROW
 SIGN (paragraph sign, U+00B6) is used as the tag start character. It
 would be preferable to officially define a currently unused code
 point exclusively for this purpose, but such a definition is outside
 of the scope of this document and outside of the scope of IETF work.
 If this solution is seriously considered for adoption by the IETF for
 use in some of it's protocols, a request for such a codepoint should
 be made through the appropriate channels.

 For possible future expansions, tag syntax after the start tag char-
 acter is kept very simple and general. Tags are defined to start with
 a tag start character, contain only characters from the US-ASCII
 repertoire (U+0021 through U+007E, inclusive), excluding the tag end
 character, and end with a tag end character. The character "#" is
 choosen as a tag end character.

 Language tags proper are formed by a start tag character, a language
 tag according to [RFC1766], with all letters in upper case, and a "#"
 as an end tag character, without any intervening white space.

https://datatracker.ietf.org/doc/html/rfc1766
https://datatracker.ietf.org/doc/html/rfc1766

 Expires in six months [Page 4]

Internet Draft Alternative Language Tagings for ACAP May 1997

 Language alternatives are marked by a sequence of a start tag charac-
 ter, a "%", and a "#" as an end tag character, again without any
 intevening white space. Code to convert from this notation to MLSF
 and back and to test for false positives in plain text search is
 given in an appendix.

4. Conformance

 Conforming protocols using either of the solutions proposed above
 MUST clearly define in which places they do so, and in which places
 they don't. If there are other mechanisms in the procotol that can be
 used for language taging, these mechanisms should be considered and
 used. In particular, storing language information separate from the
 actual text is beneficial in many cases because it allows the proto-
 col to treat language information and language alternatives in a way
 appropriate to the protocol, i.e. only selecting and transmitting
 language alternatives desired by the client, and so on.

 Conforming protocols and their implementations MUST at all costs
 avoid that language tags leak into parts of the protocol where they
 are not allowed or into other channels where they are not allowed. In
 the absence of specific information to the countrary, a protocol or
 implementation MUST assume that another protocol or implementation
 does not allow language tags.

 In interfaces to protocols and formats that use other ways of lan-
 guage taging (for an example HTML, see [RFC2070]), conforming proto-
 cols SHOULD convert language tags appropriately or MAY eliminate
 them.

 If text including language tags as defined in this document leaks
 outside the protocol positions where it is explicitly allowed, it
 should be treated in the same way other text is treated, with no spe-
 cial processing.

5. Discussion

 Two alternative forms for language taging have been proposed in this
 document. Because they are very simillar, only one of them should
 finally be choosen. Compared to [MLSF], their main advantages are
 that they can be used with character encodings other than UTF-8, that
 they are easily distinguished from UTF-8 by implementors and users,
 and that they are advantageous in case of debuging and initial string
 composition.

 The MLSF proposal has a number of interesting properties that makes

https://datatracker.ietf.org/doc/html/rfc2070

 Expires in six months [Page 5]

Internet Draft Alternative Language Tagings for ACAP May 1997

 it very suitable for efficient internal processing in certain scenar-
 ios. We therefore in particular give conversion functions between
 MLSF and our proposals in the appendices.

 MLSF continues a long tradition of utilizing unused bit combinations
 for internal processing speedups. Exposing such methods to the out-
 side of an implementation, however, can lead to serious restrictions
 and undesired biases towards certain implementations.

 The main difference between the two proposals given here is that TELT
 has to exclude certain character sequences from the untagged text,
 whereas STLT has a potential to use a special, newly defined, code-
 point, that is guaranteed not to appear in text per se.

Acknowledgements

 The motivation to write this document came from Harald Alvestran.
 Further acknowledgements go to Lisa Moore, Mark Davis, Ken Whistler,
 Glenn Adams, and others from the UTC (Unicode Technical Committee),
 to Rob Pike, and to Chris Newman, Ned Freed, and Mark Crispin from
 the IETF ACAP working group.

Bibliography

 [Unicode2] The Unicode Standard, Version 2, Addison-Wesley, Read-
 ing, MA, 1996.

 [ISO-10646] ISO/IEC 10646-1:1993. International Standard -- Infor-
 mation technology -- Universal Multiple-Octet Coded
 Character Set (UCS) -- Part 1: Architecture and Basic
 Multilingual Plane.

 [JIS1997] Japanese Industrial Standard, "7-bit and 8-bit Double
 Byte Coded Kanji Sets for Information Interchange",
 JIS X 0208:1997.

 [MLSF] C. Newman, "Multi-Lingual String Format (MLSF)",
draft-ietf-acap-mlsf-01.txt, work in progress, June

 1997.

 [RFC1766] Alvestran, H., "Tags for the Identification of Lan-
 guages", RFC 1766.

https://datatracker.ietf.org/doc/html/draft-ietf-acap-mlsf-01.txt
https://datatracker.ietf.org/doc/html/rfc1766

 Expires in six months [Page 6]

Internet Draft Alternative Language Tagings for ACAP May 1997

 [RFC2070] F. Yergeau, G. Nicol, G. Adams, and M. Duerst, "Inter-
 nationalization of the Hypertext Markup Language", RFC

2070, January 1997.

Author's Address

 Martin J. Duerst
 Multimedia-Laboratory
 Department of Computer Science
 University of Zurich
 Winterthurerstrasse 190
 CH-8057 Zurich
 Switzerland

 Tel: +41 1 257 43 16
 Fax: +41 1 363 00 35
 E-mail: mduerst@ifi.unizh.ch

 NOTE -- Please write the author's name with u-Umlaut wherever
 possible, e.g. in HTML as Dürst.

Appendix A. Conversion from TELT to MLSF

 This is sample code to convert from text/enriched-style language tag-
 ing to MLSF. It is assumed that the source is in UTF-8, and that the
 output buffer (outp) is long enough to hold the result. The code uses
 the functions defined in [MLSF] for convenience.

 #include <string.h>

 void TELTtoMLSF (unsigned char *outp, unsigned char *inp)
 {
 unsigned char tagbuff[256];
 unsigned char *temp;

 while (*inp) {

https://datatracker.ietf.org/doc/html/rfc2070
https://datatracker.ietf.org/doc/html/rfc2070

 Expires in six months [Page 7]

Internet Draft Alternative Language Tagings for ACAP May 1997

 if (!strncmp(inp, "<ALTLANG>", 9)) {
 inp += 9;
 *outp++ = 0xFE;
 }
 else if (!strncmp(inp, "<LANG=", 6)) {
 inp += 6;
 temp= tagbuff;
 while (*inp != '>')
 *temp++ = *imp++;
 *temp= 0;
 outp += MLSFlangencode(outp, tagbuff);
 }
 else
 *inp++= *outp++;
 }
 *outp= 0;
 }

Appendix B. Conversion from STLT to MLSF

 This is sample code to convert from Start Tag Character style lan-
 guage taging to MLSF. It is assumed that the source is in UTF-8, and
 that the output buffer (outp) is long enough to hold the result. The
 code uses the functions defined in [MLSF] for convenience.

 void STLTtoMLSF (unsigned char *outp, unsigned char *inp)
 {
 unsigned char tagbuff[256];
 unsigned char *temp;

 while (*inp) {
 if (!strncmp(inp, "\xC2\xA7%#", 4)) {
 inp += 4;
 *outp++ = 0xFE;
 }
 else if (!strncmp(inp, "\xC2\xA7", 2)) {
 inp += 2;
 temp= tagbuff;
 while (*inp != '&')
 *temp++ = *imp++;
 *temp= 0;
 outp += MLSFlangencode(outp, tagbuff);
 }

 Expires in six months [Page 8]

Internet Draft Alternative Language Tagings for ACAP May 1997

 else
 *inp++= *outp++;
 }
 *outp= 0;
 }

Appendix C. Conversion from MLSF to TELT

 This is sample code to convert from MLSF to text/enriched-style lan-
 guage taging. It is assumed that the output buffer (outp) is long
 enough to hold the result. The code uses the functions defined in
 [MLSF] for convenience.

 void MLSFtoTELT (unsigned char *outp, unsigned char *inp)
 {
 unsigned char tagbuff[256];
 unsigned char *temp;
 int len;

 while (*inp) {
 /* for speed, first insert a test (*inp != "<") */
 if (*inp == 0xFE) {
 inp++;
 strcpy (outp, "<ALTLANG>");
 outp+= 9;
 }
 else if (*inp >= 0xC0 && inp[1] > 0xC0) {
 inp+= MLSFlangdecode(tagbuff, inp);
 strcpy (outp, "<LANG=");
 outp+= 6;
 temp= tagbuff;
 while (*temp)
 *outp++ = *temp++;
 *outp++ = ">";
 }
 else { /* maybe just *outp++ = *inp++ is enough here? */
 len = utlen[*inp];
 if (len > 6) break;
 while (len-- && *src)
 *outp++ = *inp++;
 }
 }
 *outp= 0;
 }

 Expires in six months [Page 9]

Internet Draft Alternative Language Tagings for ACAP May 1997

Appendix D. Conversion from MLSF to Start Tag Character

 This is sample code to convert from MLSF to Start Tag Character style
 language taging. It is assumed that the output buffer (outp) is long
 enough to hold the result. The code uses the functions defined in
 [MLSF] for convenience.

 void MLSFtoSTLT (unsigned char *outp, unsigned char *inp)
 {
 unsigned char tagbuff[256];
 unsigned char *temp;
 int len;

 while (*inp) {
 if (*inp == 0xFE) {
 inp++;
 strcpy (outp, "\xC2\xA7%#");
 outp+= 9;
 }
 else if (*inp >= 0xC0 && inp[1] > 0xC0) {
 inp+= MLSFlangdecode(tagbuff, inp);
 strcpy (outp, "\xC2\xA7");
 outp+= 6;
 temp= tagbuff;
 while (*temp)
 *outp++ = *temp++;
 *outp++ = "&";
 }
 else { /* maybe just *outp++ = *inp++ is enough here? */
 len = utlen[*inp];
 if (len > 6) break;
 while (len-- && *src)
 *outp++ = *inp++;
 }
 }
 *outp= 0;
 }

Appendix E. Elimination of False Positives in TELT

 This is sample code to eliminate false positives in TELT (i.e. check-
 ing whether a match found by a search routine starts inside a tag).
 The elimination of false positives in STLT is structurally equivalent

 Expires in six months [Page 10]

Internet Draft Alternative Language Tagings for ACAP May 1997

 and therefore not given explicitly here.

 int TELTfalse (unsigned char *inp, unsigned char *pos)
 {
 while (inp <= pos) {
 if (!strncmp(inp, "<ALTLANG>", 9)) {
 inp += 9;
 if (inp > pos)
 return 1;
 }
 else (!strncmp(inp, "<LANG=", 6)) {
 inp += 6;
 while (*inp++ != '>') ;
 if (inp > pos)
 return 1;
 }
 }
 return 0;
 }

Appendix F. Elimination of Tags from TELT

 This is sample code to eliminate tags from TELT (in UTF-8), thereby
 leaving only plain text. The elimination of tags from STLT is struc-
 turally equivalent and therefore not given explicitly here.

 void TELTclean (unsigned char *inp, unsigned char *outp)
 {
 while (*inp) {
 if (!strncmp(inp, "<ALTLANG>", 9))
 inp += 9;
 else if (!strncmp(inp, "<LANG=", 6)) {
 while (*inp++ != '>') ;
 }
 else
 *inp++= *outp++;
 }
 *outp= 0;
 }

 Expires in six months [Page 11]

Internet Draft Alternative Language Tagings for ACAP May 1997

Appendix G. Selection of the "best" alternative from TELT

 This is sample code selects the "best" language match from TELT.
 Assume input language tag has been converted to upper case. Assume
 language tags won't exceed 256 characters. Returns a pointer to the
 start of the "best" match. Code for STLT is structurally equivalent
 and therefore not given explicitly here.

 unsigned char TELTselect (unsigned char *inp, unsigned char *tag)
 {
 unsigned char tagbuff[256];
 unsigned char *match1, match2;
 unsigned char best= str;
 int bestlen= 0;
 int start= 1;
 int mlen;

 if (tag == NULL || !*tag)
 return;

 while (*inp) {
 if (!strncmp(inp, "<ALTLANG>", 9)) {
 inp += 9;
 *outp++ = 0xFE;
 start= 1;
 }
 if (start) {
 mlen= 0;
 /* get tag into tagbuff */
 if (!strncmp(inp, "<LANG=", 6)) {
 inp += 6;
 match1= tagbuff;
 while (*inp != '>')
 *match1++ = *imp++;
 *match1= 0;
 inp++;
 }
 else *tagbuff= 0;

 /* check match */
 match1= tagbuff;
 match2= tag;
 while (*match1 && *match1++ == *match2++) {
 if (*match2=="-" && (*match2=="-" || !*match2))
 mlen = match1 - tagbuff;
 }

 Expires in six months [Page 12]

Internet Draft Alternative Language Tagings for ACAP May 1997

 if (!*match2 && (*match1=='-' || !*match1)) {
 best = str;
 break;
 }

 if (mlen > bestlen) {
 best = str;
 bestlen = mlen;
 }

 /* search next alternative */
 start = 0;
 }
 else
 inp++;
 }

 return best;
 }

 Expires in six months [Page 13]

