
Network Working Group C. Newman
Internet Draft: Multi-Lingual String Format Innosoft
Document: draft-ietf-acap-mlsf-01.txt June 1997
 Expires in six months

 Multi-Lingual String Format (MLSF)

Status of this memo

 This document is an Internet Draft. Internet Drafts are working
 documents of the Internet Engineering Task Force (IETF), its Areas,
 and its Working Groups. Note that other groups may also distribute
 working documents as Internet Drafts.

 Internet Drafts are draft documents valid for a maximum of six
 months. Internet Drafts may be updated, replaced, or obsoleted by
 other documents at any time. It is not appropriate to use Internet
 Drafts as reference material or to cite them other than as a
 "working draft" or "work in progress".

 To learn the current status of any Internet-Draft, please check the
 1id-abstracts.txt listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net, nic.nordu.net, ftp.isi.edu, or
 munnari.oz.au.

 A revised version of this draft document will be submitted to the
 RFC editor as a Proposed Standard for the Internet Community.
 Discussion and suggestions for improvement are requested. This
 document will expire six months after publication. Distribution of
 this draft is unlimited.

Abstract

 The IAB charset workshop [IAB-CHARSET] concluded that for human
 readable text there should always be a way to specify the natural
 language. Many protocols are designed with an attribute-value
 model (including RFC 822, HTTP, LDAP, SNMP, DHCP, and ACAP) which
 stores many small human readable text strings. The primary
 function of an attribute-value model is to simplify both
 extensibility and searchability. A solution is needed to provide
 language tags in these small human readable text strings, which
 does not interfere with these primary functions.

 This specification defines MLSF (Multi-Lingual String Format) which
 applies another layer of encoding on top of UTF-8 [UTF-8] to permit

Newman [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-acap-mlsf-01.txt
https://datatracker.ietf.org/doc/html/rfc822

Internet Draft Multi-Lingual String Format June 1997

 the addition of language tags anywhere within a text string. In
 addition, it defines an alternate form which can be used to include
 alternative representations of the same text in different character
 sets. MLSF has the property that UTF-8 is a proper subset of MLSF.
 This preserves the searchability requirement of the attribute-value
 model.

Appendix F of this document includes a brief discussion of the
 background behind MLSF and why some other potential solutions were
 rejected for this purpose.

1. Conventions used in this document

 The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY"
 in this document are to be interpreted as defined in "Key words for
 use in RFCs to Indicate Requirement Levels" [KEYWORDS].

2. MLSF simple form

 MLSF uses "Tags for the Identification of Languages" [LANG-TAGS] as
 the basis for language identification.

 Language tags are encoded by mapping them to upper-case, then
 adding hexadecimal A0 to each octet. The result is broken up into
 groups of five octets followed by a final group of five or fewer
 octets. Each group is prefixed by a UTF-8-style length count with
 the low bits set to 0. See Appendix D for sample source code to
 perform this conversion.

 MLSF simple form is defined by the MLSF-SIMPLE rule in section 7.
 A quoted version of MLSF simple form is defined by the MLSF-
 SIMPLE-QUOTED rule.

 Note that MLSF is not compatible with UTF-8. A program which uses
 MLSF MUST downconvert it to UTF-8 prior to using it in a context
 where UTF-8 is required. Sample code for this down conversion is
 included in Appendix B.

3. MLSF alternative form

 A MLSF alternative form string may contain alternative
 representations of the same text in different primary languages.
 The octet with hexadecimal representation of FE is used to
 introduce a new alternative. This MUST be followed by a MLSF
 language tag for the primary language of the alternative.

Newman [Page 2]

Internet Draft Multi-Lingual String Format June 1997

 The component of the MLSF string prior to the first FE octet is
 considered the "preferred" representation for the string. This is
 the version which will be displayed by MLSF clients which choose
 not to support alternative representations. The preferred
 representation MAY be prefixed by a MLSF language tag.

 MLSF alternate form is defined by the MLSF-ALT rule in section 7.
 A quoted version of MLSF alternate form is defined by the
 MLSF-ALT-QUOTED rule.

 Note that MLSF alternate form is not compatible with UTF-8. A
 program which uses MLSF MUST downconvert it to UTF-8 prior to using
 it in a context where UTF-8 is required. Sample code for this down
 conversion is included in Appendix B.

4. MLSF MIME character sets

 The character set label "XXXX-simple" will be registered to
 indicate the use of MLSF simple form. The character set label
 "XXXX-alt" will be registered to indicate the use of MLSF alternate
 form.

 MLSF may be used in conjunction with MIME header [MIME-HDR]
 encoding to permit language tagging and alternative representations
 in header fields. A work in progress [MIME-LANG] will propose a
 mechanism for language tagging in headers which is not dependent on
 the use of UTF-8.

 For single language MIME body parts, the UTF-8 character set with
 an appropriate Content-Language [LANG-TAG] header SHOULD be used
 instead of MLSF. Text/enriched [ENRICHED] or HTML with language
 tags [HTML-I18N] are preferred to using MLSF for MIME bodies when
 possible.

5. Security Considerations

 Multi-Lingual String Format is not believed to have any security
 considerations beyond those for simple US-ASCII strings. In
 particular, unfiltered display of certain US-ASCII control
 characters by a terminal emulator may result in modifying the
 behavior of the terminal emulator (e.g. by redefining function
 keys) such that security can be breached. Programs which display
 text to a potentially insecure terminal emulator channel are
 encouraged to remove control characters to avoid these problems.

Newman [Page 3]

Internet Draft Multi-Lingual String Format June 1997

6. Formal Grammar

 This section defines the formal grammar for MLSF using Augmented
 BNF [ABNF] notation.

 MLSF-ALT = [[MLSF-LANG-TAG] MLSF-COMPONENT
 *(MLSF-ALTERNATE MLSF-COMPONENT)]

 MLSF-ALT-QUOTED = <"> [[MLSF-LANG-TAG] MLSF-COMPONENT-Q
 *(MLSF-ALTERNATE MLSF-COMPONENT-Q)] <">

 MLSF-ALTERNATE = %xFE MLSF-LANG-TAG

 MLSF-COMPONENT = UTF8-NON-NUL *([MLSF-LANG-TAG] UTF8-NON-NUL)

 MLSF-COMPONENT-Q = UTF8-QUOTED *([MLSF-LANG-TAG] UTF8-QUOTED)

 MLSF-LANG-TAG = *MLSF-LANG-5 (MLSF-LANG-1 / MLSF-LANG-2 /
 MLSF-LANG-3 / MLSF-LANG-4 / MLSF-LANG-5)
 ;; Encoded version of Language-Tag from RFC 1766
 ;; characters converted to uppercase, with
 ;; A0 added and broken into MLSF-LANG components

 MLSF-LANG-CONT = %xCD / %xE1..FA

 MLSF-LANG-1 = %xC0 MLSF-LANG-CONT

 MLSF-LANG-2 = %xE0 2MLSF-LANG-CONT

 MLSF-LANG-3 = %xF0 3MLSF-LANG-CONT

 MLSF-LANG-4 = %xF8 4MLSF-LANG-CONT

 MLSF-LANG-5 = %xFC 5MLSF-LANG-CONT

 MLSF-SIMPLE = [[MLSF-LANG-TAG] MLSF-COMPONENT]

 MLSF-SIMPLE-QUOTED = <"> [[MLSF-LANG-TAG] MLSF-COMPONENT-Q] <">

 QUOTED = "\" QUOTED-SPECIAL

 QUOTED-SPECIAL = "\" / <">

 US-ASCII-SAFE = %x01..09 / %x0B..0C / %x0E..21
 / %x23..5B / %x5D..7F
 ;; US-ASCII except QUOTED-SPECIALs, CR, LF, NUL

 UTF8-NON-NUL = UTF8-SAFE / CR / LF / QUOTED-SPECIAL

https://datatracker.ietf.org/doc/html/rfc1766

Newman [Page 4]

Internet Draft Multi-Lingual String Format June 1997

 UTF8-QUOTED = UTF8-SAFE / QUOTED

 UTF8-SAFE = US-ASCII-SAFE / UTF8-1 / UTF8-2 / UTF8-3
 / UTF8-4 / UTF8-5

 UTF8-CONT = %x80..BF

 UTF8-1 = %xC0..DF UTF8-CONT

 UTF8-2 = %xE0..EF 2UTF8-CONT

 UTF8-3 = %xF0..F7 3UTF8-CONT

 UTF8-4 = %xF8..FB 4UTF8-CONT

 UTF8-5 = %xFC..FD 5UTF8-CONT

7. References

 [ABNF] Crocker, D., "Augmented BNF for Syntax Specifications:
 ABNF", Work in progress: draft-ietf-drums-abnf-xx.txt

 [ENRICHED] Resnick, Walker, "The text/enriched MIME Content-type",
RFC 1896, Qualcomm, InterCon, February 1996.

 <ftp://ds.internic.net/rfc/rfc1896.txt>

 [HTML-I18N] Yergeau, Nicol, Adams, Duerst, "Internationalization of
 the Hypertext Markup Language", RFC 2070, Alis Technologies,
 Electronic Book Technologies, Spyglass, University of Zurich,
 January 1997.

 <ftp://ds.internic.net/rfc/rfc2070.txt>

 [IAB-CHARSET] Weider, Preston, Simonsen, Alvestrand, Atkinson,
 Crispin, Svanberg, "The Report of the IAB Character Set Workshop
 held 29 February - 1 March, 1996", RFC 2130, April 1997.

 <ftp://ds.internic.net/rfc/rfc2130.txt>

 [IMAP4] Crispin, "Internet Message Access Protocol - Version
 4rev1", RFC 2060, University of Washington, December 1996.

 <ftp://ds.internic.net/rfc/rfc2060.txt>

https://datatracker.ietf.org/doc/html/draft-ietf-drums-abnf-xx.txt
https://datatracker.ietf.org/doc/html/rfc1896
ftp://ds.internic.net/rfc/rfc1896.txt
https://datatracker.ietf.org/doc/html/rfc2070
ftp://ds.internic.net/rfc/rfc2070.txt
https://datatracker.ietf.org/doc/html/rfc2130
ftp://ds.internic.net/rfc/rfc2130.txt
https://datatracker.ietf.org/doc/html/rfc2060
ftp://ds.internic.net/rfc/rfc2060.txt

Newman [Page 5]

Internet Draft Multi-Lingual String Format June 1997

 [KEYWORDS] Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, Harvard University, March 1997.

 <ftp://ds.internic.net/rfc/rfc2119.txt>

 [LANG-TAGS] Alvestrand, H., "Tags for the Identification of
 Languages", RFC 1766.

 <ftp://ds.internic.net/rfc/rfc1766.txt>

 [MIME-HDR] Moore, "MIME (Multipurpose Internet Mail Extensions)
 Part Three: Message Header Extensions for Non-ASCII Text", RFC

2047, University of Tennessee, November 1996.

 <ftp://ds.internic.net/rfc/rfc2047.txt>

 [MIME-IMB] Freed, Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies", RFC

2045, Innosoft, First Virtual, November 1996.

 <ftp://ds.internic.net/rfc/rfc2045.txt>

 [MIME-LANG] Freed, Moore, "MIME Parameter Value and Encoded Words:
 Character Sets, Language, and Continuations", work in progress,
 March 1997.

 [UTF8] Yergeau, F. "UTF-8, a transformation format of Unicode and
 ISO 10646", RFC 2044, Alis Technologies, October 1996.

 <ftp://ds.internic.net/rfc/rfc2044.txt>

8. Acknowledgements

 Special thanks to Mark Crispin for the idea of using unused UTF-8
 codes for this purpose. Thanks are also due to participants of
 the ACAP WG mailing list who helped review this proposal.

9. Author's Address

 Chris Newman
 Innosoft International, Inc.
 1050 East Garvey Ave. South
 West Covina, CA 91790 USA

 Email: chris.newman@innosoft.com

https://datatracker.ietf.org/doc/html/rfc2119
ftp://ds.internic.net/rfc/rfc2119.txt
https://datatracker.ietf.org/doc/html/rfc1766
ftp://ds.internic.net/rfc/rfc1766.txt
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2047
ftp://ds.internic.net/rfc/rfc2047.txt
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2045
ftp://ds.internic.net/rfc/rfc2045.txt
https://datatracker.ietf.org/doc/html/rfc2044
ftp://ds.internic.net/rfc/rfc2044.txt

Newman [Page 6]

Internet Draft Multi-Lingual String Format June 1997

Appendix A. Client advice

 A simple UTF-8 client is likely to find the source code in Appendix
B useful. A simple Latin-1 based client is likely to find the

 source code in Appendix C useful.

 A more sophisticated client will allow the user to select a
 preferred language and use something like the source code in

Appendix E to find the best alternative in an MLSF string. Such
 clients should also be aware that sometimes the client's preferred
 language is misconfigured, and the user may wish to have the last
 few messages repeated after they have changed languages. For this
 reason, such a client may wish to cache the last few MLSF strings
 displayed to the user.

Newman [Page 7]

Internet Draft Multi-Lingual String Format June 1997

Appendix B. Sample code to convert to UTF-8

Here is sample C source code to convert from MLSF to UTF-8.

#include <stdio.h>
#include <ctype.h>

/* a UTF8 lookup table */
#define BAD 0x80
#define SEP 0x40
#define EXT 0x20
static unsigned char utlen[256] = {
 /* 0x00 */ BAD, 1, 1, 1, 1, 1, 1, 1,
 /* 0x08 */ 1, 1, 1, 1, 1, 1, 1, 1,
 /* 0x10 */ 1, 1, 1, 1, 1, 1, 1, 1,
 /* 0x18 */ 1, 1, 1, 1, 1, 1, 1, 1,
 /* 0x20 */ 1, 1, 1, 1, 1, 1, 1, 1,
 /* 0x28 */ 1, 1, 1, 1, 1, 1, 1, 1,
 /* 0x30 */ 1, 1, 1, 1, 1, 1, 1, 1,
 /* 0x38 */ 1, 1, 1, 1, 1, 1, 1, 1,
 /* 0x40 */ 1, 1, 1, 1, 1, 1, 1, 1,
 /* 0x48 */ 1, 1, 1, 1, 1, 1, 1, 1,
 /* 0x50 */ 1, 1, 1, 1, 1, 1, 1, 1,
 /* 0x58 */ 1, 1, 1, 1, 1, 1, 1, 1,
 /* 0x60 */ 1, 1, 1, 1, 1, 1, 1, 1,
 /* 0x68 */ 1, 1, 1, 1, 1, 1, 1, 1,
 /* 0x70 */ 1, 1, 1, 1, 1, 1, 1, 1,
 /* 0x78 */ 1, 1, 1, 1, 1, 1, 1, 1,
 /* 0x80 */ EXT, EXT, EXT, EXT, EXT, EXT, EXT, EXT,
 /* 0x88 */ EXT, EXT, EXT, EXT, EXT, EXT, EXT, EXT,
 /* 0x90 */ EXT, EXT, EXT, EXT, EXT, EXT, EXT, EXT,
 /* 0x98 */ EXT, EXT, EXT, EXT, EXT, EXT, EXT, EXT,
 /* 0xA0 */ EXT, EXT, EXT, EXT, EXT, EXT, EXT, EXT,
 /* 0xA8 */ EXT, EXT, EXT, EXT, EXT, EXT, EXT, EXT,
 /* 0xB0 */ EXT, EXT, EXT, EXT, EXT, EXT, EXT, EXT,
 /* 0xB8 */ EXT, EXT, EXT, EXT, EXT, EXT, EXT, EXT,
 /* 0xC0 */ 2, 2, 2, 2, 2, 2, 2, 2,
 /* 0xC8 */ 2, 2, 2, 2, 2, 2, 2, 2,
 /* 0xD0 */ 2, 2, 2, 2, 2, 2, 2, 2,
 /* 0xD8 */ 2, 2, 2, 2, 2, 2, 2, 2,
 /* 0xE0 */ 3, 3, 3, 3, 3, 3, 3, 3,
 /* 0xE8 */ 3, 3, 3, 3, 3, 3, 3, 3,
 /* 0xF0 */ 4, 4, 4, 4, 4, 4, 4, 4,
 /* 0xF8 */ 5, 5, 5, 5, 6, 6, SEP, BAD
};

Newman [Page 8]

Internet Draft Multi-Lingual String Format June 1997

/* Down conversion from NUL terminated MLSF string to UTF-8.
 * this strips the language tags and only keeps the preferred
 * representation.
 * It returns the length of the final string.
 * The destination string will not be longer than the source string.
 * dst and src may be the same for in-place conversion.
 */
int MLSFtoUTF8(unsigned char *dst, unsigned char *src)
{
 unsigned char *start = dst;
 int len;

 for (;;) {
 len = utlen[*src];
 if (len > 6) break;
 /* skip language tags */
 if (len > 1 && src[1] > 0xC0U) {
 while (len && *src != '\0') {
 ++src;
 --len;
 }
 continue;
 }
 /* copy UTF8 character */
 while (len && *src != '\0') {
 *dst = *src;
 ++dst;
 ++src;
 --len;
 }
 }
 *dst = '\0';

 return (dst - start);
}

Newman [Page 9]

Internet Draft Multi-Lingual String Format June 1997

Appendix C. Sample code to convert to Latin-1

/* Down conversion from NUL terminated MLSF string to 8859-1
 * The destination string will not be longer than the source string.
 * fillc is used to fill untranslatable characters,
 * if fillc is NUL, untranslatable characters are ignored.
 * returns 0 if source only contained latin-1, returns -1 otherwise.
 */
int MLSFtoLatin1(unsigned char *dst, unsigned char *src, int fillc)
{
 int len, result = 0;

 for (;;) {
 len = utlen[*src];
 /* copy US-ASCII */
 if (len == 1) {
 *dst = *src;
 ++dst;
 ++src;
 continue;
 }
 /* stop at illegal character or end of string */
 if (len > 6) break;
 /* skip non-latin1 glyphs and language tags */
 if (*src > 0xC3U || src[1] > 0xC0U) {
 if (src[1] <= 0xC0U) {
 /* non-latin1 glyph found */
 result = -1;
 if (fillc) {
 *dst = fillc;
 ++dst;
 }
 }
 while (len && *src != '\0') {
 ++src;
 --len;
 }
 continue;
 }
 /* copy latin 1 character */
 *dst = ((src[0] & 0x03) << 6) | (src[1] & 0x3F);
 ++dst;
 src += 2;
 }
 *dst = '\0';

 return (result);
}

Newman [Page 10]

Internet Draft Multi-Lingual String Format June 1997

Appendix D. Sample code for encoding/decoding language tags

/* encode a language tag
 * the destination must have a size of least (counting terminating NUL):
 * (6 * strlen(src) + 9) / 5
 * returns the length of the destination.
 */
int MLSFlangencode(unsigned char *dst, unsigned char *src)
{
 static unsigned char prefix[] = { 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
 unsigned char *start = dst;
 int len; /* source length */
 int complen; /* component length */
 int i;

 for (len = strlen(src); len > 0; len -= complen) {
 /* find maximal component length */
 complen = len;
 if (len >= 5) {
 complen = 5;
 }
 /* look up component prefix */
 *dst = prefix[complen - 1];
 ++dst;
 /* copy and map characters in component */
 for (i = 0; i < complen; ++i) {
 *dst = (islower(*src) ? toupper(*src) : *src) + 0xA0U;
 ++dst;
 ++src;
 }
 }
 *dst = '\0';

 return (dst - start);
}

Newman [Page 11]

Internet Draft Multi-Lingual String Format June 1997

/* decode a language tag
 * the destination will not be longer than the source
 * dst and src may be the same for in-place conversion
 * returns the length of the destination
 */
int MLSFlangdecode(unsigned char *dst, unsigned char *src)
{
 unsigned char *start = dst;
 int complen;

 while (src[0] >= 0xC0U && src[1] > 0xC0U) {
 for (complen = utlen[*src++]; complen > 1; --complen) {
 *dst = *src - 0xA0U;
 ++dst;
 ++src;
 }
 }
 *dst = '\0';

 return (dst - start);
}

Appendix E. Sample code for selecting the "best" alternative

/* select the "best" language match from an MLSF string
 * assume input language tag has been converted to upper case
 * assume language tags in string won't exceed 256 characters
 * "best" is calculated by matching RFC 1766 language tag components
 * returns a pointer to the start of best matching component
 */
unsigned char *MLSFselect(unsigned char *str, unsigned char *tag)
{
 unsigned char ltag[256];
 unsigned char *best, *match1, *match2;
 int bestlen, mlen;

 /* start with match on preferred alternative */
 best = str;
 bestlen = 0;

 /* skip test if no language tag */
 if (tag != NULL && *tag != '\0') {
 do {
 /* get language tag for this component */
 MLSFlangdecode(ltag, str);

https://datatracker.ietf.org/doc/html/rfc1766

Newman [Page 12]

Internet Draft Multi-Lingual String Format June 1997

 /* calculate match length of language tags */
 match1 = ltag;
 match2 = tag;
 mlen = 0;
 while (*match1 != '\0' && *match1 == *match2) {
 ++match1, ++match2;
 /* save length of partial match */
 if (*match2 == '-'
 && (*match1 == '-' || *match1 == '\0')) {
 mlen = match1 - ltag;
 }
 }

 /* finish on exact match */
 if (*match2 == '\0'
 && (*match1 == '-' || *match1 == '\0')) {
 best = str;
 break;
 }

 /* remember best match */
 if (mlen > bestlen) {
 best = str;
 bestlen = mlen;
 }

 /* skip to next MLSF component */
 while (*str != '\0' && *str++ != 0xFEU)
 ;
 } while (*str != '\0');
 }

 return (best);
}

Appendix F. Background and Alternate Solutions

 MLSF was designed to deal with language tagging in the context of
 the ACAP protocol, but is believed to be useful in other contexts.
 Specific scenarios cited during discussion were human names in
 address books, system administrator alert error messages, and error
 messages which include identifiers potentially in a different
 language from the client's preferred error message language. Since
 ACAP is an arbitrary attribute-value protocol, it is impossible to
 imaging all possible scenarios in advance, so a general purpose
 mechanism was needed.

 There have been several attempts to solve language tagging in

Newman [Page 13]

Internet Draft Multi-Lingual String Format June 1997

 attribute value protocols. RFC 822 poses a particularly
 troublesome scenario, since headers must be 7-bit. The MIME
 solution to label character sets [MIME-HDR] and languages [MIME-
 LANG] in headers is thus a necessary evil. The result of this is
 to make header searching services such as those provided by IMAP
 [IMAP4] massively more complex. If 8-bit headers were permitted a
 solution like MLSF would have been far simpler and more efficient.

 Another approach taken is demonstrated by the current vCard,
 iCalendar, and LDAPv3 proposals (all works in progress). These
 proposals overload the attribute namespace to provide language
 tagging and creates a concept roughly described as attributes of
 the attribute. The result of this is that clients have to deal
 with a multiple attribute response to a query where each attribute
 may have multiple values. The additional complexity this adds to
 client processing was deemed unacceptable for ACAP where client
 simplicity was an important design goal.

 Another possible approach is the use of a markup language such as
 text/enriched [ENRICHED]. While this is certainly a suitable
 language tagging solution for large text objects such as MIME
 bodies, it is unsuitable for the attribute-value model where
 searching is a primary function.

https://datatracker.ietf.org/doc/html/rfc822

Newman [Page 14]

