
Workgroup: ACE Working Group

Internet-Draft: draft-ietf-ace-aif-06

Published: 5 March 2022

Intended Status: Standards Track

Expires: 6 September 2022

Authors: C. Bormann

Universität Bremen TZI

An Authorization Information Format (AIF) for ACE

Abstract

Information about which entities are authorized to perform what

operations on which constituents of other entities is a crucial

component of producing an overall system that is secure. Conveying

precise authorization information is especially critical in highly

automated systems with large numbers of entities, such as the

"Internet of Things".

This specification provides a generic information model and format

for representing such authorization information, as well as two

variants of a specific instantiation of that format for use with

REST resources identified by URI path.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-ietf-ace-aif/.

Discussion of this document takes place on the Authentication and

Authorization for Constrained Environments (ace) Working Group

mailing list (mailto:ace@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/ace/.

Source for this draft and an issue tracker can be found at https://

github.com/cabo/ace-aif.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-ietf-ace-aif/
https://datatracker.ietf.org/doc/draft-ietf-ace-aif/
mailto:ace@ietf.org
https://mailarchive.ietf.org/arch/browse/ace/
https://mailarchive.ietf.org/arch/browse/ace/
https://github.com/cabo/ace-aif
https://github.com/cabo/ace-aif
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Information Model

2.1. REST-specific Model

2.2. Limitations

2.3. REST-specific Model With Dynamic Resource Creation

3. Data Model

4. Media Types

5. IANA Considerations

5.1. Media Types

5.2. Registries

5.3. Content-Format

6. Security Considerations

7. References

7.1. Normative References

7.2. Informative References

Acknowledgements

Author's Address

1. Introduction

Constrained Devices as they are used in the "Internet of Things"

need security in order to operate correctly and prevent misuse. One

important element of this security is that devices in the Internet

of Things need to be able to decide which operations requested of

them should be considered authorized, need to ascertain that the

¶

¶

¶

¶

https://trustee.ietf.org/license-info

authorization to request the operation does apply to the actual

requester as authenticated, and need to ascertain that other devices

they make requests of are the ones they intended.

To transfer detailed authorization information from an authorization

manager (such as an ACE-OAuth Authorization Server [I-D.ietf-ace-

oauth-authz]) to a device, a compact representation format is

needed. This document defines such a format, the Authorization

Information Format (AIF). AIF is defined both as a general structure

that can be used for many different applications and as a specific

instantiation tailored to REST resources and the permissions on

them, including some provision for dynamically created resources.

1.1. Terminology

This memo uses terms from CoAP [RFC7252] and the Internet Security

Glossary [RFC4949]; CoAP is used for the explanatory examples as it

is a good fit for Constrained Devices.

The shape of data is specified in CDDL [RFC8610] [RFC9165].

Terminology for Constrained Devices is defined in [RFC7228].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The term "byte", abbreviated by "B", is used in its now customary

sense as a synonym for "octet".

2. Information Model

Authorizations are generally expressed through some data structures

that are cryptographically secured (or transmitted in a secure way).

This section discusses the information model underlying the payload

of that data (as opposed to the cryptographic armor around it).

For the purposes of this specification, the underlying access

control model will be that of an access matrix, which gives a set of

permissions for each possible combination of a subject and an

object. We are focusing the AIF data item on a single row in the

access matrix (such a row traditionally is also called a capability

list), without concern to the subject for which the data item is

issued. As a consequence, AIF MUST be used in a way that the subject

of the authorizations is unambiguously identified (e.g., as part of

the armor around it).

¶

¶

¶

¶

¶

¶

¶

¶

The generic model of such a capability list is a list of pairs of

object identifiers and the permissions the subject has on the

object(s) identified.

AIF-Generic<Toid, Tperm> = [* [Toid, Tperm]]

Figure 1: Definition of Generic AIF

In a specific data model (such as the one also specified in this

document), the object identifier (Toid) will often be a text string,

and the set of permissions (Tperm) will be represented by a bitset

in turn represented as a number (see Section 3).

AIF-Specific = AIF-Generic<tstr, uint>

Figure 2: Commonly used shape of a specific AIF

2.1. REST-specific Model

In the specific instantiation of the REST resources and the

permissions on them, for the object identifiers (Toid), we use the

URI of a resource on a CoAP server. More specifically, since the

parts of the URI that identify the server ("authority" in [RFC3986])

are what are authenticated during REST resource access

(Section 4.2.2 of [I-D.ietf-httpbis-semantics] and Section 6.2 of

[RFC7252]), they naturally fall into the realm handled by the

cryptographic armor; we therefore focus on the "path" ("path-

abempty") and "query" parts of the URI (URI-local-part in this

specification, as expressed by the Uri-Path and Uri-Query options in

CoAP). As a consequence, AIF MUST be used in a way that it is clear

who is the target (enforcement point) of these authorizations (note

that there may be more than one target that the same authorization

applies to, e.g., in a situation with homogeneous devices).

For the permissions (Tperm), we use a simple permissions model that

lists the subset of the REST (CoAP or HTTP) methods permitted. This

model is summarized in Table 1.

URI-local-part Permission Set

/s/temp GET

/a/led PUT, GET

/dtls POST

Table 1: An authorization

instance in the AIF Information

Model

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-4.2.2
https://rfc-editor.org/rfc/rfc7252#section-6.2

In this example, a device offers a temperature sensor /s/temp for

read-only access, a LED actuator /a/led for read/write, and a /dtls

resource for POST access.

As will be seen in the data model (Section 3), the representations

of REST methods provided are limited to those that have a CoAP

method number assigned; an extension to the model may be necessary

to represent permissions for exotic HTTP methods.

2.2. Limitations

This simple information model only allows granting permissions for

statically identifiable objects, e.g., URIs for the REST-specific

instantiation. One might be tempted to extend the model towards URI

templates [RFC6570] (for instance, to open up an authorization for

many parameter values as in /s/temp{?any*}). However, that requires

some considerations of the ease and unambiguity of matching a given

URI against a set of templates in an AIF data item.

This simple information model also does not allow expressing

conditionalized access based on state outside the identification of

objects (e.g., "opening a door is allowed if that is not locked").

Finally, the model does not provide any special access for a set of

resources that are specific to a subject, e.g., that the subject

created itself by previous operations (PUT, POST, or PATCH/iPATCH

[RFC8132]) or that were specifically created for the subject by

others.

2.3. REST-specific Model With Dynamic Resource Creation

The REST-specific Model With Dynamic Resource Creation addresses the

need to provide defined access to dynamic resources that were

created by the subject itself, specifically, a resource that is made

known to the subject by providing Location-* options in a CoAP

response or using the Location header field in HTTP [I-D.ietf-

httpbis-semantics] (the Location-indicating mechanisms). (The

concept is somewhat comparable to "ACL inheritance" in NFSv4

[RFC8881], except that it does not use a containment relationship

but the fact that the dynamic resource was created from a resource

to which the subject had access.) In other words, it addresses an

important subset of the third limitation mentioned in Section 2.2.

URI-local-part Permission Set

/a/make-coffee POST, Dynamic-GET, Dynamic-DELETE

Table 2: An authorization instance in the AIF

Information Model

¶

¶

¶

¶

¶

¶

For a method X, the presence of a Dynamic-X permission means that

the subject holds permission to exercise the method X on resources

that have been returned in a 2.01 (201) response by a Location-

indicating mechanism to a request that the subject made to the

resource listed (/a/make-coffee in the example shown in Table 2,

which might return the location of a resource that allows GET to

find out about the status and DELETE to cancel the coffee-making

operation).

Since the use of the extension defined in this section can be

detected by the mentioning of the Dynamic-X permissions, there is no

need for another explicit switch between the basic and the model

extended by dynamic resource creation; the extended model is always

presumed once a Dynamic-X permission is present.

3. Data Model

Different data model specializations can be defined for the generic

information model given above.

In this section, we will give the data model for simple REST

authorization as per Section 2.1 and Section 2.3. As discussed, in

this case the object identifier is specialized as a text string

giving a relative URI (URI-local-part as absolute path on the server

serving as enforcement point). The permission set is specialized to

a single number REST-method-set by the following steps:

The entries in the table that specify the same URI-local-part are

merged into a single entry that specifies the union of the

permission sets.

The (non-dynamic) methods in the permission sets are converted

into their CoAP method numbers, minus 1.

Dynamic-X permissions are converted into what the number would

have been for X, plus a Dynamic-Offset chosen as 32 (e.g., 35 is

the number for Dynamic-DELETE as the number for DELETE is 3).

The set of numbers is converted into a single number REST-method-

set by taking each number to the power of two and computing the

inclusive OR of the binary representations of all the power

values.

This data model could be interchanged in the JSON [RFC8259]

representation given in Figure 3.

[["/s/temp",1],["/a/led",5],["/dtls",2]]

Figure 3: An authorization instance encoded in JSON (40 bytes)

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

In Figure 4, a straightforward specification of the data model

(including both the methods from [RFC7252] and the new ones from

[RFC8132], identified by the method code minus 1) is shown in CDDL

[RFC8610] [RFC9165]:

AIF-REST = AIF-Generic<local-path, REST-method-set>

local-path = tstr ; URI relative to enforcement point

REST-method-set = uint .bits methods

methods = &(

 GET: 0

 POST: 1

 PUT: 2

 DELETE: 3

 FETCH: 4

 PATCH: 5

 iPATCH: 6

 Dynamic-GET: 32; 0 .plus Dynamic-Offset

 Dynamic-POST: 33; 1 .plus Dynamic-Offset

 Dynamic-PUT: 34; 2 .plus Dynamic-Offset

 Dynamic-DELETE: 35; 3 .plus Dynamic-Offset

 Dynamic-FETCH: 36; 4 .plus Dynamic-Offset

 Dynamic-PATCH: 37; 5 .plus Dynamic-Offset

 Dynamic-iPATCH: 38; 6 .plus Dynamic-Offset

)

Figure 4: AIF in CDDL

For the information shown in Table 1 and Figure 3, a representation

in CBOR [RFC8949] is given in Figure 5; again, several

optimizations/improvements are possible.

Figure 5: An authorization instance encoded in CBOR (28 bytes)

¶

¶

83 # array(3)

 82 # array(2)

 67 # text(7)

 2f732f74656d70 # "/s/temp"

 01 # unsigned(1)

 82 # array(2)

 66 # text(6)

 2f612f6c6564 # "/a/led"

 05 # unsigned(5)

 82 # array(2)

 65 # text(5)

 2f64746c73 # "/dtls"

 02 # unsigned(2)

Type name:

Subtype name:

Required parameters:

Optional parameters:

Note that choosing 32 as Dynamic-Offset means that all future CoAP

methods that can be registered can be represented both as themselves

and in the Dynamic-X variant, but only the dynamic forms of methods

1 to 21 are typically usable in a JSON form [RFC7493].

4. Media Types

This specification defines media types for the generic information

model, expressed in JSON (application/aif+json) or in CBOR

(application/aif+cbor). These media types have parameters for

specifying Toid and Tperm; default values are the values "URI-local-

part" for Toid and "REST-method-set" for Tperm, as per Section 3 of

the present specification.

A specification that wants to use Generic AIF with different Toid

and/or Tperm is expected to request these as media type parameters

(Section 5.2) and register a corresponding Content-Format (Section

5.3).

5. IANA Considerations

RFC Ed.: throughout this section, please replace RFC XXXX with the

RFC number of this specification and remove this note.

5.1. Media Types

IANA is requested to add the following Media-Types to the "Media

Types" registry.

Name Template Reference

aif+cbor application/aif+cbor RFC XXXX, Section 4

aif+json application/aif+json RFC XXXX, Section 4

Table 3

For application/aif+cbor:

application

aif+cbor

none

Toid: the identifier for the object for which

permissions are supplied. A value from the media-type

parameter sub-registry for Toid. Default value: "URI-local-

part" (RFC XXXX).

Tperm: the data type of a permission set for the object

identified via a Toid. A value from the media-type

parameter sub-registry for Tperm. Default value: "REST-

method-set" (RFC XXXX).

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author/Change controller:

Provisional registration:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Person & email address to contact for further information:

binary (CBOR)

Section 6 of RFC XXXX

none

Section 4 of RFC XXXX

Applications that need to

convey structured authorization data for identified resources,

conveying sets of permissions.

The syntax and semantics of

fragment identifiers is as specified for "application/cbor". (At

publication of RFC XXXX, there is no fragment identification

syntax defined for "application/cbor".)

ACE WG

mailing list (ace@ietf.org), or IETF Applications and Real-Time

Area (art@ietf.org)

COMMON

none

IETF

no

For application/aif+json:

application

aif+json

none

Toid: the identifier for the object for which

permissions are supplied. A value from the media-type

parameter sub-registry for Toid. Default value: "URI-local-

part" (RFC XXXX).

Tperm: the data type of a permission set for the object

identified via a Toid. A value from the media-type

parameter sub-registry for Tperm. Default value: "REST-

method-set" (RFC XXXX).

binary (JSON is UTF-8-encoded text)

Section 6 of RFC XXXX

none

Section 4 of RFC XXXX

Applications that need to

convey structured authorization data for identified resources,

conveying sets of permissions.

The syntax and semantics of

fragment identifiers is as specified for "application/json". (At

publication of RFC XXXX, there is no fragment identification

syntax defined for "application/json".)

ACE WG

mailing list (ace@ietf.org), or IETF Applications and Real-Time

Area (art@ietf.org)

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

Intended usage:

Restrictions on usage:

Author/Change controller:

Provisional registration:

COMMON

none

IETF

no

5.2. Registries

For the media types application/aif+cbor and application/aif+json,

IANA is requested to create a sub-registry within [IANA.media-type-

sub-parameters] for the two media-type parameters Toid and Tperm,

populated with:

Parameter name Description/Specification Reference

Toid
URI-local-

part
local-part of URI RFC XXXX

Tperm
REST-method-

set

set of REST methods

represented
RFC XXXX

Table 4

The registration policy is Specification required [RFC8126]. The

designated expert will engage with the submitter to ascertain the

requirements of this document are addressed.

5.3. Content-Format

IANA is requested to register Content-Format numbers in the "CoAP

Content-Formats" sub-registry, within the "Constrained RESTful

Environments (CoRE) Parameters" Registry [IANA.core-parameters], as

follows:

Content-Type Content Coding ID Reference

application/aif+cbor - TBD1 RFC XXXX

application/aif+json - TBD2 RFC XXXX

Table 5

// RFC Ed.: please replace TBD1 and TBD2 with assigned IDs and

remove this note.

In the registry as defined by Section 12.3 of [RFC7252] at the time

of writing, the column "Content-Type" is called "Media type" and the

column "Content Coding" is called "Encoding".

Note that applications that register Toid and Tperm values are

encouraged to also register Content-Formats for the relevant

combinations.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7252#section-12.3

6. Security Considerations

The security considerations of [RFC7252] apply. Some wider issues

are discussed in [RFC8576].

The semantics of the authorization information defined in this

document are that of an allow-list: everything is denied until it is

explicitly allowed.

When applying these formats, the referencing specification needs to

be careful to:

ensure that the cryptographic armor employed around this format

fulfills the referencing specification's security objectives, and

that the armor or some additional information included in it with

the AIF data item (1) unambiguously identifies the subject to

which the authorizations shall apply and (2) provides any context

information needed to derive the identity of the object to which

authorization is being granted from the object identifiers (such

as, for the data models defined in the present specification, the

scheme and authority information that is used to construct the

full URI), and

ensure that the types used for Toid and Tperm provide the

appropriate granularity and precision so that application

requirements on the precision of the authorization information

are fulfilled, and that all parties have the same understanding

of each Toid/Tperm pair in terms of specified objects (resources)

and operations on those.

For the data formats, the security considerations of [RFC8259] and

[RFC8949] apply.

A plain implementation of AIF might implement just the basic REST

model as per Section 2.1. If it receives authorizations that include

permissions that use the REST-specific Model With Dynamic Resource

Creation Section 2.3, it needs to either reject the AIF data item

entirely or act only on the permissions that it does understand. In

other words, the semantics underlying an allow-list as discussed

above need to hold here as well.

An implementation of the REST-specific Model With Dynamic Resource

Creation Section 2.3 needs to carefully keep track of the

dynamically created objects and the subjects to which the Dynamic-X

permissions apply -- both on the server side to enforce the

permissions and on the client side to know which permissions are

available.

¶

¶

¶

*

¶

*

¶

¶

¶

¶

[I-D.ietf-httpbis-semantics]

[RFC2119]

[RFC3986]

[RFC7252]

[RFC8126]

[RFC8174]

[RFC8610]

[RFC9165]

[I-D.ietf-ace-oauth-authz]

7. References

7.1. Normative References

Fielding, R. T., Nottingham, M., and J.

Reschke, "HTTP Semantics", Work in Progress, Internet-

Draft, draft-ietf-httpbis-semantics-19, 12 September

2021, <https://www.ietf.org/archive/id/draft-ietf-

httpbis-semantics-19.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Bormann, C., "Additional Control Operators for the

Concise Data Definition Language (CDDL)", RFC 9165, DOI

10.17487/RFC9165, December 2021, <https://www.rfc-

editor.org/info/rfc9165>.

7.2. Informative References

Seitz, L., Selander, G., Wahlstroem, E.,

Erdtman, S., and H. Tschofenig, "Authentication and

Authorization for Constrained Environments (ACE) using

https://www.ietf.org/archive/id/draft-ietf-httpbis-semantics-19.txt
https://www.ietf.org/archive/id/draft-ietf-httpbis-semantics-19.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc9165
https://www.rfc-editor.org/info/rfc9165

[IANA.core-parameters]

[IANA.media-type-sub-parameters]

[RFC4949]

[RFC6570]

[RFC7228]

[RFC7493]

[RFC8132]

[RFC8259]

[RFC8576]

[RFC8881]

the OAuth 2.0 Framework (ACE-OAuth)", Work in Progress,

Internet-Draft, draft-ietf-ace-oauth-authz-46, 8 November

2021, <https://www.ietf.org/archive/id/draft-ietf-ace-

oauth-authz-46.txt>.

IANA, "Constrained RESTful Environments

(CoRE) Parameters", <https://www.iana.org/assignments/

core-parameters>.

IANA, "MIME Media Type Sub-

Parameter Registries", <https://www.iana.org/assignments/

media-type-sub-parameters>.

Shirey, R., "Internet Security Glossary, Version 2", FYI

36, RFC 4949, DOI 10.17487/RFC4949, August 2007,

<https://www.rfc-editor.org/info/rfc4949>.

Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,

and D. Orchard, "URI Template", RFC 6570, DOI 10.17487/

RFC6570, March 2012, <https://www.rfc-editor.org/info/

rfc6570>.

Bormann, C., Ersue, M., and A. Keranen, "Terminology for

Constrained-Node Networks", RFC 7228, DOI 10.17487/

RFC7228, May 2014, <https://www.rfc-editor.org/info/

rfc7228>.

Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI

10.17487/RFC7493, March 2015, <https://www.rfc-

editor.org/info/rfc7493>.

van der Stok, P., Bormann, C., and A. Sehgal, "PATCH and

FETCH Methods for the Constrained Application Protocol

(CoAP)", RFC 8132, DOI 10.17487/RFC8132, April 2017,

<https://www.rfc-editor.org/info/rfc8132>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

Garcia-Morchon, O., Kumar, S., and M. Sethi, "Internet of

Things (IoT) Security: State of the Art and Challenges",

RFC 8576, DOI 10.17487/RFC8576, April 2019, <https://

www.rfc-editor.org/info/rfc8576>.

Noveck, D., Ed. and C. Lever, "Network File System (NFS)

Version 4 Minor Version 1 Protocol", RFC 8881, DOI

10.17487/RFC8881, August 2020, <https://www.rfc-

editor.org/info/rfc8881>.

https://www.ietf.org/archive/id/draft-ietf-ace-oauth-authz-46.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oauth-authz-46.txt
https://www.iana.org/assignments/core-parameters
https://www.iana.org/assignments/core-parameters
https://www.iana.org/assignments/media-type-sub-parameters
https://www.iana.org/assignments/media-type-sub-parameters
https://www.rfc-editor.org/info/rfc4949
https://www.rfc-editor.org/info/rfc6570
https://www.rfc-editor.org/info/rfc6570
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc8132
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8576
https://www.rfc-editor.org/info/rfc8576
https://www.rfc-editor.org/info/rfc8881
https://www.rfc-editor.org/info/rfc8881

[RFC8949]
Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

Acknowledgements

Jim Schaad, Francesca Palombini, Olaf Bergmann, Marco Tiloca, and

Christian Amsüss provided comments that shaped the direction of this

document. Alexey Melnikov pointed out that there were gaps in the

media type specifications, and Loganaden Velvindron provided a

shepherd review with further comments. Benjamin Kaduk provided an

extensive review as responsible Area Director, and indeed is

responsible for much improvement in the document.

Author's Address

Carsten Bormann

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

¶

https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
tel:+49-421-218-63921
mailto:cabo@tzi.org

	An Authorization Information Format (AIF) for ACE
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Information Model
	2.1. REST-specific Model
	2.2. Limitations
	2.3. REST-specific Model With Dynamic Resource Creation

	3. Data Model
	4. Media Types
	5. IANA Considerations
	5.1. Media Types
	5.2. Registries
	5.3. Content-Format

	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgements
	Author's Address

