
Workgroup: ACE Working Group

Internet-Draft:

draft-ietf-ace-dtls-authorize-17

Published: 11 May 2021

Intended Status: Standards Track

Expires: 12 November 2021

Authors: S. Gerdes

Universität Bremen TZI

O. Bergmann

Universität Bremen TZI

C. Bormann

Universität Bremen TZI

G. Selander

Ericsson AB

L. Seitz

Combitech

Datagram Transport Layer Security (DTLS) Profile for Authentication and

Authorization for Constrained Environments (ACE)

Abstract

This specification defines a profile of the ACE framework that

allows constrained servers to delegate client authentication and

authorization. The protocol relies on DTLS version 1.2 for

communication security between entities in a constrained network

using either raw public keys or pre-shared keys. A resource-

constrained server can use this protocol to delegate management of

authorization information to a trusted host with less severe

limitations regarding processing power and memory.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 November 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Protocol Overview

3. Protocol Flow

3.1. Communication Between the Client and the Authorization

Server

3.2. Raw Public Key Mode

3.2.1. Access Token Retrieval from the Authorization Server

3.2.2. DTLS Channel Setup Between Client and Resource Server

3.3. PreSharedKey Mode

3.3.1. Access Token Retrieval from the Authorization Server

3.3.2. DTLS Channel Setup Between Client and Resource Server

3.4. Resource Access

4. Dynamic Update of Authorization Information

5. Token Expiration

6. Secure Communication with an Authorization Server

7. Security Considerations

7.1. Reuse of Existing Sessions

7.2. Multiple Access Tokens

7.3. Out-of-Band Configuration

8. Privacy Considerations

9. IANA Considerations

10. Acknowledgments

11. References

11.1. Normative References

11.2. Informative References

Authors' Addresses

1. Introduction

This specification defines a profile of the ACE framework [I-D.ietf-

ace-oauth-authz]. In this profile, a client and a resource server

use CoAP [RFC7252] over DTLS version 1.2 [RFC6347] to communicate.

This specification uses DTLS 1.2 terminology, but later versions

such as DTLS 1.3 can be used instead. The client obtains an access

token, bound to a key (the proof-of-possession key), from an

authorization server to prove its authorization to access protected

resources hosted by the resource server. Also, the client and the

resource server are provided by the authorization server with the

necessary keying material to establish a DTLS session. The

¶

communication between client and authorization server may also be

secured with DTLS. This specification supports DTLS with Raw Public

Keys (RPK) [RFC7250] and with Pre-Shared Keys (PSK) [RFC4279]. How

token introspection [RFC7662] is performed between RS and AS is out

of scope for this specification.

The ACE framework requires that client and server mutually

authenticate each other before any application data is exchanged.

DTLS enables mutual authentication if both client and server prove

their ability to use certain keying material in the DTLS handshake.

The authorization server assists in this process on the server side

by incorporating keying material (or information about keying

material) into the access token, which is considered a "proof of

possession" token.

In the RPK mode, the client proves that it can use the RPK bound to

the token and the server shows that it can use a certain RPK.

The resource server needs access to the token in order to complete

this exchange. For the RPK mode, the client must upload the access

token to the resource server before initiating the handshake, as

described in Section 5.10.1 of the ACE framework [I-D.ietf-ace-

oauth-authz].

In the PSK mode, client and server show with the DTLS handshake that

they can use the keying material that is bound to the access token.

To transfer the access token from the client to the resource server,

the psk_identity parameter in the DTLS PSK handshake may be used

instead of uploading the token prior to the handshake.

As recommended in Section 5.8 of [I-D.ietf-ace-oauth-authz], this

specification uses CBOR web tokens to convey claims within an access

token issued by the server. While other formats could be used as

well, those are out of scope for this document.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Readers are expected to be familiar with the terms and concepts

described in [I-D.ietf-ace-oauth-authz] and in [I-D.ietf-ace-oauth-

params].

The authorization information (authz-info) resource refers to the

authorization information endpoint as specified in [I-D.ietf-ace-

oauth-authz]. The term claim is used in this document with the same

¶

¶

¶

¶

¶

¶

¶

¶

semantics as in [I-D.ietf-ace-oauth-authz], i.e., it denotes

information carried in the access token or returned from

introspection.

2. Protocol Overview

The CoAP-DTLS profile for ACE specifies the transfer of

authentication information and, if necessary, authorization

information between the client (C) and the resource server (RS)

during setup of a DTLS session for CoAP messaging. It also specifies

how the client can use CoAP over DTLS to retrieve an access token

from the authorization server (AS) for a protected resource hosted

on the resource server. As specified in Section 6.7 of [I-D.ietf-

ace-oauth-authz], use of DTLS for one or both of these interactions

is completely independent.

This profile requires the client to retrieve an access token for

protected resource(s) it wants to access on the resource server as

specified in [I-D.ietf-ace-oauth-authz]. Figure 1 shows the typical

message flow in this scenario (messages in square brackets are

optional):

Figure 1: Retrieving an Access Token

To determine the authorization server in charge of a resource hosted

at the resource server, the client can send an initial Unauthorized

Resource Request message to the resource server. The resource server

then denies the request and sends an AS Request Creation Hints

message containing the address of its authorization server back to

the client as specified in Section 5.3 of [I-D.ietf-ace-oauth-

authz].

Once the client knows the authorization server's address, it can

send an access token request to the token endpoint at the

authorization server as specified in [I-D.ietf-ace-oauth-authz]. As

the access token request as well as the response may contain

confidential data, the communication between the client and the

authorization server must be confidentiality-protected and ensure

¶

¶

¶

 C RS AS

 | [---- Resource Request ------>]| |

 | | |

 | [<-AS Request Creation Hints-] | |

 | | |

 | ------- Token Request ----------------------------> |

 | | |

 | <---------------------------- Access Token --------- |

 | + Access Information |

¶

authenticity. The client is expected to have been registered at the

authorization server as outlined in Section 4 of [I-D.ietf-ace-

oauth-authz].

The access token returned by the authorization server can then be

used by the client to establish a new DTLS session with the resource

server. When the client intends to use an asymmetric proof-of-

possession key in the DTLS handshake with the resource server, the

client MUST upload the access token to the authz-info resource, i.e.

the authz-info endpoint, on the resource server before starting the

DTLS handshake, as described in Section 5.10.1 of [I-D.ietf-ace-

oauth-authz]. In case the client uses a symmetric proof-of-

possession key in the DTLS handshake, the procedure as above MAY be

used, or alternatively, the access token MAY instead be transferred

in the DTLS ClientKeyExchange message (see Section 3.3.2). In any

case, DTLS MUST be used in a mode that provides replay protection.

Figure 2 depicts the common protocol flow for the DTLS profile after

the client has retrieved the access token from the authorization

server, AS.

Figure 2: Protocol overview

3. Protocol Flow

The following sections specify how CoAP is used to interchange

access-related data between the resource server, the client and the

authorization server so that the authorization server can provide

the client and the resource server with sufficient information to

establish a secure channel, and convey authorization information

specific for this communication relationship to the resource server.

Section 3.1 describes how the communication between the client (C)

and the authorization server (AS) must be secured. Depending on the

used CoAP security mode (see also Section 9 of [RFC7252], the

Client-to-AS request, AS-to-Client response and DTLS session

establishment carry slightly different information. Section 3.2

addresses the use of raw public keys while Section 3.3 defines how

pre-shared keys are used in this profile.

¶

¶

¶

 C RS AS

 | [--- Access Token ------>] | |

 | | |

 | <== DTLS channel setup ==> | |

 | | |

 | == Authorized Request ===> | |

 | | |

 | <=== Protected Resource == | |

¶

¶

3.1. Communication Between the Client and the Authorization Server

To retrieve an access token for the resource that the client wants

to access, the client requests an access token from the

authorization server. Before the client can request the access

token, the client and the authorization server MUST establish a

secure communication channel. This profile assumes that the keying

material to secure this communication channel has securely been

obtained either by manual configuration or in an automated

provisioning process. The following requirements in alignment with

Section 6.5 of [I-D.ietf-ace-oauth-authz] therefore must be met:

The client MUST securely have obtained keying material to

communicate with the authorization server.

Furthermore, the client MUST verify that the authorization server

is authorized to provide access tokens (including authorization

information) about the resource server to the client, and that

this authorization information about the authorization server is

still valid.

Also, the authorization server MUST securely have obtained keying

material for the client, and obtained authorization rules

approved by the resource owner (RO) concerning the client and the

resource server that relate to this keying material.

The client and the authorization server MUST use their respective

keying material for all exchanged messages. How the security

association between the client and the authorization server is

bootstrapped is not part of this document. The client and the

authorization server must ensure the confidentiality, integrity and

authenticity of all exchanged messages within the ACE protocol.

Section 6 specifies how communication with the authorization server

is secured.

3.2. Raw Public Key Mode

When the client uses raw public key authentication, the procedure is

as described in the following.

3.2.1. Access Token Retrieval from the Authorization Server

After the client and the authorization server mutually authenticated

each other and validated each other's authorization, the client

sends a token request to the authorization server's token endpoint.

The client MUST add a req_cnf object carrying either its raw public

key or a unique identifier for a public key that it has previously

made known to the authorization server. It is RECOMMENDED that the

client uses DTLS with the same keying material to secure the

¶

*

¶

*

¶

*

¶

¶

¶

¶

communication with the authorization server, proving possession of

the key as part of the token request. Other mechanisms for proving

possession of the key may be defined in the future.

An example access token request from the client to the authorization

server is depicted in Figure 3.

Figure 3: Access Token Request Example for RPK Mode

The example shows an access token request for the resource

identified by the string "tempSensor4711" on the authorization

server using a raw public key.

The authorization server MUST check if the client that it

communicates with is associated with the RPK in the req_cnf

parameter before issuing an access token to it. If the authorization

server determines that the request is to be authorized according to

the respective authorization rules, it generates an access token

response for the client. The access token MUST be bound to the RPK

of the client by means of the cnf claim.

The response MUST contain an ace_profile parameter if theace_profile

parameter in the request is empty, and MAY contain this parameter

otherwise (see Section 5.8.2 of [I-D.ietf-ace-oauth-authz]). This

parameter is set to coap_dtls to indicate that this profile MUST be

used for communication between the client and the resource server.

The response also contains an access token with information for the

resource server about the client's public key. The authorization

server MUST return in its response the parameter rs_cnf unless it is

certain that the client already knows the public key of the resource

server. The authorization server MUST ascertain that the RPK

specified in rs_cnf belongs to the resource server that the client

¶

¶

 POST coaps://as.example.com/token

 Content-Format: application/ace+cbor

 Payload:

 {

 grant_type : client_credentials,

 audience : "tempSensor4711",

 req_cnf : {

 COSE_Key : {

 kty : EC2,

 crv : P-256,

 x : h'e866c35f4c3c81bb96a1...',

 y : h'2e25556be097c8778a20...'

 }

 }

 }

¶

¶

wants to communicate with. The authorization server MUST protect the

integrity of the access token such that the resource server can

detect unauthorized changes. If the access token contains

confidential data, the authorization server MUST also protect the

confidentiality of the access token.

The client MUST ascertain that the access token response belongs to

a certain previously sent access token request, as the request may

specify the resource server with which the client wants to

communicate.

An example access token response from the authorization server to

the client is depicted in Figure 4. Here, the contents of the

access_token claim have been truncated to improve readability. The

response comprises access information for the client that contains

the server's public key in the rs_cnf parameter. Caching proxies

process the Max-Age option in the CoAP response which has a default

value of 60 seconds (Section 5.6.1 of [RFC7252]). The authorization

server SHOULD adjust the Max-Age option such that it does not exceed

the expires_in parameter to avoid stale responses.

Figure 4: Access Token Response Example for RPK Mode

3.2.2. DTLS Channel Setup Between Client and Resource Server

Before the client initiates the DTLS handshake with the resource

server, the client MUST send a POST request containing the obtained

access token to the authz-info resource hosted by the resource

server. After the client receives a confirmation that the resource

¶

¶

¶

 2.01 Created

 Content-Format: application/ace+cbor

 Max-Age: 3560

 Payload:

 {

 access_token : b64'SlAV32hkKG...

 (remainder of CWT omitted for brevity;

 CWT contains the client's RPK in the cnf claim)',

 expires_in : 3600,

 rs_cnf : {

 COSE_Key : {

 kty : EC2,

 crv : P-256,

 x : h'd7cc072de2205bdc1537...',

 y : h'f95e1d4b851a2cc80fff...'

 }

 }

 }

server has accepted the access token, it proceeds to establish a new

DTLS channel with the resource server. The client MUST use its

correct public key in the DTLS handshake. If the authorization

server has specified a cnf field in the access token response, the

client MUST use this key. Otherwise, the client MUST use the public

key that it specified in the req_cnf of the access token request.

The client MUST specify this public key in the SubjectPublicKeyInfo

structure of the DTLS handshake as described in [RFC7250].

If the client does not have the keying material belonging to the

public key, the client MAY try to send an access token request to

the AS where it specifies its public key in the req_cnf parameter.

If the AS still specifies a public key in the response that the

client does not have, the client SHOULD re-register with the

authorization server to establish a new client public key. This

process is out of scope for this document.

To be consistent with [RFC7252], which allows for shortened MAC tags

in constrained environments, an implementation that supports the RPK

mode of this profile MUST at least support the cipher suite

TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 [RFC7251]. As discussed in

[RFC7748], new ECC curves have been defined recently that are

considered superior to the so-called NIST curves. Implementations of

this profile therefore MUST implement support for curve25519 (cf.

[RFC8032], [RFC8422]) as this curve said to be efficient and less

dangerous regarding implementation errors than the secp256r1 curve

mandated in [RFC7252].

The resource server MUST check if the access token is still valid,

if the resource server is the intended destination (i.e., the

audience) of the token, and if the token was issued by an authorized

authorization server (see also section 5.10.1.1 of [I-D.ietf-ace-

oauth-authz]). The access token is constructed by the authorization

server such that the resource server can associate the access token

with the Client's public key. The cnf claim MUST contain either the

client's RPK or, if the key is already known by the resource server

(e.g., from previous communication), a reference to this key. If the

authorization server has no certain knowledge that the Client's key

is already known to the resource server, the Client's public key

MUST be included in the access token's cnf parameter. If CBOR web

tokens [RFC8392] are used (as recommended in [I-D.ietf-ace-oauth-

authz]), keys MUST be encoded as specified in [RFC8747]. A resource

server MUST have the capacity to store one access token for every

proof-of-possession key of every authorized client.

The raw public key used in the DTLS handshake with the client MUST

belong to the resource server. If the resource server has several

raw public keys, it needs to determine which key to use. The

authorization server can help with this decision by including a cnf

¶

¶

¶

¶

parameter in the access token that is associated with this

communication. In this case, the resource server MUST use the

information from the cnf field to select the proper keying material.

Thus, the handshake only finishes if the client and the resource

server are able to use their respective keying material.

3.3. PreSharedKey Mode

When the client uses pre-shared key authentication, the procedure is

as described in the following.

3.3.1. Access Token Retrieval from the Authorization Server

To retrieve an access token for the resource that the client wants

to access, the client MAY include a cnf object carrying an

identifier for a symmetric key in its access token request to the

authorization server. This identifier can be used by the

authorization server to determine the shared secret to construct the

proof-of-possession token. The authorization server MUST check if

the identifier refers to a symmetric key that was previously

generated by the authorization server as a shared secret for the

communication between this client and the resource server. If no

such symmetric key was found, the authorization server MUST generate

a new symmetric key that is returned in its response to the client.

The authorization server MUST determine the authorization rules for

the client it communicates with as defined by the resource owner and

generate the access token accordingly. If the authorization server

authorizes the client, it returns an AS-to-Client response. If the

ace_profile parameter is present, it is set to coap_dtls. The

authorization server MUST ascertain that the access token is

generated for the resource server that the client wants to

communicate with. Also, the authorization server MUST protect the

integrity of the access token to ensure that the resource server can

detect unauthorized changes. If the token contains confidential data

such as the symmetric key, the confidentiality of the token MUST

also be protected. Depending on the requested token type and

algorithm in the access token request, the authorization server adds

access Information to the response that provides the client with

sufficient information to setup a DTLS channel with the resource

server. The authorization server adds a cnf parameter to the access

information carrying a COSE_Key object that informs the client about

the shared secret that is to be used between the client and the

resource server. To convey the same secret to the resource server,

the authorization server can include it directly in the access token

by means of the cnf claim or provide sufficient information to

enable the resource server to derive the shared secret from the

access token. As an alternative, the resource server MAY use token

¶

¶

¶

¶

introspection to retrieve the keying material for this access token

directly from the authorization server.

An example access token request for an access token with a symmetric

proof-of-possession key is illustrated in Figure 5.

Figure 5: Example Access Token Request, (implicit) symmetric PoP-key

A corresponding example access token response is illustrated in

Figure 6. In this example, the authorization server returns a 2.01

response containing a new access token (truncated to improve

readability) and information for the client, including the symmetric

key in the cnf claim. The information is transferred as a CBOR data

structure as specified in [I-D.ietf-ace-oauth-authz].

Figure 6: Example Access Token Response, symmetric PoP-key

The access token also comprises a cnf claim. This claim usually

contains a COSE_Key object [RFC8152] that carries either the

symmetric key itself or a key identifier that can be used by the

resource server to determine the secret key it shares with the

client. If the access token carries a symmetric key, the access

¶

¶

 POST coaps://as.example.com/token

 Content-Format: application/ace+cbor

 Payload:

 {

 audience : "smokeSensor1807",

 }

¶

 2.01 Created

 Content-Format: application/ace+cbor

 Max-Age: 85800

 Payload:

 {

 access_token : h'd08343a10...

 (remainder of CWT omitted for brevity)

 token_type : PoP,

 expires_in : 86400,

 profile : coap_dtls,

 cnf : {

 COSE_Key : {

 kty : symmetric,

 kid : h'3d027833fc6267ce',

 k : h'73657373696f6e6b6579'

 }

 }

 }

token MUST be encrypted using a COSE_Encrypt0 structure (see section

7.1 of [RFC8392]). The authorization server MUST use the keying

material shared with the resource server to encrypt the token.

The cnf structure in the access token is provided in Figure 7.

Figure 7: Access Token without Keying Material

A response that declines any operation on the requested resource is

constructed according to Section 5.2 of [RFC6749], (cf. Section

5.8.3. of [I-D.ietf-ace-oauth-authz]). Figure 8 shows an example for

a request that has been rejected due to invalid request parameters.

Figure 8: Example Access Token Response With Reject

The method for how the resource server determines the symmetric key

from an access token containing only a key identifier is

application-specific; the remainder of this section provides one

example.

The authorization server and the resource server are assumed to

share a key derivation key used to derive the symmetric key shared

with the client from the key identifier in the access token. The key

derivation key may be derived from some other secret key shared

between the authorization server and the resource server. This key

needs to be securely stored and processed in the same way as the key

used to protect the communication between the authorization server

and the resource server.

Knowledge of the symmetric key shared with the client must not

reveal any information about the key derivation key or other secret

keys shared between the authorization server and resource server.

¶

¶

cnf : {

 COSE_Key : {

 kty : symmetric,

 kid : h'3d027833fc6267ce'

 }

}

¶

 4.00 Bad Request

 Content-Format: application/ace+cbor

 Payload:

 {

 error : invalid_request

 }

¶

¶

¶

In order to generate a new symmetric key to be used by client and

resource server, the authorization server generates a new key

identifier which MUST be unique among all key identifiers used by

the authorization server for this resource server. The authorization

server then uses the key derivation key shared with the resource

server to derive the symmetric key as specified below. Instead of

providing the keying material in the access token, the authorization

server includes the key identifier in the kid parameter, see Figure

7. This key identifier enables the resource server to calculate the

symmetric key used for the communication with the client using the

key derivation key and a KDF to be defined by the application, for

example HKDF-SHA-256. The key identifier picked by the authorization

server MUST be unique for each access token where a unique symmetric

key is required.

In this example, HKDF consists of the composition of the HKDF-

Extract and HKDF-Expand steps [RFC5869]. The symmetric key is

derived from the key identifier, the key derivation key and other

data:

OKM = HKDF(salt, IKM, info, L),

where:

OKM, the output keying material, is the derived symmetric key

salt is the empty byte string

IKM, the input keying material, is the key derivation key as

defined above

info is the serialization of a CBOR array consisting of

([RFC8610]):

where:

type is set to the constant text string "ACE-CoAP-DTLS-key-

derivation",

L is the size of the symmetric key in bytes,

access_token is the content of the access_token field as

transferred from the authorization server to the resource server.

¶

¶

¶

¶

* ¶

* ¶

*

¶

*

¶

 info = [

 type : tstr,

 L : uint,

 access_token: bytes

]

¶

¶

*

¶

* ¶

*

¶

All CBOR data types are encoded in CBOR using preferred

serialization and deterministic encoding as specified in Section 4

of [RFC8949]. This implies in particular that the type and L

components use the minimum length encoding. The content of the

access_token field is treated as opaque data for the purpose of key

derivation.

Use of a unique (per resource server) kid and the use of a key

derivation IKM that MUST be unique per authorization server/resource

server pair as specified above will ensure that the derived key is

not shared across multiple clients. However, to provide variation in

the derived key across different tokens used by the same client, it

is additionally RECOMMENDED to include the "iat" claim and either

the "exp" or "exi" claims in the access token.

3.3.2. DTLS Channel Setup Between Client and Resource Server

When a client receives an access token response from an

authorization server, the client MUST check if the access token

response is bound to a certain previously sent access token request,

as the request may specify the resource server with which the client

wants to communicate.

The client checks if the payload of the access token response

contains an access_token parameter and a cnf parameter. With this

information the client can initiate the establishment of a new DTLS

channel with a resource server. To use DTLS with pre-shared keys,

the client follows the PSK key exchange algorithm specified in

Section 2 of [RFC4279] using the key conveyed in the cnf parameter

of the AS response as PSK when constructing the premaster secret. To

be consistent with the recommendations in [RFC7252], a client in the

PSK mode MUST support the cipher suite TLS_PSK_WITH_AES_128_CCM_8

[RFC6655].

In PreSharedKey mode, the knowledge of the shared secret by the

client and the resource server is used for mutual authentication

between both peers. Therefore, the resource server must be able to

determine the shared secret from the access token. Following the

general ACE authorization framework, the client can upload the

access token to the resource server's authz-info resource before

starting the DTLS handshake. The client then needs to indicate

during the DTLS handshake which previously uploaded access token it

intends to use. To do so, it MUST create a COSE_Key structure with

the kid that was conveyed in the rs_cnf claim in the token response

from the authorization server and the key type symmetric. This

structure then is included as the only element in the cnf structure

that is used as value for psk_identity as shown in Figure 9.

¶

¶

¶

¶

¶

Figure 9: Access token containing a single kid parameter

As an alternative to the access token upload, the client can provide

the most recent access token in the psk_identity field of the

ClientKeyExchange message. To do so, the client MUST treat the

contents of the access_token field from the AS-to-Client response as

opaque data as specified in Section 4.2 of [RFC7925] and not perform

any re-coding. This allows the resource server to retrieve the

shared secret directly from the cnf claim of the access token.

If a resource server receives a ClientKeyExchange message that

contains a psk_identity with a length greater than zero, it MUST

parse the contents of the psk_identity field as CBOR data structure

and process the contents as following:

If the data contains a cnf field with a COSE_Key structure with a

kid, the resource server continues the DTLS handshake with the

associated key that corresponds to this kid.

If the data comprises additional CWT information, this

information must be stored as an access token for this DTLS

association before continuing with the DTLS handshake.

If the contents of the psk_identity do not yield sufficient

information to select a valid access token for the requesting

client, the resource server aborts the DTLS handshake with an

illegal_parameter alert.

When the resource server receives an access token, it MUST check if

the access token is still valid, if the resource server is the

intended destination (i.e., the audience of the token), and if the

token was issued by an authorized authorization server. This

specification implements access tokens as proof-of-possession

tokens. Therefore, the access token is bound to a symmetric PoP key

that is used as shared secret between the client and the resource

server. A resource server MUST have the capacity to store one access

token for every proof-of-possession key of every authorized client.

The resource server may use token introspection [RFC7662] on the

access token to retrieve more information about the specific token.

The use of introspection is out of scope for this specification.

{ cnf : {

 COSE_Key : {

 kty: symmetric,

 kid : h'3d027833fc6267ce'

 }

 }

}

¶

¶

*

¶

*

¶

¶

¶

While the client can retrieve the shared secret from the contents of

the cnf parameter in the AS-to-Client response, the resource server

uses the information contained in the cnf claim of the access token

to determine the actual secret when no explicit kid was provided in

the psk_identity field. If key derivation is used, the cnf claim

MUST contain a kid parameter to be used by the server as the IKM for

key derivation as described above.

3.4. Resource Access

Once a DTLS channel has been established as described in Section 3.2

or Section 3.3, respectively, the client is authorized to access

resources covered by the access token it has uploaded to the authz-

info resource hosted by the resource server.

With the successful establishment of the DTLS channel, the client

and the resource server have proven that they can use their

respective keying material. An access token that is bound to the

client's keying material is associated with the channel. According

to Section 5.10.1 of [I-D.ietf-ace-oauth-authz], there should be

only one access token for each client. New access tokens issued by

the authorization server SHOULD replace previously issued access

tokens for the respective client. The resource server therefore

needs a common understanding with the authorization server how

access tokens are ordered. The authorization server may, e.g.,

specify a cti claim for the access token (see Section 5.9.4 of [I-

D.ietf-ace-oauth-authz]) to employ a strict order.

Any request that the resource server receives on a DTLS channel that

is tied to an access token via its keying material MUST be checked

against the authorization rules that can be determined with the

access token. The resource server MUST check for every request if

the access token is still valid. If the token has expired, the

resource server MUST remove it. Incoming CoAP requests that are not

authorized with respect to any access token that is associated with

the client MUST be rejected by the resource server with 4.01

response. The response SHOULD include AS Request Creation Hints as

described in Section 5.2 of [I-D.ietf-ace-oauth-authz].

The resource server MUST NOT accept an incoming CoAP request as

authorized if any of the following fails:

The message was received on a secure channel that has been

established using the procedure defined in this document.

The authorization information tied to the sending client is

valid.

The request is destined for the resource server.

¶

¶

¶

¶

¶

1.

¶

2.

¶

3. ¶

The resource URI specified in the request is covered by the

authorization information.

The request method is an authorized action on the resource with

respect to the authorization information.

Incoming CoAP requests received on a secure DTLS channel that are

not thus authorized MUST be rejected according to Section 5.10.1.1

of [I-D.ietf-ace-oauth-authz]

with response code 4.03 (Forbidden) when the resource URI

specified in the request is not covered by the authorization

information, and

with response code 4.05 (Method Not Allowed) when the resource

URI specified in the request covered by the authorization

information but not the requested action.

The client MUST ascertain that its keying material is still valid

before sending a request or processing a response. If the client

recently has updated the access token (see Section 4), it must be

prepared that its request is still handled according to the previous

authorization rules as there is no strict ordering between access

token uploads and resource access messages. See also Section 7.2 for

a discussion of access token processing.

If the client gets an error response containing AS Request Creation

Hints (cf. Section 5.3 of [I-D.ietf-ace-oauth-authz] as response to

its requests, it SHOULD request a new access token from the

authorization server in order to continue communication with the

resource server.

Unauthorized requests that have been received over a DTLS session

SHOULD be treated as non-fatal by the resource server, i.e., the

DTLS session SHOULD be kept alive until the associated access token

has expired.

4. Dynamic Update of Authorization Information

Resource servers must only use a new access token to update the

authorization information for a DTLS session if the keying material

that is bound to the token is the same that was used in the DTLS

handshake. By associating the access tokens with the identifier of

an existing DTLS session, the authorization information can be

updated without changing the cryptographic keys for the DTLS

communication between the client and the resource server, i.e. an

existing session can be used with updated permissions.

The client can therefore update the authorization information stored

at the resource server at any time without changing an established

4.

¶

5.

¶

¶

1.

¶

2.

¶

¶

¶

¶

¶

DTLS session. To do so, the client requests a new access token from

the authorization server for the intended action on the respective

resource and uploads this access token to the authz-info resource on

the resource server.

Figure 10 depicts the message flow where the client requests a new

access token after a security association between the client and the

resource server has been established using this protocol. If the

client wants to update the authorization information, the token

request MUST specify the key identifier of the proof-of-possession

key used for the existing DTLS channel between the client and the

resource server in the kid parameter of the Client-to-AS request.

The authorization server MUST verify that the specified kid denotes

a valid verifier for a proof-of-possession token that has previously

been issued to the requesting client. Otherwise, the Client-to-AS

request MUST be declined with the error code unsupported_pop_key as

defined in Section 5.8.3 of [I-D.ietf-ace-oauth-authz].

When the authorization server issues a new access token to update

existing authorization information, it MUST include the specified

kid parameter in this access token. A resource server MUST replace

the authorization information of any existing DTLS session that is

identified by this key identifier with the updated authorization

information.

Figure 10: Overview of Dynamic Update Operation

5. Token Expiration

The resource server MUST delete access tokens that are no longer

valid. DTLS associations that have been setup in accordance with

this profile are always tied to specific tokens (which may be

¶

¶

¶

 C RS AS

 | <===== DTLS channel =====> | |

 | + Access Token | |

 | | |

 | --- Token Request ----------------------------> |

 | | |

 | <---------------------------- New Access Token - |

 | + Access Information |

 | | |

 | --- Update /authz-info --> | |

 | New Access Token | |

 | | |

 | == Authorized Request ===> | |

 | | |

 | <=== Protected Resource == | |

exchanged with a dynamic update as described in Section 4). As

tokens may become invalid at any time (e.g., because they have

expired), the association may become useless at some point. A

resource server therefore MUST terminate existing DTLS association

after the last access token associated with this association has

expired.

As specified in Section 5.10.3 of [I-D.ietf-ace-oauth-authz], the

resource server MUST notify the client with an error response with

code 4.01 (Unauthorized) for any long running request before

terminating the association.

6. Secure Communication with an Authorization Server

As specified in the ACE framework (Sections 5.8 and 5.9 of [I-

D.ietf-ace-oauth-authz]), the requesting entity (the resource server

and/or the client) and the authorization server communicate via the

token endpoint or introspection endpoint. The use of CoAP and DTLS

for this communication is RECOMMENDED in this profile. Other

protocols fulfilling the security requirements defined in Section 5

of [I-D.ietf-ace-oauth-authz] MAY be used instead.

How credentials (e.g., PSK, RPK, X.509 cert) for using DTLS with the

authorization server are established is out of scope for this

profile.

If other means of securing the communication with the authorization

server are used, the communication security requirements from

Section 6.2 of [I-D.ietf-ace-oauth-authz] remain applicable.

7. Security Considerations

This document specifies a profile for the Authentication and

Authorization for Constrained Environments (ACE) framework [I-

D.ietf-ace-oauth-authz]. As it follows this framework's general

approach, the general security considerations from Section 6 of [I-

D.ietf-ace-oauth-authz] also apply to this profile.

The authorization server must ascertain that the keying material for

the client that it provides to the resource server actually is

associated with this client. Malicious clients may hand over access

tokens containing their own access permissions to other entities.

This problem cannot be completely eliminated. Nevertheless, in RPK

mode it should not be possible for clients to request access tokens

for arbitrary public keys: if the client can cause the authorization

server to issue a token for a public key without proving possession

of the corresponding private key, this allows for identity

misbinding attacks where the issued token is usable by an entity

other than the intended one. The authorization server therefore at

¶

¶

¶

¶

¶

¶

some point needs to validate that the client can actually use the

private key corresponding to the client's public key.

When using pre-shared keys provisioned by the authorization server,

the security level depends on the randomness of PSK, and the

security of the TLS cipher suite and key exchange algorithm. As this

specification targets at constrained environments, message payloads

exchanged between the client and the resource server are expected to

be small and rare. CoAP [RFC7252] mandates the implementation of

cipher suites with abbreviated, 8-byte tags for message integrity

protection. For consistency, this profile requires implementation of

the same cipher suites. For application scenarios where the cost of

full-width authentication tags is low compared to the overall amount

of data being transmitted, the use of cipher suites with 16-byte

integrity protection tags is preferred.

The PSK mode of this profile offers a distribution mechanism to

convey authorization tokens together with a shared secret to a

client and a server. As this specification aims at constrained

devices and uses CoAP [RFC7252] as transfer protocol, at least the

cipher suite TLS_PSK_WITH_AES_128_CCM_8 [RFC6655] should be

supported. The access tokens and the corresponding shared secrets

generated by the authorization server are expected to be

sufficiently short-lived to provide similar forward-secrecy

properties to using ephemeral Diffie-Hellman (DHE) key exchange

mechanisms. For longer-lived access tokens, DHE cipher suites should

be used, i.e., cipher suites of the form TLS_DHE_PSK_*.

Constrained devices that use DTLS [RFC6347] are inherently

vulnerable to Denial of Service (DoS) attacks as the handshake

protocol requires creation of internal state within the device. This

is specifically of concern where an adversary is able to intercept

the initial cookie exchange and interject forged messages with a

valid cookie to continue with the handshake. A similar issue exists

with the unprotected authorization information endpoint when the

resource server needs to keep valid access tokens for a long time.

Adversaries could fill up the constrained resource server's internal

storage for a very long time with interjected or otherwise retrieved

valid access tokens. To mitigate against this, the resource server

should set a time boundary until an access token that has not been

used until then will be deleted.

The protection of access tokens that are stored in the authorization

information endpoint depends on the keying material that is used

between the authorization server and the resource server: The

resource server must ensure that it processes only access tokens

that are (encrypted and) integrity-protected by an authorization

server that is authorized to provide access tokens for the resource

server.

¶

¶

¶

¶

¶

7.1. Reuse of Existing Sessions

To avoid the overhead of a repeated DTLS handshake, [RFC7925]

recommends session resumption [RFC8446] to reuse session state from

an earlier DTLS association and thus requires client side

implementation. In this specification, the DTLS session is subject

to the authorization rules denoted by the access token that was used

for the initial setup of the DTLS association. Enabling session

resumption would require the server to transfer the authorization

information with the session state in an encrypted SessionTicket to

the client. Assuming that the server uses long-lived keying

material, this could open up attacks due to the lack of forward

secrecy. Moreover, using this mechanism, a client can resume a DTLS

session without proving the possession of the PoP key again.

Therefore, session resumption should be used only in combination

with reasonably short-lived PoP keys.

Since renegotiation of DTLS associations is prone to attacks as

well, [RFC7925] requires clients to decline any renegotiation

attempt. A server that wants to initiate re-keying therefore SHOULD

periodically force a full handshake.

7.2. Multiple Access Tokens

Developers SHOULD avoid using multiple access tokens for a client

(see also section 5.10.1 of [I-D.ietf-ace-oauth-authz]).

Even when a single access token per client is used, an attacker

could compromise the dynamic update mechanism for existing DTLS

connections by delaying or reordering packets destined for the

authz-info endpoint. Thus, the order in which operations occur at

the resource server (and thus which authorization info is used to

process a given client request) cannot be guaranteed. Especially in

the presence of later-issued access tokens that reduce the client's

permissions from the initial access token, it is impossible to

guarantee that the reduction in authorization will take effect prior

to the expiration of the original token.

7.3. Out-of-Band Configuration

To communicate securely, the authorization server, the client and

the resource server require certain information that must be

exchanged outside the protocol flow described in this document. The

authorization server must have obtained authorization information

concerning the client and the resource server that is approved by

the resource owner as well as corresponding keying material. The

resource server must have received authorization information

approved by the resource owner concerning its authorization managers

and the respective keying material. The client must have obtained

¶

¶

¶

¶

authorization information concerning the authorization server

approved by its owner as well as the corresponding keying material.

Also, the client's owner must have approved of the client's

communication with the resource server. The client and the

authorization server must have obtained a common understanding how

this resource server is identified to ensure that the client obtains

access token and keying material for the correct resource server. If

the client is provided with a raw public key for the resource

server, it must be ascertained to which resource server (which

identifier and authorization information) the key is associated. All

authorization information and keying material must be kept up to

date.

8. Privacy Considerations

This privacy considerations from Section 7 of the [I-D.ietf-ace-

oauth-authz] apply also to this profile.

An unprotected response to an unauthorized request may disclose

information about the resource server and/or its existing

relationship with the client. It is advisable to include as little

information as possible in an unencrypted response. When a DTLS

session between an authenticated client and the resource server

already exists, more detailed information MAY be included with an

error response to provide the client with sufficient information to

react on that particular error.

Also, unprotected requests to the resource server may reveal

information about the client, e.g., which resources the client

attempts to request or the data that the client wants to provide to

the resource server. The client SHOULD NOT send confidential data in

an unprotected request.

Note that some information might still leak after DTLS session is

established, due to observable message sizes, the source, and the

destination addresses.

9. IANA Considerations

The following registrations are done for the ACE OAuth Profile

Registry following the procedure specified in [I-D.ietf-ace-oauth-

authz].

Note to RFC Editor: Please replace all occurrences of "[RFC-XXXX]"

with the RFC number of this specification and delete this paragraph.

Profile name: coap_dtls

Profile Description: Profile for delegating client authentication

and authorization in a constrained environment by establishing a

¶

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-ace-oauth-authz]

[I-D.ietf-ace-oauth-params]

[RFC2119]

[RFC4279]

[RFC6347]

Datagram Transport Layer Security (DTLS) channel between resource-

constrained nodes.

Profile ID: TBD (suggested: 1)

Change Controller: IESG

Reference: [RFC-XXXX]

10. Acknowledgments

Special thanks to Jim Schaad for his contributions and reviews of

this document and to Ben Kaduk for his thorough reviews of this

document. Thanks also to Paul Kyzivat for his review.

Ludwig Seitz worked on this document as part of the CelticNext

projects CyberWI, and CRITISEC with funding from Vinnova.

11. References

11.1. Normative References

Seitz, L., Selander, G., Wahlstroem, E.,

Erdtman, S., and H. Tschofenig, "Authentication and

Authorization for Constrained Environments (ACE) using

the OAuth 2.0 Framework (ACE-OAuth)", Work in Progress,

Internet-Draft, draft-ietf-ace-oauth-authz-41, 6 May

2021, <https://www.ietf.org/archive/id/draft-ietf-ace-

oauth-authz-41.txt>.

Seitz, L., "Additional OAuth Parameters for Authorization

in Constrained Environments (ACE)", Work in Progress,

Internet-Draft, draft-ietf-ace-oauth-params-15, 6 May

2021, <https://www.ietf.org/archive/id/draft-ietf-ace-

oauth-params-15.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key

Ciphersuites for Transport Layer Security (TLS)", RFC

4279, DOI 10.17487/RFC4279, December 2005, <https://

www.rfc-editor.org/info/rfc4279>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,

January 2012, <https://www.rfc-editor.org/info/rfc6347>.

¶

¶

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-ietf-ace-oauth-authz-41.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oauth-authz-41.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oauth-params-15.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oauth-params-15.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4279
https://www.rfc-editor.org/info/rfc4279
https://www.rfc-editor.org/info/rfc6347

[RFC6749]

[RFC7250]

[RFC7251]

[RFC7252]

[RFC7925]

[RFC8152]

[RFC8174]

[RFC8392]

[RFC8422]

[RFC8747]

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,

Weiler, S., and T. Kivinen, "Using Raw Public Keys in

Transport Layer Security (TLS) and Datagram Transport

Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,

June 2014, <https://www.rfc-editor.org/info/rfc7250>.

McGrew, D., Bailey, D., Campagna, M., and R. Dugal, "AES-

CCM Elliptic Curve Cryptography (ECC) Cipher Suites for

TLS", RFC 7251, DOI 10.17487/RFC7251, June 2014,

<https://www.rfc-editor.org/info/rfc7251>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Tschofenig, H., Ed. and T. Fossati, "Transport Layer

Security (TLS) / Datagram Transport Layer Security (DTLS)

Profiles for the Internet of Things", RFC 7925, DOI

10.17487/RFC7925, July 2016, <https://www.rfc-editor.org/

info/rfc7925>.

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/info/rfc8152>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Jones, M., Wahlstroem, E., Erdtman, S., and H.

Tschofenig, "CBOR Web Token (CWT)", RFC 8392, DOI

10.17487/RFC8392, May 2018, <https://www.rfc-editor.org/

info/rfc8392>.

Nir, Y., Josefsson, S., and M. Pegourie-Gonnard,

"Elliptic Curve Cryptography (ECC) Cipher Suites for

Transport Layer Security (TLS) Versions 1.2 and Earlier",

RFC 8422, DOI 10.17487/RFC8422, August 2018, <https://

www.rfc-editor.org/info/rfc8422>.

Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.

Tschofenig, "Proof-of-Possession Key Semantics for CBOR

Web Tokens (CWTs)", RFC 8747, DOI 10.17487/RFC8747, March

2020, <https://www.rfc-editor.org/info/rfc8747>.

https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7250
https://www.rfc-editor.org/info/rfc7251
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7925
https://www.rfc-editor.org/info/rfc7925
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8422
https://www.rfc-editor.org/info/rfc8422
https://www.rfc-editor.org/info/rfc8747

[RFC8949]

[RFC5869]

[RFC6655]

[RFC7662]

[RFC7748]

[RFC8032]

[RFC8446]

[RFC8610]

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

11.2. Informative References

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

info/rfc5869>.

McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for

Transport Layer Security (TLS)", RFC 6655, DOI 10.17487/

RFC6655, July 2012, <https://www.rfc-editor.org/info/

rfc6655>.

Richer, J., Ed., "OAuth 2.0 Token Introspection", RFC

7662, DOI 10.17487/RFC7662, October 2015, <https://

www.rfc-editor.org/info/rfc7662>.

Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves

for Security", RFC 7748, DOI 10.17487/RFC7748, January

2016, <https://www.rfc-editor.org/info/rfc7748>.

Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital

Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/

RFC8032, January 2017, <https://www.rfc-editor.org/info/

rfc8032>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Authors' Addresses

Stefanie Gerdes

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63906

https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc6655
https://www.rfc-editor.org/info/rfc6655
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8610
tel:+49-421-218-63906

Email: gerdes@tzi.org

Olaf Bergmann

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63904

Email: bergmann@tzi.org

Carsten Bormann

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

Göran Selander

Ericsson AB

Email: goran.selander@ericsson.com

Ludwig Seitz

Combitech

Djäknegatan 31

SE-211 35 Malmö

Sweden

Email: ludwig.seitz@combitech.com

mailto:gerdes@tzi.org
tel:+49-421-218-63904
mailto:bergmann@tzi.org
tel:+49-421-218-63921
mailto:cabo@tzi.org
mailto:goran.selander@ericsson.com
mailto:ludwig.seitz@combitech.com

	Datagram Transport Layer Security (DTLS) Profile for Authentication and Authorization for Constrained Environments (ACE)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Protocol Overview
	3. Protocol Flow
	3.1. Communication Between the Client and the Authorization Server
	3.2. Raw Public Key Mode
	3.2.1. Access Token Retrieval from the Authorization Server
	3.2.2. DTLS Channel Setup Between Client and Resource Server

	3.3. PreSharedKey Mode
	3.3.1. Access Token Retrieval from the Authorization Server
	3.3.2. DTLS Channel Setup Between Client and Resource Server

	3.4. Resource Access

	4. Dynamic Update of Authorization Information
	5. Token Expiration
	6. Secure Communication with an Authorization Server
	7. Security Considerations
	7.1. Reuse of Existing Sessions
	7.2. Multiple Access Tokens
	7.3. Out-of-Band Configuration

	8. Privacy Considerations
	9. IANA Considerations
	10. Acknowledgments
	11. References
	11.1. Normative References
	11.2. Informative References

	Authors' Addresses

