
Workgroup: ACE Working Group

Internet-Draft:

draft-ietf-ace-edhoc-oscore-profile-01

Published: 10 March 2023

Intended Status: Standards Track

Expires: 11 September 2023

Authors: G. Selander

Ericsson

J. Preuß Mattsson

Ericsson

M. Tiloca

RISE

R. Höglund

RISE

Ephemeral Diffie-Hellman Over COSE (EDHOC) and Object Security for

Constrained Environments (OSCORE) Profile for Authentication and

Authorization for Constrained Environments (ACE)

Abstract

This document specifies a profile for the Authentication and

Authorization for Constrained Environments (ACE) framework. It

utilizes Ephemeral Diffie-Hellman Over COSE (EDHOC) for achieving

mutual authentication between an OAuth 2.0 Client and Resource

Server, and it binds an authentication credential of the Client to

an OAuth 2.0 access token. EDHOC also establishes an Object Security

for Constrained RESTful Environments (OSCORE) Security Context,

which is used to secure communications when accessing protected

resources according to the authorization information indicated in

the access token. A resource-constrained server can use this profile

to delegate management of authorization information to a trusted

host with less severe limitations regarding processing power and

memory.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 September 2023.

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Protocol Overview

3. Client-AS Communication

3.1. C-to-AS: POST to /token endpoint

3.2. AS-to-C: Access Token Response

3.3. The EDHOC_Information

4. Client-RS Communication

4.1. C-to-RS: POST to /authz-info endpoint

4.2. RS-to-C: 2.01 (Created)

4.3. EDHOC Execution and Setup of OSCORE Security Context

4.4. Access Rights Verification

5. Use of EDHOC-KeyUpdate

6. Secure Communication with AS

7. Discarding the Security Context

8. Security Considerations

9. Privacy Considerations

10. IANA Considerations

10.1. ACE OAuth Profile Registry

10.2. OAuth Parameters Registry

10.3. OAuth Parameters CBOR Mappings Registry

10.4. JSON Web Token Claims Registry

10.5. CBOR Web Token Claims Registry

10.6. JWT Confirmation Methods Registry

10.7. CWT Confirmation Methods Registry

10.8. EDHOC External Authorization Data Registry

10.9. EDHOC Information Registry

10.10. Expert Review Instructions

11. References

11.1. Normative References

11.2. Informative References

¶

¶

https://trustee.ietf.org/license-info

Appendix A. Examples

A.1. Workflow without Optimizations

A.2. Workflow with Optimizations

A.3. Workflow without Optimizations (AS token posting)

Appendix B. Profile Requirements

Appendix C. Document Updates

C.1. Version -00 to -01

Acknowledgments

Authors' Addresses

1. Introduction

This document defines the "coap_edhoc_oscore" profile of the ACE

framework [RFC9200]. This profile addresses a "zero-touch"

constrained setting where trusted operations can be performed with

low overhead without endpoint specific configurations.

Like in the "coap_oscore" profile [RFC9203], also in this profile a

client (C) and a resource server (RS) use the Constrained

Application Protocol (CoAP) [RFC7252] to communicate, and Object

Security for Constrained RESTful Environments (OSCORE) [RFC8613] to

protect their communications. Also, the processing of requests for

specific protected resources is identical to what is defined in the

"coap_oscore" profile.

When using this profile, C accesses protected resources hosted at RS

with the use of an access token issued by a trusted authorization

server (AS) and bound to an authentication credential of C. This

differs from the "coap_oscore" profile, where the access token is

bound to a symmetric key used to derive OSCORE keying material. As

recommended in [RFC9200], this document recommends the use of CBOR

Web Tokens (CWTs) [RFC8392] as access tokens.

The authentication and authorization processing requires C and RS to

have access to each other's authentication credentials. C can obtain

the authentication credential of RS from AS together with the access

token. RS can obtain the authentication credential of C together

with the associated access token in different ways. If RS

successfully verifies the access token, then C and RS run the

Ephemeral Diffie-Hellman Over COSE (EDHOC) protocol

[I-D.ietf-lake-edhoc] using the authentication credentials.

Once the EDHOC execution is completed, C and RS are mutually

authenticated and can derive an OSCORE Security Context to protect

subsequent communications.

An authentication credential can be a raw public key, e.g., encoded

as a CWT Claims Set (CCS, [RFC8392]); or a public key certificate,

e.g., encoded as an X.509 certificate or as a CBOR encoded X.509

¶

¶

¶

¶

¶

certificate (C509, [I-D.ietf-cose-cbor-encoded-cert]); or a

different type of data structure containing the public key of the

peer in question.

The ACE protocol establishes what those authentication credentials

are, and may transport the actual authentication credentials by

value or uniquely refer to them. If an authentication credential is

pre-provisioned or can be obtained over less constrained links, then

it suffices that ACE provides a unique reference such as a

certificate hash (e.g., by using the COSE header parameter "x5t",

see [RFC9360]). This is in the same spirit as EDHOC, where the

authentication credentials may be transported or referenced in the

ID_CRED_x message fields (see Section 3.5.3 of

[I-D.ietf-lake-edhoc]).

In general, AS and RS are likely to have trusted access to each

other's authentication credentials, since AS acts on behalf of RS as

per the trust model of ACE. Also, AS needs to have some information

about C, including the relevant authentication credential, in order

to identify C when it requests an access token and to determine what

access rights it can be granted. However, the authentication

credential of C may potentially be conveyed (or uniquely referred

to) within the request for access which C makes to AS.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Certain security-related terms such as "authentication",

"authorization", "confidentiality", "(data) integrity", "Message

Authentication Code (MAC)", "Hash-based Message Authentication Code

(HMAC)", and "verify" are taken from [RFC4949].

RESTful terminology follows HTTP [RFC9110].

Readers are expected to be familiar with the terms and concepts

defined in CoAP [RFC7252], OSCORE [RFC8613] and EDHOC

[I-D.ietf-lake-edhoc].

Readers are also expected to be familiar with the terms and concepts

of the ACE framework described in [RFC9200] and in [RFC9201].

Terminology for entities in the architecture is defined in OAuth 2.0

[RFC6749], such as the client (C), the resource server (RS), and the

authorization server (AS). It is assumed in this document that a

given resource on a specific RS is associated with a unique AS.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Note that the term "endpoint" is used here, as in [RFC9200],

following its OAuth definition, which is to denote resources such as

/token and /introspect at AS and /authz-info at RS. The CoAP

[RFC7252] definition, which is "An entity participating in the CoAP

protocol" is not used in this document.

The authorization information (authz-info) resource refers to the

authorization information endpoint as specified in [RFC9200]. The

term "claim" is used in this document with the same semantics as in

[RFC9200], i.e., it denotes information carried in the access token

or returned from introspection.

This document defines "token series" as a series of access tokens

sorted in chronological order as they are released, characterized by

the following properties:

issued by the same AS

issued to the same C and for the same RS

issued together with the same authentication credential of RS

associated with the same authentication credential of C

When an access token becomes invalid (e.g., due to its expiration or

revocation), the token series it belongs to ends.

Concise Binary Object Representation (CBOR) [RFC8949][RFC8742] and

Concise Data Definition Language (CDDL) [RFC8610] are used in this

document. CDDL predefined type names, especially bstr for CBOR byte

strings and tstr for CBOR text strings, are used extensively in this

document.

Examples throughout this document are expressed in CBOR diagnostic

notation without the tag and value abbreviations.

2. Protocol Overview

This section gives an overview of how to use the ACE framework

[RFC9200] together with the authenticated key establishment protocol

EDHOC [I-D.ietf-lake-edhoc]. By doing so, a client (C) and a

resource server (RS) generate an OSCORE Security Context [RFC8613]

associated with authorization information, and use that Security

Context to protect their communications. The parameters needed by C

to negotiate the use of this profile with the authorization server

(AS), as well as the OSCORE setup process, are described in detail

in the following sections.

RS maintains a collection of authentication credentials. These are

related to OSCORE Security Contexts associated with authorization

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

information for all the clients that RS is communicating with. The

authorization information is maintained as policy that is used as

input to the processing of requests from those clients.

This profile specifies how C requests an access token from AS for

the resources it wants to access on an RS, by sending an access

token request to the /token endpoint, as specified in Section 5.8 of

[RFC9200]. The access token request and response MUST be

confidentiality protected and ensure authenticity. The use of EDHOC

and OSCORE between C and AS is RECOMMENDED in this profile, in order

to reduce the number of libraries that C has to support. However,

other protocols fulfilling the security requirements defined in

Section 5 of [RFC9200] MAY alternatively be used, such as TLS

[RFC8446] or DTLS [RFC9147].

If C has retrieved an access token, there are two different options

for C to upload it to RS, as further detailed in this document.

C posts the access token to the /authz-info endpoint by using

the mechanisms specified in Section 5.10 of [RFC9200]. If the

access token is valid, RS responds to the request with a 2.01

(Created) response, after which C initiates the EDHOC protocol

by sending EDHOC message_1 to RS. The communication with the /

authz-info endpoint is not protected, except for the update of

access rights.

C initiates the EDHOC protocol by sending EDHOC message_1 to

RS, specifying the access token as External Authorization Data

(EAD) in the EAD_1 field of EDHOC message_1 (see Section 3.8 of

[I-D.ietf-lake-edhoc]). If the access token is valid and the

processing of EDHOC message_1 is successful, RS responds with

EDHOC message_2, thus continuing the EDHOC protocol. This

alternative cannot be used for the update of access rights.

When running the EDHOC protocol, C uses the authentication

credential of RS specified by AS together with the access token,

while RS uses the authentication credential of C bound to and

specified within the access token. If C and RS complete the EDHOC

execution successfully, they are mutually authenticated and they

derive an OSCORE Security Context as per Appendix A.1 of

[I-D.ietf-lake-edhoc]. Also, RS associates the two used

authentication credentials and the completed EDHOC execution with

the derived Security Context. The latter is in turn associated with

the access token and the access rights of C specified therein.

From then on, C effectively gains authorized and secure access to

protected resources on RS, for as long as the access token is valid.

Until then, C can communicate with RS by sending a request protected

with the established OSCORE Security Context above. The Security

¶

¶

¶

1.

¶

2.

¶

¶

https://rfc-editor.org/rfc/rfc9200#section-5.8
https://rfc-editor.org/rfc/rfc9200#section-5
https://rfc-editor.org/rfc/rfc9200#section-5.10
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-3.8
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#appendix-A.1

Context is discarded when an access token (whether the same or a

different one) is used to successfully derive a new Security Context

for C, either by exchanging nonces and using the EDHOC-KeyUpdate

function (see Section 5), or by re-running EDHOC. In particular,

when supporting this profile, both C and RS MUST support the EDHOC-

KeyUpdate function, and they MUST use it instead of re-running EDHOC

if the outcome of their previously completed EDHOC execution is

still valid.

After the whole procedure has completed and while the access token

is valid, C can contact AS to request an update of its access

rights, by sending a similar request to the /token endpoint. This

request also includes an identifier, which allows AS to find the

data it has previously shared with C. This specific identifier,

encoded as a byte string, is assigned by AS to a "token series" (see

Section 1.1). Upon a successful update of access rights, the new

issued access token becomes the latest in its token series. When the

latest access token of a token series becomes invalid (e.g., when it

expires or gets revoked), that token series ends.

An overview of the profile flow for the "coap_edhoc_oscore" profile

is given in Figure 1. The names of messages coincide with those of

[RFC9200] when applicable.

¶

¶

¶

Figure 1: Protocol Overview

3. Client-AS Communication

The following subsections describe the details of the POST request

and response to the /token endpoint between C and AS.

In this exchange, AS provides C with the access token, together with

a set of parameters that enable C to run EDHOC with RS. In

particular, these include information about the authorization

credential of RS, AUTH_CRED_RS, transported by value or uniquely

referred to.

 C RS AS

 | | |

 | <==== Mutual authentication and secure channel ====> |

 | | |

 | ------- POST /token ------------------------------> |

 | | |

 | <-------------------------------- Access Token ----- |

 | + Access Information |

 | | |

 | ---- POST /authz-info ---> | |

 | (access_token) | |

 | | |

 | <----- 2.01 Created ------ | |

 | | |

 | <========= EDHOC ========> | |

 | Mutual authentication | |

 | and derivation of an | |

 | OSCORE Security Context | |

 | | |

 | /Proof-of-possession and |

 | Security Context storage/ |

 | | |

 | ---- OSCORE Request -----> | |

 | | |

 | <--- OSCORE Response ----- | |

 | | |

/Proof-of-possession | |

and Security Context | |

storage (latest)/ | |

 | | |

 | ---- OSCORE Request -----> | |

 | | |

 | <--- OSCORE Response ----- | |

 | | |

 | ... | |

¶

¶

The access token is securely associated with the authentication

credential of C, AUTH_CRED_C, by including it or uniquely referring

to it in the access token.

AUTH_CRED_C is specified in the "req_cnf" parameter defined in

[RFC9201] of the POST request to the /token endpoint from C to AS,

either transported by value or uniquely referred to.

The request to the /token endpoint and the corresponding response

can include EDHOC_Information, which is a CBOR map object defined in

Section 3.3. This object is transported in the "edhoc_info"

parameter registered in Section 10.2 and Section 10.3.

3.1. C-to-AS: POST to /token endpoint

The client-to-AS request is specified in Section 5.8.1 of [RFC9200].

The client must send this POST request to the /token endpoint over a

secure channel that guarantees authentication, message integrity and

confidentiality (see Section 6).

Editor's note: This formulation overlaps with 3rd para in Section 2,

which has normative language. Preferable to keep normative language

here.

An example of such a request is shown in Figure 2. In this example,

C specifies its own authentication credential by reference, as the

hash of an X.509 certificate carried in the "x5t" field of the

"req_cnf" parameter. In fact, it is expected that C can typically

specify its own authentication credential by reference, since AS is

expected to obtain the actual authentication credential during an

early client registration process or during a previous secure

association establishment with C.

Figure 2: Example of C-to-AS POST /token request for an access token.

¶

¶

¶

¶

¶

¶

¶

 Header: POST (Code=0.02)

 Uri-Host: "as.example.com"

 Uri-Path: "token"

 Content-Format: "application/ace+cbor"

 Payload:

 {

 "audience" : "tempSensor4711",

 "scope" : "read",

 "req_cnf" : {

 "x5t" : h'822E4879F2A41B510C1F9B'

 }

 }

https://rfc-editor.org/rfc/rfc9200#section-5.8.1

If C wants to update its access rights without changing an existing

OSCORE Security Context, it MUST include EDHOC_Information in its

POST request to the /token endpoint. In turn, EDHOC_Information MUST

include the "id" field, carrying a CBOR byte string containing the

identifier of the token series to which the current, still valid

access token shared with RS belongs to. This POST request MUST omit

the "req_cnf" parameter.

This identifier is assigned by AS as discussed in Section 3.2, and,

together with other information such as audience (see Section 5.8.1

of [RFC9200]), can be used by AS to determine the token series to

which the new requested access token has to be added. Therefore, the

identifier MUST identify the pair (AUTH_CRED_C, AUTH_CRED_RS)

associated with a still valid access token previously issued for C

and RS by AS.

AS MUST verify that the received value identifies a token series to

which a still valid access token issued for C and RS belongs to. If

that is not the case, the Client-to-AS request MUST be declined with

the error code "invalid_request" as defined in Section 5.8.3 of

[RFC9200].

An example of such a request is shown in Figure 3.

Figure 3: Example of C-to-AS POST /token request for updating access

rights to an access token.

3.2. AS-to-C: Access Token Response

After verifying the POST request to the /token endpoint and that C

is authorized to obtain an access token corresponding to its access

token request, AS responds as defined in Section 5.8.2 of [RFC9200].

If the request from C was invalid, or not authorized, AS returns an

error response as described in Section 5.8.3 of [RFC9200].

¶

¶

¶

¶

 Header: POST (Code=0.02)

 Uri-Host: "as.example.com"

 Uri-Path: "token"

 Content-Format: "application/ace+cbor"

 Payload:

 {

 "audience" : "tempSensor4711",

 "scope" : "write",

 "edhoc_info" : {

 "id" : h'01'

 }

 }

¶

https://rfc-editor.org/rfc/rfc9200#section-5.8.1
https://rfc-editor.org/rfc/rfc9200#section-5.8.3
https://rfc-editor.org/rfc/rfc9200#section-5.8.2
https://rfc-editor.org/rfc/rfc9200#section-5.8.3

AS can signal that the use of EDHOC and OSCORE as per this profile

is REQUIRED for a specific access token, by including the

"ace_profile" parameter with the value "coap_edhoc_oscore" in the

access token response. This means that C MUST use EDHOC with RS and

derive an OSCORE Security Context, as specified in Section 4.3.

After that, C MUST use the established OSCORE Security Context to

protect communications with RS, when accessing protected resources

at RS according to the authorization information indicated in the

access token. Usually, it is assumed that constrained devices will

be pre-configured with the necessary profile, so that this kind of

profile signaling can be omitted.

When issuing any access token of a token series, AS MUST send the

following data in the response to C.

The identifier of the token series to which the issued access

token belongs to. This is specified in the "id" field of

EDHOC_Information.

All the access tokens belonging to the same token series are

associated with the same identifier, which does not change

throughout the series lifetime. A token series ends when the

latest issued access token in the series becomes invalid (e.g.,

when it expires or gets revoked).

AS assigns an identifier to a token series when issuing the first

access token T of that series. When assigning the identifier, AS

MUST ensure that this was never used in a previous series of

access tokens such that: i) they were issued for the same RS for

which the access token T is being issued; and ii) they were bound

to the same authentication credential AUTH_CRED_C of the

requesting client to which the access token T is being issued

(irrespectively of the exact way AUTH_CRED_C is specified in such

access tokens).

When issuing the first access token of a token series, AS MUST send

the following data in the response to C.

The authentication credential of RS, namely AUTH_CRED_RS. This is

specified in the "rs_cnf" parameter defined in [RFC9201].

AUTH_CRED_RS can be transported by value or referred to by means

of an appropriate identifier.

When issuing the first access token ever to a pair (C, RS) using

a pair of corresponding authentication credentials (AUTH_CRED_C,

AUTH_CRED_RS), it is typically expected that the response to C

specifies AUTH_CRED_RS by value.

¶

¶

*

¶

¶

¶

¶

*

¶

¶

When later issuing further access tokens to the same pair (C, RS)

using the same AUTH_CRED_RS, it is typically expected that the

response to C specifies AUTH_CRED_RS by reference.

When issuing the first access token of a token series, AS MAY send

the following data in the response to C. If present, this data MUST

be included in the corresponding fields of EDHOC_Information. Some

of this information takes advantage of the knowledge that AS may

have about C and RS since a previous registration process, with

particular reference to what they support as EDHOC peers.

The EDHOC methods supported by both C and RS (see Section 3.2 of

[I-D.ietf-lake-edhoc]). This is specified in the "methods" field

of EDHOC_Information.

The EDHOC cipher suite (see Section 3.6 of [I-D.ietf-lake-edhoc])

to be used by C and RS as selected cipher suite when running

EDHOC. This is specified in the "cipher_suites" field of

EDHOC_Information. If present, this MUST specify the EDHOC cipher

suite which is most preferred by C and at the same time supported

by both C and RS.

Whether RS supports or not EDHOC message_4 (see Section 5.5 of

[I-D.ietf-lake-edhoc]). This is specified in the "message_4"

field of EDHOC_Information.

Whether RS supports or not the combined EDHOC + OSCORE request

defined in [I-D.ietf-core-oscore-edhoc]. This is specified in the

"comb_req" field of EDHOC_Information.

The path component of the URI of the EDHOC resource at RS, where

C is expected to send EDHOC messages as CoAP requests. This is

specified in the "uri_path" field of EDHOC_Information. If not

specified, the URI path "/.well-known/edhoc" defined in

Section 9.7 of [I-D.ietf-lake-edhoc]) is assumed.

The size in bytes of the OSCORE Master Secret to derive after the

EDHOC execution (see Appendix A.1 of [I-D.ietf-lake-edhoc]) and

to use for establishing an OSCORE Security Context. This is

specified in the "osc_ms_len" field of EDHOC_Information. If not

specified, the default value from Appendix A.1 of

[I-D.ietf-lake-edhoc] is assumed.

The size in bytes of the OSCORE Master Salt to derive after the

EDHOC execution (see Appendix A.1 of [I-D.ietf-lake-edhoc]) and

to use for establishing an OSCORE Security Context. This is

specified in the "osc_salt_len" field of EDHOC_Information. If

not specified, the default value from Appendix A.1 of

[I-D.ietf-lake-edhoc] is assumed.

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-3.2
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-3.6
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-5.5
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-9.7
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#appendix-A.1
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#appendix-A.1
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#appendix-A.1
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#appendix-A.1

The OSCORE version to use (see Section 5.4 of [RFC8613]). This is

specified in the "osc_version" field of EDHOC_Information. If

specified, AS MUST indicate the highest OSCORE version supported

by both C and RS. If not specified, the default value of 1 (see

Section 5.4 of [RFC8613]) is assumed.

When issuing any access token of a token series, AS MUST specify the

following data in the claims associated with the access token.

The identifier of the token series, specified in the "id" field

of EDHOC_Information, and with the same value specified in the

response to C from the /token endpoint.

The same authentication credential of C that C specified in its

POST request to the /token endpoint (see Section 3.1), namely

AUTH_CRED_C. If the access token is a CWT, this information MUST

be specified in the "cnf" claim.

In the access token, AUTH_CRED_C can be transported by value or

referred to by means of an appropriate identifier, regardless of

how C specified it in the request to the /token endpoint. Thus,

the specific field carried in the access token claim and

specifying AUTH_CRED_C depends on the specific way used by AS.

When issuing the first access token ever to a pair (C, RS) using

a pair of corresponding authentication credentials (AUTH_CRED_C,

AUTH_CRED_RS), it is typically expected that AUTH_CRED_C is

specified by value.

When later issuing further access tokens to the same pair (C, RS)

using the same AUTH_CRED_C, it is typically expected that

AUTH_CRED_C is specified by reference.

When issuing the first access token of a token series, AS MAY

specify the following data in the claims associated with the access

token. If these data are specified in the response to C from the /

token endpoint, they MUST be included in the access token and

specify the same values that they have in the response from the /

token endpoint.

The size in bytes of the OSCORE Master Secret to derive after the

EDHOC execution and to use for establishing an OSCORE Security

Context. If it is included, it is specified in the "osc_ms_len"

field of EDHOC_Information, and it has the same value that the

"osc_ms_len" field has in the response to C. If it is not

included, the default value from Appendix A.1 of

[I-D.ietf-lake-edhoc] is assumed.

The size in bytes of the OSCORE Master Salt to derive after the

EDHOC execution (see Appendix A.1 of [I-D.ietf-lake-edhoc]) and

*

¶

¶

*

¶

*

¶

¶

¶

¶

¶

*

¶

*

https://rfc-editor.org/rfc/rfc8613#section-5.4
https://rfc-editor.org/rfc/rfc8613#section-5.4
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#appendix-A.1
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#appendix-A.1

to use for establishing an OSCORE Security Context. If it is

included, it is specified in the "osc_salt_len" field of

EDHOC_Information, and it has the same value that the

"osc_salt_len" field has in the response to C. If it is not

included, the default value from Appendix A.1 of

[I-D.ietf-lake-edhoc] is assumed.

The OSCORE version to use (see Section 5.4 of [RFC8613]). This is

specified in the "osc_version" field of the "edhoc_info"

parameter. If it is included, it is specified in the

"osc_version" field of EDHOC_Information, and it has the same

value that the "osc_version" field has in the response to C. If

it is not included, the default value of 1 (see Section 5.4 of

[RFC8613]) is assumed.

When issuing the first access token of a token series, AS can take

either of the two possible options.

AS provides the access token to C, by specifying it in the

"access_token" parameter of the access token response. In such a

case, the access token response MAY include the parameter

"token_uploaded", which MUST encode the CBOR simple value "false"

(0xf4).

AS does not provide the access token to C. Rather, AS uploads the

access token to the /authz-info endpoint at RS, exactly like C

would do, and as defined in Section 4.1 and Section 4.2. Then,

when replying to C with the access token response as defined

above, the response MUST NOT include the parameter

"access_token", and MUST include the parameter "token_uploaded"

encoding the CBOR simple value "true" (0xf5). This is shown by

the example in Appendix A.3.

Note that, in case C and RS have already completed an EDHOC

execution leveraging a previous access token series, using this

approach implies that C and RS have to re-run the EDHOC protocol.

That is, they cannot more efficiently make use of the EDHOC-

KeyUpdate function, as defined in Section 5, see Section 4.

Also note that this approach is not applicable when issuing

access tokens following the first one in the same token series,

i.e., when updating access rights.

When CWTs are used as access tokens, EDHOC_Information MUST be

transported in the "edhoc_info" claim, defined in Section 10.5.

Since the access token does not contain secret information, only its

integrity and source authentication are strictly necessary to

ensure. Therefore, AS can protect the access token with either of

the means discussed in Section 6.1 of [RFC9200]. Nevertheless, when

¶

*

¶

¶

*

¶

*

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#appendix-A.1
https://rfc-editor.org/rfc/rfc8613#section-5.4
https://rfc-editor.org/rfc/rfc8613#section-5.4
https://rfc-editor.org/rfc/rfc9200#section-6.1

using this profile, it is RECOMMENDED that the access token is a

CBOR web token (CWT) protected with COSE_Encrypt/COSE_Encrypt0 as

specified in [RFC8392].

Figure 4 shows an example of an AS response. The "rs_cnf" parameter

specifies the authentication credential of RS, as an X.509

certificate transported by value in the "x5chain" field. The access

token and the authentication credential of RS have been truncated

for readability.

Figure 4: Example of AS-to-C Access Token response with EDHOC and

OSCORE profile.

Figure 5 shows an example CWT Claims Set, including the relevant

EDHOC parameters in the "edhoc_info" claim. The "cnf" claim

specifies the authentication credential of C, as an X.509

certificate transported by value in the "x5chain" field. The

authentication credential of C has been truncated for readability.

¶

¶

 Header: Created (Code=2.01)

 Content-Type: "application/ace+cbor"

 Payload:

 {

 "access_token" : h'8343a1010aa2044c53 ...

 (remainder of access token (CWT) omitted for brevity)',

 "ace_profile" : "coap_edhoc_oscore",

 "expires_in" : "3600",

 "rs_cnf" : {

 "x5chain" : h'3081ee3081a1a00302 ...'

 (remainder of the access credential omitted for brevity)'

 }

 "edhoc_info" : {

 "id" : h'01',

 "methods" : [0, 1, 2, 3],

 "cipher_suites": 0

 }

 }

¶

Figure 5: Example of CWT Claims Set with EDHOC parameters.

If C has requested an update to its access rights using the same

OSCORE Security Context, which is valid and authorized, then:

The response MUST NOT include the "rs_cnf" parameter.

The EDHOC_Information in the response MUST include only the "id"

field, specifying the identifier of the token series.

The EDHOC_Information in the access token MUST include only the

"id" field, specifying the identifier of the token series. In

particular, if the access token is a CWT, the "edhoc_info" claim

MUST include only the "id" field.

This identifier of the token series needs to be included in the new

access token in order for RS to identify the old access token to

supersede, as well as the OSCORE Security Context already shared

between C and RS and to be associated with the new access token.

3.3. The EDHOC_Information

An EDHOC_Information is an object including information that guides

two peers towards executing the EDHOC protocol. In particular, the

EDHOC_Information is defined to be serialized and transported

between nodes, as specified by this document, but it can also be

used by other specifications if needed.

The EDHOC_Information can either be encoded as a JSON object or as a

CBOR map. The set of common fields that can appear in an

EDHOC_Information can be found in the IANA "EDHOC Information"

registry (see Section 10.9), defined for extensibility, and the

initial set of parameters defined in this document is specified

below. All parameters are optional.

 {

 "aud" : "tempSensorInLivingRoom",

 "iat" : "1360189224",

 "exp" : "1360289224",

 "scope" : "temperature_g firmware_p",

 "cnf" : {

 "x5chain" : h'3081ee3081a1a00302 ...'

 }

 "edhoc_info" : {

 "id" : h'01',

 "methods" : [0, 1, 2, 3],

 "cipher_suites": 0

 }

 }

¶

* ¶

*

¶

*

¶

¶

¶

¶

Figure 6 provides a summary of the EDHOC_Information parameters

defined in this section.¶

+---------------+------+--------------+----------+--------------------+

| Name | CBOR | CBOR value | Registry | Description |

| | Type | | | |

+---------------+------+--------------+----------+--------------------+

| id | 0 | bstr | | Identifier of |

| | | | | EDHOC execution |

+---------------+------+--------------+----------+--------------------+

| methods | 1 | int / | EDHOC | Set of supported |

| | | array of int | Method | EDHOC methods |

| | | | Type | |

| | | | Registry | |

+---------------+------+--------------+----------+--------------------+

| cipher_suites | 2 | int / | EDHOC | Set of supported |

| | | array of int | Cipher | EDHOC cipher |

| | | | Suites | suites |

| | | | Registry | |

+---------------+------+--------------+----------+--------------------+

| key_update | 3 | simple value | | Support for the |

| | | "true" / | | EDHOC-KeyUpdate |

| | | simple value | | function |

| | | "false" | | |

+---------------+------+--------------+----------+--------------------+

| message_4 | 4 | simple value | | Support for EDHOC |

| | | "true" / | | message_4 |

| | | simple value | | |

| | | "false" | | |

+---------------+------+--------------+----------+--------------------+

| comb_req | 5 | simple value | | Support for the |

| | | "true" / | | EDHOC + OSCORE |

| | | simple value | | combined request |

| | | "false" | | |

+---------------+------+--------------+----------+--------------------+

| uri_path | 6 | tstr | | URI-path of the |

| | | | | EDHOC resource |

+---------------+------+--------------+----------+--------------------+

| osc_ms_len | 7 | uint | | Length in bytes of |

| | | | | the OSCORE Master |

| | | | | Secret to derive |

+---------------+------+--------------+----------+--------------------+

| osc_salt_len | 8 | uint | | Length in bytes of |

| | | | | the OSCORE Master |

| | | | | Salt to derive |

+---------------+------+--------------+----------+--------------------+

| osc_version | 9 | uint | | OSCORE version |

| | | | | number to use |

+---------------+------+--------------+----------+--------------------+

Figure 6: EDHOC_Information Parameters

id: This parameter identifies an EDHOC execution and is encoded

as a byte string. In JSON, the "id" value is a Base64 encoded

byte string. In CBOR, the "id" type is a byte string, and has

label 0.

methods: This parameter specifies a set of supported EDHOC

methods (see Section 3.2 of [I-D.ietf-lake-edhoc]). If the set is

composed of a single EDHOC method, this is encoded as an integer.

Otherwise, the set is encoded as an array of integers, where each

array element encodes one EDHOC method. In JSON, the "methods"

value is an integer or an array of integers. In CBOR, the

"methods" is an integer or an array of integers, and has label 1.

cipher_suites: This parameter specifies a set of supported EDHOC

cipher suites (see Section 3.6 of [I-D.ietf-lake-edhoc]). If the

set is composed of a single EDHOC cipher suite, this is encoded

as an integer. Otherwise, the set is encoded as an array of

integers, where each array element encodes one EDHOC cipher

suite. In JSON, the "cipher_suites" value is an integer or an

array of integers. In CBOR, the "cipher_suites" is an integer or

an array of integers, and has label 2.

key_update: This parameter indicates whether the EDHOC-KeyUpdate

function (see Appendix I of [I-D.ietf-lake-edhoc]) is supported.

In JSON, the "key_update" value is a boolean. In CBOR,

"key_update" is the simple value "true" or "false", and has label

3.

message_4: This parameter indicates whether the EDHOC message_4

(see Section 5.5 of [I-D.ietf-lake-edhoc]) is supported. In JSON,

the "message_4" value is a boolean. In CBOR, "message_4" is the

simple value "true" or "false", and has label 4.

comb_req: This parameter indicates whether the combined EDHOC +

OSCORE request defined in [I-D.ietf-core-oscore-edhoc]) is

supported. In JSON, the "comb_req" value is a boolean. In CBOR,

"comb_req" is the simple value "true" or "false", and has label

5.

uri_path: This parameter specifies the path component of the URI

of the EDHOC resource where EDHOC messages have to be sent as

requests. In JSON, the "uri_path" value is a string. In CBOR,

"uri_path" is text string, and has label 6.

osc_ms_len: This parameter specifies the size in bytes of the

OSCORE Master Secret to derive after the EDHOC execution, as per

Appendix A.1 of [I-D.ietf-lake-edhoc]. In JSON, the "osc_ms_len"

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-3.2
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-3.6
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#appendix-I
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-5.5
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#appendix-A.1

value is an integer. In CBOR, the "osc_ms_len" type is unsigned

integer, and has label 7.

osc_salt_len: This parameter specifies the size in bytes of the

OSCORE Master Salt to derive after the EDHOC execution, as per

Appendix A.1 of [I-D.ietf-lake-edhoc]. In JSON, the

"osc_salt_len" value is an integer. In CBOR, the "osc_salt_len"

type is unsigned integer, and has label 8.

osc_version: This parameter specifies the OSCORE Version number

that the two EDHOC peers have to use when using OSCORE. For more

information about this parameter, see Section 5.4 of [RFC8613].

In JSON, the "osc_version" value is an integer. In CBOR, the

"osc_version" type is unsigned integer, and has label 9.

An example of JSON EDHOC_Information is given in Figure 7.

Figure 7: Example of JSON EDHOC_Information

The CDDL grammar describing the CBOR EDHOC_Information is:

4. Client-RS Communication

The following subsections describe the exchanges between C and RS,

which comprise the token uploading to RS, and the execution of the

EDHOC protocol. Note that, as defined in Section 3.2, AS may not

have provided C with the access token, and have rather uploaded the

access token to the /authz-info endpoint at RS on behalf of C.

¶

*

¶

*

¶

¶

 "edhoc_info" : {

 "id" : b64'AQ==',

 "methods" : 1,

 "cipher_suites" : 0

 }

¶

EDHOC_Information = {

 ? 0 => bstr, ; id

 ? 1 => int / array, ; methods

 ? 2 => int / array, ; cipher_suites

 ? 3 => true / false, ; key_update

 ? 4 => true / false, ; message_4

 ? 5 => true / false, ; comb_req

 ? 6 => tstr, ; uri_path

 ? 7 => uint, ; osc_ms_len

 ? 8 => uint, ; osc_salt_len

 ? 9 => uint, ; osc_version

 * int / tstr => any

}

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#appendix-A.1
https://rfc-editor.org/rfc/rfc8613#section-5.4

In order to upload the access token to RS, C can send a POST request

to the /authz-info endpoint at RS. This is detailed in Section 4.1

and Section 4.2, and it is shown by the example in Appendix A.1.

Alternatively, C can upload the access token while executing the

EDHOC protocol, by transporting the access token in the EAD_1 field

of the first EDHOC message sent to RS. This is further discussed in

Section 4.3, and it is shown by the example in Appendix A.2.

In either case, following the uploading of the access token, C and

RS run the EDHOC protocol to completion, by exchanging POST requests

and related responses to a dedicated EDHOC resource at RS (see

Section 4.3). Once completed the EDHOC execution, C and RS have

agreed on a common secret key PRK_out (see Section 4.1.3 of

[I-D.ietf-lake-edhoc]), from which they establish an OSCORE Security

Context (see Section 4.3). After that, C and RS use the established

OSCORE Security Context to protect their communications when

accessing protected resources at RS, as per the access rights

specified in the access token (see Section 4.4).

Note that, by means of the respective authentication credentials, C

and RS are mutually authenticated once they have successfully

completed the execution of the EDHOC protocol.

As to proof-of-possession, RS always gains knowledge that C has

PRK_out at the end of the successful EDHOC execution. Conversely, C

gains knowledge that RS has PRK_out either when receiving and

successfully verifying the optional EDHOC message_4 from RS, or when

successfully verifying a response from RS protected with the

generated OSCORE Security Context.

4.1. C-to-RS: POST to /authz-info endpoint

The access token can be uploaded to RS by using the /authz-info

endpoint at RS. To this end, C MUST use CoAP [RFC7252] and the

Authorization Information endpoint described in Section 5.10.1 of

[RFC9200] in order to transport the access token.

That is, C sends a POST request to the /authz-info endpoint at RS,

with the request payload conveying the access token without any CBOR

wrapping. As per Section 5.10.1 of [RFC9200], the Content-Format of

the POST request has to reflect the format of the transported access

token. In particular, if the access token is a CWT, the content-

format MUST be "application/cwt".

The communication with the /authz-info endpoint does not have to be

protected, except for the update of access rights case described

below.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-4.1.3
https://rfc-editor.org/rfc/rfc9200#section-5.10.1
https://rfc-editor.org/rfc/rfc9200#section-5.10.1

In case of initial access token provisioning to RS for this Client,

or in other cases without a valid EDHOC session, the uploading of

the access token is followed by the execution of the EDHOC protocol

(or combined using EAD as described in Section 4.3) and by the

derivation of an OSCORE Security Context, as detailed later in this

section.

In the following, we outline some alternative processing, which

occur when the provisioned access token or the established OSCORE

Security Context for various reasons is no longer available or

sufficient. In the cases below, it is assumed that the EDHOC session

is still valid, otherwise the processing essentially falls back to

the case discussed above.

C may be required to re-POST the access token, since RS may

have deleted a stored access token (and associated OSCORE

Security Context) at any time, for example due to all storage

space being consumed. This situation can be detected by C when

it receives a 4.01 (Unauthorized) response from RS, especially

as an "AS Request Creation Hints" message (see Section 5.3 of

[RFC9200].

C may be posting the first access token in a new series, e.g.,

because the old access token expired and thus its series

terminated.

C may need to update the OSCORE Security Context, e.g., due to

a policy limiting its use in terms of time or amount of

processed data, or to the imminent exhaustion of the OSCORE

Sender Sequence Number space. The OSCORE Security Context can

be updated by:

a. using the KUDOS key update protocol specified in

[I-D.ietf-core-oscore-key-update], if supported by both C and

RS; or

b. re-posting the access token using the same procedure as in

case 1 above.

In cases 1, 2 and 3b, C and RS rely on a protocol similar to the

coap_oscore profile [RFC9203], but leveraging the EDHOC-KeyUpdate

function (see Section 5) before deriving a new OSCORE Security

Context.

Case 3a provides a lightweight alternative independent of ACE, and

does not require the posting of an access token.

In either case, C and RS establish a new OSCORE Security Context

that replaces the old one and will be used for protecting their

communications from then on. In particular, RS MUST associate the

¶

¶

1.

¶

2.

¶

3.

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9200#section-5.3

new OSCORE Security Context with the current (potentially re-posted)

access token. Note that, unless C and RS re-run the EDHOC protocol,

they preserve their same OSCORE identifiers, i.e., their OSCORE

Sender/Recipient IDs.

If C has already posted a valid access token, has already

established an OSCORE Security Context with RS, and wants to update

its access rights, then C can do so by posting a new access token to

the /authz-info endpoint. The new access token contains the updated

access rights for C to access protected resources at RS, and C has

to obtain it from AS as a new access token in the same token series

of the current one (see Section 3.1 and Section 3.2). When posting

the new access token to the /authz-info endpoint, C MUST protect the

POST request using the current OSCORE Security Context shared with

RS. After successful verification (see Section 4.2), RS will replace

the old access token with the new one, while preserving the same

OSCORE Security Context. In particular, C and RS do not re-run the

EDHOC protocol and they do not establish a new OSCORE Security

Context.

4.2. RS-to-C: 2.01 (Created)

Upon receiving an access token from C, RS MUST follow the procedures

defined in Section 5.10.1 of [RFC9200]. That is, RS must verify the

validity of the access token. RS may make an introspection request

(see Section 5.9.1 of [RFC9200]) to validate the access token.

If the access token is valid, RS proceeds as follows.

RS checks whether it is already storing the authentication

credential of C, namely AUTH_CRED_C, specified as PoP-key in the

access token by value or reference. In such a case, RS stores the

access token and MUST reply to the POST request with a 2.01

(Created) response.

Otherwise, RS retrieves AUTH_CRED_C, e.g., from the access token if

the authentication credential is specified therein by value, or from

a further trusted source pointed to by the AUTH_CRED_C identifier

included in the access token. After that, RS validates the actual

AUTH_CRED_C. In case of successful validation, RS stores AUTH_CRED_C

as a valid authentication credential. Then, RS stores the access

token and MUST reply to the POST request with a 2.01 (Created)

response.

If RS does not find an already stored AUTH_CRED_C, or fails to

retrieve it or to validate it, then RS MUST respond with an error

response code equivalent to the CoAP code 4.00 (Bad Request). RS may

provide additional information in the payload of the error response,

in order to clarify what went wrong.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9200#section-5.10.1
https://rfc-editor.org/rfc/rfc9200#section-5.9.1

Instead, if the access token is valid but it is associated with

claims that RS cannot process (e.g., an unknown scope), or if any of

the expected parameters is missing (e.g., any of the mandatory

parameters from AS or the identifier "id"), or if any parameters

received in the EDHOC_Information is unrecognized, then RS MUST

respond with an error response code equivalent to the CoAP code 4.00

(Bad Request). In the latter two cases, RS may provide additional

information in the payload of the error response, in order to

clarify what went wrong.

When an access token becomes invalid (e.g., due to its expiration or

revocation), RS MUST delete the access token and the associated

OSCORE Security Context, and MUST notify C with an error response

with code 4.01 (Unauthorized) for any long running request, as

specified in Section 5.8.3 of [RFC9200].

If RS receives an access token in an OSCORE protected request, it

means that C is requesting an update of access rights. In such a

case, RS MUST check that both the following conditions hold.

RS checks whether it stores an access token T_OLD, such that the

"id" field of EDHOC_Identifier matches the "id" field of

EDHOC_Identifier in the new access token T_NEW.

RS checks whether the OSCORE Security Context CTX used to protect

the request matches the OSCORE Security Context associated with

the stored access token T_OLD.

If both the conditions above hold, RS MUST replace the old access

token T_OLD with the new access token T_NEW, and associate T_NEW

with the OSCORE Security Context CTX. Then, RS MUST respond with a

2.01 (Created) response protected with the same OSCORE Security

Context, with no payload.

Otherwise, RS MUST respond with a 4.01 (Unauthorized) error

response. RS may provide additional information in the payload of

the error response, in order to clarify what went wrong.

As specified in Section 5.10.1 of [RFC9200], when receiving an

updated access token with updated authorization information from C

(see Section 4.1), it is recommended that RS overwrites the previous

access token. That is, only the latest authorization information in

the access token received by RS is valid. This simplifies the

process needed by RS to keep track of authorization information for

a given client.

4.3. EDHOC Execution and Setup of OSCORE Security Context

In order to mutually authenticate and establish a long-term secret

key PRK_out with forward secrecy, C and RS run the EDHOC protocol

¶

¶

¶

*

¶

*

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9200#section-5.8.3
https://rfc-editor.org/rfc/rfc9200#section-5.10.1

[I-D.ietf-lake-edhoc]. In particular, C acts as EDHOC Initiator thus

sending EDHOC message_1, while RS acts as EDHOC Responder.

As per Appendix A.2 of [I-D.ietf-lake-edhoc], C sends EDHOC

message_1 and EDHOC message_3 to an EDHOC resource at RS, as CoAP

POST requests. Also RS sends EDHOC message_2 and (optionally) EDHOC

message_4 as 2.04 (Changed) CoAP responses. If, in the access token

response received from AS (see Section 3.1), the "uri_path" field of

the EDHOC_Information was included, then C MUST target the EDHOC

resource at RS with the URI path specified in the "uri_path" field.

In order to seamlessly run EDHOC, a client does not have to first

upload to RS an access token whose scope explicitly indicates

authorized access to the EDHOC resource. At the same time, RS has to

ensure that attackers cannot perform requests on the EDHOC resource,

other than sending EDHOC messages. Specifically, it SHOULD NOT be

possible to perform anything else than POST on an EDHOC resource.

When preparing EDHOC message_1, C performs the following steps, in

additions to those defined in Section 5.2.1 of

[I-D.ietf-lake-edhoc].

If, in the access token response received from AS (see

Section 3.1), the "methods" field of the EDHOC_Information was

included, then C MUST specify one of those EDHOC methods in the

METHOD field of EDHOC message_1. That is, one of the EDHOC

methods specified in the "methods" field of EDHOC_Information

MUST be the EDHOC method used when running EDHOC with RS.

If, in the access token response received from AS (see

Section 3.1), the "cipher_suites" field of the EDHOC_Information

was included, then C MUST specify the EDHOC cipher suite therein

in the SUITES_I field of EDHOC message_1. That is, the EDHOC

cipher suite specified in the "cipher_suites" field of

EDHOC_Information MUST be the selected cipher suite when running

EDHOC with RS.

Rather than first uploading the access token to the /authz-info

endpoint at RS as described in Section 4.1, C MAY include the

access token in the EAD_1 field of EDHOC message_1 (see

Section 3.8 of [I-D.ietf-lake-edhoc]). This is shown by the

example in Appendix A.2.

In such a case, as per Section 3.8 of [I-D.ietf-lake-edhoc], C

adds the EAD item EAD_ACCESS_TOKEN = (ead_label, ead_value) to

the EAD_1 field. In particular, ead_label is the integer value

TBD registered in Section 10.8 of this document, while ead_value

is a CBOR byte string with value the access token. That is, the

¶

¶

¶

¶

*

¶

*

¶

*

¶

https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#appendix-A.2
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-5.2.1
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-3.8
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-3.8

CBOR byte string is equal to the value of the "access_token"

field of the access token response from AS (see Section 3.2).

If EDHOC message_1 includes the EAD item EAD_ACCESS_TOKEN within

the field EAD_1, then RS MUST process the access token carried

out in ead_value as specified in Section 4.2. If such a process

fails, RS MUST reply to C with an EDHOC error message with

ERR_CODE 1 (see Section 6 of [I-D.ietf-lake-edhoc]), and it MUST

discontinue the EDHOC protocol. RS MUST have successfully

completed the processing of the access token before continuing

the EDHOC execution by sending EDHOC message_2.

Note that the EAD_1 field of EDHOC message_1 cannot carry an

access token for the update of access rights, but rather only an

access token issued as the first of a token series.

In EDHOC message_2, the authentication credential CRED_R indicated

by the message field ID_CRED_R is the authentication credential of

RS, namely AUTH_CRED_RS, that C obtained from AS. The processing of

EDHOC message_2 is defined in detail in Section 5.3 of

[I-D.ietf-lake-edhoc].

In EDHOC message_3, the authentication credential CRED_I indicated

by the message field ID_CRED_I is the authentication credential of

C, namely AUTH_CRED_C, i.e., the PoP key bound to the access token

and specified therein. The processing of EDHOC message_3 is defined

in detail in Section 5.4 of [I-D.ietf-lake-edhoc].

Once successfully completed the EDHOC execution, C and RS have both

derived the long-term secret key PRK_out (see Section 4.1.3 of

[I-D.ietf-lake-edhoc]), from which they both derive the key

PRK_Exporter (see Section 4.2.1 of [I-D.ietf-lake-edhoc]). Then, C

and RS derive an OSCORE Security Context, as defined in Appendix A.1

of [I-D.ietf-lake-edhoc]. In addition, the following applies.

If, in the access token response received from AS (see

Section 3.1) and in the access token, the "osc_ms_size" field of

the EDHOC_Information was included, then C and RS MUST use the

value specified in the "osc_ms_size" field as length in bytes of

the OSCORE Master Secret. That is, the value of the "osc_ms_size"

field MUST be used as value for the oscore_key_length parameter

of the EDHOC-Exporter function when deriving the OSCORE Master

Secret (see Appendix A.1 of [I-D.ietf-lake-edhoc]).

If, in the access token response received from AS (see

Section 3.1) and in the access token, the "osc_salt_size" field

of the EDHOC_Information was included, then C and RS MUST use the

value specified in the "osc_salt_size" field as length in bytes

of the OSCORE Master Salt. That is, the value of the

¶

¶

¶

¶

¶

¶

*

¶

*

https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-6
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-5.3
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-5.4
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-4.1.3
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-4.2.1
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#appendix-A.1
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#appendix-A.1

"osc_salt_size" field MUST be used as value for the

oscore_salt_length parameter of the EDHOC-Exporter function when

deriving the OSCORE Master Salt (see Appendix A.1 of

[I-D.ietf-lake-edhoc]).

If, in the access token response received from AS (see

Section 3.1) and in the access token, the "osc_version" field of

the EDHOC_Information was included, then C and RS MUST derive the

OSCORE Security Context, and later use it to protect their

communications, consistently with the OSCORE version specified in

the "osc_version" field.

Given AUTH_CRED_C the authentication credential of C used as

CRED_I in the completed EDHOC execution, RS associates the

derived OSCORE Security Context with the stored access token

bound to AUTH_CRED_C as PoP-key (regardless of whether

AUTH_CRED_C is specified by value or by reference in the access

token claims).

If C supports it, C MAY use the EDHOC + OSCORE combined request

defined in [I-D.ietf-core-oscore-edhoc], as also shown by the

example in Appendix A.2. In such a case, both EDHOC message_3 and

the first OSCORE-protected application request to a protected

resource are sent to RS as combined together in a single OSCORE-

protected CoAP request, thus saving one round trip. This requires C

to derive the OSCORE Security Context with RS already after having

successfully processed the received EDHOC message_2. If, in the

access token response received from AS (see Section 3.1), the

"comb_req" field of the EDHOC_Information was included and specified

the CBOR simple value "false" (0xf4), then C MUST NOT use the EDHOC

+ OSCORE combined request with RS.

4.4. Access Rights Verification

RS MUST follow the procedures defined in Section 5.10.2 of

[RFC9200]. That is, if RS receives an OSCORE-protected request

targeting a protected resource from C, then RS processes the request

according to [RFC8613], when Version 1 of OSCORE is used. Future

specifications may define new versions of OSCORE, that AS can

indicate C and RS to use by means of the "osc_version" field of

EDHOC_Information (see Section 3).

If OSCORE verification succeeds and the target resource requires

authorization, RS retrieves the authorization information using the

access token associated with the OSCORE Security Context. Then, RS

must verify that the authorization information covers the target

resource and the action intended by C on it.

¶

*

¶

*

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#appendix-A.1
https://rfc-editor.org/rfc/rfc9200#section-5.10.2

5. Use of EDHOC-KeyUpdate

Once successfully completed an EDHOC execution, C and RS are

expected to preserve the EDHOC state of such an execution, as long

as the authentication credentials of both C and RS, namely

AUTH_CRED_C and AUTH_CRED_RS are valid. This especially consists in

preserving the secret key PRK_out attained at the end of the EDHOC

execution.

In case C has to establish a new OSCORE Security Context with RS,

and as long as the outcome of their previously completed EDHOC

execution is still valid, C and RS MUST rely on the EDHOC-KeyUpdate

function defined in Appendix I of [I-D.ietf-lake-edhoc] as further

specified in the rest of this section, rather than re-running the

EDHOC protocol. When supporting this profile, both C and RS MUST

support the EDHOC-KeyUpdate function. The procedure is sketched in

Figure 8.

¶

¶

 C RS

 | |

 | |

 | ---- POST /authz-info ---> |

 | (access_token, N1) |

 | |

 | <--- 2.01 Created (N2) --- |

 | |

 /Apply EDHOC-KeyUpdate with

 concatenated nonces as input,

 derive OSCORE Security Context/

 | |

 | ---- OSCORE Request -----> |

 | |

 | /Proof-of-possession and

 | Security Context storage/

 | |

 | <--- OSCORE Response ----- |

 | |

/Proof-of-possession and |

 Security Context storage/ |

 | |

 | ---- OSCORE Request -----> |

 | |

 | <--- OSCORE Response ----- |

 | |

 | ... |

https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#appendix-I

Figure 8: Updated OSCORE Security Context using EDHOC-KeyUpdate

Establishing a new OSCORE Security Context by leveraging the EDHOC-

KeyUpdate function is possible in the following cases.

C has to upload to RS the newly obtained, first access token of a

new token series, as an unprotected POST request to the /authz-

info endpoint at RS. This is the case after the latest access

token of the previous token series has become invalid (e.g., it

expired or got revoked), and thus RS has deleted it together with

the associated OSCORE Security Context (see Section 7).

C re-uploads to RS the current access token shared with RS, i.e.,

the latest access token in the current token series, as an

unprotected POST request to the /authz-info endpoint at RS. Like

in Section 4.1, this is the case when C simply wants to replace

the current OSCORE Security Context with a new one, and associate

it with the same current, re-uploaded access token.

In either case, C and RS have to establish a new OSCORE Security

Context and to associate it with the (re-)uploaded access token.

When using this approach, C and RS perform the following actions.

C MUST generate a nonce value N1 very unlikely to have been used

with the same pair of authentication credentials (AUTH_CRED_C,

AUTH_CRED_RS). When using this profile, it is RECOMMENDED to use a

64-bit long random number as the nonce's value. C MUST store the

nonce N1 as long as the response from RS is not received and the

access token related to it is still valid (to the best of C's

knowledge).

C MUST use CoAP [RFC7252] and the Authorization Information resource

as described in Section 5.10.1 of [RFC9200] to transport the access

token and N1 to RS.

Note that, unlike what is defined in Section 4.1, the use of the

payload and of the Content-Format is different from what is

described in Section 5.10.1 of [RFC9200], where only the access

token is transported and without any CBOR wrapping. That is, C MUST

wrap the access token and N1 in a CBOR map, and MUST use the

Content-Format "application/ace+cbor" defined in Section 8.16 of

[RFC9200]. The CBOR map MUST specify the access token using the

"access_token" parameter, and N1 using the "nonce1" parameter

defined in Section 4.1.1 of [RFC9203].

The communication with the /authz-info endpoint at RS MUST NOT be

protected. This approach is not applicable when C uploads to RS for

the first time an access token to update access rights (which rather

¶

*

¶

*

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9200#section-5.10.1
https://rfc-editor.org/rfc/rfc9200#section-5.10.1
https://rfc-editor.org/rfc/rfc9200#section-8.16
https://rfc-editor.org/rfc/rfc9203#section-4.1.1

requires protected communication and does not result in deriving a

new OSCORE Security Context).

Figure 9 shows an example of the POST request sent by C to RS. The

access token has been truncated for readability.

Figure 9: Example of C-to-RS POST /authz-info request using CWT and

EDHOC-KeyUpdate

Upon receiving the POST request from C, RS MUST follow the

procedures defined in Section 5.10.1 of [RFC9200]. That is, RS must

verify the validity of the access token. RS may make an

introspection request (see Section 5.9.1 of [RFC9200]) to validate

the access token.

If the access token is valid, RS proceeds as follows.

RS checks whether it is already storing the authentication

credential of C, namely AUTH_CRED_C, specified as PoP-key in the

access token by value or reference.

If RS does not find AUTH_CRED_C among the stored authentication

credentials, RS retrieves AUTH_CRED_C, e.g., from the access token

if the authentication credential is specified therein by value, or

from a further trusted source pointed to by the AUTH_CRED_C

identifier included in the access token. After that, RS validates

the actual AUTH_CRED_C. In case of successful validation, RS stores

AUTH_CRED_C as a valid authentication credential.

If RS does not find an already stored AUTH_CRED_C, or fails to

retrieve it or to validate it, then RS MUST respond with an error

response code equivalent to the CoAP code 4.00 (Bad Request). RS may

provide additional information in the payload of the error response,

in order to clarify what went wrong.

If the access token is valid but it is associated with claims that

RS cannot process (e.g., an unknown scope), or if any of the

expected parameters is missing (e.g., any of the mandatory

¶

¶

 Header: POST (Code=0.02)

 Uri-Host: "rs.example.com"

 Uri-Path: "authz-info"

 Content-Format: "application/ace+cbor"

 Payload:

 {

 "access_token": h'8343a1010aa2044c53 ...

 (remainder of access token (CWT) omitted for brevity)',

 "nonce1": h'018a278f7faab55a'

 }

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9200#section-5.10.1
https://rfc-editor.org/rfc/rfc9200#section-5.9.1

parameters from AS or the identifier "id"), or if any parameters

received in the EDHOC_Information is unrecognized, then RS MUST

respond with an error response code equivalent to the CoAP code 4.00

(Bad Request). In the latter two cases, RS may provide additional

information in the payload of the error response, in order to

clarify what went wrong.

If RS does not find the stored state of a completed EDHOC execution

where the authentication credential AUTH_CRED_C was used as CRED_I,

then RS MUST respond with an error response code equivalent to the

CoAP code 4.00 (Bad Request). RS may provide additional information

in the payload of the error response, in order to clarify what went

wrong.

Otherwise, if all the steps above are successful, RS stores the

access token and MUST generate a nonce N2 very unlikely to have been

previously used with the same pair of authentication credentials

(AUTH_CRED_C, AUTH_CRED_RS). When using this profile, it is

RECOMMENDED to use a 64-bit long random number as the nonce's value.

Then, RS MUST reply to the POST request with a 2.01 (Created)

response, for which RS MUST use the Content-Format "application/

ace+cbor" defined in Section 8.16 of [RFC9200]. The payload of the

response MUST be a CBOR map, which MUST specify N2 using the

"nonce2" parameter defined in Section 4.2.1 of [RFC9203].

Figure 10 shows an example of the response sent by RS to C.

Figure 10: Example of RS-to-C 2.01 (Created) response using EDHOC-

KeyUpdate

Once they have exchanged N1 and N2, both C and RS build a CBOR byte

string EXTENDED_NONCE as follows.

First, RAW_STRING is prepared as the concatenation of N1 and N2, in

this order: RAW_STRING = N1 | N2, where | denotes byte string

concatenation, and N1 and N2 are the two nonces encoded as CBOR byte

strings. Then, the resulting RAW_STRING is wrapped into the CBOR

byte string EXTENDED_NONCE.

An example is given in Figure 11, with reference to the values of N1

and N2 shown in Figure 9 and Figure 10.

¶

¶

¶

¶

 Header: Created (Code=2.01)

 Content-Format: "application/ace+cbor"

 Payload:

 {

 "nonce2": h'25a8991cd700ac01'

 }

¶

¶

¶

https://rfc-editor.org/rfc/rfc9200#section-8.16
https://rfc-editor.org/rfc/rfc9203#section-4.2.1

Figure 11: Example of EXTENDED_NONCE construction, with N1 and N2

encoded in CBOR

If JSON is used instead of CBOR, then RAW_STRING is the Base64

encoding of the concatenation of the same parameters, each of them

prefixed by their size encoded in 1 byte. When using JSON, the

nonces have a maximum size of 255 bytes. An example is given in

Figure 12, where the nonces and RAW_STRING are encoded in Base64.

Figure 12: Example of EXTENDED_NONCE construction, with N1 and N2

encoded in JSON

Once computed the CBOR byte string EXTENDED_NONCE, both C and RS

perform the following steps.

C refers to the stored state of the completed EDHOC execution

where: i) the authentication credential AUTH_CRED_C was used as

CRED_I; and ii) the authentication credential that was used as

 N1 and N2 expressed in CBOR diagnostic notation

 N1 = h'018a278f7faab55a'

 N2 = h'25a8991cd700ac01'

 N1 and N2 as CBOR encoded byte strings

 N1 = 0x48018a278f7faab55a

 N2 = 0x4825a8991cd700ac01

 RAW_STRING = 0x48 018a278f7faab55a 48 25a8991cd700ac01

 EXTENDED_NONCE expressed in CBOR diagnostic notation

 EXTENDED_NONCE = h'48018a278f7faab55a4825a8991cd700ac01'

 EXTENDED_NONCE as CBOR encoded byte string

 EXTENDED_NONCE = 0x52 48018a278f7faab55a4825a8991cd700ac01

¶

 N1 and N2 values

 N1 = 0x018a278f7faab55a (8 bytes)

 N2 = 0x25a8991cd700ac01 (8 bytes)

 Input to Base64 encoding:

 0x08 018a278f7faab55a 08 25a8991cd700ac01

 RAW_STRING = b64'CAGKJ49/qrVaCCWomRzXAKwB'

 EXTENDED_NONCE expressed in CBOR diagnostic notation

 EXTENDED_NONCE = h'08018a278f7faab55a0825a8991cd700ac01'

 EXTENDED_NONCE as CBOR encoded byte string

 EXTENDED_NONCE = 0x52 08018a278f7faab55a0825a8991cd700ac01

¶

1.

CRED_R is the AUTH_CRED_RS that AS indicated in the access

token response (see Section 3.2), when providing C with the

first access token of the token series comprising the access

token just uploaded to RS.

RS refers to the stored state of a completed EDHOC execution

where the authentication credential AUTH_CRED_C was used as

CRED_I. In case of multiple matching EDHOC executions, RS

considers the state of the EDHOC execution that, among the

matching ones, has completed latest.

With reference to the EDHOC state determined at the previous

step, C and RS invoke the EDHOC-KeyUpdate function (see

Appendix I of [I-D.ietf-lake-edhoc]), specifying the CBOR byte

string EXTENDED_NONCE as "context" argument. This results in

updating the secret key PRK_out to be considered from here on

for this EDHOC state.

With reference to the same EDHOC state as above, C and RS

update the secret key PRK_Exporter as per Section 4.2.1 of

[I-D.ietf-lake-edhoc]. In particular, the key PRK_out derived

at step 2 is specified as "PRK_out" argument. This results in

updating the secret key PRK_Exporter to be considered from here

on for this EDHOC state.

C and RS establish a new OSCORE Security Context as defined in

Section 4.3, just like if they had completed an EDHOC

execution. Note that, since C and RS have not re-run the EDHOC

protocol, they preserve their same OSCORE identifiers, i.e.,

their OSCORE Sender/Recipient IDs.

RS associates the posted access token with the OSCORE Security

Context established at step 4. In case C has in fact re-posted

a still valid access token, RS also discards the old OSCORE

Security Context previously associated with that access token.

Hereafter, C and RS use the OSCORE Security Context established

at step 4 to protect their communications.

6. Secure Communication with AS

As specified in the ACE framework (see Sections 5.8 and 5.9 of

[RFC9200]), the requesting entity (RS and/or C) and AS communicates

via the /token or /introspect endpoint. When using this profile, the

use of CoAP [RFC7252] and OSCORE [RFC8613] for this communication is

RECOMMENDED. Other protocols fulfilling the security requirements

defined in Section 5 of [RFC9200] (such as HTTP and DTLS or TLS) MAY

be used instead.

¶

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#appendix-I
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-4.2.1
https://rfc-editor.org/rfc/rfc9200#section-5.8
https://rfc-editor.org/rfc/rfc9200#section-5.9
https://rfc-editor.org/rfc/rfc9200#section-5

If OSCORE is used, the requesting entity and AS need to have a

OSCORE Security Context in place. While this can be pre-installed,

the requesting entity and AS can establish such an OSCORE Security

Context, for example, by running the EDHOC protocol, as shown

between C and AS by the examples in Appendix A.1, Appendix A.2 and

Appendix A.3. The requesting entity and AS communicate through the /

token endpoint as specified in Section 5.8 of [RFC9200] and through

the /introspect endpoint as specified in Section 5.9 of [RFC9200].

Furthermore, as defined in Section 3.2 and shown by the example in

Appendix A.3, AS may upload the access token to the /authz-info

endpoint at RS, on behalf of C. In such a case, that exchange

between AS and RS is not protected, just like when C uploads the

access token to RS by itself.

7. Discarding the Security Context

There are a number of cases where C or RS have to discard the OSCORE

Security Context, and possibly establish a new one.

C MUST discard the current OSCORE Security Context shared with RS

when any of the following occurs.

The OSCORE Sender Sequence Number space of C gets exhausted.

The access token associated with the OSCORE Security Context

becomes invalid, for example due to expiration or revocation.

C receives a number of 4.01 (Unauthorized) responses to OSCORE-

protected requests sent to RS and protected using the same OSCORE

Security Context. The exact number of such received responses

needs to be specified by the application.

C receives a nonce N2 in the 2.01 (Created) response to an

unprotected POST request to the /authz-info endpoint at RS, when

re-posting a still valid access token associated with the

existing OSCORE Security context together with a nonce N1, in

order to trigger the use of the EDHOC-KeyUpdate function (see

Section 5).

The authentication credential of C (of RS) becomes invalid (e.g.,

due to expiration or revocation), and it was used as CRED_I

(CRED_R) in the EDHOC execution whose PRK_out was used to

establish the OSCORE Security Context.

RS MUST discard the current OSCORE Security Context shared with C

when any of the following occurs:

The OSCORE Sender Sequence Number space of RS gets exhausted.

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

¶

* ¶

https://rfc-editor.org/rfc/rfc9200#section-5.8
https://rfc-editor.org/rfc/rfc9200#section-5.9

The access token associated with the OSCORE Security Context

becomes invalid, for example due to expiration or revocation.

The current OSCORE Security Context shared with C has been

successfully replaced with a newer one, following an unprotected

POST request to the /authz-info endpoint at RS that re-posted a

still valid access token together with a nonce N1, in order to

trigger the use of the EDHOC-KeyUpdate function (see Section 5).

The authentication credential of C (of RS) becomes invalid (e.g.,

due to expiration or revocation), and it was used as CRED_I

(CRED_R) in the EDHOC execution whose PRK_out was used to

establish the OSCORE Security Context.

After a new access token is successfully uploaded to RS, and a new

OSCORE Security Context is established between C and RS, messages

still in transit that were protected with the previous OSCORE

Security Context might not be successfully verified by the

recipient, since the old OSCORE Security Context might have been

discarded. This means that messages sent shortly before C has

uploaded the new access token to RS might not be successfully

accepted by the recipient.

Furthermore, implementations may want to cancel CoAP observations at

RS, if registered before the new OSCORE Security Context has been

established. Alternatively, applications need to implement a

mechanism to ensure that, from then on, messages exchanged within

those observations are going to be protected with the newly derived

OSCORE Security Context.

8. Security Considerations

This document specifies a profile for the Authentication and

Authorization for Constrained Environments (ACE) framework

[RFC9200]. Thus, the general security considerations from the ACE

framework also apply to this profile.

Furthermore, the security considerations from OSCORE [RFC8613] and

from EDHOC [I-D.ietf-lake-edhoc] also apply to this specific use of

the OSCORE and EDHOC protocols.

As previously stated, once completed the EDHOC execution, C and RS

are mutually authenticated through their respective authentication

credentials, whose retrieval has been facilitated by AS. Also once

completed the EDHOC execution, C and RS have established a long-term

secret key PRK_out enjoying forward secrecy. This is in turn used by

C and RS to establish an OSCORE Security Context.

Furthermore, RS achieves confirmation that C has PRK_out (proof-of-

possession) when completing the EDHOC execution. Rather, C achieves

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

confirmation that RS has PRK_out (proof-of-possession) either when

receiving the optional EDHOC message_4 from RS, or when successfully

verifying a response from RS protected with the established OSCORE

Security Context.

OSCORE is designed to secure point-to-point communication, providing

a secure binding between a request and the corresponding

response(s). Thus, the basic OSCORE protocol is not intended for use

in point-to-multipoint communication (e.g., enforced via multicast

or a publish-subscribe model). Implementers of this profile should

make sure that their use case of OSCORE corresponds to the expected

one, in order to prevent weakening the security assurances provided

by OSCORE.

As defined in Section 5, C can (re-)post an access token to RS and

contextually exchange two nonces N1 and N2, in order to efficiently

use the EDHOC-KeyUpdate function rather than re-running the EDHOC

protocol with RS. The use of nonces guarantees uniqueness of the new

PRK_out derived by running EDHOC_KeyUpdate. Consequently, it ensures

uniqueness of the AEAD (nonce, key) pairs later used by C and RS,

when protecting their communications with the OSCORE Security

Context established after updating PRK_out. Thus, it is REQUIRED

that the exchanged nonces are not reused with the same pair of

authentication credentials (AUTH_CRED_C, AUTH_CRED_RS), even in case

of reboot. When using this profile, it is RECOMMENDED to use a 64-

bit long random numbers as a nonce's value. Considering the birthday

paradox, the average collision for each nonce will happen after 2^32

messages, which amounts to considerably more issued access token

than it would be expected for intended applications. If applications

use something else, such as a counter, they need to guarantee that

reboot and loss of state on either node does not yield reuse of

nonces. If that is not guaranteed, nodes are susceptible to reuse of

AEAD (nonce, key) pairs, especially since an on-path attacker can

cause the use of a previously exchanged nonce N1 by replaying the

corresponding C-to-RS message.

When using this profile, it is RECOMMENDED that RS stores only one

access token per client. The use of multiple access tokens for a

single client increases the strain on RS, since it must consider

every access token associated with the client and calculate the

actual permissions that client has. Also, access tokens indicating

different or disjoint permissions from each other may lead RS to

enforce wrong permissions. If one of the access tokens expires

earlier than others, the resulting permissions may offer

insufficient protection. Developers SHOULD avoid using multiple

access tokens for a same client. Furthermore, RS MUST NOT store more

than one access token per client per PoP-key (i.e., per client's

authentication credential).

¶

¶

¶

¶

9. Privacy Considerations

This document specifies a profile for the Authentication and

Authorization for Constrained Environments (ACE) framework

[RFC9200]. Thus, the general privacy considerations from the ACE

framework also apply to this profile.

Furthermore, the privacy considerations from OSCORE [RFC8613] and

from EDHOC [I-D.ietf-lake-edhoc] also apply to this specific use of

the OSCORE and EDHOC protocols.

An unprotected response to an unauthorized request may disclose

information about RS and/or its existing relationship with C. It is

advisable to include as little information as possible in an

unencrypted response. When an OSCORE Security Context already exists

between C and RS, more detailed information may be included.

Except for the case where C attempts to update its access rights,

the (encrypted) access token is sent in an unprotected POST request

to the /authz-info endpoint at RS. Thus, if C uses the same single

access token from multiple locations, it can risk being tracked by

the access token's value even when the access token is encrypted.

As defined in Section 5, C can (re-)post an access token to RS and

contextually exchange two nonces N1 and N2, in order to efficiently

use the EDHOC-KeyUpdate function rather than re-running the EDHOC

protocol with RS. Since the exchanged nonces are also sent in the

clear, using random nonces is best for privacy, as opposed to, e.g.,

a counter that might leak some information about C.

The identifiers used in OSCORE, i.e., the OSCORE Sender/Recipient

IDs, are negotiated by C and RS during the EDHOC execution. That is,

the EDHOC Connection Identifier C_I of C is going to be the OSCORE

Recipient ID of C (the OSCORE Sender ID of RS). Conversely, the

EDHOC Connection Identifier C_R of RS is going to be the OSCORE

Recipient ID of RS (the OSCORE Sender ID of C). These OSCORE

identifiers are privacy sensitive (see Section 12.8 of [RFC8613]).

In particular, they could reveal information about C, or may be used

for correlating different requests from C, e.g., across different

networks that C has joined and left over time. This can be mitigated

if C and RS dynamically update their OSCORE identifiers, e.g., by

using the method defined in [I-D.ietf-core-oscore-key-update].

10. IANA Considerations

This document has the following actions for IANA.

Note to RFC Editor: Please replace all occurrences of "[RFC-XXXX]"

with the RFC number of this specification and delete this paragraph.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-12.8

10.1. ACE OAuth Profile Registry

IANA is asked to add the following entry to the "ACE OAuth Profile"

Registry following the procedure specified in [RFC9200].

Profile name: coap_edhoc_oscore

Profile Description: Profile for delegating client authentication

and authorization in a constrained environment by establishing an

OSCORE Security Context [RFC8613] between resource-constrained

nodes, through the execution of the authenticated key

establishment protocol EDHOC [I-D.ietf-lake-edhoc].

Profile ID: TBD (value between 1 and 255)

Change Controller: IESG

Reference: [RFC-XXXX]

10.2. OAuth Parameters Registry

IANA is asked to add the following entries to the "OAuth Parameters"

registry.

Name: "edhoc_info"

Parameter Usage Location: token request, token response

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

Name: "token_uploaded"

Parameter Usage Location: token response

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

10.3. OAuth Parameters CBOR Mappings Registry

IANA is asked to add the following entries to the "OAuth Parameters

CBOR Mappings" following the procedure specified in [RFC9200].

Name: "edhoc_info"

CBOR Key: TBD

Value Type: map

¶

* ¶

*

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

Specification Document(s): [RFC-XXXX]

Name: "token_uploaded"

CBOR Key: TBD

Value Type: simple value "true" / simple type "false"

Specification Document(s): [RFC-XXXX]

10.4. JSON Web Token Claims Registry

IANA is asked to add the following entries to the "JSON Web Token

Claims" registry following the procedure specified in [RFC7519].

Claim Name: "edhoc_info"

Claim Description: Information for EDHOC execution

Change Controller: IETF

Reference: [RFC-XXXX]

10.5. CBOR Web Token Claims Registry

IANA is asked to add the following entries to the "CBOR Web Token

Claims" registry following the procedure specified in [RFC8392].

Claim Name: "edhoc_info"

Claim Description: Information for EDHOC execution

JWT Claim Name: "edhoc_info"

Claim Key: TBD

Claim Value Type(s): map

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

10.6. JWT Confirmation Methods Registry

IANA is asked to add the following entries to the "JWT Confirmation

Methods" registry following the procedure specified in [RFC7800].

Confirmation Method Value: "x5bag"

Confirmation Method Description: An unordered bag of X.509

certificates

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

*

¶

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

Confirmation Method Value: "x5chain"

Confirmation Method Description: An ordered chain of X.509

certificates

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

Confirmation Method Value: "x5t"

Confirmation Method Description: Hash of an X.509 certificate

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

Confirmation Method Value: "x5u"

Confirmation Method Description: URI pointing to an X.509

certificate

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

Confirmation Method Value: "c5b"

Confirmation Method Description: An unordered bag of C509

certificates

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

Confirmation Method Value: "c5c"

Confirmation Method Description: An ordered chain of C509

certificates

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

Confirmation Method Value: "c5t"

Confirmation Method Description: Hash of an C509 certificate

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

Confirmation Method Value: "c5u"

Confirmation Method Description: URI pointing to a COSE_C509

containing an ordered chain of certificates

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

Confirmation Method Value: "kcwt"

Confirmation Method Description: A CBOR Web Token (CWT)

containing a COSE_Key in a 'cnf' claim

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

Confirmation Method Value: "kccs"

Confirmation Method Description: A CWT Claims Set (CCS)

containing a COSE_Key in a 'cnf' claim

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

10.7. CWT Confirmation Methods Registry

IANA is asked to add the following entries to the "CWT Confirmation

Methods" registry following the procedure specified in [RFC8747].

Confirmation Method Name: x5bag

Confirmation Method Description: An unordered bag of X.509

certificates

JWT Confirmation Method Name: "x5bag"

Confirmation Key: TBD

Confirmation Value Type(s): COSE_X509

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

Confirmation Method Name: x5chain

Confirmation Method Description: An ordered chain of X.509

certificates

JWT Confirmation Method Name: "x5chain"

Confirmation Key: TBD

Confirmation Value Type(s): COSE_X509

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

Confirmation Method Name: x5t

Confirmation Method Description: Hash of an X.509 certificate

JWT Confirmation Method Name: "x5t"

Confirmation Key: TBD

Confirmation Value Type(s): COSE_CertHash

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

Confirmation Method Name: x5u

Confirmation Method Description: URI pointing to an X.509

certificate

JWT Confirmation Method Name: "x5u"

Confirmation Key: TBD

Confirmation Value Type(s): uri

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

Confirmation Method Name: c5b

Confirmation Method Description: An unordered bag of C509

certificates

JWT Confirmation Method Name: "c5b"

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

Confirmation Key: TBD

Confirmation Value Type(s): COSE_C509

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

Confirmation Method Name: c5c

Confirmation Method Description: An ordered chain of C509

certificates

JWT Confirmation Method Name: "c5c"

Confirmation Key: TBD

Confirmation Value Type(s): COSE_C509

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

Confirmation Method Name: c5t

Confirmation Method Description: Hash of an C509 certificate

JWT Confirmation Method Name: "c5t"

Confirmation Key: TBD

Confirmation Value Type(s): COSE_CertHash

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

Confirmation Method Name: c5u

Confirmation Method Description: URI pointing to a COSE_C509

containing an ordered chain of certificates

JWT Confirmation Method Name: "c5u"

Confirmation Key: TBD

Confirmation Value Type(s): uri

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

Confirmation Method Name: kcwt

Confirmation Method Description: A CBOR Web Token (CWT)

containing a COSE_Key in a 'cnf' claim

JWT Confirmation Method Name: "kcwt"

Confirmation Key: TBD

Confirmation Value Type(s): COSE_Messages

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

Confirmation Method Name: kccs

Confirmation Method Description: A CWT Claims Set (CCS)

containing a COSE_Key in a 'cnf' claim

JWT Confirmation Method Name: "kccs"

Confirmation Key: TBD

Confirmation Value Type(s): map / #6(map)

Change Controller: IESG

Specification Document(s): [RFC-XXXX]

10.8. EDHOC External Authorization Data Registry

IANA is asked to add the following entry to the "EDHOC External

Authorization Data" registry defined in Section 9.5 of

[I-D.ietf-lake-edhoc].

Label: TBD

Message: EDHOC message_1

Description: "ead_value" specifies an access token

Reference: [RFC-XXXX]

10.9. EDHOC Information Registry

It is requested that IANA create a new registry entitled "EDHOC

Information" registry. The registry is to be created with

registration policy Expert Review [RFC8126]. Guidelines for the

experts are provided in Section 10.10. It should be noted that in

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19#section-9.5

addition to the expert review, some portions of the registry require

a specification, potentially on Standards Track, be supplied as

well.

The columns of the registry are:

Name: A descriptive name that enables easier reference to this

item. Because a core goal of this document is for the resulting

representations to be compact, it is RECOMMENDED that the name be

short.

This name is case sensitive. Names may not match other registered

names in a case-insensitive manner unless the Designated Experts

determine that there is a compelling reason to allow an

exception. The name is not used in the CBOR encoding.

CBOR Value: The value to be used as CBOR abbreviation of the

item.

The value MUST be unique. The value can be a positive integer, a

negative integer or a string. Integer values between -256 and 255

and strings of length 1 are to be registered by Standards Track

documents (Standards Action). Integer values from -65536 to -257

and from 256 to 65535 and strings of maximum length 2 are to be

registered by public specifications (Specification Required).

Integer values greater than 65535 and strings of length greater

than 2 are subject to the Expert Review policy. Integer values

less than -65536 are marked as private use.

CBOR Type: The CBOR type of the item, or a pointer to the

registry that defines its type, when that depends on another

item.

Registry: The registry that values of the item may come from, if

one exists.

Description: A brief description of this item.

Specification: A pointer to the public specification for the

item, if one exists.

This registry will be initially populated by the values in Figure 6.

The "Specification" column for all of these entries will be this

document and [I-D.ietf-lake-edhoc].

10.10. Expert Review Instructions

The IANA registry established in this document is defined to use the

registration policy Expert Review. This section gives some general

guidelines for what the experts should be looking for, but they are

¶

¶

*

¶

¶

*

¶

¶

*

¶

*

¶

* ¶

*

¶

¶

[I-D.ietf-core-oscore-edhoc]

[I-D.ietf-cose-cbor-encoded-cert]

being designated as experts for a reason so they should be given

substantial latitude.

Expert reviewers should take into consideration the following

points:

Point squatting should be discouraged. Reviewers are encouraged

to get sufficient information for registration requests to ensure

that the usage is not going to duplicate one that is already

registered and that the point is likely to be used in

deployments. The zones tagged as private use are intended for

testing purposes and closed environments; code points in other

ranges should not be assigned for testing.

Specifications are required for the Standards Action range of

point assignment. Specifications should exist for Specification

Required ranges, but early assignment before a specification is

available is considered to be permissible. Specifications are

needed for the first-come, first-serve range if they are expected

to be used outside of closed environments in an interoperable

way. When specifications are not provided, the description

provided needs to have sufficient information to identify what

the point is being used for.

Experts should take into account the expected usage of fields

when approving point assignment. The fact that there is a range

for Standards Track documents does not mean that a Standards

Track document cannot have points assigned outside of that range.

The length of the encoded value should be weighed against how

many code points of that length are left, the size of device it

will be used on, and the number of code points left that encode

to that size.

11. References

11.1. Normative References

Palombini, F., Tiloca, M., Höglund, R.,

Hristozov, S., and G. Selander, "Profiling EDHOC for CoAP

and OSCORE", Work in Progress, Internet-Draft, draft-

ietf-core-oscore-edhoc-06, 23 November 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-core-oscore-

edhoc-06>.

Mattsson, J. P., Selander, G., Raza, S., Höglund, J.,

and M. Furuhed, "CBOR Encoded X.509 Certificates (C509

Certificates)", Work in Progress, Internet-Draft, draft-

ietf-cose-cbor-encoded-cert-05, 10 January 2023,

¶

¶

*

¶

*

¶

*

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-edhoc-06
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-edhoc-06
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-edhoc-06

[I-D.ietf-lake-edhoc]

[RFC2119]

[RFC6749]

[RFC7252]

[RFC7519]

[RFC7800]

[RFC8126]

[RFC8174]

[RFC8392]

[RFC8610]

<https://datatracker.ietf.org/doc/html/draft-ietf-cose-

cbor-encoded-cert-05>.

Selander, G., Mattsson, J. P., and F.

Palombini, "Ephemeral Diffie-Hellman Over COSE (EDHOC)",

Work in Progress, Internet-Draft, draft-ietf-lake-

edhoc-19, 3 February 2023, <https://datatracker.ietf.org/

doc/html/draft-ietf-lake-edhoc-19>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/rfc/rfc6749>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/rfc/

rfc7252>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/rfc/rfc7519>.

Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-

Possession Key Semantics for JSON Web Tokens (JWTs)", RFC

7800, DOI 10.17487/RFC7800, April 2016, <https://www.rfc-

editor.org/rfc/rfc7800>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Jones, M., Wahlstroem, E., Erdtman, S., and H.

Tschofenig, "CBOR Web Token (CWT)", RFC 8392, DOI

10.17487/RFC8392, May 2018, <https://www.rfc-editor.org/

rfc/rfc8392>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

https://datatracker.ietf.org/doc/html/draft-ietf-cose-cbor-encoded-cert-05
https://datatracker.ietf.org/doc/html/draft-ietf-cose-cbor-encoded-cert-05
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc7252
https://www.rfc-editor.org/rfc/rfc7252
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7800
https://www.rfc-editor.org/rfc/rfc7800
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8392
https://www.rfc-editor.org/rfc/rfc8392

[RFC8613]

[RFC8742]

[RFC8747]

[RFC8949]

[RFC9200]

[RFC9201]

[RFC9203]

[RFC9360]

[I-D.ietf-core-oscore-key-update]

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

Selander, G., Mattsson, J., Palombini, F., and L. Seitz,

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,

<https://www.rfc-editor.org/rfc/rfc8613>.

Bormann, C., "Concise Binary Object Representation (CBOR)

Sequences", RFC 8742, DOI 10.17487/RFC8742, February

2020, <https://www.rfc-editor.org/rfc/rfc8742>.

Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.

Tschofenig, "Proof-of-Possession Key Semantics for CBOR

Web Tokens (CWTs)", RFC 8747, DOI 10.17487/RFC8747, March

2020, <https://www.rfc-editor.org/rfc/rfc8747>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/rfc/

rfc8949>.

Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S.,

and H. Tschofenig, "Authentication and Authorization for

Constrained Environments Using the OAuth 2.0 Framework

(ACE-OAuth)", RFC 9200, DOI 10.17487/RFC9200, August

2022, <https://www.rfc-editor.org/rfc/rfc9200>.

Seitz, L., "Additional OAuth Parameters for

Authentication and Authorization for Constrained

Environments (ACE)", RFC 9201, DOI 10.17487/RFC9201,

August 2022, <https://www.rfc-editor.org/rfc/rfc9201>.

Palombini, F., Seitz, L., Selander, G., and M.

Gunnarsson, "The Object Security for Constrained RESTful

Environments (OSCORE) Profile of the Authentication and

Authorization for Constrained Environments (ACE)

Framework", RFC 9203, DOI 10.17487/RFC9203, August 2022,

<https://www.rfc-editor.org/rfc/rfc9203>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Header Parameters for Carrying and Referencing X.509

Certificates", RFC 9360, DOI 10.17487/RFC9360, February

2023, <https://www.rfc-editor.org/rfc/rfc9360>.

11.2. Informative References

Höglund, R. and M. Tiloca, "Key

Update for OSCORE (KUDOS)", Work in Progress, Internet-

Draft, draft-ietf-core-oscore-key-update-03, 24 October

https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/rfc/rfc8613
https://www.rfc-editor.org/rfc/rfc8742
https://www.rfc-editor.org/rfc/rfc8747
https://www.rfc-editor.org/rfc/rfc8949
https://www.rfc-editor.org/rfc/rfc8949
https://www.rfc-editor.org/rfc/rfc9200
https://www.rfc-editor.org/rfc/rfc9201
https://www.rfc-editor.org/rfc/rfc9203
https://www.rfc-editor.org/rfc/rfc9360

[RFC4949]

[RFC8446]

[RFC9110]

[RFC9147]

2022, <https://datatracker.ietf.org/doc/html/draft-ietf-

core-oscore-key-update-03>.

Shirey, R., "Internet Security Glossary, Version 2", FYI

36, RFC 4949, DOI 10.17487/RFC4949, August 2007,

<https://www.rfc-editor.org/rfc/rfc4949>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>.

Rescorla, E., Tschofenig, H., and N. Modadugu, "The

Datagram Transport Layer Security (DTLS) Protocol Version

1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,

<https://www.rfc-editor.org/rfc/rfc9147>.

Appendix A. Examples

This appendix provides examples where this profile of ACE is used.

In particular:

Appendix A.1 does not make use of use of any optimization.

Appendix A.2 makes use of the optimizations defined in this

specification, hence reducing the roundtrips of the interactions

between the Client and the Resource Server.

Appendix A.3 does not make use of any optimization, but consider

an alternative workflow where AS uploads the access token to RS.

All these examples build on the following assumptions, as relying on

expected early procedures performed at AS. These include the

registration of RSs by the respective Resource Owners as well as the

registrations of Clients authorized to request access token for

those RSs.

AS knows the authentication credential AUTH_CRED_C of the Client

C.

The Client knows the authentication credential AUTH_CRED_AS of

AS.

AS knows the authentication credential AUTH_CRED_RS of RS.

RS knows the authentication credential AUTH_CRED_AS of AS.

¶

* ¶

*

¶

*

¶

¶

*

¶

*

¶

* ¶

* ¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-key-update-03
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-key-update-03
https://www.rfc-editor.org/rfc/rfc4949
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9147

This is relevant in case AS and RS actually require a secure

association (e.g., for RS to perform token introspection at AS,

or for AS to upload an access token to RS on behalf of the

Client).

As a result of the assumptions above, it is possible to limit the

transport of AUTH_CRED_C and AUTH_CRED_RS by value only to the

following two cases, and only when the Client requests an access

token for RS in question for the first time when considering the

pair (AUTH_CRED_C, AUTH_CRED_RS).

In the Token Response from AS to the Client, where AUTH_CRED_RS

is specified by the 'rs_cnf' parameter.

In the access token, where AUTH_CRED_C is specified by the 'cnf'

claim.

Note that, even under the circumstances mentioned above, AUTH_CRED_C

might rather be indicated by reference. This is possible if RS can

effectively use such a reference from the access token to retrieve

AUTH_CRED_C (e.g., from a trusted repository of authentication

credentials reachable through a non-constrained link), and if AS is

in turn aware of that.

In any other case, it is otherwise possible to indicate both

AUTH_CRED_C and AUTH_CRED_RS by reference, when performing the ACE

access control workflow as well as later on when the Client and RS

run EDHOC.

A.1. Workflow without Optimizations

The example below considers the simplest (though least efficient)

interaction between the Client and RS. That is: first C uploads the

access token to RS; then C and RS run EDHOC; and, finally, the

Client accesses the protected resource at RS.

¶

¶

*

¶

*

¶

¶

¶

¶

 C AS RS

 | | |

 | EDHOC message_1 to /edhoc | |

M01 |--------------------------------->| |

 | | |

 | | |

 | EDHOC message_2 | |

M02 |<---------------------------------| |

 | ID_CRED_R identifies | |

 | CRED_R = AUTH_CRED_AS | |

 | by reference | |

 | | |

 | | |

 | EDHOC message_3 to /edhoc | |

M03 |--------------------------------->| |

 | ID_CRED_I identifies | |

 | CRED_I = AUTH_CRED_C | |

 | by reference | |

 | | |

 | | |

 | Token request to /token | |

 | (OSCORE-protected message) | |

M04 |--------------------------------->| |

 | 'req_cnf' identifies | |

 | AUTH_CRED_C by reference | |

 | | |

 | | |

 | Token response | |

 | (OSCORE-protected message) | |

M05 |<---------------------------------| |

 | 'rs_cnf' specifies | |

 | AUTH_CRED_RS by value | |

 | | |

 | 'ace_profile' = | |

 | coap_edhoc_oscore | |

 | | |

 | 'edhoc_info' specifies: | |

 | { | |

 | id : h'01', | |

 | cipher_suites : 2, | |

 | methods : 3 | |

 | } | |

 | | |

 | In the access token: | |

 | * the 'cnf' claim specifies | |

 | AUTH_CRED_C by value | |

 | * the 'edhoc_info' claim | |

 | specifies the same as | |

 | 'edhoc_info' above | |

 | | |

 // Possibly after chain verification, the Client adds AUTH_CRED_RS

 // to the set of its trusted peer authentication credentials,

 // relying on AS as trusted provider

 | | |

 | Token upload to /authz-info | |

 | (unprotected message) | |

M06 |-->|

 | | |

 // Possibly after chain verification, RS adds AUTH_CRED_C

 // to the set of its trusted peer authentication credentials,

 // relying on AS as trusted provider

 | | |

 | 2.01 (Created) | |

 | (unprotected message) | |

M07 |<--|

 | | |

 | | |

 | EDHOC message_1 to /edhoc | |

 | (no access control is enforced) | |

M08 |-->|

 | | |

 | | |

 | EDHOC message_2 | |

M09 |<--|

 | ID_CRED_R identifies | |

 | CRED_R = AUTH_CRED_RS | |

 | by reference | |

 | | |

 | | |

 | EDHOC message_3 to /edhoc | |

 | (no access control is enforced) | |

M10 |-->|

 | ID_CRED_I identifies | |

 | CRED_I = AUTH_CRED_C | |

 | by reference | |

 | | |

 | | |

 | Access to protected resource | |

 | (OSCORE-protected message) | |

 | (access control is enforced) | |

M11 |-->|

 | | |

 | Response | |

 | (OSCORE-protected message) | |

M12 |<--|

 | | |

 // Later on, the access token expires ...

 // - The Client and RS delete their OSCORE Security Context and

 // purge the EDHOC session used to derive it (unless the same

 // session is also used for other reasons).

 // - RS retains AUTH_CRED_C as still valid,

 // and AS knows about it.

 // - The Client retains AUTH_CRED_RS as still valid,

 // and AS knows about it.

 | | |

 | | |

 // Time passes ...

 | | |

 | | |

 // The Client asks for a new access token; now all the

 // authentication credentials can be indicated by reference

 // The price to pay is on AS, about remembering that at least

 // one access token has been issued for the pair (Client, RS)

 // and considering the pair (AUTH_CRED_C, AUTH_CRED_RS)

 | | |

 | Token request to /token | |

 | (OSCORE-protected message) | |

M13 |--------------------------------->| |

 | 'req_cnf' identifies | |

 | CRED_I = AUTH_CRED_C | |

 | by reference | |

 | | |

 | | |

 | Token response | |

 | (OSCORE-protected message) | |

M14 |<---------------------------------| |

 | 'rs_cnf' identifies | |

 | AUTH_CRED_RS by reference | |

 | | |

 | 'ace_profile' = | |

 | coap_edhoc_oscore | |

 | | |

 | 'edhoc_info' specifies: | |

 | { | |

 | id : h'05', | |

 | cipher_suites : 2, | |

 | methods : 3 | |

 | } | |

 | | |

 | In the access token: | |

 | * the 'cnf' claim specifies | |

 | AUTH_CRED_C by reference | |

 | * the 'edhoc_info' claim | |

 | specifies the same as | |

 | 'edhoc_info' above | |

 | | |

 | | |

 | Token upload to /authz-info | |

 | (unprotected message) | |

M15 |-->|

 | | |

 | | |

 | 2.01 (Created) | |

 | (unprotected message) | |

M16 |<--|

 | | |

 | | |

 | EDHOC message_1 to /edhoc | |

 | (no access control is enforced) | |

M17 |-->|

 | | |

 | | |

 | EDHOC message_2 | |

 | (no access control is enforced) | |

M18 |<--|

 | ID_CRED_R specifies | |

 | CRED_R = AUTH_CRED_RS | |

 | by reference | |

 | | |

 | | |

 | EDHOC message_3 to /edhoc | |

 | (no access control is enforced) | |

M19 |-->|

 | ID_CRED_I identifies | |

 | CRED_I = AUTH_CRED_C | |

 | by reference | |

 | | |

 | | |

 | Access to protected resource /r | |

 | (OSCORE-protected message) | |

 | (access control is enforced) | |

M20 |-->|

 | | |

 | | |

 | Response | |

 | (OSCORE-protected message) | |

M21 |<--|

 | | |

¶

A.2. Workflow with Optimizations

The example below builds on the example in Appendix A.1, while

additionally relying on the two following optimizations.

The access token is not separately uploaded to the /authz-info

endpoint at RS, but rather included in the EAD_1 field of EDHOC

message_1 sent by the C to RS.

The Client uses the EDHOC+OSCORE request defined in

[I-D.ietf-core-oscore-edhoc] is used, when running EDHOC both

with AS and with RS.

These two optimizations used together result in the most efficient

interaction between the C and RS, as consisting of only two

roundtrips to upload the access token, run EDHOC and access the

protected resource at RS.

Also, a further optimization is used upon uploading a second access

token to RS, following the expiration of the first one. That is,

after posting the second access token, the Client and RS do not run

EDHOC again, but rather EDHOC-KeyUpdate() and EDHOC-Exporter()

building on the same, previously completed EDHOC execution.

¶

*

¶

*

¶

¶

¶

 C AS RS

 | | |

 | EDHOC message_1 to /edhoc | |

M01 |--------------------------------->| |

 | | |

 | | |

 | EDHOC message_2 | |

M02 |<---------------------------------| |

 | ID_CRED_R identifies | |

 | CRED_R = AUTH_CRED_AS | |

 | by reference | |

 | | |

 | | |

 | EDHOC+OSCORE request to /token | |

M03 |--------------------------------->| |

 | * EDHOC message_3 | |

 | ID_CRED_I identifies | |

 | CRED_I = AUTH_CRED_C | |

 | by reference | |

 | --- --- --- | |

 | * OSCORE-protected part | |

 | Token request | |

 | 'req_cnf' identifies | |

 | AUTH_CRED_C by reference | |

 | | |

 | | |

 | Token response | |

 | (OSCORE-protected message) | |

M04 |<---------------------------------| |

 | 'rs_cnf' specifies | |

 | AUTH_CRED_RS by value | |

 | | |

 | 'ace_profile' = | |

 | coap_edhoc_oscore | |

 | | |

 | 'edhoc_info' specifies: | |

 | { | |

 | id : h'01', | |

 | cipher_suites : 2, | |

 | methods : 3 | |

 | } | |

 | | |

 | In the access token: | |

 | * the 'cnf' claim specifies | |

 | AUTH_CRED_C by value | |

 | * the 'edhoc_info' claim | |

 | specifies the same as | |

 | 'edhoc_info' above | |

 | | |

 // Possibly after chain verification, the Client adds AUTH_CRED_RS

 // to the set of its trusted peer authentication credentials,

 // relying on AS as trusted provider

 | | |

 | EDHOC message_1 to /edhoc | |

 | (no access control is enforced) | |

M05 |-->|

 | Access token specified in EAD_1 | |

 | | |

 // Possibly after chain verification, RS adds AUTH_CRED_C

 // to the set of its trusted peer authentication credentials,

 // relying on AS as trusted provider

 | | |

 | EDHOC message_2 | |

M06 |<--|

 | ID_CRED_R identifies | |

 | CRED_R = AUTH_CRED_RS | |

 | by reference | |

 | | |

 | | |

 | EDHOC+OSCORE request to /r | |

M07 |-->|

 | * EDHOC message_3 | |

 | ID_CRED_I identifies | |

 | CRED_I = AUTH_CRED_C | |

 | by reference | |

 | --- --- --- | |

 | * OSCORE-protected part | |

 | Application request to /r | |

 | | |

 // After the EDHOC processing is completed, access control

 // is enforced on the rebuilt OSCORE-protected request,

 // like if it had been sent stand-alone

 | | |

 | Response | |

 | (OSCORE-protected message) | |

M08 |<--|

 | | |

 // Later on, the access token expires ...

 // - The Client and RS delete their OSCORE Security Context

 // but do not purge the EDHOC session used to derive it.

 // - RS retains AUTH_CRED_C as still valid,

 // and AS knows about it.

 // - The Client retains AUTH_CRED_RS as still valid,

 // and AS knows about it.

 | | |

 | | |

 // Time passes ...

 | | |

 | | |

 // The Client asks for a new access token; now all the

 // authentication credentials can be indicated by reference

 // The price to pay is on AS, about remembering that at least

 // one access token has been issued for the pair (Client, RS)

 // and considering the pair (AUTH_CRED_C, AUTH_CRED_RS)

 | | |

 | Token request to /token | |

 | (OSCORE-protected message) | |

M09 |--------------------------------->| |

 | 'req_cnf' identifies | |

 | CRED_I = AUTH_CRED_C | |

 | by reference | |

 | | |

 | Token response | |

 | (OSCORE-protected message) | |

M10 |<---------------------------------| |

 | 'rs_cnf' identifies | |

 | AUTH_CRED_RS by reference | |

 | | |

 | 'ace_profile' = | |

 | coap_edhoc_oscore | |

 | | |

 | 'edhoc_info' specifies: | |

 | { | |

 | id : h'05', | |

 | cipher_suites : 2, | |

 | methods : 3 | |

 | } | |

 | | |

 | In the access token: | |

 | * the 'cnf' claim specifies | |

 | AUTH_CRED_C by reference | |

 | * the 'edhoc_info' claim | |

 | specifies the same as | |

 | 'edhoc_info' above | |

 | | |

 | | |

 | Token upload to /authz-info | |

 | (unprotected message) | |

M11 |-->|

 | Payload { | |

 | access_token : access token | |

 | nonce_1 : N1 // nonce | |

 | } | |

 | | |

 | | |

 | 2.01 (Created) | |

 | (unprotected message) | |

M12 |<--|

 | Payload { | |

 | nonce_2 : N2 // nonce | |

 | } | |

 | | |

 // The Client and RS first run EDHOC-KeyUpdate(N1 | N2), and

 // then EDHOC-Exporter() to derive a new OSCORE Master Secret and

 // OSCORE Master Salt, from which a new OSCORE Security Context is

 // derived. The Sender/Recipient IDs are the same C_I and C_R from

 // the previous EDHOC execution

 | | |

 | Access to protected resource /r | |

 | (OSCORE-protected message) | |

 | (access control is enforced) | |

M13 |-->|

 | | |

 | | |

 | Response | |

 | (OSCORE-protected message) | |

M14 |<--|

 | | |

¶

A.3. Workflow without Optimizations (AS token posting)

The example below builds on the example in Appendix A.1, but assumes

that AS is uploading the access token to RS on behalf of C.

In order to save roundtrips between the Client and RS, further, more

efficient interactions can be seamlessly considered, e.g., as per

the example in Appendix A.2.

¶

¶

 C AS RS

 | | |

 | | Establish secure association |

 | | (e.g., OSCORE using EDHOC) |

 | |<---------------------------->|

 | | |

 | | |

 | EDHOC message_1 to /edhoc | |

M01 |--------------------------------->| |

 | | |

 | | |

 | EDHOC message_2 | |

M02 |<---------------------------------| |

 | ID_CRED_R identifies | |

 | CRED_R = AUTH_CRED_AS | |

 | by reference | |

 | | |

 | | |

 | EDHOC message_3 to /edhoc | |

M03 |--------------------------------->| |

 | ID_CRED_I identifies | |

 | CRED_I = AUTH_CRED_C | |

 | by reference | |

 | | |

 | | |

 | Token request to /token | |

 | (OSCORE-protected message) | |

M04 |--------------------------------->| |

 | 'req_cnf' identifies | |

 | AUTH_CRED_C by reference | |

 | | |

 | | |

 | | Token upload to /authz-info |

M05 | |----------------------------->|

 | | In the access token: |

 | | * the 'cnf' claim |

 | | specifies AUTH_CRED_C |

 | | by value |

 | | * the 'edhoc_info' |

 | | claim specifies |

 | | { |

 | | id : h'01', |

 | | cipher_suites : 2, |

 | | methods: 3 |

 | | } |

 | | |

 // Possibly after chain verification, RS adds AUTH_CRED_C

 // to the set of its trusted peer authentication credentials,

 // relying on AS as trusted provider

 | | |

 | | 2.01 (Created) |

M06 | |<-----------------------------|

 | | |

 | | |

 | Token response | |

 | (OSCORE-protected message) | |

M07 |<---------------------------------| |

 | 'rs_cnf' specifies | |

 | AUTH_CRED_RS by value | |

 | | |

 | 'ace_profile' = | |

 | coap_edhoc_oscore | |

 | | |

 | 'token_uploaded' = true | |

 | | |

 | 'edhoc_info' specifies: | |

 | { | |

 | id : h'01', | |

 | cipher_suites : 2, | |

 | methods : 3 | |

 | } | |

 | | |

 // Possibly after chain verification, the Client adds AUTH_CRED_RS

 // to the set of its trusted peer authentication credentials,

 // relying on AS as trusted provider

 | | |

 | EDHOC message_1 to /edhoc | |

 | (no access control is enforced) | |

M08 |-->|

 | | |

 | | |

 | EDHOC message_2 | |

M09 |<--|

 | ID_CRED_R identifies | |

 | CRED_R = AUTH_CRED_RS | |

 | by reference | |

 | | |

 | | |

 | EDHOC message_3 to /edhoc | |

 | (no access control is enforced) | |

M10 |-->|

 | ID_CRED_I identifies | |

 | CRED_I = AUTH_CRED_C | |

 | by reference | |

 | | |

 | | |

 | Access to protected resource | |

 | (OSCORE-protected message) | |

 | (access control is enforced) | |

M11 |-->|

 | | |

 | | |

 | Response | |

 | (OSCORE-protected message) | |

M12 |<--|

 | | |

 // Later on, the access token expires ...

 // - The Client and RS delete their OSCORE Security Context and

 // purge the EDHOC session used to derive it (unless the same

 // session is also used for other reasons).

 // - RS retains AUTH_CRED_C as still valid,

 // and AS knows about it.

 // - The Client retains AUTH_CRED_RS as still valid,

 // and AS knows about it.

 | | |

 | | |

 // Time passes ...

 | | |

 | | |

 // The Client asks for a new access token; now all the

 // authentication credentials can be indicated by reference

 // The price to pay is on AS, about remembering that at least

 // one access token has been issued for the pair (Client, RS)

 // and considering the pair (AUTH_CRED_C, AUTH_CRED_RS)

 | | |

 | Token request to /token | |

 | (OSCORE-protected message) | |

M13 |--------------------------------->| |

 | 'req_cnf' identifies | |

 | CRED_I = AUTH_CRED_C | |

 | by reference | |

 | | |

 | | |

 | | Token upload to /authz-info |

M14 | |----------------------------->|

 | | In the access token: |

 | | * the 'cnf' claim |

 | | specifies AUTH_CRED_C |

 | | by reference |

 | | * the 'edhoc_info' |

 | | claim specifies |

 | | { |

 | | id : h'05', |

 | | cipher_suites : 2, |

 | | methods : 3 |

 | | } |

 | | |

 | | |

 | | 2.01 (Created) |

M15 | |<-----------------------------|

 | | |

 | | |

 | Token response | |

 | (OSCORE-protected message) | |

M16 |<---------------------------------| |

 | 'rs_cnf' specifies | |

 | AUTH_CRED_RS by reference | |

 | | |

 | 'ace_profile' = | |

 | coap_edhoc_oscore | |

 | | |

 | 'token_uploaded' = true | |

 | | |

 | 'edhoc_info' specifies: | |

 | { | |

 | id : h'05', | |

 | cipher_suites : 2, | |

 | methods : 3 | |

 | } | |

 | | |

 | | |

 | EDHOC message_1 to /edhoc | |

 | (no access control is enforced) | |

M17 |-->|

 | | |

 | | |

 | EDHOC message_2 | |

 | (no access control is enforced) | |

M18 |<--|

 | ID_CRED_R specifies | |

 | CRED_R = AUTH_CRED_RS | |

 | by reference | |

 | | |

 | | |

 | EDHOC message_3 to /edhoc | |

 | (no access control is enforced) | |

M19 |-->|

 | ID_CRED_I identifies | |

 | CRED_I = AUTH_CRED_C | |

 | by reference | |

 | | |

 | | |

 | Access to protected resource /r | |

 | (OSCORE-protected message) | |

 | (access control is enforced) | |

M20 |-->|

 | | |

 | | |

 | Response | |

 | (OSCORE-protected message) | |

M21 |<--|

 | | |

¶

Appendix B. Profile Requirements

This section lists the specifications of this profile based on the

requirements of the framework, as requested in Appendix C of

[RFC9200].

Optionally, define new methods for the client to discover the

necessary permissions and AS for accessing a resource, different

from the one proposed in [RFC9200]: Not specified

Optionally, specify new grant types: Not specified

Optionally, define the use of client certificates as client

credential type: C can use authentication credentials of any type

admitted by the EDHOC protocol, including public key certificates

such as X.509 and C509 certificates.

Specify the communication protocol the client and RS must use:

CoAP

Specify the security protocol the client and RS must use to

protect their communication: OSCORE

Specify how the client and the RS mutually authenticate:

Explicitly, by successfully executing the EDHOC protocol, after

which a common OSCORE Security Context is established from the

EDHOC session keying material. As per the EDHOC authentication

method used during the EDHOC session, authentication is provided

by digital signatures, or by Message Authentication Codes (MACs)

computed from an ephemeral-static ECDH shared secret.

Specify the proof-of-possession protocol(s) and how to select

one, if several are available. Also specify which key types

(e.g., symmetric/asymmetric) are supported by a specific proof-

of- possession protocol: proof-of-possession is first achieved by

RS when successfully processing EDHOC message_3 during the EDHOC

execution with C, through EDHOC algorithms and symmetric EDHOC

session keys. Also, proof-of-possession is later achieved by C

when receiving from RS: i) the optional EDHOC message_4 during

the EDHOC execution with RS, through EDHOC algorithms and

symmetric EDHOC session keys; or ii) the first response protected

with the OSCORE Security Context established after the EDHOC

execution with RS, through OSCORE algorithms and OSCORE symmetric

keys derived from the completed EDHOC session.

Specify a unique ace_profile identifier: coap_edhoc_oscore

If introspection is supported, specify the communication and

security protocol for introspection: HTTP/CoAP (+ TLS/DTLS/

OSCORE)

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

https://rfc-editor.org/rfc/rfc9200#appendix-C

Specify the communication and security protocol for interactions

between client and AS: HTTP/CoAP (+ TLS/DTLS/OSCORE)

Specify if/how the authz-info endpoint is protected, including

how error responses are protected: Not protected

Optionally, define methods of token transport other than the

authz-info endpoint: C can upload the access token when executing

EDHOC with RS, by including the access token in the EAD_1 field

of EDHOC message_1 (see Section 4.3).

Appendix C. Document Updates

RFC EDITOR: PLEASE REMOVE THIS SECTION.

C.1. Version -00 to -01

Fixed semantics of the ead_value for transporting an Access Token

in the EAD_1 field.

Error handling aligned with EDHOC.

Precise characterization of the EDHOC execution considered for

EDHOC-KeyUpdate.

Fixed message exchange examples.

Added appendix with profile requirements.

Updated references.

Clarifications and editorial improvements.

Acknowledgments

The authors sincerely thank Christian Amsüss and Carsten Bormann for

their comments and feedback.

Work on this document has in part been supported by the H2020

project SIFIS-Home (grant agreement 952652).

Authors' Addresses

Göran Selander

Ericsson

Email: goran.selander@ericsson.com

John Preuß Mattsson

Ericsson

*

¶

*

¶

*

¶

¶

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

mailto:goran.selander@ericsson.com

Email: john.mattsson@ericsson.com

Marco Tiloca

RISE

Email: marco.tiloca@ri.se

Rikard Höglund

RISE

Email: rikard.hoglund@ri.se

mailto:john.mattsson@ericsson.com
mailto:marco.tiloca@ri.se
mailto:rikard.hoglund@ri.se

	Ephemeral Diffie-Hellman Over COSE (EDHOC) and Object Security for Constrained Environments (OSCORE) Profile for Authentication and Authorization for Constrained Environments (ACE)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Protocol Overview
	3. Client-AS Communication
	3.1. C-to-AS: POST to /token endpoint
	3.2. AS-to-C: Access Token Response
	3.3. The EDHOC_Information

	4. Client-RS Communication
	4.1. C-to-RS: POST to /authz-info endpoint
	4.2. RS-to-C: 2.01 (Created)
	4.3. EDHOC Execution and Setup of OSCORE Security Context
	4.4. Access Rights Verification

	5. Use of EDHOC-KeyUpdate
	6. Secure Communication with AS
	7. Discarding the Security Context
	8. Security Considerations
	9. Privacy Considerations
	10. IANA Considerations
	10.1. ACE OAuth Profile Registry
	10.2. OAuth Parameters Registry
	10.3. OAuth Parameters CBOR Mappings Registry
	10.4. JSON Web Token Claims Registry
	10.5. CBOR Web Token Claims Registry
	10.6. JWT Confirmation Methods Registry
	10.7. CWT Confirmation Methods Registry
	10.8. EDHOC External Authorization Data Registry
	10.9. EDHOC Information Registry
	10.10. Expert Review Instructions

	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. Examples
	A.1. Workflow without Optimizations
	A.2. Workflow with Optimizations
	A.3. Workflow without Optimizations (AS token posting)

	Appendix B. Profile Requirements
	Appendix C. Document Updates
	C.1. Version -00 to -01

	Acknowledgments
	Authors' Addresses

