
Workgroup: ACE Working Group

Internet-Draft:

draft-ietf-ace-key-groupcomm-09

Published: September 4, 2020

Intended Status: Standards Track

Expires: March 8, 2021

Authors: F. Palombini

Ericsson AB

M. Tiloca

RISE AB

Key Provisioning for Group Communication using ACE

Abstract

This document defines message formats and procedures for requesting

and distributing group keying material using the ACE framework, to

protect communications between group members.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/ace-wg/ace-key-groupcomm.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on March 8, 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/ace-wg/ace-key-groupcomm
https://github.com/ace-wg/ace-key-groupcomm
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Overview

3. Authorization to Join a Group

3.1. Authorization Request

3.2. Authorization Response

3.3. Token Post

4. Keying Material Provisioning and Group Membership Management

4.1. Interface at the KDC

4.2. Retrieval of Group Names and URIs

4.3. Joining Exchange

4.4. Retrieval of Updated Keying Material

4.5. Requesting a Change of Keying Material

4.6. Retrieval of Public Keys and Roles for Group Members

4.7. Update of Public Key

4.8. Retrieval of Group Policies

4.9. Retrieval of Keying Material Version

4.10. Group Leaving Request

5. Removal of a Node from the Group

6. ACE Groupcomm Parameters

7. Security Considerations

7.1. Update of Keying Material

7.2. Block-Wise Considerations

8. IANA Considerations

8.1. Media Type Registrations

8.2. CoAP Content-Formats Registry

8.3. OAuth Parameters Registry

8.4. OAuth Parameters CBOR Mappings Registry

8.5. ACE Groupcomm Parameters Registry

8.6. ACE Groupcomm Key Registry

8.7. ACE Groupcomm Profile Registry

8.8. ACE Groupcomm Policy Registry

8.9. Sequence Number Synchronization Method Registry

8.10. Interface Description (if=) Link Target Attribute Values

Registry

8.11. Expert Review Instructions

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Requirements on Application Profiles

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Appendix B. Document Updates

B.1. Version -04 to -05

B.2. Version -03 to -04

B.3. Version -02 to -03

B.4. Version -01 to -02

B.5. Version -00 to -01

Acknowledgments

Authors' Addresses

1. Introduction

This document expands the ACE framework [I-D.ietf-ace-oauth-authz]

to define the message exchanges used to request, distribute and

renew the keying material in a group communication scenario, e.g.

based on multicast [I-D.ietf-core-groupcomm-bis] or on publishing-

subscribing [I-D.ietf-core-coap-pubsub]. The ACE framework is based

on CBOR [RFC7049], so CBOR is the format used in this specification.

However, using JSON [RFC8259] instead of CBOR is possible, using the

conversion method specified in Sections 4.1 and 4.2 of [RFC7049].

Profiles that use group communication can build on this document, by

defining a number of details such as the exact group communication

protocol and security protocols used. The specific list of details a

profile needs to define is shown in Appendix A.

If the application requires backward and forward security, new

keying material is generated and distributed to the group upon

membership changes. A key management scheme performs the actual

distribution of the new keying material to the group. In particular,

the key management scheme rekeys the current group members when a

new node joins the group, and the remaining group members when a

node leaves the group. Rekeying mechanisms can be based on

[RFC2093], [RFC2094] and [RFC2627].

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Readers are expected to be familiar with the terms and concepts

described in [I-D.ietf-ace-oauth-authz][I-D.ietf-cose-rfc8152bis-

struct][I-D.ietf-cose-rfc8152bis-algs], such as Authorization Server

(AS) and Resource Server (RS).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

This document uses names or identifiers for groups and nodes. Their

different meanings are summarized here:

"Group name" is the invariant once established identifier of the

group. It is used in the communication between AS, RS and Client

to identify the group.

"GROUPNAME" is the invariant once established text string used in

URIs. GROUPNAME maps to the group name of a group, although it is

not necessarily the same.

"Group identifier" is the identifier of the group keying

material. Opposite to group name and GROUPNAME, this identifier

changes over time, when the keying material is updated.

"NODENAME" is the invariant once established text string used in

URIs. NODENAME is used to identify a node in a group.

This document additionally uses the following terminology:

Transport profile, to indicate a profile of ACE as per Section

5.6.4.3 of [I-D.ietf-ace-oauth-authz]. A transport profile

specifies the communication protocol and communication security

protocol between an ACE Client and Resource Server, as well as

proof-of-possession methods, if it supports proof-of-possession

access tokens, etc. Tranport profiles of ACE include, for

instance, [I-D.ietf-ace-oscore-profile], [I-D.ietf-ace-dtls-

authorize] and [I-D.ietf-ace-mqtt-tls-profile].

Application profile, that defines how applications enforce and

use supporting security services they require. These services may

include, for instance, provisioning, revocation and distribution

of keying material. An application profile may define specific

procedures and message formats.

2. Overview

The full procedure can be separated in two phases: the first follows

the ACE framework, between Client, AS and KDC. The second part is

the key distribution between Client and KDC. After the two phases

the Client is able to participate in the group communication, via a

Dispatcher entity.

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

Figure 1: Key Distribution Participants

The following participants (see Figure 1) take part in the

authorization and key distribution.

Client (C): node that wants to join the group communication. It

can request write and/or read rights.

Authorization Server (AS): same as AS in the ACE Framework; it

enforces access policies, and knows if a node is allowed to join

a given group with write and/or read rights.

Key Distribution Center (KDC): maintains the keying material to

protect group communications, and provides it to Clients

authorized to join a given group. During the first part of the

exchange (Section 3), it takes the role of the RS in the ACE

Framework. During the second part (Section 4), which is not based

on the ACE Framework, it distributes the keying material. In

addition, it provides the latest keying material to group members

when requested or, if required by the application, when

membership changes.

Dispatcher: entity through which the Clients communicate with the

group and which distributes messages to the group members.

Examples of dispatchers are: the Broker node in a pub-sub

setting; a relayer node for group communication that delivers

group messages as multiple unicast messages to all group members;

an implicit entity as in a multicast communication setting, where

messages are transmitted to a multicast IP address and delivered

on the transport channel.

This document specifies a mechanism for:

Authorizing a new node to join the group (Section 3), and

providing it with the group keying material to communicate with

the other group members (Section 4).

+------------+ +-----------+

| AS | | KDC |

| | .-------->| |

+------------+ / +-----------+

 ^ /

 | /

 v / +-----------+

+------------+ / +------------+ |+-----------+

| Client |<-' | Dispatcher | ||+-----------+

| |<-------->| |<------->|| Group |

+------------+ +------------+ +| members |

 +-----------+

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

Allowing a group member to leave the group (Section 5).

Evicting a group member from the group (Section 5).

Allowing a group member to retrieve keying material (Section 4.4

and Section 4.5).

Renewing and re-distributing the group keying material (rekeying)

upon a membership change in the group (Section 4.10 and Section

5).

Figure 2 provides a high level overview of the message flow for a

node joining a group communication setting, which can be expanded as

follows.

The joining node requests an Access Token from the AS, in order

to access a specific group-membership resource on the KDC and

hence join the associated group. This exchange between Client

and AS MUST be secured, as specified by the transport profile

of ACE used between Client and KDC. The joining node will start

or continue using a secure communication association with the

KDC, according to the response from the AS.

The joining node transfers authentication and authorization

information to the KDC, by posting the obtained Access Token to

the /authz-info endpoint at the KDC. This exchange, and all

further communications between the Client and the KDC, MUST

occur over the secure channel established as a result of the

transport profile of ACE used between Client and KDC. After

that, a joining node MUST have a secure communication

association established with the KDC, before starting to join a

group under that KDC. Possible ways to provide a secure

communication association are described in the DTLS transport

profile [I-D.ietf-ace-dtls-authorize] and OSCORE transport

profile [I-D.ietf-ace-oscore-profile] of ACE.

The joining node starts the joining process to become a member

of the group, by accessing the related group-membership

resource at the KDC. At the end of the joining process, the

joining node has received from the KDC the parameters and

keying material to securely communicate with the other members

of the group, and the KDC has stored the association between

the authorization information from the access token and the

secure session with the client.

The joining node and the KDC maintain the secure association,

to support possible future communications. These especially

include key management operations, such as retrieval of updated

keying material or participation to a group rekeying process.

* ¶

* ¶

*

¶

*

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

The joining node can communicate securely with the other group

members, using the keying material provided in step 3.

Figure 2: Message Flow Upon New Node's Joining

3. Authorization to Join a Group

This section describes in detail the format of messages exchanged by

the participants when a node requests access to a given group. This

exchange is based on ACE [I-D.ietf-ace-oauth-authz].

As defined in [I-D.ietf-ace-oauth-authz], the Client requests from

the AS an authorization to join the group through the KDC (see

Section 3.1). If the request is approved and authorization is

granted, the AS provides the Client with a proof-of-possession

access token and parameters to securely communicate with the KDC

(see Section 3.2).

Communications between the Client and the AS MUST be secured, as

defined by the transport profile of ACE used. The Content-Format

used in the message depends on the used transport profile of ACE.

For example, this can be application/ace+cbor for the first two

messages and application/cwt for the third message, which are

defined in the ACE framework. The transport profile of ACE also

defines a number of details such as the communication and security

protocols used with the KDC (see Appendix C of [I-D.ietf-ace-oauth-

authz]).

Figure 3 gives an overview of the exchange described above.

5.

¶

 C AS KDC Group

 | | | Member

 / | | | |

 | | Authorization Request | | |

 Defined | |-------------------------->| | |

 in the | | | | |

 ACE | | Authorization Response | | |

framework | |<--------------------------| | |

 | | | |

 \ |---------- Token Post --------->| |

 | | |

 |------- Joining Request ------->| |

 | | |

 |<------ Joining Response -------|-- Group Rekeying -->|

 | | |

 | Dispatcher |

 | | |

 |<===== Secure group communication =======|===========>|

 | | |

¶

¶

¶

¶

Figure 3: Message Flow of Join Authorization

3.1. Authorization Request

The Authorization Request sent from the Client to the AS is defined

in Section 5.6.1 of [I-D.ietf-ace-oauth-authz] and MAY contain the

following parameters, which, if included, MUST have the

corresponding values:

'scope', containing the identifier of the specific group(s), or

topic(s) in the case of pub-sub, that the Client wishes to

access, and optionally the role(s) that the Client wishes to

take.

This value is a CBOR byte string, encoding a CBOR array of one or

more entries.

By default, each entry is encoded as specified by [I-D.bormann-

core-ace-aif]. The object identifier Toid corresponds to the

group name and MUST be encoded as a tstr. The permission set

Tperm indicates the roles that the client wishes to take in the

group. It is up to the application profiles to define Tperm

(REQ2) and register Toid and Tperm to fit the use case. An

example of scope using the AIF format is given in Figure 5.

Otherwise, each scope entry can be defined as a CBOR array, which

contains:

As first element, the identifier of the specific group or

topic, encoded as a tstr.

Optionally, as second element, the role (or CBOR array of

roles) that the Client wishes to take in the group. This

element is optional since roles may have been pre-assigned to

the Client, as associated to its verifiable identity

credentials. Alternatively, the application may have defined a

single, well-known role for the target resource(s) and

audience(s).

Client AS KDC

 | | |

 |---- Authorization Request: POST /token ------>| |

 | | |

 |<--- Authorization Response: 2.01 (Created) ---| |

 | | |

 |----- POST Token: POST /authz-info --------------->|

 | |

¶

*

¶

¶

¶

¶

-

¶

-

¶

In each entry, the encoding of the role identifiers is

application specific, and part of the requirements for the

application profile (REQ2). In particular, the application

profile may specify CBOR values to use for abbreviating role

identifiers (OPT7).

An example of CDDL definition [RFC8610] of scope using the format

above, with group name and role identifiers encoded as text

strings is given in Figure 4.

'audience', with an identifier of a KDC.

'req_cnf', as defined in Section 3.1 of [I-D.ietf-ace-oauth-

params], optionally containing the public key or a reference to

the public key of the Client, if it wishes to communicate that to

the AS.

Other additional parameters as defined in [I-D.ietf-ace-oauth-

authz], can be included if necessary.

As in [I-D.ietf-ace-oauth-authz], these parameters are included in

the payload, which is formatted as a CBOR map. The Content-Format

"application/ace+cbor" defined in Section 8.14 of [I-D.ietf-ace-

oauth-authz] is used.

Figure 4: CDLL definition of scope, using as example group name encoded

as tstr and role as tstr

¶

¶

* ¶

*

¶

¶

¶

gname = tstr

role = tstr

scope_entry = [gname , ? (role / [2*role])]

scope = << [+ scope_entry] >>

Figure 5: Example CDLL definition of scope, using the default

Authorization Information Format

3.2. Authorization Response

The Authorization Response sent from the AS to the Client is defined

in Section 5.6.2 of [I-D.ietf-ace-oauth-authz] and MUST contain the

following parameters:

'access_token', containing the proof-of-possession access token.

'cnf' if symmetric keys are used, not present if asymmetric keys

are used. This parameter is defined in Section 3.2 of [I-D.ietf-

ace-oauth-params] and contains the symmetric proof-of-possession

key that the Client is supposed to use with the KDC.

'rs_cnf' if asymmetric keys are used, not present if symmetric

keys are used. This parameter is defined in Section 3.2 of [I-

D.ietf-ace-oauth-params] and contains information about the

public key of the KDC.

'expires_in', contains the lifetime in seconds of the access

token. This parameter MAY be omitted if the application defines

how the expiration time is communicated to the Client via other

means, or if it establishes a default value.

Additionally, the Authorization Response MAY contain the following

parameters, which, if included, MUST have the corresponding values:

'scope' containing the scope the AS grants access to. This

parameter has the same format and encoding of 'scope' in the

Authorization Request, defined in Section 3.1. If this parameter

is not present the granted scope is equal to the one requested in

Section 3.1}.

gname = tstr

permissions = uint . bits roles

roles = &(

 Requester: 1,

 Responder: 2,

 Monitor: 3,

 Verifier: 4

)

scope_entry = AIF_Generic<gname, permissions>

scope = << [+ scope_entry] >>

¶

* ¶

*

¶

*

¶

*

¶

¶

*

¶

Other additional parameters as defined in [I-D.ietf-ace-oauth-

authz], if necessary.

The proof-of-possession access token (in 'access_token' above) MUST

contain the following parameters:

a confirmation claim (see for example 'cnf' defined in Section

3.1 of [RFC8747] for CWT);

an expiration time claim (see for example 'exp' defined in

Section 3.1.4 of [RFC8392] for CWT);

a scope claim (see for example 'scope' registered in Section 8.13

of [I-D.ietf-ace-oauth-authz] for CWT). This claim has the same

encoding as 'scope' parameter above. Additionally, this claim has

the same value of the 'scope' parameter if the parameter is

present in the message, or it takes the value of 'scope' in the

Authorization Request otherwise.

The access token MAY additionally contain other claims that the

transport profile of ACE requires, or other optional parameters.

As in [I-D.ietf-ace-oauth-authz], these parameters are included in

the payload, which is formatted as a CBOR map. The Content-Format

"application/ace+cbor" is used.

When receiving an Authorization Request from a Client that was

previously authorized, and for which the AS still owns a valid non-

expired access token, the AS MAY reply with that token. Note that it

is up to application profiles of ACE to make sure that re-posting

the same token does not cause re-use of keying material between

nodes (for example, that is done with the use of random nonces in

[I-D.ietf-ace-oscore-profile]).

3.3. Token Post

The Client sends a CoAP POST request including the access token to

the KDC, as specified in Section 5.8.1 of [I-D.ietf-ace-oauth-

authz]. If the specific transport profile of ACE defines it, the

Client MAY use a different endpoint than /authz-info at the KDC to

post the access token to.

Optionally, the Client might want to request encoding information

about the public keys in the group, used for source authentication,

as well as any other group parameters. The joining node MAY ask for

this information from the KDC in the same message it uses to POST

the token to the RS.

The payload of the message MUST be formatted as a CBOR map including

the access token.

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

Additionally, the CoAP POST request MAY contain the following

parameter, which, if included, MUST have the corresponding values:

'sign_info' defined in Section 3.3.1, encoding the CBOR simple

value Null to require information about the signature algorithm,

signature algorithm parameters, signature key parameters and on

the exact encoding of public keys used in the group.

Alternatively, the joining node may retrieve this information by

other means.

After successful verification, the Client is authorized to receive

the group keying material from the KDC and join the group.

The KDC replies to the Client with a 2.01 (Created) response, using

Content-Format "application/ace+cbor" defined in Section 8.14 of [I-

D.ietf-ace-oauth-authz].

The payload of the 2.01 response is a CBOR map. If the access token

contains a role that requires the Client to send its own public key

to the KDC when joining the group, the CBOR map MUST include the

parameter 'kdcchallenge' defined in Section Section 3.3.2,

specifying a dedicated challenge N_S generated by the KDC. The

Client uses this challenge to prove possession of its own private

key (see the 'client_cred_verify' parameter in Section 4). Note that

the payload format of the response deviates from the one defined in

the ACE framework (see Section 5.8.1 of [I-D.ietf-ace-oauth-authz]),

which has no payload.

The KDC MUST store the 'kdcchallenge' value associated to the Client

at least until it receives a join request from it (see Section 4.3),

to be able to verify the proof of possession. The same challenge MAY

be reused several times by the Client, to generate new proof of

possessions, e.g. in case of update of the public key, or to join a

different group with a different signing key, so it is RECOMMENDED

that the KDC keeps storing the 'kdcchallenge' after the first join

is processed as well. If the KDC has already discarded the

'kdcchallenge', that will trigger an error response with a newly

generated 'kdcchallenge' that the client can use to restart the join

process, as specified in Section 4.3.

If 'sign_info' is included in the request, the KDC MAY include the

'sign_info' parameter defined in Section 3.3.1, with the same

encoding. Note that the field 'id' takes the value of the group name

for which the 'sign_info_entry' applies to.

Note that the CBOR map specified as payload of the 2.01 (Created)

response may include further parameters, e.g. according to the

signalled transport profile of ACE.

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

Application profiles of this specification MAY define alternative

specific negotiations of parameter values for signature algorithm

and signature keys, if 'sign_info' is not used (OPT2).

3.3.1. 'sign_info' Parameter

The 'sign_info' parameter is an OPTIONAL parameter of the Token Post

response message defined in Section 5.1.2. of [I-D.ietf-ace-oauth-

authz]. This parameter contains information and parameters about the

signature algorithm and the public keys to be used between the

Client and the RS. Its exact content is application specific.

In this specification and in application profiles building on it,

this parameter is used to ask and retrieve from the KDC information

about the signature algorithm and related parameters used in the

group.

When used in the request, the 'sign_info' encodes the CBOR simple

value Null, to require information and parameters on the signature

algorithm and on the public keys used.

The CDDL notation [RFC8610] of the 'sign_info' parameter formatted

as in the request is given below.

The 'sign_info' parameter of the 2.01 (Created) response is a CBOR

array of one or more elements. The number of elements is at most the

number of groups the client has been authorized to join. Each

element contains information about signing parameters and keys for

one or more group or topic and is formatted as follows.

The first element 'id' is an identifier of the group or an array

of identifiers for the groups for which this information applies.

The second element 'sign_alg' is an integer or a text string if

the POST request included the 'sign_info' parameter with value

Null, and indicates the signature algorithm used in the group

identified by 'gname'. It is REQUIRED of the application profiles

to define specific values that this parameter can take (REQ3),

selected from the set of signing algorithms of the COSE

Algorithms registry [COSE.Algorithms].

The third element 'sign_parameters' is a CBOR array indicating

the parameters of the signature algorithm. Its content depends on

the value of 'sign_alg'. It is REQUIRED of the application

profiles to define the possible values and structure for the

elements of this parameter (REQ4).

¶

¶

¶

¶

¶

 sign_info_req = nil¶

¶

*

¶

*

¶

*

¶

The fourth element 'sign_key_parameters' is a CBOR array

indicating the parameters of the key used with the signature

algorithm. Its content depends on the value of 'sign_alg'. It is

REQUIRED of the application profiles to define the possible

values and structure for the elements of this parameter (REQ5).

The fifth element 'pub_key_enc' parameter is either a CBOR

integer indicating the encoding of public keys used in the group

identified by 'gname', or has value Null indicating that the KDC

does not act as repository of public keys for group members. Its

acceptable values are taken from the "CWT Confirmation Method"

Registry defined in [RFC8747]. It is REQUIRED of the application

profiles to define specific values to use for this parameter

(REQ6).

The CDDL notation [RFC8610] of the 'sign_info' parameter formatted

as in the response is given below.

3.3.2. 'kdcchallenge' Parameter

The 'kdcchallenge' parameter is an OPTIONAL parameter of the Token

Post response message defined in Section 5.1.2. of [I-D.ietf-ace-

oauth-authz]. This parameter contains a challenge generated by the

KDC and provided to the Client. The Client may use this challenge to

prove possession of its own private key in the Joining Request (see

the 'client_cred_verify' parameter in Section 4).

4. Keying Material Provisioning and Group Membership Management

This section defines the interface available at the KDC. Moreover,

this section specifies how the clients can use this interface to

join a group, leave a group, retrieve the group policies or the new

keying material.

During the first exchange with the KDC ("Joining") after posting the

Token, the Client sends a request to the KDC, specifying the group

it wishes to join (see Section 4.3). Then, the KDC verifies the

*

¶

*

¶

¶

 sign_info_res = [+ sign_info_entry]

 sign_info_entry =

 [

 id : gname / [+ gname],

 sign_alg : int / tstr,

 sign_parameters : [any],

 sign_key_parameters : [any],

 pub_key_enc = int / nil

]

 gname = tstr

¶

¶

¶

access token and that the Client is authorized to join that group.

If so, it provides the Client with the keying material to securely

communicate with the other members of the group. Whenever used, the

Content-Format in messages containing a payload is set to

application/ace-groupcomm+cbor, as defined in Section 8.2.

When the Client is already a group member, the Client can use the

interface at the KDC to perform the following actions:

The Client can get the current keying material, for cases such as

expiration, loss or suspected mismatch, due to e.g. reboot or

missed group rekeying. This is described in Section 4.4.

The Client can retrieve new keying material for itself. This is

described in Section 4.5.

The Client can get the public keys of other group members. This

is described in Section 4.6.

The Client can get the group policies. This is described in

Section 4.8.

The Client can get the version number of the keying material

currently used in the group. This is described in Section 4.9.

The Client can request to leave the group. This is further

discussed in Section 4.10.

Upon receiving a request from a Client, the KDC MUST check that it

is storing a valid access token from that Client for the group name

associated to the endpoint. If that is not the case, i.e. the KDC

does not store a valid access token or this is not valid for that

Client for the group name, the KDC MUST respond to the Client with a

4.01 (Unauthorized) error message.

4.1. Interface at the KDC

The KDC is configured with the following resources. Note that the

root url-path "ace-group" given here are default names:

implementations are not required to use these names, and can define

their own instead. Each application profile of this specification

MUST register a Resource Type for the root url-path (REQ7a), and

that Resource Type can be used to discover the correct url to access

at the KDC. This Resource Type can also be used at the GROUPNAME

sub-resource, to indicate different application profiles for

different groups. The Interface Description (if=) Link Target

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

Attribute value ace.group is registered (Section 8.10) and can be

used to describe this interface.

/ace-group: this resource is invariant once established and

indicates that this specification is used. If other applications

run on a KDC implementing this specification and use this same

resource, these applications will collide, and a mechanism will

be needed to differentiate the endpoints. This resource supports

FETCH method.

/ace-group/GROUPNAME: one sub-resource to /ace-group is

implemented for each group the KDC manages. If the value of the

GROUPNAME URI path and the group name in the access token scope

(gname in Section 3.2) don't match, the KDC MUST implement a

mechanism to map the GROUPNAME value in the URI to the group

name, to retrieve the right group (REQ1). Each resource contains

the symmetric group keying material for that group. These

resources support GET and POST method.

/ace-group/GROUPNAME/pub-key: this resource is invariant once

established and contains the public keys of all group members.

This resource supports GET and FETCH methods.

/ace-group/GROUPNAME/policies: this resource is invariant once

established and contains the group policies. This resource

supports the GET method.

/ace-group/GROUPNAME/num: this resource is invariant once

established and contains the version number for the symmetric

group keying material. This sub-resource supports the GET method.

/ace-group/GROUPNAME/nodes/NODENAME: one sub-resource to /ace-

group/GROUPNAME is implemented for each node in the group the KDC

manages. These resources are identified by the node name (in this

example, the node name has value "NODENAME"). Each resource

contains the group and individual keying material for that node.

These resources support GET, PUT and DELETE methods.

/ace-group/GROUPNAME/nodes/NODENAME/pub-key: one sub-resource to

/ace-group/GROUPNAME/nodes/NODENAME is implemented for each node

in the group the KDC manages. These resources are identified by

the node name (in this example, the node name has value

"NODENAME"). Each resource contains the individual public keying

material for that node. These resources support the POST method.

The details for the handlers of each resource are given in the

following sections. These endpoints are used to perform the

operations introduced in Section 4.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

4.1.1. ace-group

This resource implements a FETCH handler.

4.1.1.1. FETCH Handler

The FETCH handler receives group identifiers and returns the

corresponding group names and GROUPNAME URIs.

The handler expects a request with payload formatted as a CBOR map.

The payload of this request is a CBOR Map that MUST contain the

following fields:

'gid', whose value is encoded as a CBOR array, containing one or

more group identifiers. The exact encoding of group identifier

MUST be specified by the application profile (REQ7b). The Client

indicates that it wishes to receive the group names and

GROUPNAMEs of all groups having these identifiers.

The handler identifies the groups that are secured by the keying

material identified by those group identifiers.

Then, the handler returns a 2.05 (Content) message response with

payload formatted as a CBOR map that MUST contain the following

fields:

'gid', whose value is encoded as a CBOR array, containing zero or

more group identifiers. The handler indicates that those are the

identifiers it is sending group names and GROUPNAMEs for. This

CBOR array is a subset of the 'gid' array in the FETCH request.

'gname', whose value is encoded as a CBOR array, containing zero

or more group names. The elements of this array are encoded as

text strings. Each element of index i of this CBOR array

corresponds to the element of group identifier i in the 'gid'

array.

'guri', whose value is encoded as a CBOR array, containing zero

or more URIs, each indicating a GROUPNAME resource. The elements

of this array are encoded as text strings. Each element of index

i of this CBOR array corresponds to the element of group

identifier i in the 'gid' array.

If the KDC does not find any group associated with the specified

group identifiers, the handler returns a response with payload

formatted as a CBOR byte string of zero length.

4.1.2. ace-group/GROUPNAME

This resource implements GET and POST handlers.

¶

¶

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

4.1.2.1. POST Handler

The POST handler adds the public key of the client to the list of

the group members' public keys and returns the symmetric group

keying material for the group identified by "GROUPNAME". Note that

the group joining exchange is done by the client via this operation,

as described in Section 4.3.

The handler expects a request with payload formatted as a CBOR map

which MAY contain the following fields, which, if included, MUST

have the corresponding values:

'scope', with value the specific resource at the KDC that the

Client is authorized to access, i.e. group or topic identifier,

and role(s). This value is a CBOR byte string encoding one scope

entry, as defined in Section 3.1.

'get_pub_keys', if the Client wishes to receive the public keys

of the other nodes in the group from the KDC. This parameter may

be present if the KDC stores the public keys of the nodes in the

group and distributes them to the Client; it is useless to have

here if the set of public keys of the members of the group is

known in another way, e.g. it was provided by the AS. Note that

including this parameter may result in a large message size for

the following response, which can be inconvenient for resource-

constrained devices. The parameter's value is a non-empty CBOR

array containing two CBOR arrays:

The first array contains zero or more roles (or combination of

roles) of group members for the group identified by

"GROUPNAME". The Client indicates that it wishes to receive

the public keys of all nodes having these roles. If empty, it

means the client wishes to receive the public keys of all

nodes.

The second array is empty.

The CDDL definition [RFC8610] of 'get_pub_keys' is given in

Figure 6 using as example encoding: node identifier encoded as

byte string, role identifier as text string, and combination of

roles encoded as a CBOR array of roles. Note that the array ids

is empty for this handler, but is not necessarily empty for the

value of "get_pub_keys" received by the handler of FETCH to ace-

group/GROUPNAME/pub-key (see Section 4.1.3.1).

¶

¶

*

¶

*

¶

-

¶

- ¶

¶

Figure 6: CDLL definition of get_pub_keys, using as example node

identifier encoded as bstr and role as tstr

'client_cred', with value the public key or certificate of the

Client, encoded as a CBOR byte string. This field contains the

public key of the Client. This field is used if the KDC is

managing (collecting from/distributing to the Client) the public

keys of the group members, and if the Client's role in the group

will require for it to send messages to one or more group

members. The default encoding for public keys is COSE Keys.

Alternative specific encodings of this parameter MAY be defined

in applications of this specification (OPT1 in Appendix A).

'cnonce', encoded as a CBOR byte string, and including a

dedicated nonce N_C generated by the Client. This parameter MUST

be present if the 'client_cred' parameter is present.

'client_cred_verify', encoded as a CBOR byte string. This

parameter MUST be present if the 'client_cred' parameter is

present and no public key associated to the client's token can be

retrieved for that group. This parameter contains a signature

computed by the Client over the scope concatenated with N_S

concatenated with N_C, where:

scope is the byte string specified in the 'scope parameter

above'.

N_S is the challenge received from the KDC in the

'kdcchallenge' parameter of the 2.01 (Created) response to the

token POST request (see Section 3.3).

N_C is the nonce generated by the Client and specified in the

'cnonce' parameter above.

If the token was not posted (e.g. if it is used directly to

validate TLS instead), it is REQUIRED of the specific profile to

define how the challenge N_S is generated (REQ17). The Client

computes the signature by using its own private key, whose

corresponding public key is either directly specified in the

'client_cred' parameter or included in the certificate specified

in the 'client_cred' parameter.

id = bstr

role = tstr

comb_role = [2*role]

get_pub_keys = [[*(role / comb_role)], [*id]]

*

¶

*

¶

*

¶

-

¶

-

¶

-

¶

¶

'pub_keys_repos', can be present if a certificate is present in

the 'client_cred' field, with value the URI of the certificate of

the Client. This parameter is encoded as a CBOR text string.

Alternative specific encodings of this parameter MAY be defined

in applications of this specification (OPT3).

'control_path', with value a full URI, encoded as a CBOR text

string. If 'control_path' is supported by the Client, the Client

acts as a CoAP server and hosts a resource at this specific URI.

The KDC MAY use this URI to send CoAP requests to the Client

(acting as CoAP server in this exchange), for example for

individual provisioning of new keying material when performing a

group rekeying (see Section 4.4), or to inform the Client of its

removal from the group Section 5. If the KDC does not implement

mechanisms using this resource, it can just ignore this

parameter. Other additional functionalities of this resource MAY

be defined in application profiles of this specifications (OPT9).

In particular, this resource is intended for communications

concerning exclusively the group or topic specified in the

'scope' parameter.

The handler extracts the granted scope from the access token, and

checks the requested one against the token one. If this join message

does not include a 'scope' field, the KDC is expected to understand

which group and role the Client is requesting (e.g. there is only

one the Client has been granted). If the KDC can not recognize which

scope the Client is requesting, it MUST respond with a 4.00 (Bad

Request) error message.

The handler verifies that the group name of the /ace-group/GROUPNAME

path is a subset of the 'scope' stored in the access token

associated to this client. If verification fails, the KDC MUST

respond with a 4.01 (Unauthorized) error message. The KDC MAY

respond with an AS Request Creation Hints, as defined in Section

5.1.2 of [I-D.ietf-ace-oauth-authz]. Note that in this case, the

content format MUST be set to application/ace+cbor.

If the request is not formatted correctly (i.e. required fields non

received or received with incorrect format), the handler MUST

respond with a 4.00 (Bad Request) error message. The response MAY

contain a CBOR map in the payload with ace+cbor format, e.g. it

could send back 'sign_info_res' with 'pub_key_enc' set to Null if

the Client sent its own public key and the KDC is not set to store

public keys of the group members. If the request contained unknown

or non-expected fields present, the handler MUST silently drop them

and continue processing. Application profiles MAY define optional or

mandatory payload formats for specific error cases (OPT6).

*

¶

*

¶

¶

¶

¶

If the KDC stores the group members' public keys, the handler checks

if one is included in the 'client_cred' field, retrieves it and

associates it to the access token received, after verifications

succeeded. In particular, the KDC verifies:

that such public key has an acceptable format for the group

identified by "GROUPNAME", i.e. it is encoded as expected and is

compatible with the signature algorithm and possible associated

parameters.

that the signature contained in "client_cred_verify" passes

verification.

If that cannot be verified, it is RECOMMENDED that the handler stops

the process and responds with a 4.00 (Bad Request) error message.

Applications profiles MAY define alternatives (OPT5).

If one public key is already associated to the access token and to

that group, but the 'client_cred' is populated with a different

public key, the handler MUST delete the previous one and replace it

with this one, after verifying the points above.

If no public key is included in the 'client_cred' field, the handler

checks if one public key is already associated to the access token

received (see Section 4.3 for an example) and to the group

identified by "GROUPNAME". If that is not the case, the handler

responds with a 4.00 Bad Request error response.

If the token was posted but the KDC cannot retrieve the

'kdcchallenge' associated to this Client (see Section 3.3), the KDC

MUST respond with a 4.00 Bad Request error response, including a

newly generated 'kdcchallenge' in a CBOR map in the payload. This

error response MUST also have Content-Format "application/ace+cbor".

If all verifications succeed, the handler:

Adds the node to the list of current members of the group.

Assigns a name NODENAME to the node, and creates a sub-resource

to /ace-group/GROUPNAME/ at the KDC (e.g. "/ace-group/GROUPNAME/

nodes/NODENAME").

Associates the identifier "NODENAME" with the access token and

the secure session for that node.

If the KDC manages public keys for group members:

Adds the retrieved public key of the node to the list of

public keys stored for the group identified by "GROUPNAME"

¶

*

¶

*

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

* ¶

-

¶

Associates the node's public key with its access token and the

group identified by "GROUPNAME", if such association did not

already exist.

Returns a 2.01 (Created) message containing the symmetric group

keying material, the group policies and all the public keys of

the current members of the group, if the KDC manages those and

the Client requested them.

The response message also contains the URI path to the sub-resource

created for that node in a Location-Path CoAP option. The payload of

the response is formatted as a CBOR map which MUST contain the

following fields and values:

'gkty', identifying the key type of the 'key' parameter. The set

of values can be found in the "Key Type" column of the "ACE

Groupcomm Key" Registry. Implementations MUST verify that the key

type matches the application profile being used, if present, as

registered in the "ACE Groupcomm Key" registry.

'key', containing the keying material for the group

communication, or information required to derive it.

'num', containing the version number of the keying material for

the group communication, formatted as an integer. This is a

strictly monotonic increasing field. The application profile MUST

define the initial version number (REQ19).

The exact format of the 'key' value MUST be defined in applications

of this specification (REQ7), as well as accepted values of 'gkty'

by the application (REQ8). Additionally, documents specifying the

key format MUST register it in the "ACE Groupcomm Key" registry

defined in Section 8.6, including its name, type and application

profile to be used with.

Figure 7: Key Type Values

The response SHOULD contain the following parameter:

'exp', with value the expiration time of the keying material for

the group communication, encoded as a CBOR unsigned integer. This

field contains a numeric value representing the number of seconds

from 1970-01-01T00:00:00Z UTC until the specified UTC date/time,

-

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

+----------+----------------+---------+-------------------------+

| Name | Key Type Value | Profile | Description |

+----------+----------------+---------+-------------------------+

| Reserved | 0 | | This value is reserved |

+----------+----------------+---------+-------------------------+

¶

*

ignoring leap seconds, analogous to what specified for

NumericDate in Section 2 of [RFC7519]. Group members MUST stop

using the keying material to protect outgoing messages and

retrieve new keying material at the time indicated in this field.

Optionally, the response MAY contain the following parameters,

which, if included, MUST have the corresponding values:

'ace-groupcomm-profile', with value a CBOR integer that MUST be

used to uniquely identify the application profile for group

communication. Applications of this specification MUST register

an application profile identifier and the related value for this

parameter in the "ACE Groupcomm Profile" Registry (REQ12).

'pub_keys', may only be present if 'get_pub_keys' was present in

the request. This parameter is a CBOR byte string, which encodes

the public keys of all the group members paired with the

respective member identifiers. The default encoding for public

keys is COSE Keys, so the default encoding for 'pub_keys' is a

CBOR byte string wrapping a COSE_KeySet (see [I-D.ietf-cose-

rfc8152bis-struct]), which contains the public keys of all the

members of the group. In particular, each COSE Key in the

COSE_KeySet includes the identifier of the corresponding group

member as value of its 'kid' key parameter. Alternative specific

encodings of this parameter MAY be defined in applications of

this specification (OPT1). The specific format of the identifiers

of group members MUST be specified in the application profile

(REQ9).

'peer_roles', MUST be present if 'pub_keys' is present. This

parameter is a CBOR array of n elements, with n the number of

members in the group (and number of public keys included in the

'pub_keys' parameter). The i-th element of the array specifies

the role (or CBOR array of roles) that the group member

associated to the i-th public key in 'pub_keys' has in the group.

In particular, each array element is encoded as the role element

of a scope entry, as defined in Section 3.1.

'group_policies', with value a CBOR map, whose entries specify

how the group handles specific management aspects. These include,

for instance, approaches to achieve synchronization of sequence

numbers among group members. The elements of this field are

registered in the "ACE Groupcomm Policy" Registry. This

specification defines the three elements "Sequence Number

Synchronization Method", "Key Update Check Interval" and

"Expiration Delta", which are summarized in Figure 8. Application

profiles that build on this document MUST specify the exact

content format and default value of included map entries (REQ14).

¶

¶

*

¶

*

¶

*

¶

*

¶

Figure 8: ACE Groupcomm Policies

'mgt_key_material', encoded as a CBOR byte string and containing

the administrative keying material to participate in the group

rekeying performed by the KDC. The application profile MUST

define if this field is used, and if used then MUST specify the

exact format and content which depend on the specific rekeying

scheme used in the group. If the usage of 'mgt_key_material' is

indicated and its format defined for a specific key management

scheme, that format must explicitly indicate the key management

scheme itself. If a new rekeying scheme is defined to be used for

an existing 'mgt_key_material' in an existing profile, then that

profile will have to be updated accordingly, especially with

respect to the usage of 'mgt_key_material' related format and

content (REQ18).

+--------------+-------+----------|--------------------|------------+

| Name | CBOR | CBOR | Description | Reference |

| | label | type | | |

|--------------+-------+----------|--------------------|------------|

| Sequence | TBD1 | tstr/int | Method for a re- | [[this |

| Number | | | cipient node to | document]] |

| Synchroniza- | | | synchronize with | |

| tion Method | | | sequence numbers | |

| | | | of a sender node. | |

| | | | Its value is taken | |

| | | | from the 'Value' | |

| | | | column of the | |

| | | | Sequence Number | |

| | | | Synchronization | |

| | | | Method registry | |

| | | | | |

| Key Update | TBD2 | int | Polling interval | [[this |

| Check | | | in seconds, to | document]] |

| Interval | | | check for new | |

| | | | keying material at | |

| | | | the KDC | |

| | | | | |

| Expiration | TBD3 | uint | Number of seconds | [[this |

| Delta | | | from 'exp' until | document]] |

| | | | the specified UTC | |

| | | | date/time after | |

| | | | which group members| |

| | | | MUST stop using the| |

| | | | keying material to | |

| | | | verify incoming | |

| | | | messages. | |

+--------------+-------+----------|--------------------|------------+

*

¶

Specific application profiles that build on this document MUST

specify the communication protocol that members of the group use to

communicate with each other (REQ10) and how exactly the keying

material is used to protect the group communication (REQ11).

CBOR labels for these fields are defined in Section 6.

4.1.2.2. GET Handler

The GET handler returns the symmetric group keying material for the

group identified by "GROUPNAME".

The handler expects a GET request.

The handler verifies that the group name of the /ace-group/GROUPNAME

path is a subset of the 'scope' stored in the access token

associated to this client. If verification fails, the KDC MUST

respond with a 4.01 (Unauthorized) error message. The KDC MAY

respond with an AS Request Creation Hints, as defined in Section

5.1.2 of [I-D.ietf-ace-oauth-authz]. Note that in this case, the

content format MUST be set to application/ace+cbor.

Additionally, the handler verifies that the node is a current member

of the group. If verification fails, the KDC MUST respond with a

4.00 (Bad Request) error message.

If verification succeeds, the handler returns a 2.05 (Content)

message containing the symmetric group keying material. The payload

of the response is formatted as a CBOR map which MUST contain the

parameters 'gkty','key' and 'num' specified in Section 4.1.2.1.

The payload MAY also include the parameters 'ace-groupcomm-profile',

'exp', and 'mgt_key_material' parameters specified in Section

4.1.2.1.

4.1.3. ace-group/GROUPNAME/pub-key

If the KDC does not maintain public keys for the group, the handler

for any request on this resource returns a 4.05 (Method Not Allowed)

error message. If it does, the rest of this section applies.

This resource implements GET and FETCH handlers.

4.1.3.1. FETCH Handler

The FETCH handler receives identifiers of group members for the

group identified by "GROUPNAME" and returns the public keys of such

group members.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The handler expects a request with payload formatted as a CBOR map.

The payload of this request is a CBOR Map that MUST contain the

following fields:

'get_pub_keys', whose value is encoded as in Section 4.1.2.1 with

the following modification:

The second array contains zero or more identifiers of group

members for the group identified by "GROUPNAME". The Client

indicates that it wishes to receive the public keys of all

nodes having these identifiers.

The specific format of public keys as well as identifiers, roles and

combination of roles of group members MUST be specified by the

application profile (OPT1, REQ2, REQ9).

The handler verifies that the group name of the /ace-group/GROUPNAME

path is a subset of the 'scope' stored in the access token

associated to this client. If verification fails, the KDC MUST

respond with a 4.01 (Unauthorized) error message.

If verification succeeds, the handler identifies the public keys of

the current group members for which either:

the role identifier matches with one of those indicated in the

request; note that the request can contain a "combination of

roles", where the handler select all group members who have all

roles included in the combination.

the identifier matches with one of those indicated in the

request.

Then, the handler returns a 2.05 (Content) message response with

payload formatted as a CBOR map, containing only the 'pub_keys' and

'peer_roles' parameters from Section 4.1.2.1. In particular,

'pub_keys' encodes the list of public keys of those group members

including the respective member identifiers, while 'peer_roles'

encodes their respective role (or CBOR array of roles) in the group.

The specific format of public keys as well as of identifiers of

group members is specified by the application profile (OPT1, REQ9).

If the KDC does not store any public key associated with the

specified member identifiers, the handler returns a response with

payload formatted as a CBOR byte string of zero length.

The handler MAY enforce one of the following policies, in order to

handle possible identifiers that are included in the 'get_pub_keys'

parameter of the request but are not associated to any current group

¶

*

¶

-

¶

¶

¶

¶

*

¶

*

¶

¶

¶

member. Such a policy MUST be specified by the application profile

(REQ13)

The KDC silently ignores those identifiers.

The KDC retains public keys of group members for a given amount

of time after their leaving, before discarding them. As long as

such public keys are retained, the KDC provides them to a

requesting Client.

Note that this resource handler only verifies that the node is

authorized by the AS to access this resource. Nodes that are not

members of the group but are authorized to do signature

verifications on the group messages may be allowed to access this

resource, if the application needs it.

4.1.3.2. GET Handler

The handler expects a GET request.

The handler verifies that the group name of the /ace-group/GROUPNAME

path is a subset of the 'scope' stored in the access token

associated to this client. If verification fails, the KDC MUST

respond with a 4.01 (Unauthorized) error message.

If verification succeeds, the handler returns a 2.05 (Content)

message containing the public keys of all the current group members,

for the group identified by "GROUPNAME". The payload of the response

is formatted as a CBOR map, containing only the 'pub_keys' and

'peer_roles' parameters from Section 4.1.2.1. In particular,

'pub_keys' encodes the list of public keys of those group members

including the respective member identifiers, while 'peer_roles'

encodes their respective role (or CBOR array of roles) in the group.

If the KDC does not store any public key for the group, the handler

returns a response with payload formatted as a CBOR byte string of

zero length. The specific format of public keys as well as of

identifiers of group members is specified by the application profile

(OPT1, REQ9).

Note that this resource handler only verifies that the node is

authorized by the AS to access this resource. Nodes that are not

members of the group but are authorized to do signature

verifications on the group messages may be allowed to access this

resource, if the application needs it.

4.1.4. ace-group/GROUPNAME/policies

This resource implements a GET handler.

¶

* ¶

*

¶

¶

¶

¶

¶

¶

¶

¶

4.1.4.1. GET Handler

The handler expects a GET request.

The handler verifies that the group name of the /ace-group/GROUPNAME

path is a subset of the 'scope' stored in the access token

associated to this client. If verification fails, the KDC MUST

respond with a 4.01 (Unauthorized) error message.

Additionally, the handler verifies that the node is a current member

of the group. If verification fails, the KDC MUST respond with a

4.00 (Bad Request) error message.

If verification succeeds, the handler returns a 2.05 (Content)

message containing the list of policies for the group identified by

"GROUPNAME". The payload of the response is formatted as a CBOR map

including only the parameter 'group_policies' defined in Section

4.1.2.1 and specifying the current policies in the group. If the KDC

does not store any policy, the payload is formatted as a zero-length

CBOR byte string.

The specific format and meaning of group policies MUST be specified

in the application profile (REQ14).

4.1.5. ace-group/GROUPNAME/num

This resource implements a GET handler.

4.1.5.1. GET Handler

The handler expects a GET request.

The handler verifies that the group name of the /ace-group/GROUPNAME

path is a subset of the 'scope' stored in the access token

associated to this client. If verification fails, the KDC MUST

respond with a 4.01 (Unauthorized) error message.

Additionally, the handler verifies that the node is a current member

of the group. If verification fails, the KDC MUST respond with a

4.00 (Bad Request) error message.

If verification succeeds, the handler returns a 2.05 (Content)

message containing an integer that represents the version number of

the symmetric group keying material. This number is incremented on

the KDC every time the KDC updates the symmetric group keying

material, before the new keying material is distributed. This number

is stored in persistent storage.

The payload of the response is formatted as a CBOR integer.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

4.1.6. ace-group/GROUPNAME/nodes/NODENAME

This resource implements GET, PUT and DELETE handlers.

4.1.6.1. PUT Handler

The PUT handler is used to get the KDC to produce and return

individual keying material to protect outgoing messages for the node

(identified by "NODENAME") for the group identified by "GROUPNAME".

Application profiles MAY also use this handler to rekey the whole

group. (OPT8) It is up to the application profiles to specify if

this handler supports renewal of individual keying material, renewal

of the group keying material or both.

The handler expects a request with empty payload.

The handler verifies that the group name of the /ace-group/GROUPNAME

path is a subset of the 'scope' stored in the access token

associated to this client, identified by "NODENAME". If verification

fails, the KDC MUST respond with a 4.01 (Unauthorized) error

message.

Additionally, the handler verifies that the node is a current member

of the group. If verification fails, the KDC MUST respond with a

4.00 (Bad Request) error message.

If verification succeeds, the handler returns a 2.05 (Content)

message containing newly-generated keying material for the Client,

and/or, if the application profiles requires it (OPT8), starts the

comprete group rekeying. The payload of the response is formatted as

a CBOR map. The specific format of newly-generated individual keying

material for group members, or of the information to derive it, and

corresponding CBOR label, MUST be specified in the application

profile (REQ15) and registered in Section 8.5.

4.1.6.2. GET Handler

The handler expects a GET request.

The handler verifies that the group name of the /ace-group/GROUPNAME

path is a subset of the 'scope' stored in the access token

associated to this client, identified by "NODENAME". If verification

fails, the KDC MUST respond with a 4.01 (Unauthorized) error

message.

The handler also verifies that the node sending the request and the

node name used in the Uri-Path match. If that is not the case, the

handler responds with a 4.01 (Unauthorized) error response.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Additionally, the handler verifies that the node is a current member

of the group. If verification fails, the KDC MUST respond with a

4.00 (Bad Request) error message.

If verification succeeds, the handler returns a 2.05 (Content)

message containing both the group keying material and the individual

keying material for the Client, or information enabling the Client

to derive it. The payload of the response is formatted as a CBOR

map. The format for the group keying material is the same as defined

in the response of Section 4.1.2.2. The specific format of

individual keying material for group members, or of the information

to derive it, and corresponding CBOR label, MUST be specified in the

application profile (REQ15) and registered in Section 8.5.

4.1.6.3. DELETE Handler

The DELETE handler removes the node identified by "NODENAME" from

the group identified by "GROUPNAME".

The handler expects a request with method DELETE (and empty

payload).

The handler verifies that the group name of the /ace-group/GROUPNAME

path is a subset of the 'scope' stored in the access token

associated to this client, identified by "NODENAME". If verification

fails, the KDC MUST respond with a 4.01 (Unauthorized) error

message.

The handler also verifies that the node sending the request and the

node name used in the Uri-Path match. If that is not the case, the

handler responds with a 4.01 (Unauthorized) error response.

Additionally, the handler verifies that the node is a current member

of the group. If verification fails, the KDC MUST respond with a

4.00 (Bad Request) error message.

If verification succeeds, the handler removes the client from the

group identified by "GROUPNAME", for specific roles if roles were

specified in the 'scope' field, or for all roles. That includes

removing the public key of the client if the KDC keep tracks of

that. Then, the handler delete the sub-resource nodes/NODENAME and

returns a 2.02 (Deleted) message with empty payload.

4.1.7. ace-group/GROUPNAME/nodes/NODENAME/pub-key

This resource implements a POST handler, if the KDC stores the

public key of group members. If the KDC does not store the public

keys of group members, the handler does not implement any method,

and every request returns a 4.05 Method Not Allowed error.

¶

¶

¶

¶

¶

¶

¶

¶

¶

4.1.7.1. POST Handler

The POST handler is used to replace the stored public key of this

client (identified by "NODENAME") with the one specified in the

request at the KDC, for the group identified by "GROUPNAME".

The handler expects a POST request with payload as specified in

Section 4.1.2.1, with the difference that it includes only the

parameters 'client_cred', 'cnonce' and 'client_cred_verify'. In

particular, the signature included in 'client_cred_verify' is

expected to be computed as defined in Section 4.1.2.1, with a newly

generated N_C nonce and the previously received N_S. The specific

format of public keys is specified by the application profile

(OPT1).

The handler verifies that the group name GROUPNAME is a subset of

the 'scope' stored in the access token associated to this client. If

verification fails, the KDC MUST respond with a 4.01 (Unauthorized)

error message.

If the request is not formatted correctly (i.e. required fields non

received or received with incorrect format), the handler MUST

respond with a 4.00 (Bad Request) error message. If the request

contained unknown or non-expected fields present, the handler MUST

silently drop them and continue processing. Application profiles MAY

define optional or mandatory payload formats for specific error

cases (OPT6).

Otherwise, the handler checks that the public key specified in the

'client_cred' field has a valid format for the group identified by

"GROUPNAME", i.e. it is encoded as expected and is compatible with

the signature algorithm and possible associated parameters. If that

cannot be verified, the handler MUST respond with a 4.00 (Bad

Request) error message. Applications profiles MAY define

alternatives (OPT5).

Otherwise, the handler verifies the signature contained in the

'client_cred_verify' field of the request, using the public key

specified in the 'client_cred' field. If the signature does not pass

verification, the handler MUST respond with a 4.00 (Bad Request)

error message. If the KDC cannot retrieve the 'kdcchallenge'

associated to this Client (see Section 3.3), the KDC MUST respond

with a 4.00 Bad Request error respons, including a newly generated

'kdcchallenge' in a CBOR map in the payload the payload. This error

response MUST also have Content-Format "application/ace+cbor".

If verification succeeds, the handler replaces the old public key of

the node NODENAME with the one specified in the 'client_cred' field

of the request, and stores it as the new current public key of the

¶

¶

¶

¶

¶

¶

node NODENAME, in the list of group members' public keys for the

group identified by GROUPNAME. Then, the handler replies with a 2.04

(Changed) response, which does not include a payload.

4.2. Retrieval of Group Names and URIs

In case the joining node only knows the group identifier of the

group it wishes to join or about which it wishes to get update

information from the KDC, the node can contact the KDC to request

the corresponding group name and joining resource URI. The node can

request several group identifiers at once. It does so by sending a

CoAP FETCH request to the /ace-group endpoint at the KDC formatted

as defined in Section 4.1.1.1.

Figure 9 gives an overview of the exchanges described above.

Figure 9: Message Flow of Group Name and URI Retrieval Request-Response

4.3. Joining Exchange

Figure 10 gives an overview of the Joining exchange between Client

and KDC, when the Client first joins a group.

Figure 10: Message Flow of First Exchange for Group Joining

If not previously established, the Client and the KDC MUST first

establish a pairwise secure communication channel (REQ16). This can

be achieved, for instance, by using a transport profile of ACE. The

Joining exchange MUST occur over that secure channel. The Client and

the KDC MAY use that same secure channel to protect further pairwise

communications that must be secured.

¶

¶

¶

Client KDC

 | |

 |-------- Group Name and URI Retrieval Request: -------->|

 | FETCH /ace-group |

 | |

 |<-Group Name and URI Retrieval Response: 2.05 (Content)-|

 | |

¶

Client KDC

 | |

 |----- Joining Request: POST /ace-group/GROUPNAME ------>|

 | |

 |<--------- Joining Response: 2.01 (Created) ----------- |

 | Location-Path = "/ace-group/GROUPNAME/nodes/NODENAME" |

¶

The secure communication protocol is REQUIRED to establish the

secure channel between Client and KDC by using the proof-of-

possession key bound to the access token. As a result, the proof-of-

possession to bind the access token to the Client is performed by

using the proof-of-possession key bound to the access token for

establishing secure communication between the Client and the KDC.

To join the group, the Client sends a CoAP POST request to the /ace-

group/GROUPNAME endpoint at the KDC, where GROUPNAME is the group

name of the group to join, formatted as specified in Section

4.1.2.1. This group name is the same as in the scope entry

corresponding to that group, specified in the 'scope' parameter of

the Authorization Request/Response, or it can be retrieved from it.

Note that, in case of successful joining, the Client will receive

the URI to retrieve group keying material and to leave the group in

the Location-Path option of the response.

If the node is joining a group for the first time, and the KDC

maintains the public keys of the group members, the Client is

REQUIRED to send its own public key and proof of possession

("client_cred" and "client_cred_verify" in Section 4.1.2.1). The

request is only accepted if both public key and proof of possession

are provided. If a node re-joins a group with the same access token

and the same public key, it can omit to send the public key and the

proof of possession, or just omit the proof of possession, and the

KDC will be able to retrieve its public key associated to its token

for that group (if the key has been discarded, the KDC will reply

with 4.00 Bad Request, as specified in Section 4.1.2.1). If a node

re-joins a group but wants to update its own public key, it needs to

send both public key and proof of possession.

If the application requires backward security, the KDC MUST generate

new group keying material and securely distribute it to all the

current group members, upon a new node's joining the group. To this

end, the KDC uses the message format of the response defined in

Section 4.1.2.2. Application profiles may define alternative ways of

retrieving the keying material, such as sending separate requests to

different resources at the KDC (Section 4.1.2.2, Section 4.1.3.2,

Section 4.1.4.1). After distributing the new group keying material,

the KDC MUST increment the version number of the keying material.

¶

¶

¶

¶

4.4. Retrieval of Updated Keying Material

When any of the following happens, a node MUST stop using the owned

group keying material to protect outgoing messages, and SHOULD stop

using it to decrypt and verify incoming messages.

Upon expiration of the keying material, according to what

indicated by the KDC with the 'exp' parameter in a Joining

Response, or to a pre-configured value.

Upon receiving a notification of revoked/renewed keying material

from the KDC, possibly as part of an update of the keying

material (rekeying) triggered by the KDC.

Upon receiving messages from other group members without being

able to retrieve the keying material to correctly decrypt them.

This may be due to rekeying messages previously sent by the KDC,

that the Client was not able to receive or decrypt.

In either case, if it wants to continue participating in the group

communication, the node has to request the latest keying material

from the KDC. To this end, the Client sends a CoAP GET request to

the /ace-group/GROUPNAME/nodes/NODENAME endpoint at the KDC,

formatted as specified in Section 4.1.6.2.

Note that policies can be set up, so that the Client sends a Key Re-

Distribution request to the KDC only after a given number of

received messages could not be decrypted (because of failed

decryption processing or inability to retrieve the necessary keying

material).

It is application dependent and pertaining to the particular message

exchange (e.g. [I-D.ietf-core-oscore-groupcomm]) to set up these

policies, to instruct clients to retain incoming messages and for

how long (OPT4). This allows clients to possibly decrypt such

messages after getting updated keying material, rather than just

consider them non valid messages to discard right away.

The same Key Distribution Request could also be sent by the Client

without being triggered by a failed decryption of a message, if the

Client wants to be sure that it has the latest group keying

material. If that is the case, the Client will receive from the KDC

the same group keying material it already has in memory.

Figure 11 gives an overview of the exchange described above.

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

Figure 11: Message Flow of Key Distribution Request-Response

Alternatively, the re-distribution of keying material can be

initiated by the KDC, which e.g.:

Can make the ace-group/GROUPNAME/nodes/NODENAME resource

Observable [RFC7641], and send notifications to Clients when the

keying material is updated.

Can send the payload of the Key Distribution Response in one or

multiple multicast POST requests to the members of the group,

using secure rekeying schemes such as [RFC2093][RFC2094]

[RFC2627].

Can send unicast POST requests to each Client over a secure

channel, with the same payload as the Key Distribution Response.

When sending such requests, the KDC can target the URI path

provided by the intended recipient upon joining the group, as

specified in the 'control_path' parameter of the Joining Request

(see Section 4.1.2.1).

Can act as a publisher in a pub-sub scenario, and update the

keying material by publishing on a specific topic on a broker,

which all the members of the group are subscribed to.

Note that these methods of KDC-initiated key distribution have

different security properties and require different security

associations.

4.5. Requesting a Change of Keying Material

Beside possible expiration, the client may need to communicate to

the KDC its need for the keying material to be renewed, e.g. due to

exhaustion of AEAD nonces, if AEAD is used for protecting group

communnication. Depending on the application profile (OPT8), this

can result in renewal of idividual keying material, group keying

material, or both. For example, if the Client uses an individual key

to protect outgoing traffic and has to renew it, the node may

request a new one, or new input material to derive it, without

renewing the whole group keying material.

Client KDC

 | |

 |------------------ Key Distribution Request: --------------->|

 | GET ace-group/GROUPNAME/nodes/NODENAME |

 | |

 |<-------- Key Distribution Response: 2.05 (Content) ---------|

 | |

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

To this end, the client performs a Key Renewal Request/Response

exchange with the KDC, i.e. it sends a CoAP PUT request to the /ace-

group/GROUPNAME/nodes/NODENAME endpoint at the KDC, where GROUPNAME

is the group name and NODENAME is the node's name, and formatted as

defined in Section 4.1.6.2.

Figure 12 gives an overview of the exchange described above.

Figure 12: Message Flow of Key Renewal Request-Response

Note the difference between the Key Distribution Request and the Key

Renewal Request: while the first one only triggers distribution (the

renewal might have happened independently, e.g. because of

expiration), the second one triggers the KDC to produce new

individual keying material for the requesting node.

4.6. Retrieval of Public Keys and Roles for Group Members

In case the KDC maintains the public keys of group members, a node

in the group can contact the KDC to request public keys and roles of

either all group members or a specified subset, by sending a CoAP

GET or FETCH request to the /ace-group/GROUPNAME/pub-key endpoint at

the KDC, where GROUPNAME is the group name, and formatted as defined

in Section 4.1.3.2 and Section 4.1.3.1.

Figure 13 and Figure 14 give an overview of the exchanges described

above.

Figure 13: Message Flow of Public Key Exchange to Request All Members

Public Keys

¶

¶

Client KDC

 | |

 |------------------ Key Renewal Request: -------------->|

 | PUT ace-group/GROUPNAME/nodes/NODENAME |

 | |

 |<-------- Key Renewal Response: 2.05 (Content) --------|

 | |

¶

¶

¶

Client KDC

 | |

 |--Public Key Request: GET /ace-group/GROUPNAME/pub-key->|

 | |

 |<--------- Public Key Response: 2.05 (Content) ---------|

 | |

Figure 14: Message Flow of Public Key Exchange to Request Specific

Members Public Keys

4.7. Update of Public Key

In case the KDC maintains the public keys of group members, a node

in the group can contact the KDC to upload a new public key to use

in the group, and replace the currently stored one.

To this end, the Client performs a Public Key Update Request/

Response exchange with the KDC, i.e. it sends a CoAP POST request to

the /ace-group/GROUPNAME/nodes/NODENAME/pub-key endpoint at the KDC,

where GROUPNAME is the group name and NODENAME is the node's name.

The request is formatted as specified in Section 4.1.7.1.

Figure Figure 15 gives an overview of the exchange described above.

Figure 15: Message Flow of Public Key Update Request-Response

If the application requires backward security, the KDC MUST generate

new group keying material and securely distribute it to all the

current group members, upon a group member updating its own public

key. To this end, the KDC uses the message format of the response

defined in Section 4.1.2.2. Application profiles may define

alternative ways of retrieving the keying material, such as sending

separate requests to different resources at the KDC (Section

4.1.2.2, Section 4.1.3.2, Section 4.1.4.1). The KDC MUST increment

the version number of the current keying material, before

distributing the newly generated keying material to the group. After

that, the KDC SHOULD store the distributed keying material in

persistent storage.

Client KDC

 | |

 |-Public Key Request: FETCH /ace-group/GROUPNAME/pub-key->|

 | |

 |<--------- Public Key Response: 2.05 (Created) ----------|

 | |

¶

¶

¶

¶

Client KDC

| |

|-------------- Public Key Update Request: ---------------------->|

| POST ace-group/GROUPNAME/nodes/NODENAME/pub-key |

| |

|<------- Public Key Update Response: 2.04 (Changed) -------------|

| |

¶

Additionally, after updating its own public key, a group member MAY

send a number of the later requests including an identifier of the

updated public key, to signal nodes that they need to retrieve it.

How that is done depends on the group communication protocol used,

and therefore is application profile specific (OPT10).

4.8. Retrieval of Group Policies

A node in the group can contact the KDC to retrieve the current

group policies, by sending a CoAP GET request to the /ace-group/

GROUPNAME/policies endpoint at the KDC, where GROUPNAME is the group

name, and formatted as defined in Section 4.1.4.1

Figure 16 gives an overview of the exchange described above.

Figure 16: Message Flow of Policies Request-Response

4.9. Retrieval of Keying Material Version

A node in the group can contact the KDC to request information about

the version number of the symmetric group keying material, by

sending a CoAP GET request to the /ace-group/GROUPNAME/num endpoint

at the KDC, where GROUPNAME is the group name, formatted as defined

in Section 4.1.5.1. In particular, the version is incremented by the

KDC every time the group keying material is renewed, before it's

distributed to the group members.

Figure 17 gives an overview of the exchange described above.

Figure 17: Message Flow of Version Request-Response

¶

¶

¶

Client KDC

 | |

 |-Policies Request: GET ace-group/GROUPNAME/policies ->|

 | |

 |<--------- Policies Response: 2.05 (Content) ---------|

 | |

¶

¶

Client KDC

 | |

 |---- Version Request: GET ace-group/GROUPNAME/num ---->|

 | |

 |<--------- Version Response: 2.05 (Content) -----------|

 | |

4.10. Group Leaving Request

A node can actively request to leave the group. In this case, the

Client sends a CoAP DELETE request to the endpoint /ace-group/

GROUPNAME/nodes/NODENAME at the KDC, where GROUPNAME is the group

name and NODENAME is the node's name, formatted as defined in

Section 4.1.6.3

Alternatively, a node may be removed by the KDC, without having

explicitly asked for it. This is further discussed in Section 5.

5. Removal of a Node from the Group

This section describes the different scenarios according to which a

node ends up being removed from the group.

If the application requires forward security, the KDC MUST generate

new group keying material and securely distribute it to all the

current group members but the leaving node, using the message format

of the Key Distribution Response (see Section 4.4). Application

profiles may define alternative message formats. Before distributing

the new group keying material, the KDC MUST increment the version

number of the keying material.

Note that, after having left the group, a node may wish to join it

again. Then, as long as the node is still authorized to join the

group, i.e. it still has a valid access token, it can re-request to

join the group directly to the KDC without needing to retrieve a new

access token from the AS. This means that the KDC might decide to

keep track of nodes with valid access tokens, before deleting all

information about the leaving node.

A node may be evicted from the group in the following cases.

The node explicitly asks to leave the group, as defined in

Section 4.10.

The node has been found compromised or is suspected so.

The node's authorization to be a group member is not valid

anymore, either because the access token has expired, or it has

been revoked. If the AS provides Token introspection (see

Section 5.7 of [I-D.ietf-ace-oauth-authz]), the KDC can

optionally use it and check whether the node is still

authorized for that group in that role.

In either case, once aware that a node is not authorized anymore,

the KDC has to remove the unauthorized node from the list of group

members, if the KDC keeps track of that.

¶

¶

¶

¶

¶

¶

1.

¶

2. ¶

3.

¶

¶

In case of forced eviction, the KDC MAY explicitly inform the

leaving node, if the Client implements the 'control_path' resource

specified in Section 4.1.2.1. To this end, the KDC MAY send a DEL

request, targeting the URI specified in the 'control_path' parameter

of the Joining Request.

6. ACE Groupcomm Parameters

This specification defines a number of fields used during the second

part of the message exchange, after the ACE Token POST exchange. The

table below summarizes them, and specifies the CBOR key to use

instead of the full descriptive name. Note that the media type ace-

groupcomm+cbor MUST be used when these fields are transported.

Name
CBOR

Key
CBOR Type Reference

scope TBD byte string Section 4.1.2.1

get_pub_keys TBD array
Section 4.1.2.1,

Section 4.1.3.1

client_cred TBD byte string Section 4.1.2.1

cnonce TBD byte string Section 4.1.2.1

client_cred_verify TBD byte string Section 4.1.2.1

pub_keys_repos TBD text string Section 4.1.2.1

control_path TBD text string Section 4.1.2.1

gkty TBD
integer / text

string
Section 4.1.2.1

key TBD

see "ACE

Groupcomm Key"

Registry

Section 4.1.2.1

num TBD integer Section 4.1.2.1

ace-groupcomm-

profile
TBD int Section 4.1.2.1

exp TBD int Section 4.1.2.1

pub_keys TBD byte string Section 4.1.2.1

peer_roles TBD array Section 4.1.2.1

group_policies TBD map Section 4.1.2.1

mgt_key_material TBD byte string Section 4.1.2.1

gid TBD array Section 4.1.1.1

gname TBD
array of text

string
Section 4.1.1.1

guri TBD
array of text

string
Section 4.1.1.1

Table 1

7. Security Considerations

When a Client receives a message from a sender for the first time,

it needs to have a mechanism in place to avoid replay, e.g. Appendix

¶

¶

B.2 of [RFC8613]. In case the Client rebooted and lost the security

state used to protect previous communication with that sender, such

a mechanism is useful for the recipient to be on the safe side.

Besides, if the KDC has renewed the group keying material, and the

time interval between the end of the rekeying process and the

joining of the Client is sufficiently small, that Client is also on

the safe side, since replayed older messages protected with the

previous keying material will not be accepted.

The KDC must renew the group keying material upon its expiration.

The KDC should renew the keying material upon group membership

change, and should provide it to the current group members through

the rekeying scheme used in the group.

The KDC should renew the group keying material after rebooting, even

in the case where all keying material is stored in persistent

storage. However, if the KDC relies on Observe responses to notify

the group of renewed keying material, after rebooting the KDC will

have lost all the current ongoing Observations with the group

members, and the previous keying material will be used to protect

messages in the group anyway. The KDC will rely on each node

requesting updates of the group keying material to establish the new

keying material in the nodes, or, if implemented, it can push the

update to the nodes in the group using the 'control_path' resource.

The KDC may enforce a rekeying policy that takes into account the

overall time required to rekey the group, as well as the expected

rate of changes in the group membership.

That is, the KDC may not rekey the group at every membership change,

for instance if members' joining and leaving occur frequently and

performing a group rekeying takes too long. The KDC may rekey the

group after a minimum number of group members have joined or left

within a given time interval, or after maximum amount of time since

the last rekeying was completed, or yet during predictable network

inactivity periods.

However, this would result in the KDC not constantly preserving

backward and forward security. Newly joining group members could be

able to access the keying material used before their joining, and

thus could access past group communications. Also, until the KDC

performs a group rekeying, the newly leaving nodes would still be

able to access upcoming group communications that are protected with

the keying material that has not yet been updated.

The KDC needs to have a mechanism in place to detect DoS attacks

from nodes constantly initiating rekey events (for example by

¶

¶

¶

¶

¶

¶

¶

updating their public key), such as removing these nodes from the

group.

The KDC also needs to have a congestion control mechanism in place

to avoid network congestion when the KDC renews the group keying

material; CoAP and Observe give guidance on such mechanisms, see

Section 4.7 of [RFC7252] and Section 4.5.1 of [RFC7641].

7.1. Update of Keying Material

A group member can receive a message shortly after the group has

been rekeyed, and new keying material has been distributed by the

KDC. In the following two cases, this may result in misaligned

keying material between the group members.

In the first case, the sender protects a message using the old

keying material. However, the recipient receives the message after

having received the new keying material, hence not being able to

correctly process it. A possible way to ameliorate this issue is to

preserve the old, recent, keying material for a maximum amount of

time defined by the application. By doing so, the recipient can

still try to process the received message using the old retained

keying material. Note that a former (compromised) group member can

take advantage of this by sending messages protected with the old

retained keying material. Therefore, a conservative application

policy should not admit the storage of old keying material.

In the second case, the sender protects a message using the new

keying material, but the recipient receives that request before

having received the new keying material. Therefore, the recipient

would not be able to correctly process the request and hence

discards it. If the recipient receives the new keying material

shortly after that and the application at the sender endpoint

performs retransmissions, the former will still be able to receive

and correctly process the message. In any case, the recipient should

actively ask the KDC for an updated keying material according to an

application-defined policy, for instance after a given number of

unsuccessfully decrypted incoming messages.

A node that has left the group should not expect any of its outgoing

messages to be successfully processed, if received after its

leaving, due to a possible group rekeying occurred before the

message reception.

7.2. Block-Wise Considerations

If the block-wise options [RFC7959] are used, and the keying

material is updated in the middle of a block-wise transfer, the

sender of the blocks just changes the keying material to the updated

one and continues the transfer. As long as both sides get the new

¶

¶

¶

¶

¶

¶

keying material, updating the keying material in the middle of a

transfer will not cause any issue. Otherwise, the sender will have

to transmit the message again, when receiving an error message from

the recipient.

Compared to a scenario where the transfer does not use block-wise,

depending on how fast the keying material is changed, the nodes

might consume a larger amount of the network bandwidth resending the

blocks again and again, which might be problematic.

8. IANA Considerations

This document has the following actions for IANA.

8.1. Media Type Registrations

This specification registers the 'application/ace-groupcomm+cbor'

media type for messages of the protocols defined in this document

following the ACE exchange and carrying parameters encoded in CBOR.

This registration follows the procedures specified in [RFC6838].

Type name: application

Subtype name: ace-groupcomm+cbor

Required parameters: none

Optional parameters: none

Encoding considerations: Must be encoded as CBOR map containing the

protocol parameters defined in [this document].

Security considerations: See Section 7 of this document.

Interoperability considerations: n/a

Published specification: [this document]

Applications that use this media type: The type is used by

authorization servers, clients and resource servers that support the

ACE groupcomm framework as specified in [this document].

Additional information:

Magic number(s): n/a

File extension(s): .ace-groupcomm

Macintosh file type code(s): n/a

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Person & email address to contact for further information:

iesg@ietf.org

Intended usage: COMMON

Restrictions on usage: None

Author: Francesca Palombini francesca.palombini@ericsson.com

Change controller: IESG

8.2. CoAP Content-Formats Registry

This specification registers the following entry to the "CoAP

Content-Formats" registry, within the "CoRE Parameters" registry:

Media Type: application/ace-groupcomm+cbor

Encoding: -

ID: TBD

Reference: [this document]

8.3. OAuth Parameters Registry

The following registrations are done for the OAuth

ParametersRegistry following the procedure specified in section 11.2

of [RFC6749]:

o Parameter name: sign_info o Parameter usage location: token

request, token response o Change Controller: IESG o Specification

Document(s): [[This specification]]

o Parameter name: kdcchallenge o Parameter usage location: token

response o Change Controller: IESG o Specification Document(s):

[[This specification]]

8.4. OAuth Parameters CBOR Mappings Registry

The following registrations are done for the OAuth Parameters CBOR

Mappings Registry following the procedure specified in section 8.9

of [I-D.ietf-ace-oauth-authz]:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

mailto:iesg@ietf.org
mailto:francesca.palombini@ericsson.com

8.5. ACE Groupcomm Parameters Registry

This specification establishes the "ACE Groupcomm Parameters" IANA

Registry. The Registry has been created to use the "Expert Review

Required" registration procedure [RFC8126]. Expert review guidelines

are provided in Section 8.11.

The columns of this Registry are:

Name: This is a descriptive name that enables easier reference to

the item. The name MUST be unique. It is not used in the

encoding.

CBOR Key: This is the value used as CBOR key of the item. These

values MUST be unique. The value can be a positive integer, a

negative integer, or a string.

CBOR Type: This contains the CBOR type of the item, or a pointer

to the registry that defines its type, when that depends on

another item.

Reference: This contains a pointer to the public specification

for the item.

This Registry has been initially populated by the values in Section

6. The Reference column for all of these entries refers to sections

of this document.

8.6. ACE Groupcomm Key Registry

This specification establishes the "ACE Groupcomm Key" IANA

Registry. The Registry has been created to use the "Expert Review

Required" registration procedure [RFC8126]. Expert review guidelines

are provided in Section 8.11.

The columns of this Registry are:

Name: This is a descriptive name that enables easier reference to

the item. The name MUST be unique. It is not used in the

encoding.

* Name: sign_info

* CBOR Key: TBD (range -256 to 255)

* Value Type: any

* Reference: \[\[This specification\]\]

* Name: kdcchallenge

* CBOR Key: TBD (range -256 to 255)

* Value Type: byte string

* Reference: \[\[This specification\]\]

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

*

¶

Key Type Value: This is the value used to identify the keying

material. These values MUST be unique. The value can be a

positive integer, a negative integer, or a text string.

Profile: This field may contain one or more descriptive strings

of application profiles to be used with this item. The values

should be taken from the Name column of the "ACE Groupcomm

Profile" Registry.

Description: This field contains a brief description of the

keying material.

References: This contains a pointer to the public specification

for the format of the keying material, if one exists.

This Registry has been initially populated by the values in Figure

7. The specification column for all of these entries will be this

document.

8.7. ACE Groupcomm Profile Registry

This specification establishes the "ACE Groupcomm Profile" IANA

Registry. The Registry has been created to use the "Expert Review

Required" registration procedure [RFC8126]. Expert review guidelines

are provided in Section 8.11. It should be noted that, in addition

to the expert review, some portions of the Registry require a

specification, potentially a Standards Track RFC, be supplied as

well.

The columns of this Registry are:

Name: The name of the application profile, to be used as value of

the profile attribute.

Description: Text giving an overview of the application profile

and the context it is developed for.

CBOR Value: CBOR abbreviation for the name of this application

profile. Different ranges of values use different registration

policies [RFC8126]. Integer values from -256 to 255 are

designated as Standards Action. Integer values from -65536 to

-257 and from 256 to 65535 are designated as Specification

Required. Integer values greater than 65535 are designated as

Expert Review. Integer values less than -65536 are marked as

Private Use.

Reference: This contains a pointer to the public specification of

the abbreviation for this application profile, if one exists.

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

8.8. ACE Groupcomm Policy Registry

This specification establishes the "ACE Groupcomm Policy" IANA

Registry. The Registry has been created to use the "Expert Review

Required" registration procedure [RFC8126]. Expert review guidelines

are provided in Section 8.11. It should be noted that, in addition

to the expert review, some portions of the Registry require a

specification, potentially a Standards Track RFC, be supplied as

well.

The columns of this Registry are:

Name: The name of the group communication policy.

CBOR label: The value to be used to identify this group

communication policy. Key map labels MUST be unique. The label

can be a positive integer, a negative integer or a string.

Integer values between 0 and 255 and strings of length 1 are

designated as Standards Track Document required. Integer values

from 256 to 65535 and strings of length 2 are designated as

Specification Required. Integer values of greater than 65535 and

strings of length greater than 2 are designated as expert review.

Integer values less than -65536 are marked as private use.

CBOR type: the CBOR type used to encode the value of this group

communication policy.

Description: This field contains a brief description for this

group communication policy.

Reference: This field contains a pointer to the public

specification providing the format of the group communication

policy, if one exists.

This registry will be initially populated by the values in Figure 8.

8.9. Sequence Number Synchronization Method Registry

This specification establishes the "Sequence Number Synchronization

Method" IANA Registry. The Registry has been created to use the

"Expert Review Required" registration procedure [RFC8126]. Expert

review guidelines are provided in Section 8.11. It should be noted

that, in addition to the expert review, some portions of the

Registry require a specification, potentially a Standards Track RFC,

be supplied as well.

The columns of this Registry are:

Name: The name of the sequence number synchronization method.

¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

* ¶

Value: The value to be used to identify this sequence number

synchronization method.

Description: This field contains a brief description for this

sequence number synchronization method.

Reference: This field contains a pointer to the public

specification describing the sequence number synchronization

method.

8.10. Interface Description (if=) Link Target Attribute Values

Registry

This specification registers the following entry to the "Interface

Description (if=) Link Target Attribute Values Registry" registry,

within the "CoRE Parameters" registry:

Attribute Value: ace.group

Description: The 'ace group' interface is used to provision

keying material and related informations and policies to members

of a group using the Ace framework.

Reference: [This Document]

8.11. Expert Review Instructions

The IANA Registries established in this document are defined as

expert review. This section gives some general guidelines for what

the experts should be looking for, but they are being designated as

experts for a reason so they should be given substantial latitude.

Expert reviewers should take into consideration the following

points:

Point squatting should be discouraged. Reviewers are encouraged

to get sufficient information for registration requests to ensure

that the usage is not going to duplicate one that is already

registered and that the point is likely to be used in

deployments. The zones tagged as private use are intended for

testing purposes and closed environments, code points in other

ranges should not be assigned for testing.

Specifications are required for the standards track range of

point assignment. Specifications should exist for specification

required ranges, but early assignment before a specification is

available is considered to be permissible. Specifications are

needed for the first-come, first-serve range if they are expected

to be used outside of closed environments in an interoperable

way. When specifications are not provided, the description

*

¶

*

¶

*

¶

¶

* ¶

*

¶

* ¶

¶

¶

*

¶

*

[COSE.Algorithms]

[I-D.ietf-ace-oauth-authz]

[I-D.ietf-ace-oauth-params]

[I-D.ietf-core-oscore-groupcomm]

[I-D.ietf-cose-rfc8152bis-algs]

provided needs to have sufficient information to identify what

the point is being used for.

Experts should take into account the expected usage of fields

when approving point assignment. The fact that there is a range

for standards track documents does not mean that a standards

track document cannot have points assigned outside of that range.

The length of the encoded value should be weighed against how

many code points of that length are left, the size of device it

will be used on, and the number of code points left that encode

to that size.

9. References

9.1. Normative References

IANA, "COSE Algorithms", , <https://www.iana.org/

assignments/cose/cose.xhtml#algorithms>.

Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and

H. Tschofenig, "Authentication and Authorization for

Constrained Environments (ACE) using the OAuth 2.0

Framework (ACE-OAuth)", Work in Progress, Internet-Draft,

draft-ietf-ace-oauth-authz-35, June 24, 2020, <http://

www.ietf.org/internet-drafts/draft-ietf-ace-oauth-

authz-35.txt>.

Seitz, L., "Additional OAuth Parameters for Authorization

in Constrained Environments (ACE)", Work in Progress,

Internet-Draft, draft-ietf-ace-oauth-params-13, April 28,

2020, <http://www.ietf.org/internet-drafts/draft-ietf-

ace-oauth-params-13.txt>.

Tiloca, M., Selander, G., Palombini, F., and J. Park,

"Group OSCORE - Secure Group Communication for CoAP",

Work in Progress, Internet-Draft, draft-ietf-core-oscore-

groupcomm-09, June 23, 2020, <http://www.ietf.org/

internet-drafts/draft-ietf-core-oscore-groupcomm-09.txt>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Initial Algorithms", Work in Progress, Internet-Draft,

draft-ietf-cose-rfc8152bis-algs-11, July 1, 2020,

¶

*

¶

https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
http://www.ietf.org/internet-drafts/draft-ietf-ace-oauth-authz-35.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-oauth-authz-35.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-oauth-authz-35.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-oauth-params-13.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-oauth-params-13.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-oscore-groupcomm-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-oscore-groupcomm-09.txt

[I-D.ietf-cose-rfc8152bis-struct]

[RFC2119]

[RFC6749]

[RFC6838]

[RFC7049]

[RFC7252]

[RFC8126]

[RFC8174]

[RFC8747]

[I-D.bormann-core-ace-aif]

<http://www.ietf.org/internet-drafts/draft-ietf-cose-

rfc8152bis-algs-11.txt>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Structures and Process", Work in Progress, Internet-

Draft, draft-ietf-cose-rfc8152bis-struct-12, August 24,

2020, <http://www.ietf.org/internet-drafts/draft-ietf-

cose-rfc8152bis-struct-12.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Freed, N., Klensin, J., and T. Hansen, "Media Type

Specifications and Registration Procedures", BCP 13, RFC

6838, DOI 10.17487/RFC6838, January 2013, <https://

www.rfc-editor.org/info/rfc6838>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.

Tschofenig, "Proof-of-Possession Key Semantics for CBOR

Web Tokens (CWTs)", RFC 8747, DOI 10.17487/RFC8747, March

2020, <https://www.rfc-editor.org/info/rfc8747>.

9.2. Informative References

http://www.ietf.org/internet-drafts/draft-ietf-cose-rfc8152bis-algs-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-cose-rfc8152bis-algs-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-cose-rfc8152bis-struct-12.txt
http://www.ietf.org/internet-drafts/draft-ietf-cose-rfc8152bis-struct-12.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8747

[I-D.ietf-ace-dtls-authorize]

[I-D.ietf-ace-mqtt-tls-profile]

[I-D.ietf-ace-oscore-profile]

[I-D.ietf-core-coap-pubsub]

[I-D.ietf-core-groupcomm-bis]

[RFC2093]

Bormann, C., "An Authorization Information Format (AIF)

for ACE", Work in Progress, Internet-Draft, draft-

bormann-core-ace-aif-09, June 27, 2020, <http://

www.ietf.org/internet-drafts/draft-bormann-core-ace-

aif-09.txt>.

Gerdes, S., Bergmann, O., Bormann, C., Selander, G., and

L. Seitz, "Datagram Transport Layer Security (DTLS)

Profile for Authentication and Authorization for

Constrained Environments (ACE)", Work in Progress,

Internet-Draft, draft-ietf-ace-dtls-authorize-12, July 6,

2020, <http://www.ietf.org/internet-drafts/draft-ietf-

ace-dtls-authorize-12.txt>.

Sengul, C., Kirby, A., and P. Fremantle, "MQTT-TLS

profile of ACE", Work in Progress, Internet-Draft, draft-

ietf-ace-mqtt-tls-profile-06, July 13, 2020, <http://

www.ietf.org/internet-drafts/draft-ietf-ace-mqtt-tls-

profile-06.txt>.

Palombini, F., Seitz, L., Selander, G., and M.

Gunnarsson, "OSCORE profile of the Authentication and

Authorization for Constrained Environments Framework",

Work in Progress, Internet-Draft, draft-ietf-ace-oscore-

profile-11, June 18, 2020, <http://www.ietf.org/internet-

drafts/draft-ietf-ace-oscore-profile-11.txt>.

Koster, M., Keranen, A., and J. Jimenez, "Publish-

Subscribe Broker for the Constrained Application Protocol

(CoAP)", Work in Progress, Internet-Draft, draft-ietf-

core-coap-pubsub-09, September 30, 2019, <http://

www.ietf.org/internet-drafts/draft-ietf-core-coap-

pubsub-09.txt>.

Dijk, E., Wang, C., and M. Tiloca, "Group Communication

for the Constrained Application Protocol (CoAP)", Work in

Progress, Internet-Draft, draft-ietf-core-groupcomm-

bis-01, July 13, 2020, <http://www.ietf.org/internet-

drafts/draft-ietf-core-groupcomm-bis-01.txt>.

Harney, H. and C. Muckenhirn, "Group Key Management

Protocol (GKMP) Specification", RFC 2093, DOI 10.17487/

RFC2093, July 1997, <https://www.rfc-editor.org/info/

rfc2093>.

http://www.ietf.org/internet-drafts/draft-bormann-core-ace-aif-09.txt
http://www.ietf.org/internet-drafts/draft-bormann-core-ace-aif-09.txt
http://www.ietf.org/internet-drafts/draft-bormann-core-ace-aif-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-dtls-authorize-12.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-dtls-authorize-12.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-mqtt-tls-profile-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-mqtt-tls-profile-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-mqtt-tls-profile-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-oscore-profile-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-oscore-profile-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-coap-pubsub-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-coap-pubsub-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-coap-pubsub-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-groupcomm-bis-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-groupcomm-bis-01.txt
https://www.rfc-editor.org/info/rfc2093
https://www.rfc-editor.org/info/rfc2093

[RFC2094]

[RFC2627]

[RFC7519]

[RFC7641]

[RFC7959]

[RFC8259]

[RFC8392]

[RFC8610]

[RFC8613]

Harney, H. and C. Muckenhirn, "Group Key Management

Protocol (GKMP) Architecture", RFC 2094, DOI 10.17487/

RFC2094, July 1997, <https://www.rfc-editor.org/info/

rfc2094>.

Wallner, D., Harder, E., and R. Agee, "Key Management for

Multicast: Issues and Architectures", RFC 2627, DOI

10.17487/RFC2627, June 1999, <https://www.rfc-editor.org/

info/rfc2627>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/info/rfc7519>.

Hartke, K., "Observing Resources in the Constrained

Application Protocol (CoAP)", RFC 7641, DOI 10.17487/

RFC7641, September 2015, <https://www.rfc-editor.org/

info/rfc7641>.

Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in

the Constrained Application Protocol (CoAP)", RFC 7959,

DOI 10.17487/RFC7959, August 2016, <https://www.rfc-

editor.org/info/rfc7959>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

Jones, M., Wahlstroem, E., Erdtman, S., and H.

Tschofenig, "CBOR Web Token (CWT)", RFC 8392, DOI

10.17487/RFC8392, May 2018, <https://www.rfc-editor.org/

info/rfc8392>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Selander, G., Mattsson, J., Palombini, F., and L. Seitz,

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,

<https://www.rfc-editor.org/info/rfc8613>.

https://www.rfc-editor.org/info/rfc2094
https://www.rfc-editor.org/info/rfc2094
https://www.rfc-editor.org/info/rfc2627
https://www.rfc-editor.org/info/rfc2627
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8613

Appendix A. Requirements on Application Profiles

This section lists the requirements on application profiles of this

specification,for the convenience of application profile designers.

REQ1: If the value of the GROUPNAME URI path and the group name

in the access token scope (gname in Section 3.2) don't match,

specify the mechanism to map the GROUPNAME value in the URI to

the group name (REQ1) (see Section 4.1).

REQ2: Specify the encoding and value of roles, for scope entries

of 'scope' (see Section 3.1).

REQ3: If used, specify the acceptable values for 'sign_alg' (see

Section 3.3).

REQ4: If used, specify the acceptable values for

'sign_parameters' (see Section 3.3).

REQ5: If used, specify the acceptable values for

'sign_key_parameters' (see Section 3.3).

REQ6: If used, specify the acceptable values for 'pub_key_enc'

(see Section 3.3).

REQ7a: Register a Resource Type for the root url-path, which is

used to discover the correct url to access at the KDC (see

Section 4.1).

REQ7b: Specify the exact encoding of group identifier (see

Section 4.1.1.1).

REQ7: Specify the exact format of the 'key' value (see Section

4.1.2.1).

REQ8: Specify the acceptable values of 'gkty' (see Section

4.1.2.1).

REQ9: Specify the format of the identifiers of group members (see

Section 4.1.2.1).

REQ10: Specify the communication protocol the members of the

group must use (e.g., multicast CoAP).

REQ11: Specify the security protocol the group members must use

to protect their communication (e.g., group OSCORE). This must

provide encryption, integrity and replay protection.

REQ12: Specify and register the application profile identifier

(see Section 4.1.2.1).

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

REQ13: Specify policies at the KDC to handle ids that are not

included in get_pub_keys (see Section 4.1.3.1).

REQ14: If used, specify the format and content of

'group_policies' and its entries. Specify the policies default

values (see Section 4.1.2.1).

REQ15: Specify the format of newly-generated individual keying

material for group members, or of the information to derive it,

and corresponding CBOR label (see Section 4.1.6.2).

REQ16: Specify how the communication is secured between Client

and KDC. Optionally, specify tranport profile of ACE [I-D.ietf-

ace-oauth-authz] to use between Client and KDC (see Section 4.3.

REQ17: Specify how the nonce N_S is generated, if the token was

not posted (e.g. if it is used directly to validate TLS instead).

REQ18: Specify if 'mgt_key_material' used, and if yes specify its

format and content (see Section 4.1.2.1). If the usage of

'mgt_key_material' is indicated and its format defined for a

specific key management scheme, that format must explicitly

indicate the key management scheme itself. If a new rekeying

scheme is defined to be used for an existing 'mgt_key_material'

in an existing profile, then that profile will have to be updated

accordingly, especially with respect to the usage of

'mgt_key_material' related format and content.

REQ19: Define the initial value of the 'num' parameter (sse

Section 4.1.2.1).

OPT1: Optionally, specify the encoding of public keys, of

'client_cred', and of 'pub_keys' if COSE_Keys are not used (see

Section 4.1.2.1).

OPT2: Optionally, specify the negotiation of parameter values for

signature algorithm and signature keys, if 'sign_info' is not

used (see Section 3.3).

OPT3: Optionally, specify the encoding of 'pub_keys_repos' if the

default is not used (see Section 4.1.2.1).

OPT4: Optionally, specify policies that instruct clients to

retain messages and for how long, if they are unsuccessfully

decrypted (see Section 4.4). This makes it possible to decrypt

such messages after getting updated keying material.

OPT5: Optionally, specify the behavior of the handler in case of

failure to retrieve a public key for the specific node (see

Section 4.1.2.1).

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

OPT6: Optionally, specify possible or required payload formats

for specific error cases.

OPT7: Optionally, specify CBOR values to use for abbreviating

identifiers of roles in the group or topic (see Section 3.1).

OPT8: Optionally, specify for the KDC to perform group rekeying

(together or instead of renewing individual keying material) when

receiving a Key Renewal Request (see Section 4.5).

OPT9: Optionally, specify the functionalities implemented at the

'control_path' resource hosted at the Client, including message

exchange encoding and other details (see Section 4.1.2.1).

OPT10: Optionally, specify how the identifier of the sender's

public key is included in the group request (see Section 4.7).

Appendix B. Document Updates

RFC EDITOR: PLEASE REMOVE THIS SECTION.

B.1. Version -04 to -05

Updated uppercase/lowercase URI segments for KDC resources.

Supporting single Access Token for multiple groups/topics.

Added 'control_path' parameter in the Joining Request.

Added 'peer_roles' parameter to support legal requesters/

responders.

Clarification on stopping using owned keying material.

Clarification on different reasons for processing failures,

related policies, and requirement OPT4.

Added a KDC sub-resource for group members to upload a new public

key.

Possible group rekeying following an individual Key Renewal

Request.

Clarified meaning of requirement REQ3; added requirement OPT8.

Editorial improvements.

B.2. Version -03 to -04

Revised RESTful interface, as to methods and parameters.

*

¶

*

¶

*

¶

*

¶

*

¶

¶

* ¶

* ¶

* ¶

*

¶

* ¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

Extended processing of joining request, as to check/retrieval of

public keys.

Revised and extended profile requirements.

Clarified specific usage of parameters related to signature

algorithms/keys.

Included general content previously in draft-ietf-ace-key-

groupcomm-oscore

Registration of media type and content format application/ace-

group+cbor

Editorial improvements.

B.3. Version -02 to -03

Exchange of information on the countersignature algorithm and

related parameters, during the Token POST (Section 3.3).

Restructured KDC interface, with new possible operations (Section

4).

Client PoP signature for the Joining Request upon joining

(Section 4.1.2.1).

Revised text on group member removal (Section 5).

Added more profile requirements (Appendix A).

B.4. Version -01 to -02

Editorial fixes.

Distinction between transport profile and application profile

(Section 1.1).

New parameters 'sign_info' and 'pub_key_enc' to negotiate

parameter values for signature algorithm and signature keys

(Section 3.3).

New parameter 'type' to distinguish different Key Distribution

Request messages (Section 4.1).

New parameter 'client_cred_verify' in the Key Distribution

Request to convey a Client signature (Section 4.1).

Encoding of 'pub_keys_repos' (Section 4.1).

*

¶

* ¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

Encoding of 'mgt_key_material' (Section 4.1).

Improved description on retrieval of new or updated keying

material (Section 6).

Encoding of 'get_pub_keys' in Public Key Request (Section 7.1).

Extended security considerations (Sections 10.1 and 10.2).

New "ACE Public Key Encoding" IANA Registry (Section 11.2).

New "ACE Groupcomm Parameters" IANA Registry (Section 11.3),

populated with the entries in Section 8.

New "Ace Groupcomm Request Type" IANA Registry (Section 11.4),

populated with the values in Section 9.

New "ACE Groupcomm Policy" IANA Registry (Section 11.7) populated

with two entries "Sequence Number Synchronization Method" and

"Key Update Check Interval" (Section 4.2).

Improved list of requirements for application profiles (Appendix

A).

B.5. Version -00 to -01

Changed name of 'req_aud' to 'audience' in the Authorization

Request (Section 3.1).

Defined error handling on the KDC (Sections 4.2 and 6.2).

Updated format of the Key Distribution Response as a whole

(Section 4.2).

Generalized format of 'pub_keys' in the Key Distribution Response

(Section 4.2).

Defined format for the message to request leaving the group

(Section 5.2).

Renewal of individual keying material and methods for group

rekeying initiated by the KDC (Section 6).

CBOR type for node identifiers in 'get_pub_keys' (Section 7.1).

Added section on parameter identifiers and their CBOR keys

(Section 8).

Added request types for requests to a Join Response (Section 9).

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

* ¶

Extended security considerations (Section 10).

New IANA registries "ACE Groupcomm Key Registry", "ACE Groupcomm

Profile Registry", "ACE Groupcomm Policy Registry" and "Sequence

Number Synchronization Method Registry" (Section 11).

Added appendix about requirements for application profiles of ACE

on group communication (Appendix A).

Acknowledgments

The following individuals were helpful in shaping this document:

Carsten Bormann, Rikard Hoeglund, Ben Kaduk, John Mattsson, Daniel

Migault, Jim Schaad, Ludwig Seitz, Goeran Selander and Peter van der

Stok.

The work on this document has been partly supported by VINNOVA and

the Celtic-Next project CRITISEC; and by the EIT-Digital High Impact

Initiative ACTIVE.

Authors' Addresses

Francesca Palombini

Ericsson AB

Torshamnsgatan 23

SE-16440 Stockholm Kista

Sweden

Email: francesca.palombini@ericsson.com

Marco Tiloca

RISE AB

Isafjordsgatan 22

SE-16440 Stockholm Kista

Sweden

Email: marco.tiloca@ri.se

* ¶

*

¶

*

¶

¶

¶

mailto:francesca.palombini@ericsson.com
mailto:marco.tiloca@ri.se

	Key Provisioning for Group Communication using ACE
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Overview
	3. Authorization to Join a Group
	3.1. Authorization Request
	3.2. Authorization Response
	3.3. Token Post
	3.3.1. 'sign_info' Parameter
	3.3.2. 'kdcchallenge' Parameter

	4. Keying Material Provisioning and Group Membership Management
	4.1. Interface at the KDC
	4.1.1. ace-group
	4.1.1.1. FETCH Handler

	4.1.2. ace-group/GROUPNAME
	4.1.2.1. POST Handler
	4.1.2.2. GET Handler

	4.1.3. ace-group/GROUPNAME/pub-key
	4.1.3.1. FETCH Handler
	4.1.3.2. GET Handler

	4.1.4. ace-group/GROUPNAME/policies
	4.1.4.1. GET Handler

	4.1.5. ace-group/GROUPNAME/num
	4.1.5.1. GET Handler

	4.1.6. ace-group/GROUPNAME/nodes/NODENAME
	4.1.6.1. PUT Handler
	4.1.6.2. GET Handler
	4.1.6.3. DELETE Handler

	4.1.7. ace-group/GROUPNAME/nodes/NODENAME/pub-key
	4.1.7.1. POST Handler

	4.2. Retrieval of Group Names and URIs
	4.3. Joining Exchange
	4.4. Retrieval of Updated Keying Material
	4.5. Requesting a Change of Keying Material
	4.6. Retrieval of Public Keys and Roles for Group Members
	4.7. Update of Public Key
	4.8. Retrieval of Group Policies
	4.9. Retrieval of Keying Material Version
	4.10. Group Leaving Request

	5. Removal of a Node from the Group
	6. ACE Groupcomm Parameters
	7. Security Considerations
	7.1. Update of Keying Material
	7.2. Block-Wise Considerations

	8. IANA Considerations
	8.1. Media Type Registrations
	8.2. CoAP Content-Formats Registry
	8.3. OAuth Parameters Registry
	8.4. OAuth Parameters CBOR Mappings Registry
	8.5. ACE Groupcomm Parameters Registry
	8.6. ACE Groupcomm Key Registry
	8.7. ACE Groupcomm Profile Registry
	8.8. ACE Groupcomm Policy Registry
	8.9. Sequence Number Synchronization Method Registry
	8.10. Interface Description (if=) Link Target Attribute Values Registry
	8.11. Expert Review Instructions

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Requirements on Application Profiles
	Appendix B. Document Updates
	B.1. Version -04 to -05
	B.2. Version -03 to -04
	B.3. Version -02 to -03
	B.4. Version -01 to -02
	B.5. Version -00 to -01
	Acknowledgments
	Authors' Addresses

