
Workgroup: ACE Working Group

Internet-Draft:

draft-ietf-ace-mqtt-tls-profile-16

Published: 21 March 2022

Intended Status: Standards Track

Expires: 22 September 2022

Authors: C.S. Sengul

Brunel University

A.K. Kirby

Oxbotica

Message Queuing Telemetry Transport (MQTT)-TLS profile of

Authentication and Authorization for Constrained Environments (ACE)

Framework

Abstract

This document specifies a profile for the ACE (Authentication and

Authorization for Constrained Environments) framework to enable

authorization in a Message Queuing Telemetry Transport (MQTT)-based

publish-subscribe messaging system. Proof-of-possession keys, bound

to OAuth2.0 access tokens, are used to authenticate and authorize

MQTT Clients. The protocol relies on TLS for confidentiality and

MQTT server (Broker) authentication.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 22 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Language

1.2. ACE-Related Terminology

1.3. MQTT-Related Terminology

2. Authorizing Connection Requests

2.1. Client Token Request to the Authorization Server (AS)

2.2. Client Connection Request to the Broker (C)

2.2.1. Overview of Client-RS Authentication Methods over TLS

and MQTT

2.2.2. authz-info: The Authorization Information Topic

2.2.3. Client Authentication over TLS

2.2.3.1. Raw Public Key Mode

2.2.3.2. Pre-Shared Key Mode

2.2.4. Client Authentication over MQTT

2.2.4.1. Transporting the Access Token Inside the MQTT

CONNECT

2.2.4.2. Authentication Using AUTH Property

2.2.5. Broker Token Validation

2.3. Token Scope and Authorization

2.4. Broker Response to Client Connection Request

2.4.1. Unauthorized Request and the Optional Authorization

Server Discovery

2.4.2. Authorization Success

3. Authorizing PUBLISH and SUBSCRIBE Packets

3.1. PUBLISH Packets from the Publisher Client to the Broker

3.2. PUBLISH Packets from the Broker to the Subscriber Clients

3.3. Authorizing SUBSCRIBE Packets

4. Token Expiration, Update, and Reauthentication

5. Handling Disconnections and Retained Messages

6. Reduced Protocol Interactions for MQTT v3.1.1

6.1. Token Transport

6.2. Handling Authorization Errors

7. IANA Considerations

7.1. TLS Exporter Label Registration

7.2. Media Type Registration

7.3. ACE OAuth Profile Registration

7.4. AIF

8. Security Considerations

9. Privacy Considerations

10. References

10.1. Normative References

10.2. Informative References

¶

Appendix A. Checklist for profile requirements

Appendix B. Document Updates

Acknowledgments

Authors' Addresses

1. Introduction

This document specifies a profile for the ACE framework [I-D.ietf-

ace-oauth-authz]. In this profile, Clients and Servers (Brokers) use

MQTT to exchange Application Messages. The protocol relies on TLS

for communication security between entities. The MQTT protocol

interactions are described based on the MQTT v5.0 - the OASIS

Standard [MQTT-OASIS-Standard-v5]. Since it is expected that MQTT

deployments will continue to support MQTT v3.1.1 Clients, this

document also describes a reduced set of protocol interactions for

MQTT v3.1.1 - the OASIS Standard [MQTT-OASIS-Standard-v3.1.1].

However, MQTT v5.0 is the RECOMMENDED version as it works more

naturally with ACE-style authentication and authorization.

MQTT is a publish-subscribe protocol, and after connecting to the

MQTT Server (Broker), a Client can publish and subscribe to multiple

topics. The Broker, which acts as the Resource Server (RS), is

responsible for distributing messages published by the publishers to

their subscribers. In the rest of the document, the terms "RS",

"MQTT Server" and "Broker" are used interchangeably.

Messages are published under a Topic Name, and subscribers subscribe

to the Topic Names to receive the corresponding messages. The Broker

uses the Topic Name in a published message to determine which

subscribers to relay the messages to. In this document, topics, more

specifically, Topic Names, are treated as resources. The Clients are

assumed to have identified the publish/subscribe topics of interest

out-of-band (topic discovery is not a feature of the MQTT protocol).

A Resource Owner can pre-configure policies at the Authorization

Server (AS) that give Clients publish or subscribe permissions to

different topics.

Clients prove their permission to publish and subscribe to topics

hosted on an MQTT Broker using an access token, bound to a proof-of-

possession (PoP) key. This document describes how to authorize the

following exchanges between the Clients and the Broker.

Connection requests from the Clients to the Broker

Publish requests from the Clients to the Broker and from the

Broker to the Clients

Subscribe requests from the Clients to the Broker

¶

¶

¶

¶

* ¶

*

¶

* ¶

Clients use the MQTT PUBLISH packet to publish to a topic. The

mechanisms specified in this document do not protect the payload of

the PUBLISH packet from the Broker. Hence, the payload is not signed

or encrypted specifically for the subscribers. This functionality

may be implemented using the proposal outlined in the ACE Pub-Sub

Profile [I-D.ietf-ace-pubsub-profile].

To provide communication confidentiality and Broker authentication

to the MQTT Clients, TLS is used, and TLS 1.3 [RFC8446] is

RECOMMENDED. This document makes the same assumptions as Section 4

of the ACE framework [I-D.ietf-ace-oauth-authz] regarding Client and

RS registration with the AS and setting up the keying material.

While the Client-Broker exchanges are only over MQTT, the required

Client-AS and RS-AS interactions are described for HTTPS-based

communication [I-D.ietf-httpbis-semantics], using "application/

ace+json" content type, and unless otherwise specified, using JSON

encoding. The token MAY be an opaque reference to authorization

information or JSON Web Token (JWT) [RFC7519]. For JWTs, this

document follows [RFC7800] for PoP semantics for JWTs, and the

mechanisms for providing and verifying PoP are detailed in Section

2.2. The Client-AS and RS-AS exchanges MAY also use protocols other

than HTTP, e.g., Constrained Application Protocol (CoAP) [RFC7252]

or MQTT. It is recommended that TLS is used to secure these

communication channels between Client-AS and RS-AS. To reduce the

protocol memory and bandwidth requirements, implementations MAY also

use "application/ace+cbor" content type, and CBOR encoding

[RFC8949], and CBOR Web Token (CWT) [RFC8392] and associated PoP

semantics. For more information, see Proof-of-Possession Key

Semantics for CBOR Web Tokens (CWTs) [RFC8747]. A JWT token uses

JOSE, while a CWT token uses COSE [RFC8152] for security protection.

1.1. Requirements Language

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174], when, and only when, they appear in all

capitals, as shown here.

1.2. ACE-Related Terminology

Certain security-related terms such as "authentication",

"authorization", "confidentiality", "(data) integrity", "message

authentication code", and "verify" are taken from [RFC4949].

The terminology for entities in the architecture is defined in OAuth

2.0 [RFC6749] such as "Client" (C), "Resource Server" (RS) and

"Authorization Server" (AS).

¶

¶

¶

¶

¶

Client Authorization Server (CAS)

Broker

Client

Network Connection

The term "resource" is used to refer to an MQTT Topic Name, which is

defined in Section 1.3. Hence, the "Resource Owner" is any entity

that can authoritatively speak for the topic. This document also

defines a Client Authorization Server for Clients that are not able

to support HTTP.

An entity that prepares and endorses authentication and

authorization data for a Client, and communicates to the AS using

HTTPS.

1.3. MQTT-Related Terminology

The document describes message exchanges as MQTT protocol

interactions. The Clients are MQTT Clients, which connect to the

Broker to publish and subscribe to Application Messages, labelled

with their topics. For additional information, please refer to the

MQTT v5.0 - the OASIS Standard [MQTT-OASIS-Standard-v5] or the MQTT

v3.1.1 - the OASIS Standard [MQTT-OASIS-Standard-v3.1.1].

The Server in MQTT. It acts as an intermediary between the

Clients that publish Application Messages and the Clients that

made Subscriptions. The Broker acts as the Resource Server for

the Clients.

A device or program that uses MQTT.

A construct provided by the underlying transport protocol that is

being used by MQTT. It connects the Client to the Server. It

¶

¶

¶

¶

¶

Session

Application Message

MQTT Control Packet

UTF-8 encoded string

Binary Data

Variable Byte Integer

QoS level

Property

provides the means to send an ordered, lossless, stream of bytes

in both directions. This document uses TLS as tranport protocol.

A stateful interaction between a Client and a Broker. Some

Sessions last only as long as the Network Connection; others can

span multiple Network Connections.

The data carried by the MQTT protocol. The data has an associated

Quality-of-Service (QoS) level and Topic Name.

The MQTT protocol operates by exchanging a series of MQTT Control

packets. Each packet is composed of a Fixed Header, a Variable

Header (depending on the control packet type), and a Payload.

A string prefixed with a two-byte length field that gives the

number of bytes in a UTF-8 encoded string itself. Unless stated

otherwise, all UTF-8 encoded strings can have any length in the

range 0 to 65535 bytes.

Binary Data is represented by a two-byte length field which

indicates the number of data bytes, followed by that number of

bytes. Thus, the length of Binary Data is limited to the range of

0 to 65535 Bytes.

Variable Byte Integer is encoded using an encoding scheme that

uses a single byte for values up to 127. For larger values, the

least significant seven bits of each byte encode the data, and

the most significant bit is used to indicate whether there are

bytes following in the representation. Thus, each byte encodes

128 values and a "continuation bit". The maximum number of bytes

in the Variable Byte Integer field is four.

The level of assurance for the delivery of an Application

Message. The QoS level can be 0-2, where 0 indicates "At most

once delivery", 1 "At least once delivery", and 2 "Exactly once

delivery".

The last field of the Variable Header is a set of properties for

several MQTT control packets (e.g. CONNECT, CONNACK). A Property

consists of an Identifier that defines its usage and data type,

followed by a value. The Identifier is encoded as a Variable Byte

¶

¶

¶

¶

¶

¶

¶

¶

Topic Name

Subscription

Topic Filter

CONNECT

CONNACK

AUTH

PUBLISH

PUBACK

PUBREC

Integer. For example, the "Authentication Data" property uses the

Identifier 22.

The label attached to an Application Message, which is matched to

a Subscription.

A Subscription comprises a Topic Filter and a maximum QoS. A

Subscription is associated with a single session.

An expression that indicates interest in one or more Topic Names.

Topic Filters may include wildcards.

MQTT sends various control packets across a Network Connection. The

following is not an exhaustive list, and the control packets that

are not relevant for authorization are not explained. These include,

for instance, the PUBREL and PUBCOMP packets used in the 4-step

handshake required for QoS level 2.

Client request to connect to the Broker. This is the first packet

sent by a Client.

The Broker connection acknowledgment. CONNACK packets contain

return codes indicating either a success or an error state in

response to a Client's CONNECT packet.

Authentication Exchange. An AUTH control packet is sent from the

Client to the Broker or from the Broker to the Client as part of

an extended authentication exchange. AUTH Properties include

Authentication Method and Authentication Data. The Authentication

Method is set in the CONNECT packet, and consequent AUTH packets

follow the same Authentication Method. The contents of the

Authentication Data are defined by the Authentication Method.

Publish request sent from a publishing Client to the Broker, or

from the Broker to a subscribing Client.

Response to a PUBLISH request with QoS level 1. A PUBACK can be

sent from the Broker to a Client or from a Client to the Broker.

Response to PUBLISH request with QoS level 2. PUBREC can be sent

from the Broker to a Client or from a Client to the Broker.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

SUBSCRIBE

SUBACK

PINGREQ

PINGRESP

DISCONNECT

Will

Subscribe request sent from a Client.

Subscribe acknowledgment from the Broker to the Client.

A ping request sent from a Client to the Broker. It signals to

the Broker that the Client is alive and is used to confirm that

the Broker is also alive. The "Keep Alive" period is set in the

CONNECT packet.

Response sent by the Broker to the Client in response to PINGREQ.

It indicates the Broker is alive.

The DISCONNECT packet is the final MQTT Control Packet sent from

the Client or the Broker. It indicates the reason why the Network

Connection is being closed. If the Network Connection is closed

without the Client first sending a DISCONNECT packet with Reason

Code 0x00 (Normal disconnection) and the Connection has a Will

Message, the Will Message is published.

If the Network Connection is not closed normally, the Broker

sends a last Will message for the Client if the Client provided

one in its CONNECT packet. Situations in which the Will Message

is published include, but are not limited to:

An I/O error or network failure detected by the Broker.

The Client fails to communicate within the Keep Alive

period.

The Client closes the Network Connection without first

sending a DISCONNECT packet with a Reason Code 0x00 (Normal

disconnection).

The Broker closes the Network Connection without first

receiving a DISCONNECT packet with a Reason Code 0x00

(Normal disconnection).

If the Will Flag is set in the CONNECT flags, then the payload of

the CONNECT packet includes information about the Will. The

information consists of the Will Properties, Will Topic, and Will

Payload fields.

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

2. Authorizing Connection Requests

This section specifies how Client connections are authorized by the

AS and verified by the MQTT Broker. Figure 1 shows the basic

protocol flow during connection setup. The token request and

response use the token endpoint at the AS, specified for HTTP-based

interactions in Section 5.8 of the ACE framework [I-D.ietf-ace-

oauth-authz]. Steps (D) and (E) are optional and use the

introspection endpoint specified in Section 5.9 of the ACE

framework. The discussion in this document assumes that the Client

and the Broker use HTTPS to communicate with the AS via these

endpoints. The Client and the Broker use MQTT to communicate between

them. The C-AS and Broker-AS communication MAY be implemented using

protocols other than HTTPS, e.g. CoAP or MQTT. Whatever protocol is

used for C-AS and Broker-AS communications MUST provide mutual

authentication, confidentiality protection, and integrity

protection.

If the Client is resource-constrained or does not support HTTPS, a

separate Client Authorization Server may carry out the token request

on behalf of the Client (Figure 1 (A) and (B)), and later, onboard

the Client with the token. The interactions between a Client and its

Client Authorization Server for token onboarding and support for

MQTT-based token requests at the AS are out of the scope of this

document.

¶

¶

Figure 1: Connection Setup

2.1. Client Token Request to the Authorization Server (AS)

The first step in the protocol flow (Figure 1 (A)) is the token

acquisition by the Client from the AS. The Client and the AS MUST

perform mutual authentication. The Client requests an access token

from the AS as described in Section 5.8.1 of the ACE framework [I-

D.ietf-ace-oauth-authz]. The document follows the procedures defined

in Section 3.2.1 of the DTLS profile [I-D.ietf-ace-dtls-authorize]

for RPK (Raw Public Keys [RFC7250]), and in Section 3.3.1 of the

same document for PSK (Pre-Shared Keys). However, the content type

of the request is set to "application/ace+json", and the AS uses

JSON in the payload of its responses to the Client and the RS. As

explained earlier, implementations MAY also use "application/

ace+cbor" content type.

On receipt of the token request, the AS verifies the request. If the

AS successfully verifies the access token request and authorizes the

Client for the indicated audience (i.e., RS) and scopes (i.e.,

publish/subscribe permissions over topics as described in Section

2.3), the AS issues an access token (Figure 1 (B)).

 +---------------------+

 | Client |

 | |

 +---(A) Token request--| Client - |

 | | Authorization |

 | +-(B) Access token-> Server Interface |

 | | | (HTTPS) |

 | | |_____________________|

 | | | |

+--v-------------+ | Pub/Sub Interface |

| Authorization | | (MQTT over TLS) |

| Server | +-----------^---------+

|________________| | |

 | ^ (C)Connection (F)Connection

 | | request + response

 | | access token |

 | | | |

 | | +---v--------------+

 | | | Broker |

 | | | (MQTT over TLS) |

 | | |__________________|

 | +(D)Introspection-| |

 | request (optional) | RS-AS interface |

 | | (HTTPS) |

 +-(E)Introspection---->|__________________|

 response (optional)

¶

¶

The response includes the parameters described in Section 5.8.2 of

the ACE framework [I-D.ietf-ace-oauth-authz]. For RPK, the

parameters are as described in Section 3.2.1 of the DTLS profile [I-

D.ietf-ace-dtls-authorize]. For PSK, the document follows Section

3.3.1 of the DTLS profile [I-D.ietf-ace-dtls-authorize]. In both

cases, if the response contains an "ace_profile" parameter, this

parameter is set to "mqtt_tls". The returned token is a Proof-of-

Possession (PoP) token by default.

This document follows [RFC7800] for PoP semantics for JWTs (CWTs MAY

also be used). The AS includes a "cnf" (confirmation) parameter to

the PoP token, to declare that the Client possesses a particular key

and RS can cryptographically confirm that the Client has possession

of that key. The "cnf" parameter is REQUIRED if a symmetric key is

used, and MAY be present for asymmetric PoP keys, as described in

[I-D.ietf-ace-oauth-params].

Note that the contents of the web tokens (including the "cnf"

parameter) are to be consumed by the RS and not the Client (the

Client obtains the key information in a different manner). The RPK

case is handled as described in Section 3.2.1 of the DTLS profile

[I-D.ietf-ace-dtls-authorize]. For the PSK case, the referenced

procedures apply, with the following exceptions to accommodate JWT

and JOSE use. In this case, the AS adds a "cnf" parameter to the

access information carrying a JWK (JSON Web Key) [RFC7517] object

that contains either the symmetric key itself or a key identifier

that can be used by the RS to determine the secret key it shares

with the Client. The JWT is created as explained in Section 7 of

[RFC7519], and the JWT MUST include JWE [RFC7516]. If CWT/COSE is

used this information MUST be inside the "COSE_Key" object, and MUST

be encrypted using a "COSE_Encrypt0" structure.

The AS returns error responses for JSON-based interactions following

Section 5.2 of [RFC6749]. When CBOR is used, the interactions MUST

implement Section 5.8.3 of the ACE framework [I-D.ietf-ace-oauth-

authz].

2.2. Client Connection Request to the Broker (C)

2.2.1. Overview of Client-RS Authentication Methods over TLS and MQTT

Unless the Client publishes and subscribes to only public topics,

the Client and the Broker MUST perform mutual authentication. The

Client MUST authenticate to the Broker either over MQTT or TLS

before performing any other action. For MQTT, the options are "None"

and "ace". For TLS, the options are "Anon" for an anonymous client,

and "Known(RPK/PSK)" for RPK and PSK, respectively. The "None" and

"Anon" options do not provide client authentication but can be used

either during authentication or in combination with authentication

¶

¶

¶

¶

at the other layer. When the Client uses TLS:Anon,MQTT:None, the

Client can only publish or subscribe to public topics. Thus, the

client authentication procedures involve the following possible

combinations:

TLS:Anon,MQTT:None: This option is used only for the topics that

do not require authorization, including the "authz-info" topic.

Publishing to the "authz-info" topic is described in Section

2.2.2.

TLS:Anon,MQTT:ace: The token is transported inside the CONNECT

packet and MUST be validated using one of the methods described

in Section 2.2.2. This option also supports a tokenless

connection request for AS discovery. As per the ACE framework [I-

D.ietf-ace-oauth-authz], a separate step is needed to determine

whether the discovered AS URI is authorized to act as an AS.

TLS:Known(RPK/PSK),MQTT:none: This specification supports client

authentication with TLS with RPK and PSK following the procedures

described in DTLS profile [I-D.ietf-ace-dtls-authorize]. For the

RPK, the Client MUST have published the token to the "authz-info"

topic. For the PSK, the token MAY be published to the "authz-

info" topic, or MAY be, alternatively, provided as a "PSK

identity" (e.g. an "identity" in the "identities" field in the

Client's "pre_shared_key" extension in TLS 1.3).

TLS:Known(RPK/PSK),MQTT:ace: This option SHOULD NOT be chosen as

the token transported in the CONNECT overwrites any permissions

passed during the TLS authentication.

It is RECOMMENDED that the Client implements TLS:Anon,MQTT:ace as

the first choice when working with protected topics. However, MQTT

v3.1.1 Clients that do not prefer to overload username and password

fields for ACE (as described in Section 6) MAY implement

TLS:Known(RPK/PSK),MQTT:none, and consequently TLS:Anon,MQTT:None to

submit their token to "authz-info".

The Broker MUST support TLS:Anon,MQTT:ace. To support Clients with

different capabilities, the Broker MAY provide multiple client

authentication options, e.g. support TLS:Known(RPK),MQTT:none and

TLS:Anon,MQTT:None, to enable RPK-based client authentication.

The Client MUST authenticate the Broker during the TLS handshake. If

the Client authentication uses TLS:Known(RPK/PSK), then the Broker

is authenticated using the respective method. Otherwise, to

authenticate the Broker, the Client MUST validate a public key from

an X.509 certificate or an RPK from the Broker against the "rs_cnf"

parameter in the token response, which contains information about

the public key used by the RS to authenticate if the token type is

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

"pop" and asymmetric keys are used as defined in [I-D.ietf-ace-

oauth-params]. The AS MAY include the thumbprint of the RS's X.509

certificate in the "rs_cnf" (thumbprint as defined in [I-D.ietf-

cose-x509]). In this case, the Client MUST validate the RS

certificate against this thumbprint.

2.2.2. authz-info: The Authorization Information Topic

In the cases when the Client must transport the token to the Broker

first, the Client connects to the Broker to publish its token to the

"authz-info" topic. The "authz-info" topic MUST be publish-only

(i.e., the Clients are not allowed to subscribe to it). "authz-info"

is not protected, and hence, the Client uses the TLS:Anon,MQTT:None

option over a TLS connection. After publishing the token, the Client

disconnects from the Broker and is expected to reconnect using

client authentication over TLS (i.e., TLS:Known(RPK/PSK),MQTT:none).

The Broker stores and indexes all tokens received to the "authz-

info" topic in its key store (similar to the DTLS profile for ACE

[I-D.ietf-ace-dtls-authorize]). This profile follows the

recommendation of Section 5.10.1 of the ACE framework [I-D.ietf-ace-

oauth-authz] and expects that the Broker stores only one token per

PoP key, and any other token linked to the same key overwrites an

existing token.

The Broker MUST verify the validity of the token (i.e., through

local validation or introspection, if the token is a reference) as

described in Section 2.2.5. If the token is not valid, the Broker

MUST discard the token.

Depending on the QoS level of the PUBLISH packet, the Broker returns

the error response as a PUBACK, PUBREC, or DISCONNECT packet. If the

QoS level is equal to 0, and the token is not valid, or the claims

cannot be obtained in the case of an introspected token, the Broker

MUST send a DISCONNECT packet with the reason code 0x87 (Not

authorized). If the PUBLISH payload does not parse to a token, the

Broker MUST send a DISCONNECT with the reason code 0x99 (Payload

format invalid).

If the QoS level of the PUBLISH packet is greater than or equal to

1, and the token is not valid, or the claims cannot be obtained in

the case of an introspected token, the Broker MUST send the reason

code 0x87 (Not authorized) in the PUBACK or PUBREC. If the PUBLISH

payload does not parse to a token, the PUBACK/PUBREC reason code is

0x99 (Payload format invalid).

It must be noted that when the Broker sends the "Not authorized"

response, this corresponds to the token being not valid, and not

that the actual PUBLISH packet was not authorized. Given that the

¶

¶

¶

¶

¶

¶

"authz-info" is a public topic, this response is not expected to

cause confusion.

2.2.3. Client Authentication over TLS

This document supports TLS with Raw Public Keys (RPK) [RFC7250] and

with Pre-Shared Keys (PSK). The TLS session setup follows the DTLS

profile for ACE [I-D.ietf-ace-dtls-authorize], as the profile

applies to TLS equally well [I-D.ietf-ace-extend-dtls-authorize].

When there are exceptions to the DTLS profile, these are explicitly

stated in the document. If TLS 1.2 is used, [RFC7925] describes how

TLS can be used for constrained devices, alongside recommended

cipher suites. Additionally, TLS 1.2 implementations MUST use the

"Extended Main Secret" extension (terminology adopted from [I-

D.ietf-tls-rfc8446bis]) to incorporate the handshake transcript into

the main secret [RFC7627]. TLS implementations SHOULD use the SNI

(Server Name Indication) [RFC6066] and APLN (Application-Layer

Protocol Negotiation) [RFC7301] extensions so the TLS handshake

authenticates as much of the protocol context as possible.

2.2.3.1. Raw Public Key Mode

This document follows the procedures defined in Section 3.2.2 of the

DTLS profile for ACE [I-D.ietf-ace-dtls-authorize] with the

following exceptions. The Client MUST upload the access token to the

Broker using the method specified in Section 2.2.2 before initiating

the handshake.

2.2.3.2. Pre-Shared Key Mode

This document follows the procedures defined in Section 3.3.2 of

DTLS profile for ACE [I-D.ietf-ace-dtls-authorize] with the

following exceptions.

To use TLS 1.3 with pre-shared keys, the Client utilizes the PSK key

extension specified in [RFC8446] using the key conveyed in the "cnf"

parameter of the AS response. The same key is bound to the access

token in the "cnf" claim. The Client can upload the token as

specified in Section 2.2.2 before initiating the handshake. When

using a previously uploaded token, the Client MUST indicate during

the handshake which previously uploaded access token it intends to

use. To do so, it MUST create a "COSE_Key" or "JWK" structure with

the "kid" that was conveyed in the "rs_cnf" claim in the token

response from the AS and the key type "symmetric". This structure is

then included as the only element in the "cnf" structure and the

encoded value of that "cnf" structure used as a PSK identity in TLS.

As an alternative to the access token upload, the Client can provide

the most recent access token, JWT or CWT, as a PSK identity.

¶

¶

¶

¶

¶

In contrast to DTLS profile for ACE [I-D.ietf-ace-dtls-authorize], a

Client MAY omit support for the cipher suites

TLS_PSK_WITH_AES_128_CCM_8 and TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8.

For TLS 1.2, however, a client MUST support

TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256 for PSK ([RFC8442]) and

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 for RPK ([RFC8422]), as

recommended in [RFC7525] (and adjusted to be a PSK cipher suite as

appropriate).

2.2.4. Client Authentication over MQTT

2.2.4.1. Transporting the Access Token Inside the MQTT CONNECT

This section describes how the Client transports the token to the

Broker inside the CONNECT packet. If this method is used, the Client

TLS connection is expected to be anonymous, and the Broker is

authenticated during the TLS connection setup. The approach

described in this section is similar to an earlier proposal by

Fremantle, et al. [fremantle14].

After sending the CONNECT, the Client MUST wait to receive the

CONNACK from the Broker. The only packets it is allowed to send are

DISCONNECT or AUTH that is in response to the Broker AUTH.

Similarly, except for a DISCONNECT and AUTH response from the

Client, the Broker MUST NOT process any packets before sending a

CONNACK.

Figure 2 shows the structure of the MQTT CONNECT packet used in MQTT

v5.0. A CONNECT packet is composed of a fixed header, a variable

header, and a payload. The fixed header contains the Control Packet

Type (CPT), Reserved, and Remaining Length fields. Remaining Length

is a Variable Byte Integer that represents the number of bytes

remaining within the current Control Packet, including data in the

Variable Header and the Payload. The Variable Header contains the

Protocol Name, Protocol Level, Connect Flags, Keep Alive, and

Properties fields. The Connect Flags in the variable header specify

the properties of the MQTT session. It also indicates the presence

or absence of some fields in the Payload. The payload contains one

or more encoded fields, namely a unique Client Identifier for the

Client, a Will Topic, Will Payload, User Name, and Password. All but

the Client Identifier can be omitted depending on the flags in the

Variable Header. The Client Identifier identifies the Client to the

Broker, and therefore, is unique for each Client. It must be noted

that the Client Identifier is an unauthenticated identifier used

within the MQTT protocol and so is not bound to the access token.

¶

¶

¶

¶

Figure 2: MQTT v5 CONNECT Variable Header with Authentication Method

Property for ACE

The CONNECT flags are Username, Password, Will retain, Will QoS,

Will Flag, Clean Start, and Reserved. Figure 3 shows how the flags

MUST be set to use AUTH packets for authentication and

authorization, i.e., the username and password flags MUST be set to

0. An MQTT v5.0 Broker MAY also support token transport using

Username and Password to provide a security option for MQTT v3.1.1

Clients, as described in Section 6.

Figure 3: CONNECT Flags for AUTH

 0 8 16

 +---------------------------+

 |Protocol name length = 4 |

 +---------------------------+

 | 'M' 'Q' |

 +---------------------------+

 | 'T' 'T' |

 +---------------------------+

 |Proto.level=5|Connect flags|

 +---------------------------+

 | Keep alive |

 +---------------------------+

 | CONNECT Properties Length |

 | (Upto 4 bytes) |

 +---------------------------+

 | (..Other properties..) |

 +---------------------------+

 | Authentication Method |

 | (0x15) | Len. |

 | Len | 'a' |

 | 'c' | 'e' |

 +---------------------------+

 | Authentication Data |

 | (0x16) | Len |

 | Len | token |

 | or token + PoP data |

 +---------------------------+

¶

+---+

|User name|Pass.|Will retain|Will QoS|Will Flag|Clean| Rsvd.|

| Flag |Flag | | | |Start| |

+---+

| 0 | 0 | X | X X | X | X | 0 |

+---+

The Will Flag indicates that a Will message needs to be sent. The

Client MAY set the Will Flag as desired (marked as "X" in Figure 3).

If the Will Flag is set to 1, the Broker MUST check that the token

allows the publication of the Will message (i.e., the Will Topic

filter is in the scope array). The check is performed against the

token scope described in Section 2.3. If the Will authorization

fails, the connection is refused as described in Section 2.4.1. If

the Broker accepts the connection request, the Broker stores the

Will message and publishes it when the Network Connection is closed

according to Will QoS, and Will retain parameters and MQTT Will

management rules. To avoid publishing the Will Messages in the case

of temporary network disconnections, the Client specifies a Will

Delay Interval in the Will Properties. Section 5 explains how the

Broker deals with the retained messages in further detail.

In MQTT v5.0, the Client signals a clean session (i.e., that the

session does not continue an existing session) by setting the Clean

Start Flag to 1 in the CONNECT packet. In this profile, the Client

SHOULD always start with a clean session. The Broker MAY also signal

that it does not support session continuation by setting Session

Expiry Interval to 0 in the CONNACK. If the Broker starts a clean

session, the Broker MUST set the Session Present flag to 0 in the

CONNACK packet to signal this to the Client.

The Broker MAY support session continuation, e.g., if the Broker

requires it for QoS reasons. In this case, if a CONNECT packet is

received with Clean Start set to 0 and there is a Session associated

with the Client Identifier, the Broker MUST resume communications

with the Client based on the state from the existing Session. In its

response, the Broker MUST set the Session Present flag to 1 in the

CONNACK packet to signal session continuation to the Client. The

session state stored by the Client and the Broker is described in

Section 5.

When reconnecting to a Broker that supports session continuation,

the Client MUST still provide a token, in addition to using the same

Client Identifier and setting the Clean Start to 0. The Broker MUST

still perform PoP validation on the provided token. If the token

matches the stored state, the Broker MAY skip introspecting a token-

by-reference and use the stored introspection result. The Broker

MUST also verify the Client is authorized to receive or send MQTT

packets that are pending transmission. When a Client connects with a

long Session Expiry Interval, the Broker may need to maintain the

Client's MQTT session state after it disconnects for an extended

period. Brokers SHOULD implement administrative policies to limit

misuse.

Note that, according to the MQTT standard, the Broker uses the

Client Identifier to identify the session state. In the case of a

¶

¶

¶

¶

Client Identifier collision, a Client may take over another Client's

session. Given that the Broker MUST associate the Client with a

valid token, a Client will only send or receive messages to its

authorized topics. Therefore, while this issue is not expected to

affect security, it may affect QoS (i.e., PUBLISH or QoS messages

saved for Client A may be delivered to a Client B). In addition, if

this Client Identifier represents a Client already connected to the

Broker, the Broker sends a DISCONNECT packet to the existing Client

with Reason Code of 0x8E (Session taken over) and closes the

connection to the Client.

2.2.4.2. Authentication Using AUTH Property

To use AUTH, the Client MUST set the Authentication Method as a

property of a CONNECT packet by using the property identifier 21

(0x15). This is followed by a UTF-8 Encoded String containing the

name of the Authentication Method, which MUST be set to "ace". If

the Broker does not support this profile, it sends a CONNACK with a

Reason Code of 0x8C (Bad authentication method).

The Authentication Method is followed by the Authentication Data,

which has a property identifier 22 (0x16) and is Binary Data. Based

on the Authentication Data, the Broker MUST support both options

below:

Proof-of-Possession using a challenge from the TLS session

Proof-of-Possession via Broker-generated challenge/response

2.2.4.2.1. Proof-of-Possession Using a Challenge from the TLS session

Figure 4: Authentication Data for PoP Based on TLS Exporter Content

For this option, the Authentication Data inside the Client's CONNECT

MUST contain the two-byte integer token length, the token, and the

keyed message digest (MAC) or the Client signature (as shown in

Figure 4). The Proof-of-Possession key in the token is used to

calculate the keyed message digest (MAC) or the Client signature

based on the content obtained from the TLS exporter ([RFC5705] for

TLS 1.2, and Section 7.5 of [RFC8446]) for TLS 1.3. This content is

exported from the TLS session using the exporter label "EXPORTER-

ACE-MQTT-Sign-Challenge", an empty context, and length of 32 bytes.

The token is also validated as described in Section 2.2.5, and the

Broker responds with a CONNACK with the appropriate response code.

¶

¶

¶

* ¶

* ¶

+---+

|Authentication|Token Length|Token |MAC or Signature |

|Data Length | | |(over TLS exporter content) |

+---+

The Client cannot reauthenticate using this method during the same

TLS session (see Section 4).

2.2.4.2.2. Proof-of-Possession via Broker-generated Challenge/Response

Figure 5: Authentication Data to Initiate PoP Based on Challenge/

Response

Figure 6: Authentication Data for Broker Challenge

For this option, the Broker follows a Broker-generated challenge/

response protocol. If the Authentication Data inside the Client's

CONNECT contains only the two-byte integer token length and the

token (as shown in Figure 5), the Broker MUST respond with an AUTH

packet, with the Authenticate Reason Code set to 0x18 (Continue

Authentication). The Broker also uses this method if the

Authentication Data does not contain a token, but the Broker has a

token stored for the connecting Client.

The Broker continues authentication using an AUTH packet that

contains the Authentication Method and the Authentication Data. The

Authentication Method MUST be set to "ace", and the Authentication

Data MUST NOT be empty and MUST contain an 8-byte RS nonce as a

challenge for the Client (Figure 6).

Figure 7: Authentication Data for Client Challenge Response

The Client responds to this with an AUTH packet with a reason code

0x18 (Continue Authentication). Similarly, the Client packet sets

the Authentication Method to "ace". The Authentication Data in the

Client's response is formatted as shown in Figure 7 and includes the

8-byte Client nonce, and the signature or MAC computed over the RS

nonce concatenated with the Client nonce using PoP key in the token.

¶

+------------------------------------+

|Authentication|Token Length|Token |

|Data Length | | |

+------------------------------------+

+--------------------------+

|Authentication|RS Nonce |

|Data Length |(8 bytes) |

+--------------------------+

¶

¶

+---+

|Authentication|Client Nonce |MAC or Signature |

|Data Length |(8 bytes) |(over RS nonce+Client nonce)|

+---+

¶

Next, the token is validated as described in Section 2.2.5. The

success case is illustrated in Figure 8. The Client MAY also re-

authenticate using this challenge-response flow, as described in

Section 4.

Figure 8: PoP Challenge/Response Flow - Success

2.2.5. Broker Token Validation

The Broker MUST verify the validity of the token either locally

(e.g., in the case of a self-contained token) or MAY send a request

to the introspection endpoint of the AS (as described for HTTP-based

interactions in Section 5.9 of the ACE framework [I-D.ietf-ace-

oauth-authz]). The Broker MUST verify the claims in the access token

according to the rules set in Section 5.10.1.1 of the ACE framework

[I-D.ietf-ace-oauth-authz].

To authenticate the Client, the Broker validates the signature or

the MAC, depending on how the PoP protocol is implemented. For self-

contained tokens, the Broker MUST process the security protection of

the token first, as specified by the respective token format, i.e. a

CWT token uses COSE, while a JWT token uses JOSE. For a token-by-

reference, the Broker uses the "cnf" structure returned as a result

of token introspection as specified in [RFC7519]. HS256 (HMAC-

SHA-256) [RFC6234] and Ed25519 [RFC8032] are mandatory to implement

for the Broker. The Client MUST implement at least one of them

depending on the choice of symmetric or asymmetric validation.

Validation of the signature or MAC MUST fail if the signature

¶

 Client Broker

 | |

 |<===========>| TLS connection setup

 | |

 | |

 +------------>| CONNECT with Authentication Data

 | | contains only token

 | |

 <-------------+ AUTH 0x18 (Cont. Authentication)

 | | 8-byte RS nonce as challenge

 | |

 |------------>| AUTH 0x18 (Cont. Authentication)

 | | 8-byte Client nonce + signature/MAC

 | |

 | |---+ Token validation

 | | | (may involve introspection)

 | |<--+

 | |

 |<------------+ CONNACK 0x00 (Success)

¶

algorithm is set to "none", when the key used for the signature

algorithm cannot be determined, or the computed and received

signature/MAC do not match.

The Broker MUST check if the access token is still valid, if it is

the intended destination (i.e., the audience) of the token, and if

the token was issued by an authorized authorization server. If the

Client is using TLS RPK mode to authenticate to the Broker, the AS

constructs the access token so that the Broker can associate the

access token with the Client's public key. The "cnf" claim MUST

contain either the Client's RPK or, if the key is already known by

the Broker (e.g., from previous communication), a reference to it.

2.3. Token Scope and Authorization

The scope field contains the publish and subscribe permissions for

the Client. Therefore, the token or its introspection result MUST be

cached to allow a Client's future PUBLISH and SUBSCRIBE messages.

During the CONNECT, if the Will Flag is set to 1, the Broker MUST

also authorize the publication of the Will Topic and message using

the token's scope field. The Broker uses the scope to match against

the Topic Name in a PUBLISH packet (including Will Topic in the

CONNECT) or a Topic Filter in a SUBSCRIBE packet.

The scope in the token is a single value. For a JWT, the single

scope is base64url encoded string with any padding characters

removed, which has an internal structure of a JSON array. For a CWT,

this information is represented in CBOR. The internal structure

follows the Authorization Information Format (AIF) for ACE [I-

D.ietf-ace-aif]. Using the Concise Data Definition Language (CDDL)

[RFC8610], the specific data model for MQTT is:

Figure 9: AIF-MQTT data model

Topic filters are implemented according to Section 4.7 of MQTT v5.0

- the OASIS Standard [MQTT-OASIS-Standard-v5]. By default, Wildcard

Subscriptions are supported, and so, the topic filter may include

special wildcard characters. The multi-level wildcard, "#", matches

any number of levels within a topic, and the single-level wildcard,

"+", matches one topic level. The Broker MAY signal in the CONNACK

explicitly whether wildcard subscriptions are supported by returning

a CONNACK property "Wildcard Subscription Available". A value of 0

¶

¶

¶

¶

 AIF-MQTT = AIF-Generic<topic_filter, permissions>

 AIF-Generic<topic_filter, permissions> = [* [topic_filter, permissions]]

 topic_filter = tstr

 permissions = [+permission]

 permission = "pub"/"sub"

means that Wildcard Subscriptions are not supported. A value of 1

means Wildcard Subscriptions are supported.

Following this model, an example scope may contain:

Figure 10: Example scope

This access token gives publish ("pub") and subscribe ("sub")

permissions to the "topic1", publish permission to all the subtopics

of "topic2", and subscribe permission to all "topic3", skipping one

level.

If the scope is empty, the Broker records no permissions for the

Client for any topic. In this case, the Client is not able to

publish or subscribe to any protected topics. The non-empty scope is

used to authorize the Will Topic, if provided, in the CONNECT

packet, during connection setup, and if the connection request

succeeds, the Topic Names or Topic Filters requested in the future

PUBLISH and SUBSCRIBE packets. For the authorization to succeed, the

Broker MUST verify that the topic name or filter in question is

either an exact match to or a subset of at least one "topic_filter"

in the scope.

2.4. Broker Response to Client Connection Request

Based on the validation result (obtained either via local inspection

or using the introspection interface of the AS), the Broker MUST

send a CONNACK packet to the Client.

2.4.1. Unauthorized Request and the Optional Authorization Server

Discovery

Authentication can fail for the following reasons:

If the Client does not provide a valid token,

the Client omits the Authentication Data field and the Broker has

no token stored for the Client,

the token or Authentication data are malformed, or

if the Will flag is set, the authorization checks for the Will

topic fails.

The Broker responds with the CONNACK reason code 0x87 (Not

Authorized) or any other applicable reason code.

¶

¶

 [["topic1",["pub","sub"]],["topic2/#",["pub"]],["+/topic3",["sub"]]]

¶

¶

¶

¶

* ¶

*

¶

* ¶

*

¶

¶

The Broker MAY also trigger AS discovery and include a User Property

(identified as property type 38 (0x26)) in the CONNACK for the AS

Request Creation Hints. The User Property is a UTF-8 string pair,

composed of a name and a value. The name of the User Property MUST

be set to "ace_as_hint". The value of the user property is a UTF-8

encoded JSON object containing the mandatory "AS" parameter, and the

optional parameters "audience", "kid", "cnonce", and "scope" as

defined in Section 5.3 of the ACE framework [I-D.ietf-ace-oauth-

authz].

2.4.2. Authorization Success

On success, the reason code of the CONNACK is 0x00 (Success). If the

Broker starts a new session, it MUST also set Session Present to 0

in the CONNACK packet to signal a clean session to the Client.

Otherwise, it MUST set Session Present to 1.

Having accepted the connection, the Broker MUST be prepared to store

the token during the connection and after disconnection for future

use. If the token is not self-contained and the Broker uses token

introspection, it MAY cache the validation result to authorize the

subsequent PUBLISH and SUBSCRIBE packets. PUBLISH and SUBSCRIBE

packets, which are sent after a connection setup, do not contain

access tokens. If the introspection result is not cached, the Broker

needs to introspect the saved token for each request. The Broker

SHOULD also use a cache timeout to introspect tokens regularly. The

timeout value is application-specific and SHOULD be chosen to reduce

the risk of using stale introspection responses.

3. Authorizing PUBLISH and SUBSCRIBE Packets

Using the cached token or its introspection result, the Broker uses

the scope field to match against the Topic Name in a PUBLISH packet,

or a Topic Filter in a SUBSCRIBE packet.

3.1. PUBLISH Packets from the Publisher Client to the Broker

On receiving the PUBLISH packet, the Broker MUST use the type of

packet (i.e., PUBLISH) and the Topic name in the packet header to

match against the scope array items in the cached token or its

introspection result. Following the example in Section 2.3, the

Client sending a PUBLISH for "topic2/a" would be allowed, as the

scope array includes the ["topic2/#",["pub"]].

If the Client is allowed to publish to the topic, the Broker

publishes the message to all valid subscribers of the topic. In the

case of an authorization failure, the Broker MUST return an error if

the Client has set the QoS level of the PUBLISH packet to greater

than or equal to 1. Depending on the QoS level, the Broker responds

with either a PUBACK or PUBREC packet with reason code 0x87 (Not

¶

¶

¶

¶

¶

authorized). On receiving an acknowledgment with 0x87 (Not

authorized), the Client MAY reauthenticate by providing a new token

as described in Section 4.

For QoS level 0, the Broker sends a DISCONNECT with reason code 0x87

(Not authorized) and closes the Network Connection. Note that the

server-side DISCONNECT is a new feature of MQTT v5.0 (in MQTT

v3.1.1, the server needs to drop the connection).

For all QoS levels, the Broker MAY return 0x80 Unspecified error if

they do not want to leak the topic names to unauthorized clients.

3.2. PUBLISH Packets from the Broker to the Subscriber Clients

To forward PUBLISH packets to the subscribing Clients, the Broker

identifies all the subscribers that have valid matching topic

subscriptions to the Topic name of the PUBLISH packet (i.e., the

tokens are valid, and token scopes allow a subscription to this

particular Topic name). The Broker forwards the PUBLISH packet to

all the valid subscribers.

The Broker MUST NOT forward messages to unauthorized subscribers. To

avoid silently dropping messages, the Broker MUST close the network

connection and SHOULD inform the affected subscribers. The only way

to inform a client, in this case, would be sending a DISCONNECT

packet. Therefore, the Broker SHOULD send a DISCONNECT packet with

the reason code 0x87 (Not authorized) before closing the network

connection to these clients.

3.3. Authorizing SUBSCRIBE Packets

In MQTT, a SUBSCRIBE packet is sent from a Client to the Broker to

create one or more subscriptions to one or more topics. The

SUBSCRIBE packet may contain multiple Topic Filters. The Topic

Filters may include wildcard characters.

On receiving the SUBSCRIBE packet, the Broker MUST use the type of

packet (i.e., SUBSCRIBE) and the Topic Filter in the packet header

to match against the scope field of the stored token or

introspection result. The Topic Filters MUST be an exact match to or

be a subset of at least one of the "topic_filter" fields in the

scope array found in the Client's token. For example, if the Client

sends a subscription request for topic "a/b/*", and has a token that

permits "a/*", this is a valid subscription request, as "a/b/*" is a

subset of "a/*". (The process is similar to a Broker matching the

Topic Name in a PUBLISH packet against the Subscriptions known to

the Server.)

As a response to the SUBSCRIBE packet, the Broker issues a SUBACK.

For each Topic Filter, the SUBACK packet includes a return code

¶

¶

¶

¶

¶

¶

¶

matching the QoS level for the corresponding Topic Filter. In the

case of failure, the return code is 0x87, indicating that the Client

is not authorized. The Broker MAY return 0x80 Unspecified error if

they do not want to leak the topic names to unauthorized clients. A

reason code is returned for each Topic Filter. Therefore, the Client

may receive success codes for a subset of its Topic Filters while

being unauthorized for the rest.

4. Token Expiration, Update, and Reauthentication

The Broker MUST check for token expiration whenever a CONNECT,

PUBLISH, or SUBSCRIBE is received or sent. The Broker SHOULD check

for token expiration on receiving a PINGREQUEST. The Broker MAY also

check for token expiration periodically, e.g., every hour. This may

allow for early detection of a token expiry.

The token expiration is checked by checking the "exp" claim of a JWT

or introspection response or via performing an introspection request

with the AS as described in Section 5.9 of the ACE framework [I-

D.ietf-ace-oauth-authz]. Token expirations may trigger the Broker to

send PUBACK, SUBACK and DISCONNECT packets with return code set to

"Not authorized". After sending a DISCONNECT, the Network Connection

is closed, and no more messages can be sent.

The Client MAY reauthenticate as a response to the PUBACK and SUBACK

that signal loss of authorization. The Clients MAY also proactively

update their tokens, i.e., before they receive a packet with a "Not

authorized" return code. To start reauthentication, the Client MUST

send an AUTH packet with the reason code 0x19 (Re-authentication).

The Client MUST set the Authentication Method as "ace" and transport

the new token in the Authentication Data. If re-authenticating

during the current TLS session, the Client MUST NOT use the method

described in Section 2.2.4.2.1, Proof-of-Possession using a

challenge from the TLS session, to avoid re-using the same challenge

value from the TLS-Exporter. Note that this means that servers will

either need to record in the session ticket or database entry

whether the TLS-Exporter-derived challenge was used, or always deny

use of the TLS-Exporter-derived challenge for resumed sessions. In

TLS 1.3, the resumed connection would have a new exporter value, but

the requirement is phrased this way for simplicity. For re-

authentications in the same TLS-session, the Client MUST use the

challenge-response PoP as defined in Section 2.2.4.2.2. The Broker

accepts reauthentication requests if the Client has already

submitted a token (may be expired), for which it performed proof-of-

possession. Otherwise, the Broker MUST deny the request. If the

reauthentication fails, the Broker MUST send a DISCONNECT with the

reason code 0x87 (Not Authorized).

¶

¶

¶

¶

5. Handling Disconnections and Retained Messages

In the case of a Client DISCONNECT, if the Session Expiry Interval

is set to 0, the Broker doesn't maintain session state but MUST keep

the retained messages. If the Broker maintains session state, the

state MAY include the token and its introspection result (for

reference tokens) in addition to the MQTT session state. The MQTT

session state is identified by the Client Identifier and includes

the following:

Client subscription state,

messages with QoS levels 1 and 2, and which have not been

completely acknowledged or are pending transmission to the

Client, and

if the Session is currently not connected, the time at which the

Session will end and Session State will be discarded.

The token/introspection state is not part of the MQTT session state,

and PoP validation is required for each new connection, regardless

of whether MQTT session continuation is used.

The messages to be retained are indicated to the Broker by setting a

RETAIN flag in a PUBLISH packet. This way, the publisher signals to

the Broker to store the most recent message for the associated

topic. Hence, the new subscribers can receive the last sent message

from the publisher for that particular topic without waiting for the

next PUBLISH packet. The Broker MUST continue publishing the

retained messages as long as the associated tokens are valid. In the

MQTT standard, if QoS is 0 for the PUBLISH packet, the Broker may

discard the retained message any time. For QoS>1, the message expiry

interval dictates how long the retained message is kept. However, it

is important that the Broker avoids sending messages indefinitely

for the Clients that never update their tokens (i.e., the Client

connects briefly with a valid token, sends a PUBLISH packet with

RETAIN flag set to 1 and QoS>1, disconnects, and never connects

again). Therefore, the Broker MUST use the minimum of token expiry

and message expiry interval to discard a retained message.

In case of disconnections due to network errors or server

disconnection due to a protocol error (which includes authorization

errors), the Will message is sent if the Client supplied a Will in

the CONNECT packet. The Client's token scope array MUST include the

Will Topic. The Will message MUST be published to the Will Topic

regardless of whether the corresponding token has expired (as it has

been validated and accepted during CONNECT).

¶

* ¶

*

¶

*

¶

¶

¶

¶

6. Reduced Protocol Interactions for MQTT v3.1.1

This section describes a reduced set of protocol interactions for

the MQTT v3.1.1 Clients. An MQTT v5.0 Broker MAY implement these

interactions for the MQTT v3.1.1 Clients; The flows described in

this section are NOT RECOMMENDED for use by MQTT v5.0 Clients.

Brokers that do not support MQTT v3.1.1 Clients return a CONNACK

packet with Reason Code 0x84 (Unsupported Protocol Version) in

response to the connection requests.

6.1. Token Transport

As in MQTT v5.0, the token MAY either be transported before, by

publishing to the "authz-info" topic, or inside the CONNECT packet.

If the Client provided the token via the "authz-info" topic and will

not update the token in the CONNECT packet, it MUST authenticate

over TLS. The Broker SHOULD still be prepared to store the Client

access token for future use (regardless of the method of transport).

In MQTT v3.1.1, after the Client has published to the "authz-info"

topic, the Broker cannot communicate the result of the token

validation because PUBACK reason codes or server-side DISCONNECT

packets are not supported. In any case, the subsequent TLS handshake

would fail without a valid token, which can prompt the Client to

obtain a valid token.

To transport the token to the Broker inside the CONNECT packet, the

Client uses the username and password fields. Figure 11 shows the

structure of the MQTT CONNECT packet.

¶

¶

¶

¶

Figure 11: MQTT CONNECT Variable Header Using Username and Password for

ACE

Figure 12 shows how the MQTT connect flags MUST be set to initiate a

connection with the Broker.

Figure 12: MQTT CONNECT Flags (Rsvd=Reserved)

The Client SHOULD set the Clean flag to 1 to always start a new

session. If the Clean flag is set to 0, the Broker MUST resume

communications with the Client based on the state from the current

Session (as identified by the Client Identifier). If there is no

Session associated with the Client Identifier, the Broker MUST

create a new session. The Broker MUST set the Session Present flag

in the CONNACK packet accordingly, i.e., 0 to indicate a clean

session to the Client and 1 to indicate session continuation. The

Broker MUST still perform PoP validation on the provided Client

token. MQTT v3.1.1 does not use a Session Expiry Interval, and the

Client expects that the Broker maintains the session state after it

disconnects. However, stored Session state can be discarded as a

 0 8 16

 +---------------------------+

 |Protocol name length = 4 |

 +---------------------------+

 | 'M' 'Q' |

 +---------------------------+

 | 'T' 'T' |

 +---------------------------+

 |Proto.level=5|Connect flags|

 +---------------------------+

 | Keep alive |

 +---------------------------+

 | Payload |

 | Client Identifier |

 | (UTF-8 encoded string) |

 | Username as access token |

 | (UTF-8 encoded string) |

 | Password for signature/MAC|

 | (Binary Data) |

 +---------------------------+

¶

+---+

|User name|Pass.|Will retain|Will QoS|Will Flag|Clean| Rsvd.|

| flag |flag | | | | | |

+---+

| 1 | 1 | X | X X | X | X | 0 |

+---+

result of administrator action or policies (e.g. defining an

automated response based on storage capabilities), and Brokers

SHOULD implement administrative policies to limit misuse.

The Client MAY set the Will Flag as desired (marked as "X" in Figure

12). Username and Password flags MUST be set to 1 to ensure that the

Payload of the CONNECT packet includes both Username and Password

fields. The MQTT Username is a UTF-8 encoded string, and the MQTT

Password is Binary Data.

The CONNECT in MQTT v3.1.1 does not have a field to indicate the

authentication method. To signal that the Username field contains an

ACE token, this field MUST be prefixed with "ace" keyword, i.e., the

Username field is a concatenation of 'a', 'c', 'e' and the access

token represented as:

Figure 13: Username in CONNECT

To this end, the access token MUST be base64url encoded, omitting

the '=' padding characters [RFC4648].

The password field MUST be set to the keyed message digest (MAC) or

signature associated with the access token for PoP. The Client MUST

apply the PoP key on the challenge derived from the TLS session as

described in Section 2.2.4.2.1.

6.2. Handling Authorization Errors

Error handling is more primitive in MQTT v3.1.1 due to not having

appropriate error fields, error codes, and server-side DISCONNECTs.

Therefore, the Broker will disconnect on almost any error and may

not keep the session state, necessitating that clients make a

greater effort to ensure that tokens remain valid and do not attempt

to publish to topics that they do not have permissions for. The

following lists how the Broker responds to specific errors.

CONNECT without a token: The tokenless CONNECT attempt MUST fail.

This is because the challenge-response based PoP is not possible

for MQTT v3.1.1. It is also not possible to support AS discovery

since a CONNACK packet in MQTT v3.1.1 does not include a means to

provide additional information to the Client. Therefore, AS

discovery needs to take place out-of-band.

Client-Broker PUBLISH authorization failure: In the case of a

failure, it is not possible to return an error in MQTT v3.1.1.

Acknowledgment messages only indicate success. In the case of an

authorization error, the Broker MUST ignore the PUBLISH packet

¶

¶

¶

 'U+0061'||'U+0063'||'U+0065'||UTF-8(access token)

¶

¶

¶

*

¶

*

and disconnect the Client. Also, as DISCONNECT packets are only

sent from a Client to the Broker, the server disconnection needs

to take place below the application layer.

SUBSCRIBE authorization failure: In the SUBACK packet, the return

code is 0x80 indicating failure for the unauthorized topic(s).

Note that, in both MQTT versions, a reason code is returned for

each Topic Filter.

Broker-Client PUBLISH authorization failure: When the Broker is

forwarding PUBLISH packets to the subscribed Clients, it may

discover that some of the subscribers are no longer authorized

due to expired tokens. These token expirations MUST lead to

disconnecting the Client rather than silently dropping messages.

7. IANA Considerations

Note to RFC Editor: Please replace all occurrences of "[this

document]" with the RFC number of this specification and delete this

paragraph.

7.1. TLS Exporter Label Registration

This document registers "EXPORTER-ACE-MQTT-Sign-Challenge"

(introduced in Section 2.2.4.2.1 in this document) in the TLS

Exporter Label Registry [RFC8447].

Recommended: No

DTLS-OK: No

Reference: [This document]

7.2. Media Type Registration

This document registers the "application/ace+json" media type for

messages of the protocols defined in this document carrying

parameters encoded in JSON.

Type name: application

Subtype name: ace+json

Required parameters: N/A

Optional parameters: N/A

Encoding considerations: Encoding considerations are identical to

those specified for the "application/json" media type.

¶

*

¶

*

¶

¶

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

*

¶

Security considerations: Section 8 of [this document]

Interoperability considerations: none

Published specification: [this document]

Applications that use this media type: This media type is

intended for authorization server-client and authorization

server-resource server communication as part of the ACE framework

using JSON encoding as specified in [this document].

Fragment identifier considerations: none

Additional information:

Deprecated alias names for this type: none

Magic number(s): none

File extension(s): none

Macintosh file type code(s): none

Person & email address to contact for further information: Cigdem

Sengul (csengul@acm.org)

Intended usage: COMMON

Restrictions on usage: none

Author: Cigdem Sengul (csengul@acm.org)

Change controller: IETF

Provisional registration? (standards tree only): no

7.3. ACE OAuth Profile Registration

The following registrations are done for the ACE OAuth Profile

Registry following the procedure specified in [I-D.ietf-ace-oauth-

authz].

Name: mqtt_tls

Description: Profile for delegating Client authentication and

authorization using MQTT for the Client and Broker (RS)

interactions, and HTTP for the AS interactions. TLS is used for

confidentiality and integrity protection and server

authentication. Client authentication can be provided either via

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

- ¶

- ¶

- ¶

- ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

*

TLS or using in-band PoP validation at the MQTT application

layer.

CBOR Value: To be assigned by IANA in the (-256, 255) range

Reference: [this document]

7.4. AIF

For the media-types application/aif+cbor and application/aif+json

defined in Section 5.1 of [I-D.ietf-ace-aif], IANA is requested to

register the following entries for the two media-type parameters

Toid and Tperm, in the respective sub-registry defined in Section

5.2 of [I-D.ietf-ace-aif] within the "MIME Media Type Sub-Parameter"

registry group.

For Toid:

Name: mqtt-topic-filter

Description/Specification: Topic Filter as defined in Section

1.3.

Reference: [[This document]] (Section 2.3)

For Tperm:

Name: mqtt-permissions

Description/Specification: Permissions for MQTT client. Tperm is

a string with a value either "pub" or "sub".

Reference: [[This document]] (Section 2.3)

8. Security Considerations

This document specifies a profile for the Authentication and

Authorization for Constrained Environments (ACE) framework [I-

D.ietf-ace-oauth-authz]. Therefore, the security considerations

outlined in [I-D.ietf-ace-oauth-authz] apply to this work.

In addition, the security considerations outlined in MQTT v5.0 - the

OASIS Standard [MQTT-OASIS-Standard-v5] and MQTT v3.1.1 - the OASIS

Standard [MQTT-OASIS-Standard-v3.1.1] apply. Mainly, this document

provides an authorization solution for MQTT, the responsibility of

which is left to the specific implementation in the MQTT standards.

In the following, we comment on a few relevant issues based on the

current MQTT specifications.

¶

* ¶

* ¶

¶

¶

* ¶

*

¶

* ¶

¶

* ¶

*

¶

* ¶

¶

¶

After the Broker validates an access token and accepts a connection

from a client, it caches the token to authorize a Client's publish

and subscribe requests in an ongoing session. The Broker does not

cache any tokens that cannot be validated. If a Client's permissions

get revoked, but the access token has not expired, the Broker may

still grant publish/subscribe to revoked topics. If the Broker

caches the token introspection responses, then the Broker SHOULD use

a reasonable cache timeout to introspect tokens regularly. The

timeout value is application-specific and should be chosen to reduce

the risk of using stale introspection responses. When permissions

change dynamically, it is expected that AS also follows a reasonable

expiration strategy for the access tokens.

The Broker may monitor Client behaviour to detect potential security

problems, especially those affecting availability. These include

repeated token transfer attempts to the public "authz-info" topic,

repeated connection attempts, abnormal terminations, and Clients

that connect but do not send any data. If the Broker supports the

public "authz-info" topic, described in Section 2.2.2, then this may

be vulnerable to a DDoS attack, where many Clients use the "authz-

info" public topic to transport tokens that are not meant to be

used, and which the Broker may need to store until the tokens

expire.

For MQTT v5.0, when a Client connects with a long Session Expiry

Interval, the Broker may need to maintain the Client's MQTT session

state after it disconnects for an extended period. For MQTT v3.1.1,

the session state may need to be stored indefinitely, as it does not

have a Session Expiry Interval feature. The Broker SHOULD implement

administrative policies to limit misuse of the session continuation

by the Client.

9. Privacy Considerations

The privacy considerations outlined in [I-D.ietf-ace-oauth-authz]

apply to this work.

In MQTT, the Broker is a central trusted party and may forward

potentially sensitive information between Clients. The mechanisms

defined in this document do not protect the contents of the PUBLISH

packet from the Broker, and hence, the content of the PUBLISH packet

is not signed or encrypted separately for the subscribers. This

functionality may be implemented using the proposal outlined in the

ACE Pub-Sub Profile [I-D.ietf-ace-pubsub-profile]. However, this

solution would still not provide privacy for other fields of the

packet, such as Topic Name.

¶

¶

¶

¶

¶

[I-D.ietf-ace-aif]

[I-D.ietf-ace-dtls-authorize]

[I-D.ietf-ace-extend-dtls-authorize]

[I-D.ietf-ace-oauth-authz]

[I-D.ietf-ace-oauth-params]

[I-D.ietf-cose-x509]

[I-D.ietf-httpbis-semantics]

10. References

10.1. Normative References

Bormann, C., "An Authorization Information Format

(AIF) for ACE", Work in Progress, Internet-Draft, draft-

ietf-ace-aif-07, 15 March 2022, <https://www.ietf.org/

archive/id/draft-ietf-ace-aif-07.txt>.

Gerdes, S., Bergmann, O., Bormann, C.,

Selander, G., and L. Seitz, "Datagram Transport Layer

Security (DTLS) Profile for Authentication and

Authorization for Constrained Environments (ACE)", Work

in Progress, Internet-Draft, draft-ietf-ace-dtls-

authorize-18, 4 June 2021, <https://www.ietf.org/archive/

id/draft-ietf-ace-dtls-authorize-18.txt>.

Bergmann, O., Mattsson, J. P.,

and G. Selander, "Extension of the CoAP-DTLS Profile for

ACE to TLS", Work in Progress, Internet-Draft, draft-

ietf-ace-extend-dtls-authorize-02, 7 March 2022,

<https://www.ietf.org/archive/id/draft-ietf-ace-extend-

dtls-authorize-02.txt>.

Seitz, L., Selander, G., Wahlstroem, E.,

Erdtman, S., and H. Tschofenig, "Authentication and

Authorization for Constrained Environments (ACE) using

the OAuth 2.0 Framework (ACE-OAuth)", Work in Progress,

Internet-Draft, draft-ietf-ace-oauth-authz-46, 8 November

2021, <https://www.ietf.org/archive/id/draft-ietf-ace-

oauth-authz-46.txt>.

Seitz, L., "Additional OAuth Parameters for Authorization

in Constrained Environments (ACE)", Work in Progress,

Internet-Draft, draft-ietf-ace-oauth-params-16, 7

September 2021, <https://www.ietf.org/archive/id/draft-

ietf-ace-oauth-params-16.txt>.

Schaad, J., "CBOR Object Signing and Encryption

(COSE): Header parameters for carrying and referencing X.

509 certificates", Work in Progress, Internet-Draft,

draft-ietf-cose-x509-08, 14 December 2020, <https://

www.ietf.org/internet-drafts/draft-ietf-cose-

x509-08.txt>.

Fielding, R. T., Nottingham, M., and J.

Reschke, "HTTP Semantics", Work in Progress, Internet-

Draft, draft-ietf-httpbis-semantics-19, 12 September

https://www.ietf.org/archive/id/draft-ietf-ace-aif-07.txt
https://www.ietf.org/archive/id/draft-ietf-ace-aif-07.txt
https://www.ietf.org/archive/id/draft-ietf-ace-dtls-authorize-18.txt
https://www.ietf.org/archive/id/draft-ietf-ace-dtls-authorize-18.txt
https://www.ietf.org/archive/id/draft-ietf-ace-extend-dtls-authorize-02.txt
https://www.ietf.org/archive/id/draft-ietf-ace-extend-dtls-authorize-02.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oauth-authz-46.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oauth-authz-46.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oauth-params-16.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oauth-params-16.txt
https://www.ietf.org/internet-drafts/draft-ietf-cose-x509-08.txt
https://www.ietf.org/internet-drafts/draft-ietf-cose-x509-08.txt
https://www.ietf.org/internet-drafts/draft-ietf-cose-x509-08.txt

[MQTT-OASIS-Standard-v3.1.1]

[MQTT-OASIS-Standard-v5]

[RFC2119]

[RFC4648]

[RFC5705]

[RFC6066]

[RFC6234]

[RFC6749]

[RFC7250]

[RFC7301]

2021, <https://www.ietf.org/archive/id/draft-ietf-

httpbis-semantics-19.txt>.

Banks, A., Ed. and R. Gupta, Ed.,

"OASIS Standard MQTT Version 3.1.1 Plus Errata 01", 2015,

<https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-

v3.1.1.html>.

Banks, A., Ed., Briggs, E., Ed.,

Borgendale, K., Ed., and R. Gupta, Ed., "OASIS Standard

MQTT Version 5.0", 2017, <https://docs.oasis-open.org/

mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>.

Rescorla, E., "Keying Material Exporters for Transport

Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,

March 2010, <https://www.rfc-editor.org/info/rfc5705>.

Eastlake 3rd, D., "Transport Layer Security (TLS)

Extensions: Extension Definitions", RFC 6066, DOI

10.17487/RFC6066, January 2011, <https://www.rfc-

editor.org/info/rfc6066>.

Eastlake 3rd, D. and T. Hansen, "US Secure Hash

Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234,

DOI 10.17487/RFC6234, May 2011, <https://www.rfc-

editor.org/info/rfc6234>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,

Weiler, S., and T. Kivinen, "Using Raw Public Keys in

Transport Layer Security (TLS) and Datagram Transport

Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,

June 2014, <https://www.rfc-editor.org/info/rfc7250>.

Friedl, S., Popov, A., Langley, A., and E. Stephan,

"Transport Layer Security (TLS) Application-Layer

Protocol Negotiation Extension", RFC 7301, DOI 10.17487/

https://www.ietf.org/archive/id/draft-ietf-httpbis-semantics-19.txt
https://www.ietf.org/archive/id/draft-ietf-httpbis-semantics-19.txt
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc5705
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7250

[RFC7516]

[RFC7517]

[RFC7519]

[RFC7627]

[RFC7800]

[RFC8032]

[RFC8152]

[RFC8174]

[RFC8422]

[RFC8442]

RFC7301, July 2014, <https://www.rfc-editor.org/info/

rfc7301>.

Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",

RFC 7516, DOI 10.17487/RFC7516, May 2015, <https://

www.rfc-editor.org/info/rfc7516>.

Jones, M., "JSON Web Key (JWK)", RFC 7517, DOI 10.17487/

RFC7517, May 2015, <https://www.rfc-editor.org/info/

rfc7517>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/info/rfc7519>.

Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,

Langley, A., and M. Ray, "Transport Layer Security (TLS)

Session Hash and Extended Master Secret Extension", RFC

7627, DOI 10.17487/RFC7627, September 2015, <https://

www.rfc-editor.org/info/rfc7627>.

Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-

Possession Key Semantics for JSON Web Tokens (JWTs)", RFC

7800, DOI 10.17487/RFC7800, April 2016, <https://www.rfc-

editor.org/info/rfc7800>.

Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital

Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/

RFC8032, January 2017, <https://www.rfc-editor.org/info/

rfc8032>.

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/info/rfc8152>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Nir, Y., Josefsson, S., and M. Pegourie-Gonnard,

"Elliptic Curve Cryptography (ECC) Cipher Suites for

Transport Layer Security (TLS) Versions 1.2 and Earlier",

RFC 8422, DOI 10.17487/RFC8422, August 2018, <https://

www.rfc-editor.org/info/rfc8422>.

Mattsson, J. and D. Migault, "ECDHE_PSK with AES-GCM and

AES-CCM Cipher Suites for TLS 1.2 and DTLS 1.2", RFC

8442, DOI 10.17487/RFC8442, September 2018, <https://

www.rfc-editor.org/info/rfc8442>.

https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7627
https://www.rfc-editor.org/info/rfc7627
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8422
https://www.rfc-editor.org/info/rfc8422
https://www.rfc-editor.org/info/rfc8442
https://www.rfc-editor.org/info/rfc8442

[RFC8446]

[RFC8610]

[RFC8747]

[fremantle14]

[I-D.ietf-ace-pubsub-profile]

[I-D.ietf-tls-rfc8446bis]

[RFC4949]

[RFC7252]

[RFC7525]

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.

Tschofenig, "Proof-of-Possession Key Semantics for CBOR

Web Tokens (CWTs)", RFC 8747, DOI 10.17487/RFC8747, March

2020, <https://www.rfc-editor.org/info/rfc8747>.

10.2. Informative References

Fremantle, P., Aziz, B., Kopecky, J., and P. Scott,

"Federated Identity and Access Management for the

Internet of Things", research International Workshop on

Secure Internet of Things, September 2014, <https://

dx.doi.org/10.1109/SIoT.2014.8>.

Palombini, F. and C. Sengul, "Pub-Sub

Profile for Authentication and Authorization for

Constrained Environments (ACE)", Work in Progress,

Internet-Draft, draft-ietf-ace-pubsub-profile-04, 29

December 2021, <https://www.ietf.org/archive/id/draft-

ietf-ace-pubsub-profile-04.txt>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", Work in Progress, Internet-Draft,

draft-ietf-tls-rfc8446bis-04, 7 March 2022, <https://

www.ietf.org/archive/id/draft-ietf-tls-

rfc8446bis-04.txt>.

Shirey, R., "Internet Security Glossary, Version 2", FYI

36, RFC 4949, DOI 10.17487/RFC4949, August 2007,

<https://www.rfc-editor.org/info/rfc4949>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Sheffer, Y., Holz, R., and P. Saint-Andre,

"Recommendations for Secure Use of Transport Layer

Security (TLS) and Datagram Transport Layer Security

https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8747
https://dx.doi.org/10.1109/SIoT.2014.8
https://dx.doi.org/10.1109/SIoT.2014.8
https://www.ietf.org/archive/id/draft-ietf-ace-pubsub-profile-04.txt
https://www.ietf.org/archive/id/draft-ietf-ace-pubsub-profile-04.txt
https://www.ietf.org/archive/id/draft-ietf-tls-rfc8446bis-04.txt
https://www.ietf.org/archive/id/draft-ietf-tls-rfc8446bis-04.txt
https://www.ietf.org/archive/id/draft-ietf-tls-rfc8446bis-04.txt
https://www.rfc-editor.org/info/rfc4949
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252

[RFC7925]

[RFC8392]

[RFC8447]

[RFC8949]

(DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May

2015, <https://www.rfc-editor.org/info/rfc7525>.

Tschofenig, H., Ed. and T. Fossati, "Transport Layer

Security (TLS) / Datagram Transport Layer Security (DTLS)

Profiles for the Internet of Things", RFC 7925, DOI

10.17487/RFC7925, July 2016, <https://www.rfc-editor.org/

info/rfc7925>.

Jones, M., Wahlstroem, E., Erdtman, S., and H.

Tschofenig, "CBOR Web Token (CWT)", RFC 8392, DOI

10.17487/RFC8392, May 2018, <https://www.rfc-editor.org/

info/rfc8392>.

Salowey, J. and S. Turner, "IANA Registry Updates for TLS

and DTLS", RFC 8447, DOI 10.17487/RFC8447, August 2018,

<https://www.rfc-editor.org/info/rfc8447>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

Appendix A. Checklist for profile requirements

Based on the requirements on profiles for the ACE framework [I-

D.ietf-ace-oauth-authz], this document fulfills the following:

Optional AS discovery: AS discovery is supported with the MQTT

v5.0 described in Section 2.2.

The communication protocol between the Client and Broker (RS):

MQTT

The security protocol between the Client and RS: TLS

Client and RS mutual authentication: Several options are possible

and described in Section 2.2.1.

Proof-of-possession protocols: Specified in Section 2.2.4.2; both

symmetric and asymmetric keys supported.

Content format: For the HTTPS interactions with AS, "application/

ace+json".

Unique profile identifier: mqtt_tls

Token introspection: RS uses HTTPS introspect interface of AS.

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

* ¶

* ¶

https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc7925
https://www.rfc-editor.org/info/rfc7925
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8447
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949

Token request: Client or its Client AS uses the HTTPS token

endpoint of the AS.

authz-info endpoint: It MAY be supported using the method

described in Section 2.2.2, but is not protected other than by

the TLS channel between Client and RS.

Token transport: Via "authz-info" topic, or TLS with PSK,

provided as a PSK identity, or in MQTT CONNECT packet for both

versions of MQTT. The AUTH extensions can also be used for

authentication and re-authentication for MQTT v5.0, as described

in Section 2.2 and Section 4.

Appendix B. Document Updates

Version 15: Addressing GENART review comments.

Version 11 to 15: Addressing AD review comments.

Version 10 to 11: Clarified the TLS use between RS-AS and Client-AS.

Version 09 to 10: Fixed version issues for references.

Version 08 to 09: Fixed spacing issues and references.

Version 07 to 08:

Fixed several nits, typos based on WG reviews.

Added missing references.

Added the definition for Property defined by MQTT, and Client

Authorization Server.

Added artwork to show Authorization Data format for various PoP-

related message exchange.

Removed all MQTT-related must/should/may.

Made AS discovery optional.

Clarified what the client and server must implement for client

authentication; cleaned up TLS 1.3 related language.

Version 06 to 07:

Corrected the title.

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

¶

* ¶

In Section 2.2.3, added the constraint on which packets the

Client can send, and the server can process after CONNECT before

CONNACK.

In Section 2.2.3, clarified that session state is identified by

Client Identifier, and listed its content.

In Section 2.2.3, clarified the issue of Client Identifier

collision, when the Broker supports session continuation.

Corrected the buggy scope example in Section 3.1.

Version 05 to 06:

Replace the originally proposed scope format with AIF model.

Defined the AIF-MQTT, gave an example with a JSON array. Added a

normative reference to the AIF draft.

Clarified client connection after submitting token via "authz-

info" topic as TLS:Known(RPK/PSK),MQTT:none.

Expanded acronyms on their first use including the ones in the

title.

Added a definition for "Session".

Corrected "CONNACK" definition, which earlier said it's the first

packet sent by the Broker.

Added a statement that the Broker will disconnect on almost any

error and may not keep session state.

Clarified that the Broker does not cache tokens that cannot be

validated.

Version 04 to 05:

Reorganised Section 2 such that "Unauthorized Request:

Authorization Server Discovery" is presented under Section 2.

Fixed Figure 2 to remove the "empty" word.

Clarified that MQTT v5.0 Brokers may implement username/password

option for transporting the ACE token only for MQTT v.3.1.1

clients. This option is not recommended for MQTT v.5.0 clients.

Changed Clean Session requirement both for MQTT v.5.0 and v.

3.1.1. The Broker SHOULD NOT, instead of MUST NOT, continue

sessions. Clarified expected behaviour if session continuation is

*

¶

*

¶

*

¶

* ¶

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

¶

*

¶

* ¶

*

¶

*

supported. Added to the Security Considerations the potential

misuse of session continuation.

Fixed the Authentication Data to include token length for the

Challenge/Response PoP.

Added that Authorization Server Discovery is triggered if a token

is not valid and not only missing.

Clarified that the Broker should not accept any other packets

from Client after CONNECT and before sending CONNACK.

Added that client reauthentication is accepted only for the

challenge/response PoP.

Added Ed25519 as mandatory to implement.

Fixed typos.

Version 03 to 04:

Linked the terms Broker and MQTT server more at the introduction

of the document.

Clarified support for MQTTv3.1.1 and removed phrases that might

be considered as MQTTv5 is backwards compatible with MQTTv3.1.1

Corrected the Informative and Normative references.

For AS discovery, clarified the CONNECT message omits the

Authentication Data field. Specified the User Property MUST be

set to "ace_as_hint" for AS Request Creation Hints.

Added that MQTT v5 brokers MAY also implement reduced

interactions described for MQTTv3.1.1.

Added to Section 3.1, in case of an authorization failure and QoS

level 0, the RS sends a DISCONNECT with reason code 0x87 (Not

authorized).

Added a pointer to section 4.7 of MQTTv5 spec for more

information on topic names and filters.

Added HS256 and RSA256 are mandatory to implement depending on

the choice of symmetric or asymmetric validation.

Added MQTT to the TLS exporter label to make it application

specific: 'EXPORTER-ACE-MQTT-Sign-Challenge'.

¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Added a format for Authentication Data so that length values

prefix the token (or client nonce) when Authentication Data

contains more than one piece of information.

Clarified clients still connect over TLS (server-side) for the

authz-info flow.

Version 02 to 03:

Added the option of Broker certificate thumbprint in the 'rs_cnf'

sent to the Client.

Clarified the use of a random nonce from the TLS Exporter for

PoP, added to the IANA requirements that the label should be

registered.

Added a client nonce, when Challenge/Response Authentication is

used between Client and Broker.

Clarified the use of the "authz-info" topic and the error

response if token validation fails.

Added clarification on wildcard use in scopes for publish/

subscribe permissions

Reorganised sections so that token authorization for publish/

subscribe messages are better placed.

Version 01 to 02:

Clarified protection of Application Message payload as out of

scope, and cited draft-palombini-ace-coap-pubsub-profile for a

potential solution

Expanded Client connection authorization to capture different

options for Client and Broker authentication over TLS and MQTT

Removed Payload (and specifically Client Identifier) from proof-

of-possession in favor of using tls-exporter for a TLS-session

based challenge.

Moved token transport via "authz-info" topic from the Appendix to

the main text.

Clarified Will scope.

Added MQTT AUTH to terminology.

Typo fixes, and simplification of figures.

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

Version 00 to 01:

Present the MQTTv5 as the RECOMMENDED version, and MQTT v3.1.1

for backward compatibility.

Clarified Will message.

Improved consistency in the use of terminology and upper/lower

case.

Defined Broker and MQTTS.

Clarified HTTPS use for C-AS and RS-AS communication. Removed

reference to actors document, and clarified the use of client

authorization server.

Clarified the Connect message payload and Client Identifier.

Presented different methods for passing the token and PoP.

Added new figures to explain AUTH packets exchange, updated

CONNECT message figure.

Acknowledgments

The authors would like to thank Ludwig Seitz for his review and his

input on the authorization information endpoint, and Benjamin Kaduk

for his review, insightful comments, and contributions to resolving

issues. The authors would like to thank Paul Fremantle for the

initial discussions on MQTT v5.0 support.

Authors' Addresses

Cigdem Sengul

Brunel University

Dept. of Computer Science

Uxbridge

UB8 3PH

United Kingdom

Email: csengul@acm.org

Anthony Kirby

Oxbotica

1a Milford House, Mayfield Road, Summertown

Oxford

OX2 7EL

United Kingdom

Email: anthony@anthony.org

¶

*

¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

*

¶

¶

mailto:csengul@acm.org
mailto:anthony@anthony.org

	Message Queuing Telemetry Transport (MQTT)-TLS profile of Authentication and Authorization for Constrained Environments (ACE) Framework
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	1.2. ACE-Related Terminology
	1.3. MQTT-Related Terminology

	2. Authorizing Connection Requests
	2.1. Client Token Request to the Authorization Server (AS)
	2.2. Client Connection Request to the Broker (C)
	2.2.1. Overview of Client-RS Authentication Methods over TLS and MQTT
	2.2.2. authz-info: The Authorization Information Topic
	2.2.3. Client Authentication over TLS
	2.2.3.1. Raw Public Key Mode
	2.2.3.2. Pre-Shared Key Mode

	2.2.4. Client Authentication over MQTT
	2.2.4.1. Transporting the Access Token Inside the MQTT CONNECT
	2.2.4.2. Authentication Using AUTH Property
	2.2.4.2.1. Proof-of-Possession Using a Challenge from the TLS session
	2.2.4.2.2. Proof-of-Possession via Broker-generated Challenge/Response

	2.2.5. Broker Token Validation

	2.3. Token Scope and Authorization
	2.4. Broker Response to Client Connection Request
	2.4.1. Unauthorized Request and the Optional Authorization Server Discovery
	2.4.2. Authorization Success

	3. Authorizing PUBLISH and SUBSCRIBE Packets
	3.1. PUBLISH Packets from the Publisher Client to the Broker
	3.2. PUBLISH Packets from the Broker to the Subscriber Clients
	3.3. Authorizing SUBSCRIBE Packets

	4. Token Expiration, Update, and Reauthentication
	5. Handling Disconnections and Retained Messages
	6. Reduced Protocol Interactions for MQTT v3.1.1
	6.1. Token Transport
	6.2. Handling Authorization Errors

	7. IANA Considerations
	7.1. TLS Exporter Label Registration
	7.2. Media Type Registration
	7.3. ACE OAuth Profile Registration
	7.4. AIF

	8. Security Considerations
	9. Privacy Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Checklist for profile requirements
	Appendix B. Document Updates
	Acknowledgments
	Authors' Addresses

