
ACE Working Group L. Seitz
Internet-Draft SICS
Intended status: Standards Track G. Selander
Expires: August 28, 2016 Ericsson
 E. Wahlstroem
 S. Erdtman
 Nexus Technology
 H. Tschofenig
 ARM Ltd.
 February 25, 2016

Authorization for the Internet of Things using OAuth 2.0
draft-ietf-ace-oauth-authz-01

Abstract

 This memo defines how to use OAuth 2.0 as an authorization framework
 with Internet of Things (IoT) deployments, thus bringing a well-known
 and widely used security solution to IoT devices. Where possible
 vanilla OAuth 2.0 is used, but where the limitations of IoT devices
 require it, profiles and extensions are provided.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 28, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Seitz, et al. Expires August 28, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Overview . 4
3.1. OAuth 2.0 . 5
3.2. CoAP . 7
3.3. Object Security . 8

4. Protocol Interactions . 9
5. OAuth 2.0 Profiling . 12
5.1. Client Information 12
5.2. CoAP Access-Token Option 15

 5.3. Authorization Information Resource at the Resource Server 15
5.3.1. Authorization Information Request 16
5.3.2. Authorization Information Response 16
5.3.2.1. Success Response 16
5.3.2.2. Error Response 16

5.4. Authorization Information Format 17
5.5. CBOR Data Formats . 17
5.6. Token Expiration . 17

6. Deployment Scenarios . 18
6.1. Client and Resource Server are Offline 19
6.2. Resource Server Offline 22
6.3. Token Introspection with an Offline Client 26
6.4. Always-On Connectivity 30
6.5. Token-less Authorization 31
6.6. Securing Group Communication 34

7. Security Considerations 35
8. IANA Considerations . 35
8.1. CoAP Option Number Registration 35

9. Acknowledgments . 36
10. References . 36
10.1. Normative References 36
10.2. Informative References 38

Appendix A. Design Justification 40
Appendix B. Roles and Responsibilites -- a Checklist . . . 41
Appendix C. Optimizations 44
Appendix D. CoAP and CBOR profiles for OAuth 2.0 45
D.1. Profile for Token resource 45
D.1.1. Token Request . 46
D.1.2. Token Response 47

Seitz, et al. Expires August 28, 2016 [Page 2]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

D.2. CoAP Profile for OAuth Introspection 48
D.2.1. Introspection Request 48
D.2.2. Introspection Response 49

Appendix E. Document Updates 51
E.1. Version -00 to -01 51

 Authors' Addresses . 52

1. Introduction

 Authorization is the process for granting approval to an entity to
 access a resource [RFC4949]. Managing authorization information for
 a large number of devices and users is often a complex task where
 dedicated servers are used.

 Managing authorization of users, services and their devices with the
 help of dedicated authorization servers (AS) is a common task, found
 in enterprise networks as well as on the Web. In its simplest form
 the authorization task can be described as granting access to a
 requesting client, for a resource hosted on a device, the resource
 server (RS). This exchange is mediated by one or multiple
 authorization servers.

 We envision that end consumers and enterprises will want to manage
 access-control and authorization for their Internet of Things (IoT)
 devices in the same style and this desire will increase with the
 number of exposed services and capabilities provided by applications
 hosted on the IoT devices. The IoT devices may be constrained in
 various ways including processing, memory, code-size, energy, etc.,
 as defined in [RFC7228], and the different IoT deployments present a
 continuous range of device and network capabilities. Taking energy
 consumption as an example: At one end there are energy-harvesting or
 battery powered devices which have a tight power budget, on the other
 end there are devices connected to a continuous power supply which
 are not constrained in terms of power, and all levels in between.
 Thus IoT devices are very different in terms of available processing
 and message exchange capabilities.

 This memo describes how to re-use OAuth 2.0 [RFC6749] to extend
 authorization to Internet of Things devices with different kinds of
 constraints. At the time of writing, OAuth 2.0 is already used with
 certain types of IoT devices and this document will provide
 implementers additional guidance for using it in a secure and
 privacy-friendly way. Where possible the basic OAuth 2.0 mechanisms
 are used; in some circumstances profiles are defined, for example to
 support smaller the over-the-wire message size and smaller code size.

https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc6749

Seitz, et al. Expires August 28, 2016 [Page 3]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Certain security-related terms such as "authentication",
 "authorization", "confidentiality", "(data) integrity", "message
 authentication code", and "verify" are taken from [RFC4949].

 Since we describe exchanges as RESTful protocol interactions HTTP
 [RFC7231] offers useful terminology.

 Terminology for entities in the architecture is defined in OAuth 2.0
 [RFC6749] and [I-D.ietf-ace-actors], such as client (C), resource
 server (RS), and authorization server (AS). OAuth 2.0 uses the term
 "endpoint" to denote HTTP resources such as /token and /authorize at
 the AS, but we will use the term "resource" in this memo to avoid
 confusion with the CoAP [RFC7252] term "endpoint".

 Since this draft focuses on the problem of access control to
 resources, we simplify the actors by assuming that the client
 authorization server (CAS) functionality is not stand-alone but
 subsumed by either the authorization server or the client (see
 section 2.2 in [I-D.ietf-ace-actors]).

3. Overview

 This specification describes a framework for authorization in the
 Internet of Things consisting of a set of building blocks.

 The basic block is the OAuth 2.0 [RFC6749] framework, which enjoys
 widespread deployment. Many IoT devices can support OAuth 2.0
 without any additional extensions, but for certain constrained
 settings additional profiling is needed.

 Another building block is the lightweight web transfer protocol CoAP
 [RFC7252] for those communication environments where HTTP is not
 appropriate. CoAP typically runs on top of UDP which further reduces
 overhead and message exchanges. Transport layer security can be
 provided either by DTLS 1.2 [RFC6347] or TLS 1.2 [RFC5246].

 A third building block is CBOR [RFC7049] for encodings where JSON
 [RFC7159] is not sufficiently compact. CBOR is a binary encoding
 designed for extremely small code size and fairly small message size.
 OAuth 2.0 allows access tokens to use different encodings and this
 document defines such an alternative encoding. The COSE message
 format [I-D.ietf-cose-msg] is also based on CBOR.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7159

Seitz, et al. Expires August 28, 2016 [Page 4]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 A fourth building block is application layer security, which is used
 where transport layer security is insufficient. At the time of
 writing the preferred approach for securing CoAP at the application
 layer is via the use of COSE [I-D.ietf-cose-msg], which adds object
 security to CBOR-encoded data. More details about applying COSE to
 CoAP can be found in OSCOAP [I-D.selander-ace-object-security].

 With the building blocks listed above, solutions satisfying various
 IoT device and network constraints are possible. A list of
 constraints is described in detail in RFC 7228 [RFC7228] and a
 description of how the building blocks mentioned above relate to the
 various constraints can be found in Appendix A.

 Luckily, not every IoT device suffers from all constraints. The
 described framework nevertheless takes all these aspects into account
 and allows several different deployment variants to co-exist rather
 than mandating a one-size-fits-all solution. We believe this is
 important to cover the wide range of possible interworking use cases
 and the different requirements from a security point of view. Once
 IoT deployments mature, popular deployment variants will be
 documented in form of profiles.

 In the subsections below we provide further details about the
 different building blocks.

3.1. OAuth 2.0

 The OAuth 2.0 authorization framework enables a client to obtain
 limited access to a resource with the permission of a resource owner.
 Authorization related information is passed between the nodes using
 access tokens. These access tokens are issued to clients by an
 authorization server with the approval of the resource owner. The
 client uses the access token to access the protected resources hosted
 by the resource server.

 A number of OAuth 2.0 terms are used within this memo:

 Access Tokens:

 Access tokens are credentials used to access protected resources.
 An access token is a data structure representing authorization
 permissions issued to the client. Access tokens are generated by
 the authorization server and consumed by the resource server. The
 access token is opaque to the client.

 Access tokens can have different formats, and various methods of
 utilization (e.g., cryptographic properties) based on the security
 requirements of the given deployment.

https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7228

Seitz, et al. Expires August 28, 2016 [Page 5]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 Proof of Possession Tokens:

 An access token may be bound to a cryptographic key, which is then
 used by an RS to authenticate requests from a client. Such tokens
 are called proof-of-possession tokens (or PoP tokens)
 [I-D.ietf-oauth-pop-architecture].

 The proof-of-possession (PoP) security concept assumes that the AS
 acts as a trusted third party that binds keys to access tokens.
 These so called PoP keys are then used by the client to
 demonstrate the possession of the secret to the RS when accessing
 the resource. The RS, when receiving an access token, needs to
 verify that the key used by the client matches the one included in
 the access token. When this memo uses the term "access token" it
 is assumed to be a PoP token unless specifically stated otherwise.

 The key bound to the access token (aka PoP key) may be based on
 symmetric as well as on asymmetric cryptography. The appropriate
 choice of security depends on the constraints of the IoT devices
 as well as on the security requirements of the use case.

 Symmetric PoP key:

 The AS generates a random symmetric PoP key, encrypts it for
 the RS and includes it inside an access token. The PoP key is
 also encrypted for the client and sent together with the access
 token to the client.

 Asymmetric PoP key:

 An asymmetric key pair is generated on the client and the
 public key is sent to the AS (if it does not already have
 knowledge of the client's public key). Information about the
 public key, which is the PoP key in this case, is then included
 inside the access token and sent back to the requesting client.
 The RS can identify the client's public key from the
 information in the token, which allows the client to use the
 corresponding private key for the proof of possession.

 The access token is protected against modifications using a MAC or
 a digital signature of the AS. The choice of PoP key does not
 necessarily imply a specific credential type for the integrity
 protection of the token. More information about PoP tokens can be
 found in [I-D.ietf-oauth-pop-architecture].

 Scopes and Permissions:

Seitz, et al. Expires August 28, 2016 [Page 6]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 In OAuth 2.0, the client specifies the type of permissions it is
 seeking to obtain (via the scope parameter) in the access request.
 In turn, the AS may use the "scope" response parameter to inform
 the client of the scope of the access token issued. As the client
 could be a constrained device as well, this memo uses CBOR encoded
 messages defined in Appendix D to request scopes and to be
 informed what scopes the access token was actually authorized for
 by the AS.

 The values of the scope parameter are expressed as a list of
 space- delimited, case-sensitive strings, with a semantic that is
 well-known to the AS and the RS. More details about the concept
 of scopes is found under Section 3.3 in [RFC6749].

 Claims:

 The information carried in the access token in the form of type-
 value pairs is called claims. An access token may for example
 include a claim about the AS that issued the token (the "iss"
 claim) and what audience the access token is intended for (the
 "aud" claim). The audience of an access token can be a specific
 resource or one or many resource servers. The resource owner
 policies influence the what claims are put into the access token
 by the authorization server.

 While the structure and encoding of the access token varies
 throughout deployments, a standardized format has been defined
 with the JSON Web Token (JWT) [RFC7519] where claims are encoded
 as a JSON object. In [I-D.wahlstroem-ace-cbor-web-token] an
 equivalent format using CBOR encoding (CWT) has been defined.

 Introspection:

 Introspection is a method for a resource server to query the
 authorization server for the active state and content of a
 received access token. This is particularly useful in those cases
 where the authorization decisions are very dynamic and/or where
 the received access token itself is a reference rather than a
 self-contained token. More information about introspection in
 OAuth 2.0 can be found in [I-D.ietf-oauth-introspection].

3.2. CoAP

 CoAP is an application layer protocol similar to HTTP, but
 specifically designed for constrained environments. CoAP typically
 uses datagram-oriented transport, such as UDP, where reordering and
 loss of packets can occur. A security solution need to take the
 latter aspects into account.

https://datatracker.ietf.org/doc/html/rfc6749#section-3.3
https://datatracker.ietf.org/doc/html/rfc7519

Seitz, et al. Expires August 28, 2016 [Page 7]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 While HTTP uses headers and query-strings to convey additional
 information about a request, CoAP encodes such information in so-
 called 'options'.

 CoAP supports application-layer fragmentation of the CoAP payloads
 through blockwise transfers [I-D.ietf-core-block]. However, this
 method does not allow the fragmentation of large CoAP options,
 therefore data encoded in options has to be kept small.

3.3. Object Security

 Transport layer security is not always sufficient and application
 layer security has to be provided. COSE [I-D.ietf-cose-msg] defines
 a message format for cryptographic protection of data using CBOR
 encoding. There are two main approaches for application layer
 security:

 Object Security of CoAP (OSCOAP)

 OSCOAP [I-D.selander-ace-object-security] is a method for
 protecting CoAP request/response message exchanges, including CoAP
 payloads, CoAP header fields as well as CoAP options. OSCOAP
 provides end-to-end confidentiality, integrity and replay
 protection, and a secure binding between CoAP request and response
 messages.

 A CoAP message protected with OSCOAP contains the CoAP option
 "Object-Security" which signals that the CoAP message carries a
 COSE message ([I-D.ietf-cose-msg]). OSCOAP defines a profile of
 COSE which includes replay protection.

 Object Security of Content (OSCON)

 For the case of wrapping of application layer payload data
 ("content") only, such as resource representations or claims of
 access tokens, the same COSE profile can be applied to obtain end-
 to-end confidentiality, integrity and replay protection.
 [I-D.selander-ace-object-security] defines this functionality as
 Object Security of Content (OSCON).

 In this case, the message is not bound to the underlying
 application layer protocol and can therefore be used with HTTP,
 CoAP, Bluetooth Smart, etc. While OSCOAP integrity protects
 specific CoAP message meta-data like request/response code, and
 binds a response to a specific request, OSCON protects only
 payload/content, therefore those security features are lost. The
 advantages are that an OSCON message can be passed across

Seitz, et al. Expires August 28, 2016 [Page 8]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 different protocols, from request to response, and used to secure
 group communications.

4. Protocol Interactions

 This framework is based on the same protocol interactions as OAuth
 2.0: A client obtains an access token from an AS and presents the
 token to an RS to gain access to a protected resource. These
 interactions are shown in Figure 1. An overview of various OAuth
 concepts is provided in Section 3.1.

 The consent of the resource owner, for giving a client access to a
 protected resource, can be pre-configured authorization policies or
 dynamically at the time when the request is sent. The resource owner
 and the requesting party (= client owner) are not shown in Figure 1.

 For the description in this document we assume that the client has
 been registered to an AS. Registration means that the two share
 credentials, configuration parameters and that some form of
 authorization has taken place. These credentials are used to protect
 the token request by the client and the transport of access tokens
 and client information from AS to the client.

 It is also assumed that the RS has been registered with the AS.
 Established keying material between the AS and the RS allows the AS
 to apply cryptographic protection to the access token to ensure that
 the content cannot be modified, and if needed, that the content is
 confidentiality protected.

 The keying material necessary for establishing communication security
 between C and RS is dynamically established as part of the protocol
 described in this document.

 At the start of the protocol there is an optional discovery step
 where the client discovers the resource server and the resources this
 server hosts. In this step the client might also determine what
 permissions are needed to access the protected resource. The exact
 procedure depends on the protocols being used and the specific
 deployment environment. In Bluetooth Smart, for example,
 advertisements are broadcasted by a peripheral, including information
 about the supported services. In CoAP, as a second example, a client
 can makes a request to "/.well-known/core" to obtain information
 about available resources, which are returned in a standardized
 format as described in [RFC6690].

https://datatracker.ietf.org/doc/html/rfc6690

Seitz, et al. Expires August 28, 2016 [Page 9]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 +--------+ +---------------+
	---(A)-- Token Request ------------->	
		Authorization
	<--(B)-- Access Token ---------------	Server
	+ Client Information	
	+---------------+	
	^	
	Introspection Request & Response (D)	
Client		v
	+--------------+	
	---(C)-- Token + Request ----------->	
		Resource
	<--(F)-- Protected Resource ---------	Server
 +--------+ +--------------+

 Figure 1: Overview of the basic protocol flow

 Requesting an Access Token (A):

 The client makes an access token request to the AS. This memo
 assumes the use of PoP tokens (see Section 3.1 for a short
 description) wherein the AS binds a key to an access token. The
 client may include permissions it seeks to obtain, and information
 about the type of credentials it wants to use (i.e., symmetric or
 asymmetric cryptography).

 Access Token Response (B):

 If the AS successfully processes the request from the client, it
 returns an access token. It also includes various parameters,
 which we call "Client Information". In addition to the response
 parameters defined by OAuth 2.0 and the PoP token extension, we
 consider new kinds of response parameters in Section 5, including
 information on which security protocol the client should use with
 the resource server(s) that it has just been authorized to access.
 Communication security between client and RS may be based on pre-
 provisioned keys/security contexts or dynamically established.
 The RS authenticates the client via the PoP token; and the client
 authenticates the RS via the client information as described in

Section 5.1.

 Resource Request (C):

 The client interacts with the RS to request access to the
 protected resource and provides the access token. The protocol to
 use between the client and the RS is not restricted to CoAP; HTTP,
 HTTP/2, Bluetooth Smart etc., are also possible candidates.

Seitz, et al. Expires August 28, 2016 [Page 10]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 Depending on the device limitations and the selected protocol this
 exchange may be split up into two phases:

 (1) the client sends the access token to a newly defined
 authorization endpoint at the RS (see Section 5.3) , which
 conveys authorization information to the RS that may be used by
 the client for subsequent resource requests, and

 (2) the client makes the resource access request, using the
 communication security protocol and other client information
 obtained from the AS.

 The RS verifies that the token is integrity protected by the AS
 and compares the claims contained in the access token with the
 resource request. If the RS is online, validation can be handed
 over to the AS using token introspection (see messages D and E)
 over HTTP or CoAP, in which case the different parts of step C may
 be interleaved with introspection.

 Token Introspection Request (D):

 A resource server may be configured to use token introspection to
 interact with the AS to obtain the most recent claims, such as
 scope, audience, validity etc. associated with a specific access
 token. Token introspection over CoAP is defined in
 [I-D.wahlstroem-ace-oauth-introspection] and for HTTP in
 [I-D.ietf-oauth-introspection].

 Note that token introspection is an optional step and can be
 omitted if the token is self-contained and the resource server is
 prepared to perform the token validation on its own.

 Token Introspection Response (E):

 The AS validates the token and returns the claims associated with
 it back to the RS. The RS then uses the received claims to
 process the request to either accept or to deny it.

 Protected Resource (F):

 If the request from the client is authorized, the RS fulfills the
 request and returns a response with the appropriate response code.
 The RS uses the dynamically established keys to protect the
 response, according to used communication security protocol.

Seitz, et al. Expires August 28, 2016 [Page 11]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

5. OAuth 2.0 Profiling

 This section describes profiles of OAuth 2.0 adjusting it to
 constrained environments for use cases where this is necessary.
 Profiling for JSON Web Tokens (JWT) is provided in
 [I-D.wahlstroem-ace-cbor-web-token].

5.1. Client Information

 OAuth 2.0 using bearer tokens, as described in [RFC6749] and in
 [RFC6750], requires TLS for all communication interactions between
 client, authorization server, and resource server. This is possible
 in the scope where OAuth 2.0 was originally developed: web and mobile
 applications. In these environments resources like computational
 power and bandwidth are not scarce and operating systems as well as
 browser platforms are pre-provisioned with trust anchors that enable
 clients to authenticate servers based on the Web PKI. In a more
 heterogeneous IoT environment a wider range of use cases needs to be
 supported. Therefore, this document suggests extensions to OAuth 2.0
 that enables the AS to inform the client on how to communicate
 securely with a RS and that allows the client to indicate
 communication security preferences to the AS.

 In the OAuth memo defining the key distribution for proof-of-
 possession (PoP) tokens [I-D.ietf-oauth-pop-key-distribution], the
 authors suggest to use Uri-query parameters in order to submit the
 parameters of the client's token request. To avoid large headers if
 the client uses CoAP to communicate with the AS, this memo specifies
 the following alternative for submitting client request parameters to
 the AS: The client encodes the parameters of it's request as a CBOR
 map and submits that map as the payload of the client request. The
 Content-format MUST be application/cbor in that case.

 The OAuth memo further specifies that the AS SHALL use a JSON
 structure in the payload of the response to encode the response
 parameters. These parameters include the access token, destined for
 the RS and additional information for the client, such as e.g. the
 PoP key. We call this information "client information". If the
 client is using CoAP to communicate with the AS the AS SHOULD use
 CBOR instead of JSON for encoding it's response. The client can
 explicitly request this encoding by using the CoAP Accept option.

 If the channel between client and AS is not secure, the whole
 messages from client to AS and vice-versa MUST be wrapped in JWEs
 [RFC7516] or COSE_Encrypted structures [I-D.ietf-cose-msg].

 The client may be a constrained device and could therefore be limited
 in the communication security protocols it supports. It can

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc7516

Seitz, et al. Expires August 28, 2016 [Page 12]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 therefore signal to the AS which protocols it can support for
 securing their mutual communication. This is done by using the "csp"
 parameter defined below in the Token Request message sent to the AS.

 Note that The OAuth key distribution specification
 [I-D.ietf-oauth-pop-key-distribution] describes in section 6 how the
 client can request specific types of keys (symmetric vs. asymmetric)
 and proof-of-possession algorithms in the PoP token request.

 The client and the RS might not have any prior knowledge about each
 other, therefore the AS needs to help them to establish a security
 context or at least a key. The AS does this by indicating
 communication security protocol ("csp") and additional key parameters
 in the client information.

 The "csp" parameter specifies how client and RS communication is
 going to be secured based on returned keys. Currently defined values
 are "TLS", "DTLS", "ObjectSecurity" with the encodings specified in
 Figure 2. Depending on the value different additional parameters
 become mandatory.

 /-----------+--------------+-----------------------\
 | Value | Major Type | Key |
 |-----------+--------------+-----------------------|
 | 0 | 0 | TLS |
 | 1 | 0 | DTLS |
 | 2 | 0 | ObjectSecurity |
 \-----------+--------------+-----------------------/

 Figure 2: Table of 'csp' parameter value encodings for Client
 Information.

 CoAP specifies three security modes of DTLS: PreSharedKey,
 RawPublicKey and Certificate. The same modes may be used with TLS.
 The client is to infer from the type of key provided, which (D)TLS
 mode the RS supports as follows.

 If PreSharedKey mode is used, the AS MUST provide the client with the
 pre-shared key to be used with the RS. This key MUST be the same as
 the PoP key (i.e. a symmetric key as in section 4 of
 [I-D.ietf-oauth-pop-key-distribution]).

 The client MUST use the PoP key as DTLS pre-shared key. The client
 MUST furthermore use the "kid" parameter provided as part of the JWK/
 COSE_Key as the psk_identity in the DTLS handshake [RFC4279].

 If RawPublicKey mode is used, the AS MUST provide the client with the
 RS's raw public key using the "rpk" parameter defined in the

https://datatracker.ietf.org/doc/html/rfc4279

Seitz, et al. Expires August 28, 2016 [Page 13]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 following. This parameter MUST contain a JWK or a COSE_Key. The
 client MUST provide a raw public key to the AS, and the AS MUST use
 this key as PoP key in the token. The token MUST thus use asymmetric
 keys for the proof-of-possession.

 In order to get the proof-of-possession a RS configured to use this
 mode together with PoP tokens MUST require client authentication in
 the DTLS handshake. The client MUST use the raw public key bound to
 the PoP token for client authentication in DTLS.

 TLS or DTLS with certificates MAY make use of pre-established trust
 anchors or MAY be configured more tightly with additional client
 information parameters, such as x5c, x5t, or x5t#S256. An overview
 of these parameters is given below.

 For when communication security is based on certificates this
 attribute can be used to define the server certificate or CA
 certificate. Semantics for this attribute is defined by [RFC7517] or
 COSE_Key [I-D.ietf-cose-msg].

 For when communication security is based on certificates this
 attribute can be used to define the specific server certificate to
 expect or the CA certificate. Semantics for this attribute is
 defined by JWK/COSE_Key.

 To use object security (such as OSCOAP and OSCON) requires security
 context to be established, which can be provisioned with PoP token
 and client information, or derived from that information. Object
 security specifications designed to be used with this protocol MUST
 specify the parameters that an AS has to provide to the client in
 order to set up the necessary security context.

 The RS may support different ways of receiving the access token from
 the client (see Section 5.3 and Appendix C). The AS MAY signal the
 required method for access token transfer in the client information
 by using the "tktr" (token transport) parameter using the values
 defined in table Figure 3. If no "tktn" parameter is present, the
 client MUST use the default Authorization Information resource as
 specified in Section 5.3.

https://datatracker.ietf.org/doc/html/rfc7517

Seitz, et al. Expires August 28, 2016 [Page 14]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 /-----------+--------------+-------------------------\
 | Value | Major Type | Key |
 |-----------+--------------+-------------------------|
 | 0 | 0 | POST to /authz-info |
 | 1 | 0 | RFC 4680 |
 | 2 | 0 | CoAP option "Ref-Token" |
 \-----------+--------------+-------------------------/

 Figure 3: Table of 'tktn' parameter value encodings for Client
 Information.

 Table Figure 4 summarizes the additional parameters defined here for
 use by the client or the AS in the PoP token request protocol.

 /-----------+--------------+----------------------------------\
 | Parameter | Used by | Description |
 |-----------+--------------+----------------------------------|
 | csp | client or AS | Communication security protocol |
 | rpk | AS | RS's raw public key |
 | x5c | AS | RS's X.509 certificate chain |
 | x5t | AS | RS's SHA-1 cert thumb print |
 | x5t#S256 | AS | RS's SHA-256 cert thumb print |
 | tktn | AS | Mode of token transfer C -> RS |
 \-----------+--------------+----------------------------------/

 Figure 4: Table of additional parameters defined for the PoP
 protocol.

5.2. CoAP Access-Token Option

 OAuth 2.0 access tokens are usually transferred as authorization
 header. CoAP has no authorization header equivalence. This document
 therefor register the option Access-Token. The Access-Token option
 is an alternative for transferring the access token when it is
 smaller then 255 bytes. If token is larger the 255 bytes lager
 authorization information resources MUST at the RS be user when CoAP.

5.3. Authorization Information Resource at the Resource Server

 A consequence of allowing the use of CoAP as web transfer protocol is
 that we cannot rely on HTTP specific mechanisms, such as transferring
 information elements in HTTP headers since those are not necessarily
 gracefully mapped to CoAP. In case the access token is larger than
 255 bytes it should not be sent as a CoAP option.

 For conveying authorization information to the RS a new resource is
 introduced to which the PoP tokens can be sent to convey
 authorization information before the first resource request is made

https://datatracker.ietf.org/doc/html/rfc4680

Seitz, et al. Expires August 28, 2016 [Page 15]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 by the client. This specification calls this resource "/authz-info";
 the URI may, however, vary in deployments.

 The RS needs to store the PoP token for when later authorizing
 requests from the client. The RS is not mandated to be able to
 manage multiple client at once. how the RS manages clients is out of
 scope for this specification.

5.3.1. Authorization Information Request

 The client makes a POST request to the authorization information
 resource by sending its PoP token as request data.

 Client MUST send the Content-Format option indicate token format

5.3.2. Authorization Information Response

 The RS MUST resonde to a requests to the authorization information
 resource. The response MUST match CoAP response codes according to
 success or error response section

5.3.2.1. Success Response

 Successful requests MUST be answered with 2.01 Created to indicate
 that a "session" for the PoP Token has been created. No location
 path is required to be returned.

 Resource
 Client Server
 | |
 | |
 A: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "/authz-info"
 | | Content-Format: "application/cwt"
 | | Payload: <PoP Token>
 | |
 B: |<--------+ Header: 2.01 Created
 | 2.01 |
 | |

 Figure 5: Authorization Information Resource Success Response

5.3.2.2. Error Response

 The resource server MUST user appropriate CoAP response code to
 convey the error to the Client. For request that are not valid, e.g.
 unknown Content-Format, 4.00 Bad Request MUST be returned. If token

Seitz, et al. Expires August 28, 2016 [Page 16]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 is not valid, e.g. wrong audience, the RS MUST return 4.01
 Unauthorized.

 Resource
 Client Server
 | |
 | |
 A: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "/authz-info"
 | | Content-Format: "application/cwt"
 | | Payload: <PoP Token>
 | |
 B: |<--------+ Header: 4.01 Unauthorized
 | 2.01 |
 | |

 Figure 6: Authorization Information Resource Error Response

5.4. Authorization Information Format

 We introduce a new claim for describing access rights with a specific
 format, the "aif" claim. In this memo we propose to use the compact
 format provided by AIF [I-D.bormann-core-ace-aif]. Access rights may
 be specified as a list of URIs of resources together with allowed
 actions (GET, POST, PUT, PATCH, or DELETE). Other formats may be
 mandated by specific applications or requirements (e.g. specifying
 local conditions on access).

5.5. CBOR Data Formats

 The /token resource (called "endpoint" in OAuth 2.0), defined in
Section 3.2 of [RFC6749], is used by the client to obtain an access

 token. Requests sent to the /token resource use the HTTP POST method
 and the payload includes a query component, which is formatted as
 application/x-www-form-urlencoded. CoAP payloads cannot be formatted
 in the same way which requires the /token resource on the AS to be
 profiled. Appendix D defines a CBOR-based format for sending
 parameters to the /token resource.

5.6. Token Expiration

 Depending on the capabilities of the RS, there are various ways in
 which it can verify the validity of a received access token. We list
 the possibilities here including what functionality they require of
 the RS.

https://datatracker.ietf.org/doc/html/rfc6749#section-3.2

Seitz, et al. Expires August 28, 2016 [Page 17]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 o The token is a CWT/JWT and includes a 'exp' claim and possibly the
 'nbf' claim. The RS verifies these by comparing them to values
 from its internal clock as defined in [RFC7519]. In this case the
 RS must have a real time chip (RTC) or some other way of reliably
 measuring time.

 o The RS verifies the validity of the token by performing an
 introspection request as specified in Appendix D.2. This requires
 the RS to have a reliable network connection to the AS and to be
 able to handle two secure sessions in parallel (C to RS and AS to
 RS).

 o The RS and the AS both store a sequence number linked to their
 common security association. The AS increments this number for
 each access token it issues and includes it in the access token,
 which is a CWT/JWT. The RS keeps track of the most recently
 received sequence number, and only accepts tokens as valid, that
 are in a certain range around this number. This method does only
 require the RS to keep track of the sequence number. The method
 does not provide timely expiration, but it makes sure that older
 tokens cease to be valid after a specified number of newer ones
 got issued. For a constrained RS with no network connectivity and
 no means of reliably measuring time, this is the best that can be
 achieved.

6. Deployment Scenarios

 There is a large variety of IoT deployments, as is indicated in
Appendix A, and this section highlights common variants. This

 section is not normative but illustrates how the framework can be
 applied.

 For each of the deployment variants there are a number of possible
 security setups between clients, resource servers and authorization
 servers. The main focus in the following subsections is on how
 authorization of a client request for a resource hosted by a RS is
 performed. This requires us to also consider how these requests and
 responses between the clients and the resource servers are secured.

 The security protocols between other pairs of nodes in the
 architecture, namely client-to-AS and RS-to-AS, are not detailed in
 these examples. Different security protocols may be used on
 transport or application layer.

 Note: We use the CBOR diagnostic notation for examples of requests
 and responses.

https://datatracker.ietf.org/doc/html/rfc7519

Seitz, et al. Expires August 28, 2016 [Page 18]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

6.1. Client and Resource Server are Offline

 In this scenario we consider the case where both the resource server
 and the client are offline, i.e., they are not connected to the AS at
 the time of the resource request. This access procedure involves
 steps A, B, C, and F of Figure 1, but assumes that step A and B have
 been carried out during a phase when the client had connectivity to
 AS.

 Since the resource server must be able to verify the access token
 locally, self-contained access tokens must be used.

 This example shows the interactions between a client, the
 authorization server and a temperature sensor acting as a resource
 server. Message exchanges A and B are shown in Figure 7.

 A: The client first generates a public-private key pair used for
 communication security with the RS.

 The client sends the POST request to /token at AS. The request
 contains the public key of the client and the Audience parameter
 set to "tempSensorInLivingRoom", a value that the temperature
 sensor identifies itself with. The AS evaluates the request and
 authorizes the client to access the resource.

 B: The AS responds with a PoP token and client information. The
 PoP token contains the public key of the client, while the client
 information contains the public key of the RS. For communication
 security this example uses DTLS with raw public keys between the
 client and the RS.

 Note: In this example we assume that the client knows what
 resource it wants to access, and is therefore able to request
 specific audience and scope claims for the access token.

Seitz, et al. Expires August 28, 2016 [Page 19]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 Authorization
 Client Server
 | |
 | |
 A: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path:"token"
 | | Payload: <Request-Payload>
 | |
 B: |<--------+ Header: 2.05 Content
 | | Content-Type: application/cbor
 | 2.05 | Payload: <Response-Payload>
 | |

 Figure 7: Token Request and Response Using Client Credentials.

 The information contained in the Request-Payload and the Response-
 Payload is shown in Figure 8.

 Request-Payload :
 {
 "grant_type" : "client_credentials",
 "aud" : "tempSensorInLivingRoom",
 "client_id" : "myclient",
 "client_secret" : "qwerty"
 }

 Response-Payload :
 {
 "access_token" : b64'SlAV32hkKG ...',
 "token_type" : "pop",
 "csp" : "DTLS",
 "key" : b64'eyJhbGciOiJSU0ExXzUi ...'
 }

 Figure 8: Request and Response Payload Details.

 The content of the "key" parameter and the access token are shown in
 Figure 9 and Figure 10.

 {
 "kid" : b64'c29tZSBwdWJsaWMga2V5IGlk',
 "kty" : "EC",
 "crv" : "P-256",
 "x" : b64'MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4',
 "y" : b64'4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM'
 }

 Figure 9: Public Key of the RS.

Seitz, et al. Expires August 28, 2016 [Page 20]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 {
 "aud" : "tempSensorInLivingRoom",
 "iat" : "1360189224",
 "cnf" : {
 "jwk" : {
 "kid" : b64'1Bg8vub9tLe1gHMzV76e8',
 "kty" : "EC",
 "crv" : "P-256",
 "x" : b64'f83OJ3D2xF1Bg8vub9tLe1gHMzV76e8Tus9uPHvRVEU',
 "y" : b64'x_FEzRu9m36HLN_tue659LNpXW6pCyStikYjKIWI5a0'
 }
 }
 }

 Figure 10: Access Token including Public Key of the Client.

 Messages C and F are shown in Figure 11 - Figure 12.

 C: The client then sends the PoP token to the /authz-info resource
 at the RS. This is a plain CoAP request, i.e. no DTLS/OSCOAP
 between client and RS, since the token is integrity protected
 between AS and RS. The RS verifies that the PoP token was created
 by a known and trusted AS, is valid, and responds to the client.
 The RS caches the security context together with authorization
 information about this client contained in the PoP token.

 The client and resource server run the DTLS handshake using the
 raw public keys established in step B and C.

 The client sends the CoAP request GET to /temperature on RS over
 DTLS. The RS verifies that the request is authorized.

 F: The RS responds with a resource representation over DTLS.

 Resource
 Client Server
 | |
 C: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path:"authz-info"
 | | Payload: SlAV32hkKG ...
 | | (access token)
 | |
 |<--------+ Header: 2.04 Changed
 | 2.04 |
 | |

 Figure 11: Access Token provisioning to RS

Seitz, et al. Expires August 28, 2016 [Page 21]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 Resource
 Client Server
 | |
 |<=======>| DTLS Connection Establishment
 | | using Raw Public Keys
 | |
 | |
 +-------->| Header: GET (Code=0.01)
 | GET | Uri-Path: "temperature"
 | |
 | |
 | |
 F: |<--------+ Header: 2.05 Content
 | 2.05 | Payload: {"t":"22.7"}
 | |

 Figure 12: Resource Request and Response protected by DTLS.

6.2. Resource Server Offline

 In this deployment scenario we consider the case of an RS that may
 not be able to access the AS at the time it receives an access
 request from a client. We denote this case "RS offline", it involves
 steps A, B, C and F of Figure 1.

 If the RS is offline, then it must be possible for the RS to locally
 validate the access token. This requires self-contained tokens to be
 used.

 The validity time for the token should always be chosen as short as
 possible to reduce the possibility that a token contains out-of-date
 authorization information. Therefore the value for the Expiration
 Time claim ("exp") should be set only slightly larger than the value
 for the Issuing Time claim ("iss"). A constrained RS with means to
 reliably measure time must validate the expiration time of the access
 token.

 The following example shows interactions between a client (air-
 conditioning control unit), an offline resource server (temperature
 sensor)and an authorization server. The message exchanges A and B
 are shown in Figure 13.

 A: The client sends the request POST to /token at AS. The request
 contains the Audience parameter set to "tempSensor109797", a value
 that the temperature sensor identifies itself with. The scope the
 client wants the AS to authorize the access token for is "owner",
 which means that the token can be used to both read temperature

Seitz, et al. Expires August 28, 2016 [Page 22]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 data and upgrade the firmware on the RS. The AS evaluates the
 request and authorizes the client to access the resource.

 B: The AS responds with a PoP token and client information. The
 PoP token is wrapped in a COSE message, object secured content
 from AS to RS. The client information contains a symmetric key.
 In this case communication security between C and RS is OSCOAP
 with an authenticated encryption algorithm. The client derives
 two unidirectional security contexts to use with the resource
 request and response messages. The access token includes the
 claim "aif" with the authorized access that an owner of the
 temperature device can enjoy. The "aif" claim, issued by the AS,
 informs the RS that the owner of the access token, that can prove
 the possession of a key is authorized to make a GET request
 against the /tempC resource and a POST request on the /firmware
 resource.

 Authorization
 Client Server
 | |
 | |
 A: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "token"
 | | Payload: <Request-Payload>
 | |
 B: |<--------+ Header: 2.05 Content
 | | Content-Type: application/cbor
 | 2.05 | Payload: <Response-Payload>
 | |
 | |

 Figure 13: Token Request and Response

 The information contained in the Request-Payload and the Response-
 Payload is shown in Figure 14.

Seitz, et al. Expires August 28, 2016 [Page 23]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 Request-Payload:
 {
 "grant_type" : "client_credentials",
 "client_id" : "myclient",
 "client_secret" : "qwerty",
 "aud" : "tempSensor109797",
 "scope" : "owner"
 }

 Response-Payload:
 {
 "access_token": b64'SlAV32hkKG ...',
 "token_type" : "pop",
 "csp" : "OSCOAP",
 "key" : b64'eyJhbGciOiJSU0ExXzUi ...'
 }

 Figure 14: Request and Response Payload for RS offline

 Figure 15 shows examples of the key and the access_token parameters
 of the Response-Payload, decoded to CBOR.

 access_token:
 {
 "aud" : "tempSensor109797",
 "exp" : 1311281970,
 "iat" : 1311280970,
 "aif" : [["/tempC", 0], ["/firmware", 2]],
 "cnf" : {
 "ck":b64'JDLUhTMjU2IiwiY3R5Ijoi ...'
 }
 }

 key:
 {
 "alg" : "AES_128_CCM_8",
 "kid" : b64'U29tZSBLZXkgSWQ',
 "k" : b64'ZoRSOrFzN_FzUA5XKMYoVHyzff5oRJxl-IXRtztJ6uE'
 }

 Figure 15: Access Token and symmetric key from the Response-Payload

 Message exchanges C and F are shown in Figure 16 and Figure 17.

 C: The client then sends the PoP token to the /authz-info resource
 in the RS. This is a plain CoAP request, i.e. no DTLS/OSCOAP
 between client and RS, since the token is integrity protected
 between AS and RS. The RS verifies that the PoP token was created

Seitz, et al. Expires August 28, 2016 [Page 24]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 by a known and trusted AS, is valid, and responds to the client.
 The RS derives and caches the security contexts together with
 authorization information about this client contained in the PoP
 token.

 The client sends the CoAP requests GET to /tempC on the RS using
 OSCOAP. The RS verifies the request and that it is authorized.

 F: The RS responds with a protected status code using OSCOAP. The
 client verifies the response.

 Resource
 Client Server
 | |
 C: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path:"authz-info"
 | | Payload: <Access Token>
 | |
 | |
 |<--------+ Header: 2.04 Changed
 | 2.04 |
 | |
 | |

 Figure 16: Access Token provisioning to RS

 Resource
 Client Server
 | |
 +-------->| Header: GET (Code=0.01)
 | GET | Object-Security:
 | | (<seq>,<cid>,[Uri-Path:"tempC"],<tag>)
 | |
 F: |<--------+ Header: 2.05 Content
 | 2.05 | Object-Security:
 | | (<seq>,<cid>,[22.7 C],<tag>)
 | |

 Figure 17: Resource request and response protected by OSCOAP

 In Figure 17 the GET request contains an Object-Security option and
 an indication of the content of the COSE object: a sequence number
 ("seq", starting from 0), a context identifier ("cid") indicating the
 security context, the ciphertext containing the encrypted CoAP option
 identifying the resource, and the Message Authentication Code ("tag")
 which also covers the Code in the CoAP header.

Seitz, et al. Expires August 28, 2016 [Page 25]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 The Object-Security ciphertext in the response [22.7 C] represents an
 encrypted temperature reading. (The COSE object is actually carried
 in the CoAP payload when possible but that is omitted to simplify
 notation.)

6.3. Token Introspection with an Offline Client

 In this deployment scenario we assume that a client is not be able to
 access the AS at the time of the access request. Since the RS is,
 however, connected to the back-end infrastructure it can make use of
 token introspection. This access procedure involves steps A-F of
 Figure 1, but assumes steps A and B have been carried out during a
 phase when the client had connectivity to AS.

 Since the client is assumed to be offline, at least for a certain
 period of time, a pre-provisioned access token has to be long-lived.
 The resource server may use its online connectivity to validate the
 access token with the authorization server, which is shown in the
 example below.

 In the example we show the interactions between an offline client
 (key fob), a resource server (online lock), and an authorization
 server. We assume that there is a provisioning step where the client
 has access to the AS. This corresponds to message exchanges A and B
 which are shown in Figure 18.

 A: The client sends the request using POST to /token at AS. The
 request contains the Audience parameter set to "lockOfDoor4711", a
 value the that the online door in question identifies itself with.
 The AS generates an access token as on opaque string, which it can
 match to the specific client, a targeted audience and a symmetric
 key security context.

 B: The AS responds with the an access token and client
 information, the latter containing a symmetric key. Communication
 security between C and RS will be OSCOAP with authenticated
 encryption.

Seitz, et al. Expires August 28, 2016 [Page 26]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 Authorization
 Client Server
 | |
 | |
 A: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path:"token"
 | | Payload: <Request-Payload>
 | |
 B: |<--------+ Header: 2.05 Content
 | | Content-Type: application/cbor
 | 2.05 | Payload: <Response-Payload>
 | |

 Figure 18: Token Request and Response using Client Credentials.

 Authorization consent from the resource owner can be pre-configured,
 but it can also be provided via an interactive flow with the resource
 owner. An example of this for the key fob case could be that the
 resource owner has a connected car, he buys a generic key that he
 wants to use with the car. To authorize the key fob he connects it
 to his computer that then provides the UI for the device. After that
 OAuth 2.0 implicit flow is used to authorize the key for his car at
 the the car manufacturers AS.

 The information contained in the Request-Payload and the Response-
 Payload is shown in Figure 19.

 Request-Payload:
 {
 "grant_type" : "token",
 "aud" : "lockOfDoor4711",
 "client_id" : "myclient",
 }

 Response-Payload:
 {
 "access_token" : b64'SlAV32hkKG ...'
 "token_type" : "pop",
 "csp" : "OSCOAP",
 "key" : b64'eyJhbGciOiJSU0ExXzUi ...'
 }

 Figure 19: Request and Response Payload for C offline

 The access token in this case is just an opaque string referencing
 the authorization information at the AS.

Seitz, et al. Expires August 28, 2016 [Page 27]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 C: Next, the client POSTs the access token to the /authz-info
 resource in the RS. This is a plain CoAP request, i.e. no DTLS/
 OSCOAP between client and RS. Since the token is an opaque
 string, the RS cannot verify it on its own, and thus defers to
 respond the client with a status code until step E and only
 acknowledges on the CoAP message layer (indicated with a dashed
 line).

 Resource
 Client Server
 | |
 C: +-------->| Header: POST (T=CON, Code=0.02
 | POST | Token 0x2a12)
 | | Uri-Path:"authz-info"
 | | Payload: SlAV32hkKG ...
 | | (access token)
 | |
 |<- - - - + Header: T=ACK
 | |

 Figure 20: Access Token provisioning to RS

 D: The RS forwards the token to the /introspect resource on the
 AS. Introspection assumes a secure connection between the AS and
 the RS, e.g. using DTLS or OSCOAP, which is not detailed in this
 example.

 E: The AS provides the introspection response containing claims
 about the token. This includes the confirmation key (cnf) claim
 that allows the RS to verify the client's proof of possession in
 step F.

 After receiving message E, the RS responds to the client's POST in
 step C with Code 2.04 (Changed), using CoAP Token 0x2a12. This
 step is not shown in the figures.

Seitz, et al. Expires August 28, 2016 [Page 28]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 Resource Authorization
 Server Server
 | |
 D: +--------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "introspect"
 | | Payload: <Request-Payload>
 | |
 E: |<---------+ Header: 2.05 Content
 | 2.05 | Content-Type: application/cbor)
 | | Payload: <Response-Payload>
 | |

 Figure 21: Token Introspection for C offline

 The information contained in the Request-Payload and the Response-
 Payload is shown in Figure 22.

 Request-Payload:
 {
 "token" : b64'SlAV32hkKG...',
 "client_id" : "myRS",
 "client_secret" : "ytrewq"
 }

 Response-Payload:
 {
 "active" : true,
 "aud" : "lockOfDoor4711",
 "scope" : "open, close",
 "iat" : 1311280970,
 "cnf" : {
 "ck" : b64'JDLUhTMjU2IiwiY3R5Ijoi ...'
 }
 }

 Figure 22: Request and Response Payload for Introspection

 The client sends the CoAP requests PUT 1 (= "close the lock") to
 /lock on RS using OSCOAP with a security context derived from the
 key supplied in step B. The RS verifies the request with the key
 supplied in step E and that it is authorized by the token supplied
 in step C.

 F: The RS responds with a protected status code using OSCOAP. The
 client verifies the response.

Seitz, et al. Expires August 28, 2016 [Page 29]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 Resource
 Client Server
 | |
 +-------->| Header: PUT (Code=0.03)
 | PUT | Object-Security:
 | | (<seq>,<cid>,[Uri-Path:"lock", 1],<tag>)
 | |
 F: |<--------+ Header: 2.04 Changed
 | 2.04 | Object-Security:
 | | (<seq>,<cid>,,<tag>)
 | |

 Figure 23: Resource request and response protected by OSCOAP

 The Object-Security ciphertext [...] of the PUT request contains CoAP
 options that are encrypted, as well as the payload value '1' which is
 the value of PUT to the door lock.

 In this example there is no ciphertext of the PUT response, but "tag"
 contains a MAC which covers the request sequence number and context
 identifier as well as the Code which allows the Client to verify that
 this actuator command was well received (door is locked).

6.4. Always-On Connectivity

 A popular deployment scenario for IoT devices is to have them always
 be connected to the Internet so that they can be reachable to receive
 commands. As a continuation from the previous scenarios we assume
 that both the client and the RS are online at the time of the access
 request.

 If the client and the resource server are online then the AS should
 be configured to issue short-lived access tokens for the resource to
 the client. The resource server must then validate self-contained
 access tokens or otherwise must use token introspection to obtain the
 up-to-date claim information. If transmission costs are high or the
 channel is lossy, the CWT token format
 [I-D.wahlstroem-ace-cbor-web-token] may be used instead of a JWT to
 reduce the volume of network traffic. In terms of messaging this
 deployment scenario uses the patterns described in the previous sub-
 sections.

 Note that despite the lack of connectivity constraints there may
 still be other restrictions a deployment may face.

Seitz, et al. Expires August 28, 2016 [Page 30]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

6.5. Token-less Authorization

 In this deployment scenario we consider the case of an RS which is
 severely energy constrained, sleeps most of the time and need to have
 a tight messaging budget. It is not only infeasible to access the AS
 at the time of the access request, as in the "RS offline" case

Section 6.2, it must be offloaded as much message communication as
 possible.

 OAuth 2.0 is already an efficient protocol in terms of message
 exchanges and can be further optimized by compact encodings of
 tokens. The scenario illustrated in this section goes beyond that
 and removes the access tokens from the protocol. This may be
 considered a degenerate case of OAuth 2.0 but it allows us to do two
 things:

 1. The common case where authorization is performed by means of
 authentication fits into the same protocol framework.
 Authentication protocol and key is specified by client
 information, and access token is omitted.

 2. Authentication, and thereby authorization, may even be implicit,
 i.e. anyone with access to the right key is authorized to access
 the protected resource.

 In case 2., the RS does not need to receive any message from the
 client, and therefore enables offloading recurring resource request
 and response processing to a third party, such as a Message Broker
 (MB) in a publish-subscribe setting.

 This scenario involves steps A, B, C and F of Figure 1 and four
 parties: a client (subscriber), an offline RS (publisher), a trusted
 AS, and a MB, not necessarily trusted with access to the plain text
 publications. Message exchange A, B is shown in Figure 24.

 A: The client sends the request POST to /token at AS. The request
 contains the Audience parameter set to "birchPollenSensor301", a
 value that characterizes a certain pollen sensor resource. The AS
 evaluates the request and authorizes the client to access the
 resource.

 B: The AS responds with an empty token and client information with
 a security context to be used by the client. The empty token
 signifies that authorization is performed by means of
 authentication using the communication security protocol indicated
 with "csp". In this case it is object security of content (OSCON)
 i.e. protection of CoAP payload only. The security context

Seitz, et al. Expires August 28, 2016 [Page 31]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 contains the symmetric decryption key and a public signature
 verification key of the RS.

 Authorization
 Client Server
 | |
 | |
 A: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path:"token"
 | | Payload: <Request-Payload>
 | |
 B: |<--------+ Header: 2.05 Content
 | | Content-Type: application/cbor
 | 2.05 | Payload: <Response-Payload>
 | |
 | |

 Figure 24: Token Request and Response

 The information contained in the Request-Payload and the Response-
 Payload is shown in Figure 25.

 Request-Payload :
 {
 "grant_type" : "client_credentials",
 "aud" : "birchPollenSensor301",
 "client_id" : "myclient",
 "client_secret" : "qwerty"
 }

 Response-Payload :
 {
 "access_token" : NULL,
 "token_type" : "none",
 "csp" : "OSCON",
 "key" : b64'eyJhbGciOiJSU0ExXzUi ...'
 }

 Figure 25: Request and Response Payload for RS severely constrained

 The content of the "key" parameter is shown in Figure 26.

Seitz, et al. Expires August 28, 2016 [Page 32]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 key :
 {
 "alg" : "AES_128_CTR_ECDSA",
 "kid" : b64'c29tZSBvdGhlciBrZXkgaWQ';
 "k" : b64'ZoRSOrFzN_FzUA5XKMYoVHyzff5oRJxl-IXRtztJ6uE',
 "crv" : "P-256",
 "x" : b64'MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4',
 "y" : b64'4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM'
 }

 Figure 26: The 'key' Parameter

 The RS, which sleeps most of the time, occasionally wakes up,
 measures the number birch pollens per cubic meters, publishes the
 measurements to the MB, and then returns to sleep. See Figure 27.

 In this case the birch pollen count stopped at 270, which is
 encrypted with the symmetric key and signed with the private key of
 the RS. The MB verifies that the message originates from RS using
 the public key of RS, that it is not a replay of an old measurement
 using the sequence number of the OSCON COSE profile, and caches the
 object secured content. The MB does not have the secret key so is
 unable to read the plain text measurement.

 Message exchanges C and F are shown in Figure 27.

 C: Since there is no access token, the client does not address the
 /authz-info resource in the RS. The client sends the CoAP request
 GET to /birchPollen on MB which is a plain CoAP request.

 F: The MB responds with the cached object secured content.

Seitz, et al. Expires August 28, 2016 [Page 33]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 Message Resource
 Client Broker Server
 | | |
 | |<--------| Header: PUT (Code=0.02)
 | | PUT | Uri-Path: "birchPollen"
 | | | Payload: (<seq>,<cid>,["270"],<tag>)
 | | |
 | |-------->| Header: 2.04 Changed
 | | 2.04 |
 | |
 | |
 C: +-------->| Header: GET (Code=0.01)
 | GET | Uri-Path: "birchPollen"
 | |
 | |
 F: |<--------+ Header: 2.05 Content
 | 2.05 | Payload: (<seq>,<cid>,["270"],<tag>)
 | |

 Figure 27: Sensor measurement protected by COSE

 The payload is a COSE message consisting of sequence number 'seq'
 stepped by the RS for each publication, the context identifier 'cid'
 in this case coinciding with the key identifier 'kid' of Figure 26,
 the encrypted measurement and the signature by the RS.

 Note that the same COSE message format may be used as in OSCOAP but
 that only CoAP payload is protected in this case.

 The authorization step is implicit, so while any client could request
 access the COSE object, only authorized clients have access to the
 symmetric key needed to decrypt the content.

 Note that in this case the order of the message exchanges A,B and C,F
 could in principle be interchanged, i.e. the client could first
 request and obtain the protected resource in steps C,F; and after
 that request client information containing the keys decrypt and
 verify the message.

6.6. Securing Group Communication

 There are use cases that require securing communication between a
 (group of) senders and a group of receivers. One prominent example
 is lighting. Often, a set of lighting nodes (e.g., luminaires, wall-
 switches, sensors) are grouped together and only authorized members
 of the group must be able read and process messages. Additionally,

Seitz, et al. Expires August 28, 2016 [Page 34]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 receivers of group messages must be able to verify the integrity of
 received messages as being generated within the group.

 The requirements for securely communicating in such group use cases
 efficiently is outlined in [I-D.somaraju-ace-multicast] along with an
 architectural description that aligns with the content of this
 document. The requirements for conveying the necessary identifiers
 to reference groups and also the process of commissioning devices can
 be accomplished using the protocol described in this document. For
 details about the lighting-unique use case aspects, the architecture,
 as well as other multicast-specific considerations we refer the
 reader to [I-D.somaraju-ace-multicast].

7. Security Considerations

 The entire document is about security. Security considerations
 applicable to authentication and authorization in RESTful
 environments provided in OAuth 2.0 [RFC6749] apply to this work, as
 well as the security considerations from [I-D.ietf-ace-actors].
 Furthermore [RFC6819] provides additional security considerations for
 OAuth which apply to IoT deployments as well. Finally
 [I-D.ietf-oauth-pop-architecture] discusses security and privacy
 threats as well as mitigation measures for Proof-of-Possession
 tokens.

8. IANA Considerations

 TBD

 FIXME: Add registry over 'csp' values from Figure 2

 FIXME: Add registry of 'rpk' parameter from section 5.1

 FIXME: Add registry of 'tktn' values from Figure 3

8.1. CoAP Option Number Registration

 This section registers the "Access-Token" CoAP Option Number
 [RFC2046] in "CoRE Parameters" sub-registry "CoAP Option Numbers" in
 the manner described in [RFC7252].

 Name

 Access-Token

 Number

 TBD

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc7252

Seitz, et al. Expires August 28, 2016 [Page 35]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 Reference

 [draft-ietf-ace-oauth-authz]

 Meaning in Request

 Contains an Access Token according to [draft-ietf-ace-oauth-authz]
 containing access permissions of the client.

 Meaning in Response

 Not used in response

 Safe-to-Forward

 TBD

 Format

 Based on the observer the format is perseved differently. Opaque
 data to the client and CWT or reference token to the RS.

 Length

 Less then 255 bytes

9. Acknowledgments

 We would like to thank Eve Maler for her contributions to the use of
 OAuth 2.0 and UMA in IoT scenarios, Robert Taylor for his discussion
 input, and Malisa Vucinic for his input on the ACRE proposal
 [I-D.seitz-ace-core-authz] which was one source of inspiration for
 this work. Finally, we would like to thank the ACE working group in
 general for their feedback.

10. References

10.1. Normative References

 [I-D.bormann-core-ace-aif]
 Bormann, C., "An Authorization Information Format (AIF)
 for ACE", draft-bormann-core-ace-aif-03 (work in
 progress), July 2015.

 [I-D.ietf-cose-msg]
 Schaad, J., "CBOR Encoded Message Syntax", draft-ietf-

cose-msg-10 (work in progress), February 2016.

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz
https://datatracker.ietf.org/doc/html/draft-bormann-core-ace-aif-03
https://datatracker.ietf.org/doc/html/draft-ietf-cose-msg-10
https://datatracker.ietf.org/doc/html/draft-ietf-cose-msg-10

Seitz, et al. Expires August 28, 2016 [Page 36]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 [I-D.ietf-oauth-introspection]
 Richer, J., "OAuth 2.0 Token Introspection", draft-ietf-

oauth-introspection-11 (work in progress), July 2015.

 [I-D.ietf-oauth-pop-architecture]
 Hunt, P., Richer, J., Mills, W., Mishra, P., and H.
 Tschofenig, "OAuth 2.0 Proof-of-Possession (PoP) Security
 Architecture", draft-ietf-oauth-pop-architecture-07 (work
 in progress), December 2015.

 [I-D.ietf-oauth-pop-key-distribution]
 Bradley, J., Hunt, P., Jones, M., and H. Tschofenig,
 "OAuth 2.0 Proof-of-Possession: Authorization Server to
 Client Key Distribution", draft-ietf-oauth-pop-key-

distribution-02 (work in progress), October 2015.

 [I-D.selander-ace-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security of CoAP (OSCOAP)", draft-selander-ace-

object-security-03 (work in progress), October 2015.

 [I-D.wahlstroem-ace-cbor-web-token]
 Wahlstroem, E., Jones, M., and H. Tschofenig, "CBOR Web
 Token (CWT)", draft-wahlstroem-ace-cbor-web-token-00 (work
 in progress), December 2015.

 [I-D.wahlstroem-ace-oauth-introspection]
 Wahlstroem, E., "OAuth 2.0 Introspection over the
 Constrained Application Protocol (CoAP)", draft-

wahlstroem-ace-oauth-introspection-01 (work in progress),
 March 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4279] Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)",

RFC 4279, DOI 10.17487/RFC4279, December 2005,
 <http://www.rfc-editor.org/info/rfc4279>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-introspection-11
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-introspection-11
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-architecture-07
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-key-distribution-02
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-key-distribution-02
https://datatracker.ietf.org/doc/html/draft-selander-ace-object-security-03
https://datatracker.ietf.org/doc/html/draft-selander-ace-object-security-03
https://datatracker.ietf.org/doc/html/draft-wahlstroem-ace-cbor-web-token-00
https://datatracker.ietf.org/doc/html/draft-wahlstroem-ace-oauth-introspection-01
https://datatracker.ietf.org/doc/html/draft-wahlstroem-ace-oauth-introspection-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4279
http://www.rfc-editor.org/info/rfc4279
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347

Seitz, et al. Expires August 28, 2016 [Page 37]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, DOI 10.17487/RFC7516, May 2015,

 <http://www.rfc-editor.org/info/rfc7516>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <http://www.rfc-editor.org/info/rfc7517>.

10.2. Informative References

 [I-D.ietf-ace-actors]
 Gerdes, S., Seitz, L., Selander, G., and C. Bormann, "An
 architecture for authorization in constrained
 environments", draft-ietf-ace-actors-02 (work in
 progress), October 2015.

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Block-wise transfers in CoAP",

draft-ietf-core-block-18 (work in progress), September
 2015.

 [I-D.seitz-ace-core-authz]
 Seitz, L., Selander, G., and M. Vucinic, "Authorization
 for Constrained RESTful Environments", draft-seitz-ace-

core-authz-00 (work in progress), June 2015.

 [I-D.somaraju-ace-multicast]
 Somaraju, A., Kumar, S., Tschofenig, H., and W. Werner,
 "Security for Low-Latency Group Communication", draft-

somaraju-ace-multicast-01 (work in progress), January
 2016.

 [RFC4680] Santesson, S., "TLS Handshake Message for Supplemental
 Data", RFC 4680, DOI 10.17487/RFC4680, October 2006,
 <http://www.rfc-editor.org/info/rfc4680>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <http://www.rfc-editor.org/info/rfc4949>.

https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7516
http://www.rfc-editor.org/info/rfc7516
https://datatracker.ietf.org/doc/html/rfc7517
http://www.rfc-editor.org/info/rfc7517
https://datatracker.ietf.org/doc/html/draft-ietf-ace-actors-02
https://datatracker.ietf.org/doc/html/draft-ietf-core-block-18
https://datatracker.ietf.org/doc/html/draft-seitz-ace-core-authz-00
https://datatracker.ietf.org/doc/html/draft-seitz-ace-core-authz-00
https://datatracker.ietf.org/doc/html/draft-somaraju-ace-multicast-01
https://datatracker.ietf.org/doc/html/draft-somaraju-ace-multicast-01
https://datatracker.ietf.org/doc/html/rfc4680
http://www.rfc-editor.org/info/rfc4680
https://datatracker.ietf.org/doc/html/rfc4949
http://www.rfc-editor.org/info/rfc4949

Seitz, et al. Expires August 28, 2016 [Page 38]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <http://www.rfc-editor.org/info/rfc6690>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <http://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <http://www.rfc-editor.org/info/rfc6750>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <http://www.rfc-editor.org/info/rfc6819>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <http://www.rfc-editor.org/info/rfc7228>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://www.rfc-editor.org/info/rfc7519>.

https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6690
http://www.rfc-editor.org/info/rfc6690
https://datatracker.ietf.org/doc/html/rfc6749
http://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
http://www.rfc-editor.org/info/rfc6750
https://datatracker.ietf.org/doc/html/rfc6819
http://www.rfc-editor.org/info/rfc6819
https://datatracker.ietf.org/doc/html/rfc7049
http://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7228
http://www.rfc-editor.org/info/rfc7228
https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7519
http://www.rfc-editor.org/info/rfc7519

Seitz, et al. Expires August 28, 2016 [Page 39]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

Appendix A. Design Justification

 This section provides further insight into the design decisions of
 the solution documented in this document. Section 3 lists several
 building blocks and briefly summarizes their importance. The
 justification for offering some of those building blocks, as opposed
 to using OAuth 2.0 as is, is given below.

 Common IoT constraints are:

 Low Power Radio:

 Many IoT devices are equipped with a small battery which needs to
 last for a long time. For many constrained wireless devices the
 highest energy cost is associated to transmitting or receiving
 messages. It is therefore important to keep the total
 communication overhead low, including minimizing the number and
 size of messages sent and received, which has an impact of choice
 on the message format and protocol. By using CoAP over UDP, and
 CBOR encoded messages some of these aspects are addressed.
 Security protocols contribute to the communication overhead and
 can in some cases be optimized. For example authentication and
 key establishment may in certain cases where security requirements
 so allows be replaced by provisioning of security context by a
 trusted third party, using transport or application layer
 security.

 Low CPU Speed:

 Some IoT devices are equipped with processors that are
 significantly slower than those found in most current devices on
 the Internet. This typically has implications on what timely
 cryptographic operations a device is capable to perform, which in
 turn impacts e.g. protocol latency. Symmetric key cryptography
 may be used instead of the computationally more expensive public
 key cryptography where the security requirements so allows, but
 this may also require support for trusted third party assisted
 secret key establishment using transport or application layer
 security.

 Small Amount of Memory:

 Microcontrollers embedded in IoT devices are often equipped with
 small amount of RAM and flash memory, which places limitations
 what kind of processing can be performed and how much code can be
 put on those devices. To reduce code size fewer and smaller
 protocol implementations can be put on the firmware of such a
 device. In this case, CoAP may be used instead of HTTP, symmetric

Seitz, et al. Expires August 28, 2016 [Page 40]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 key cryptography instead of public key cryptography, and CBOR
 instead of JSON. Authentication and key establishment protocol,
 e.g. the DTLS handshake, in comparison with assisted key
 establishment also has an impact on memory and code.

 User Interface Limitations:

 Protecting access to resources is both an important security as
 well as privacy feature. End users and enterprise customers do
 not want to give access to the data collected by their IoT device
 or to functions it may offer to third parties. Since the
 classical approach of requesting permissions from end users via a
 rich user interface does not work in many IoT deployment scenarios
 these functions need to be delegated to user controlled devices
 that are better suitable for such tasks, such as smart phones and
 tablets.

 Communication Constraints:

 In certain constrained settings an IoT device may not be able to
 communicate with a given device at all times. Devices may be
 sleeping, or just disconnected from the Internet because of
 general lack of connectivity in the area, for cost reasons, or for
 security reasons, e.g. to avoid an entry point for Denial-of-
 Service attacks.

 The communication interactions this framework builds upon (as
 shown graphically in Figure 1) may be accomplished using a variety
 of different protocols, and not all parts of the message flow are
 used in all applications due to the communication constraints.
 While we envision deployments to make use of CoAP we explicitly
 want to support HTTP, HTTP/2 or specific protocols, such as
 Bluetooth Smart communication, which does not necessarily use IP.
 The latter raises the need for application layer security over the
 various interfaces.

Appendix B. Roles and Responsibilites -- a Checklist

 Resource Owner

 * Make sure that the RS is registered at the AS.

 * Make sure that clients can discover the AS which is in charge
 of the RS.

 * Make sure that the AS has the necessary, up-to-date, access
 control policies for the RS.

Seitz, et al. Expires August 28, 2016 [Page 41]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 Requesting Party

 * Make sure that the client is provisioned the necessary
 credentials to authenticate to the AS.

 * Make sure that the client is configured to follow the security
 requirements of the Requesting Party, when issuing requests
 (e.g. minimum communication security requirements, trust
 anchors).

 * Register the client at the AS.

 Authorization Server

 * Register RS and manage corresponding security contexts.

 * Register clients and including authentication credentials.

 * Allow Resource Onwers to configure and update access control
 policies related to their registered RS'

 * Expose a service that allows clients to request tokens.

 * Authenticate clients that wishes to request a token.

 * Process a token requests against the authorization policies
 configured for the RS.

 * Expose a service that allows RS's to submit token introspection
 requests.

 * Authenticate RS's that wishes to get an introspection response.

 * Process token introspection requests.

 * Optionally: Handle token revocation.

 Client

 * Discover the AS in charge of the RS that is to be targeted with
 a request.

 * Submit the token request (A).

 + Authenticate towards the AS.

 + Specify which RS, which resource(s), and which action(s) the
 request(s) will target.

Seitz, et al. Expires August 28, 2016 [Page 42]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 + Specify preferences for communication security

 + If raw public key (rpk) or certificate is used, make sure
 the AS has the right rpk or certificate for this client.

 * Process the access token and client information (B)

 + Check that the token has the right format (e.g. CWT).

 + Check that the client information provides the necessary
 security parameters (e.g. PoP key, information on
 communication security protocols supported by the RS).

 * Send the token and request to the RS (C)

 + Authenticate towards the RS (this could coincide with the
 proof of possession process).

 + Transmit the token as specified by the AS (default is to an
 authorization information resource, alternative options are
 as a CoAP option or in the DTLS handshake).

 + Perform the proof-of-possession procedure as specified for
 the type of used token (this may already have been taken
 care of through the authentication procedure).

 * Process the RS response (F) requirements of the Requesting
 Party, when issuing requests (e.g. minimum communication
 security requirements, trust anchors).

 * Register the client at the AS.

 Resource Server

 * Expose a way to submit access tokens.

 * Process an access token.

 + Verify the token is from the right AS.

 + Verify that the token applies to this RS.

 + Check that the token has not expired (if the token provides
 expiration information).

 + Check the token's integrity.

Seitz, et al. Expires August 28, 2016 [Page 43]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 + Store the token so that it can be retrieved in the context
 of a matching request.

 * Process a request.

 + Set up communication security with the client.

 + Authenticate the client.

 + Match the client against existing tokens.

 + Check that tokens belonging to the client actually authorize
 the requested action.

 + Optionally: Check that the matching tokens are still valid
 (if this is possible.

 * Send a response following the agreed upon communication
 security.

Appendix C. Optimizations

 This section sketches some potential optimizations to the presented
 solution.

 Access token in DTLS handshake

 In the case of CSP=DTLS/TLS, the access token provisioning
 exchange in step C of the protocol may be embedded in the security
 handshake. Different solutions are possible, where one
 standardized method would be the use of the TLS supplemental data
 extension [RFC4680] for transferring the access token.

 Reference token and introspection

 In case of introspection it may be beneficial to utilize access
 tokens which are not self-contained (also known as "reference
 tokens") that are used to lookup detailed information about the
 authorization. The RS uses the introspection message exchange not
 only for validating token claims, but also for obtaining claims
 that potentially were not known at the time when the access token
 was issued.

 A reference token can be made much more compact than a self-
 contained token, since it does not need to contain any of claims
 that it represents. This could be very useful in particular if
 the client is constrained and offline most of the time.

https://datatracker.ietf.org/doc/html/rfc4680

Seitz, et al. Expires August 28, 2016 [Page 44]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 Reference token in CoAP option

 While large access tokens must be sent in CoAP payload, if the
 access token is known to be of a certain limited size, for example
 in the case of a reference token, then it would be favorable to
 combine the access token provisioning request with the resource
 request to the RS.

 One way to achieve this is to define a new CoAP option for
 carrying reference tokens, called "Ref-Token" as shown in the
 example in Figure 28.

 Resource
 Client Server
 | |
 C: +-------->| Header: PUT (Code=0.02)
 | PUT | Ref-Token:SlAV32hkKG
 | | Object-Security:
 | | <seq>,<cid>,[Uri-Path:"lock", 1],<tag>)
 | |
 . .
 . .
 . .
 | |
 F: |<--------+ Header: 2.04 Changed
 | 2.04 | Object-Security:
 | | (<seq>,<cid>,,<tag>)
 | |

 Figure 28: Reference Token in CoAP Option

Appendix D. CoAP and CBOR profiles for OAuth 2.0

 Many IoT devices can support OAuth 2.0 without any additional
 extensions, but for certain constrained settings additional profiling
 is needed. In this appendix we define CoAP resources for the HTTP
 based token and introspection endpoints used in vanilla OAuth 2.0.
 We also define a CBOR alternative to the JSON and form based POST
 structures used in HTTP.

D.1. Profile for Token resource

 The token resource is used by the client to obtain an access token by
 presenting its authorization grant or client credentials to the
 /token resource the AS.

Seitz, et al. Expires August 28, 2016 [Page 45]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

D.1.1. Token Request

 The client makes a request to the token resource by sending a CBOR
 structure with the following attributes.

 grant_type:

 REQUIRED. The grant type, "code", "client_credentials",
 "password" or others.

 client_id:

 OPTIONAL. The client identifier issued to the holder of the token
 (client or RS) during the registration process.

 client_secret:

 OPTIONAL. The client secret.

 scope:

 OPTIONAL. The scope of the access request as described by
Section 3.1.

 aud:

 OPTIONAL. Service-specific string identifier or list of string
 identifiers representing the intended audience for this token, as
 defined in [I-D.wahlstroem-ace-cbor-web-token].

 alg:

 OPTIONAL. The value in the 'alg' parameter together with value
 from the 'token_type' parameter allow the client to indicate the
 supported algorithms for a given token type.

 key:

 OPTIONAL. This field contains information about the public key
 the client would like to bind to the access token in the COSE Key
 Structure format.

 The parameters defined above use the following CBOR major types.

Seitz, et al. Expires August 28, 2016 [Page 46]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 /-----------+--------------+-----------------------\
 | Value | Major Type | Key |
 |-----------+--------------+-----------------------|
 | 0 | 0 | grant_type |
 | 1 | 0 | client_id |
 | 2 | 0 | client_secret |
 | 3 | 0 | scope |
 | 4 | 0 | aud |
 | 5 | 0 | alg |
 | 6 | 0 | key |
 \-----------+--------------+-----------------------/

 Figure 29: CBOR mappings used in token requests

D.1.2. Token Response

 The AS responds by sending a CBOR structure with the following
 attributes.

 access_token:

 REQUIRED. The access token issued by the authorization server.

 token_type:

 REQUIRED. The type of the token issued. "pop" is recommended.

 key:

 REQUIRED, if symmetric key cryptography is used. A COSE Key
 Structure containing the symmetric proof of possession key. The
 members of the structure can be found in section 7.1 of
 [I-D.ietf-cose-msg].

 csp:

 REQUIRED. Information on what communication protocol to use in
 the communication between the client and the RS. Details on
 possible values can be found in Section 5.1.

 scope:

 OPTIONAL, if identical to the scope requested by the client;
 otherwise, REQUIRED.

 alg:

Seitz, et al. Expires August 28, 2016 [Page 47]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 OPTIONAL. The 'alg' parameter provides further information about
 the algorithm, such as whether a symmetric or an asymmetric
 crypto-system is used.

 The parameters defined above use the following CBOR major types.

 /-----------+--------------+-----------------------\
 | Value | Major Type | Key |
 |-----------+--------------+-----------------------|
 | 0 | 0 | access_token |
 | 1 | 0 | token_type |
 | 2 | 0 | key |
 | 3 | 0 | csp |
 | 4 | 0 | scope |
 | 5 | 0 | alg |
 \-----------+--------------+-----------------------/

 Figure 30: CBOR mappings used in token responses

D.2. CoAP Profile for OAuth Introspection

 This section defines a way for a holder of access tokens, mainly
 clients and RS's, to get metadata like validity status, claims and
 scopes found in access token. The OAuth Token Introspection
 specification [I-D.ietf-oauth-introspection] defines a way to
 validate the token using HTTP POST or HTTP GET. This document reuses
 the work done in the OAuth Token Introspection and defines a mapping
 of the request and response to CoAP [RFC7252] to be used by
 constrained devices.

D.2.1. Introspection Request

 The token holder makes a request to the Introspection CoAP resource
 by sending a CBOR structure with the following attributes.

 token:

 REQUIRED. The string value of the token.

 resource_id:

 OPTIONAL. A service-specific string identifying the resource that
 the client doing the introspection is asking about.

 client_id:

 OPTIONAL. The client identifier issued to the holder of the token
 (client or RS) during the registration process.

https://datatracker.ietf.org/doc/html/rfc7252

Seitz, et al. Expires August 28, 2016 [Page 48]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 client_secret:

 OPTIONAL. The client secret.

 The parameters defined above use the following CBOR major types:

 /-----------+--------------+-----------------------\
 | Value | Major Type | Key |
 |-----------+--------------+-----------------------|
 | 0 | 0 | token |
 | 1 | 0 | resource_id |
 | 2 | 0 | client_id |
 | 3 | 0 | client_secret |
 \-----------+--------------+-----------------------/

 Figure 31: CBOR Mappings to Token Introspection Request Parameters.

D.2.2. Introspection Response

 If the introspection request is valid and authorized, the
 authorization server returns a CoAP message with the response encoded
 as a CBOR structure in the payload of the message. If the request
 failed client authentication or is invalid, the authorization server
 returns an error response using the CoAP 4.00 'Bad Request' response
 code.

 The JSON structure in the payload response includes the top-level
 members defined in Section 2.2 in the OAuth Token Introspection
 specification [I-D.ietf-oauth-introspection]. It is RECOMMENDED to
 only return the 'active' attribute considering constrained nature of
 CoAP client and server networks.

 Introspection responses in CBOR use the following mappings:

 active:

 REQUIRED. The active key is an indicator of whether or not the
 presented token is currently active. The specifics of a token's
 "active" state will vary depending on the implementation of the
 authorization server, and the information it keeps about its
 tokens, but a "true" value return for the "active" property will
 generally indicate that a given token has been issued by this
 authorization server, has not been revoked by the resource owner,
 and is within its given time window of validity (e.g., after its
 issuance time and before its expiration time).

 scope:

Seitz, et al. Expires August 28, 2016 [Page 49]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 OPTIONAL. A string containing a space-separated list of scopes
 associated with this token, in the format described in Section 3.3
 of OAuth 2.0 [RFC6749].

 client_id:

 OPTIONAL. Client identifier for the client that requested this
 token.

 username:

 OPTIONAL. Human-readable identifier for the resource owner who
 authorized this token.

 token_type:

 OPTIONAL. Type of the token as defined in Section 5.1 of OAuth
 2.0 [RFC6749] or PoP token.

 exp:

 OPTIONAL. Integer timestamp, measured in the number of seconds
 since January 1 1970 UTC, indicating when this token will expire,
 as defined in CWT [I-D.wahlstroem-ace-cbor-web-token].

 iat:

 OPTIONAL. Integer timestamp, measured in the number of seconds
 since January 1 1970 UTC, indicating when this token will expire,
 as defined in CWT [I-D.wahlstroem-ace-cbor-web-token].

 nbf:

 OPTIONAL. Integer timestamp, measured in the number of seconds
 since January 1 1970 UTC, indicating when this token will expire,
 as defined in CWT [I-D.wahlstroem-ace-cbor-web-token].

 sub:

 OPTIONAL. Subject of the token, as defined in CWT
 [I-D.wahlstroem-ace-cbor-web-token]. Usually a machine-readable
 identifier of the resource owner who authorized this token.

 aud:

 OPTIONAL. Service-specific string identifier or list of string
 identifiers representing the intended audience for this token, as
 defined in CWT [I-D.wahlstroem-ace-cbor-web-token].

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Seitz, et al. Expires August 28, 2016 [Page 50]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 iss:

 OPTIONAL. String representing the issuer of this token, as
 defined in CWT [I-D.wahlstroem-ace-cbor-web-token].

 cti:

 OPTIONAL. String identifier for the token, as defined in CWT
 [I-D.wahlstroem-ace-cbor-web-token]

 The parameters defined above use the following CBOR major types:

 /-----------+--------------+-----------------------\
 | Value | Major Type | Key |
 |-----------+--------------+-----------------------|
0	0	active
1	0	scopes
2	0	client_id
3	0	username
4	0	token_type
5	0	exp
6	0	iat
7	0	nbf
8	0	sub
9	0	aud
10	0	iss
11	0	cti
 \-----------+--------------+-----------------------/

 Figure 32: CBOR Mappings to Token Introspection Response Parameters.

Appendix E. Document Updates

E.1. Version -00 to -01

 o Changed 5.1. from "Communication Security Protocol" to "Client
 Information".

 o Major rewrite of 5.1 to clarify the information exchanged between
 C and AS in the PoP token request profile for IoT.

 * Allow the client to indicate preferences for the communication
 security protocol.

 * Defined the term "Client Information" for the additional
 information returned to the client in addition to the access
 token.

Seitz, et al. Expires August 28, 2016 [Page 51]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 * Require that the messages between AS and client are secured,
 either with (D)TLS or with COSE_Encrypted wrappers.

 * Removed dependency on OSCoAP and added generic text about
 object security instead.

 * Defined the "rpk" parameter in the client information to
 transmit the raw public key of the RS from AS to client.

 * (D)TLS MUST use the PoP key in the handshake (either as PSK or
 as client RPK with client authentication).

 * Defined the use of x5c, x5t and x5tS256 parameters when a
 client certificate is used for proof of possession.

 * Defined "tktn" parameter for signaling for how to tranfer the
 access token.

 o Added 5.2. the CoAP Access-Token option for transfering access
 tokens in messages that do not have payload.

 o 5.3.2. Defined success and error responses from the RS when
 receiving an access token.

 o 5.6.:Added section giving guidance on how to handle token
 expiration in the absence of reliable time.

 o Appendix B Added list of roles and responsibilities for C, AS and
 RS.

Authors' Addresses

 Ludwig Seitz
 SICS
 Scheelevaegen 17
 Lund 223 70
 SWEDEN

 Email: ludwig@sics.se

 Goeran Selander
 Ericsson
 Faroegatan 6
 Kista 164 80
 SWEDEN

 Email: goran.selander@ericsson.com

Seitz, et al. Expires August 28, 2016 [Page 52]

Internet-Draft OAuth 2.0 IoT Authorization February 2016

 Erik Wahlstroem
 Nexus Technology
 Telefonvagen 26
 Hagersten 126 26
 Sweden

 Email: erik.wahlstrom@nexusgroup.com

 Samuel Erdtman
 Nexus Technology
 Telefonvagen 26
 Hagersten 126 26
 Sweden

 Email: samuel.erdtman@nexusgroup.com

 Hannes Tschofenig
 ARM Ltd.
 Hall in Tirol 6060
 Austria

 Email: Hannes.Tschofenig@arm.com

Seitz, et al. Expires August 28, 2016 [Page 53]

