
ACE Working Group L. Seitz
Internet-Draft SICS
Intended status: Standards Track G. Selander
Expires: December 12, 2016 Ericsson
 E. Wahlstroem
 Nexus Technology
 S. Erdtman
 Spotify AB
 H. Tschofenig
 ARM Ltd.
 June 10, 2016

Authentication and Authorization for Constrained Environments (ACE)
draft-ietf-ace-oauth-authz-02

Abstract

 This specification defines the ACE framework for authentication and
 authorization in Internet of Things (IoT) deployments. The ACE
 framework is based on a set of building blocks including OAuth 2.0
 and CoAP, thus making a well-known and widely used authorization
 solution suitable for IoT devices. Existing specifications are used
 where possible, but where the limitations of IoT devices require it,
 profiles and extensions are provided.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 12, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Seitz, et al. Expires December 12, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft ACE June 2016

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Overview . 5
3.1. OAuth 2.0 . 6
3.2. CoAP . 8

4. Protocol Interactions . 9
5. Framework . 13
6. The 'Token' Resource . 14
6.1. Client-to-AS Request 14
6.2. AS-to-Client Response 17
6.3. Error Response . 18
6.4. New Request and Response Parameters 18
6.4.1. Grant Type . 19
6.4.2. Token Type and Algorithms 19
6.4.3. Profile . 20
6.4.4. Confirmation . 20

6.5. Mapping parameters to CBOR 22
7. The 'Introspect' Resource 22
7.1. RS-to-AS Request . 23
7.2. AS-to-RS Response . 23
7.3. Error Response . 24
7.4. Client Token . 25
7.5. Mapping Introspection parameters to CBOR 26

8. The Access Token . 27
8.1. The 'Authorization Information' Resource 27
8.2. Token Expiration . 28

9. Security Considerations 28
10. IANA Considerations . 29
10.1. OAuth Introspection Response Parameter Registration . . 29
10.2. OAuth Parameter Registration 30
10.3. OAuth Access Token Types 30
10.4. Token Type Mappings 30
10.4.1. Registration Template 30
10.4.2. Initial Registry Contents 31

10.5. JSON Web Token Claims 31
10.6. ACE Profile Registry 31

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Seitz, et al. Expires December 12, 2016 [Page 2]

Internet-Draft ACE June 2016

10.6.1. Registration Template 31
10.7. OAuth Parameter Mappings Registry 32
10.7.1. Registration Template 32
10.7.2. Initial Registry Contents 32

10.8. Introspection Resource CBOR Mappings Registry 34
10.8.1. Registration Template 35
10.8.2. Initial Registry Contents 35

10.9. CoAP Option Number Registration 37
11. Acknowledgments . 37
12. References . 38
12.1. Normative References 38
12.2. Informative References 38

Appendix A. Design Justification 40
Appendix B. Roles and Responsibilites 42
Appendix C. Deployment Examples 44
C.1. Local Token Validation 44
C.2. Introspection Aided Token Validation 48

Appendix D. Document Updates 51
D.1. Version -01 to -02 52
D.2. Version -00 to -01 52

 Authors' Addresses . 53

1. Introduction

 Authorization is the process for granting approval to an entity to
 access a resource [RFC4949]. The authorization task itself can best
 be described as granting access to a requesting client, for a
 resource hosted on a device, the resource server (RS). This exchange
 is mediated by one or multiple authorization servers (AS). Managing
 authorization for a large number of devices and users is a complex
 task.

 We envision that end consumers and enterprises will manage access to
 resources on, or produced by, Internet of Things (IoT) devices in the
 same style as they do today with data, services and applications on
 the Web or with their mobile devices. This desire will increase with
 the number of exposed services and capabilities provided by
 applications hosted on the IoT devices.

 While prior work on authorization solutions for the Web and for the
 mobile environment also applies to the IoT environment many IoT
 devices are constrained, for example in terms of processing
 capabilities, available memory, etc. For web applications on
 constrained nodes this specification makes use of CoAP [RFC7252].

 A detailed treatment of constraints can be found in [RFC7228], and
 the different IoT deployments present a continuous range of device
 and network capabilities. Taking energy consumption as an example:

https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7228

Seitz, et al. Expires December 12, 2016 [Page 3]

Internet-Draft ACE June 2016

 At one end there are energy-harvesting or battery powered devices
 which have a tight power budget, on the other end there are mains-
 powered devices, and all levels in between.

 Hence, IoT devices may be very different in terms of available
 processing and message exchange capabilities and there is a need to
 support many different authorization use cases [RFC7744].

 This specification describes a framework for authentication and
 authorization in constrained environments (ACE) built on re-use of
 OAuth 2.0 [RFC6749], thereby extending authorization to Internet of
 Things devices. This specification contains the necessary building
 blocks for adjusting OAuth 2.0 to IoT environments.

 More detailed, interoperable specifications can be found in profiles.
 Implementations may claim conformance with a specific profile,
 whereby implementations utilizing the same profile interoperate while
 implementations of different profiles are not expected to be
 interoperable. Some devices, such as mobile phones and tablets, may
 implement multiple profiles and will therefore be able to interact
 with a wider range of low end devices.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Certain security-related terms such as "authentication",
 "authorization", "confidentiality", "(data) integrity", "message
 authentication code", and "verify" are taken from [RFC4949].

 Since we describe exchanges as RESTful protocol interactions HTTP
 [RFC7231] offers useful terminology.

 Terminology for entities in the architecture is defined in OAuth 2.0
 [RFC6749] and [I-D.ietf-ace-actors], such as client (C), resource
 server (RS), and authorization server (AS).

 Note that the term "endpoint" is used here following its OAuth
 definition, which is to denote resources such as /token and
 /introspect at the AS and /authz-info at the RS. The CoAP [RFC7252]
 definition, which is "An entity participating in the CoAP protocol"
 is not used in this memo.

 Since this specification focuses on the problem of access control to
 resources, we simplify the actors by assuming that the client
 authorization server (CAS) functionality is not stand-alone but

https://datatracker.ietf.org/doc/html/rfc7744
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7252

Seitz, et al. Expires December 12, 2016 [Page 4]

Internet-Draft ACE June 2016

 subsumed by either the authorization server or the client (see
 section 2.2 in [I-D.ietf-ace-actors]).

3. Overview

 This specification describes the ACE framework for authorization in
 the Internet of Things consisting of a set of building blocks.

 The basic block is the OAuth 2.0 [RFC6749] framework, which enjoys
 widespread deployment. Many IoT devices can support OAuth 2.0
 without any additional extensions, but for certain constrained
 settings additional profiling is needed.

 Another building block is the lightweight web transfer protocol CoAP
 [RFC7252] for those communication environments where HTTP is not
 appropriate. CoAP typically runs on top of UDP which further reduces
 overhead and message exchanges. While this specification defines
 extensions for the use of OAuth over CoAP, we do envision further
 underlying protocols to be supported in the future, such as MQTT or
 QUIC.

 A third building block is CBOR [RFC7049] for encodings where JSON
 [RFC7159] is not sufficiently compact. CBOR is a binary encoding
 designed for small code and message size, which may be used for
 encoding of self contained tokens, and also for encoding CoAP POST
 parameters and CoAP responses.

 A fourth building block is the compact CBOR-based secure message
 format COSE [I-D.ietf-cose-msg], which enables application layer
 security as an alternative or complement to transport layer security
 (DTLS [RFC6347] or TLS [RFC5246]). COSE is used to secure self
 contained tokens such as proof-of-possession (PoP) tokens
 [I-D.ietf-oauth-pop-architecture], which is an extension to the OAuth
 access tokens, and "client tokens" which are defined in this
 framework (see Section 7.4). The default access token format is
 defined in CBOR web token (CWT) [I-D.ietf-ace-cbor-web-token].
 Application layer security for CoAP using COSE can be provided with
 OSCOAP [I-D.selander-ace-object-security].

 With the building blocks listed above, solutions satisfying various
 IoT device and network constraints are possible. A list of
 constraints is described in detail in RFC 7228 [RFC7228] and a
 description of how the building blocks mentioned above relate to the
 various constraints can be found in Appendix A.

 Luckily, not every IoT device suffers from all constraints. The ACE
 framework nevertheless takes all these aspects into account and
 allows several different deployment variants to co-exist rather than

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7228

Seitz, et al. Expires December 12, 2016 [Page 5]

Internet-Draft ACE June 2016

 mandating a one-size-fits-all solution. We believe this is important
 to cover the wide range of possible interworking use cases and the
 different requirements from a security point of view. Once IoT
 deployments mature, popular deployment variants will be documented in
 form of ACE profiles.

 In the subsections below we provide further details about the
 different building blocks.

3.1. OAuth 2.0

 The OAuth 2.0 authorization framework enables a client to obtain
 limited access to a resource with the permission of a resource owner.
 Authorization information, or references to it, is passed between the
 nodes using access tokens. These access tokens are issued to clients
 by an authorization server with the approval of the resource owner.
 The client uses the access token to access the protected resources
 hosted by the resource server.

 A number of OAuth 2.0 terms are used within this specification:

 The token and introspect Endpoints:

 The AS hosts the /token endpoint that allows a client to request
 access tokens. The client makes a POST request to the /token
 endpoint on the AS and receives the access token in the response
 (if the request was successful).

 The token introspection endpoint, /introspect, is used by the RS
 when requesting additional information regarding a received access
 token. The RS makes a POST request to /introspect on the AS and
 receives information about the access token contain in the
 response. (See "Introspection" below.)

 Access Tokens:

 Access tokens are credentials needed to access protected
 resources. An access token is a data structure representing
 authorization permissions issued by the AS to the client. Access
 tokens are generated by the authorization server and consumed by
 the resource server. The access token content is opaque to the
 client.

 Access tokens can have different formats, and various methods of
 utilization (e.g., cryptographic properties) based on the security
 requirements of the given deployment.

Seitz, et al. Expires December 12, 2016 [Page 6]

Internet-Draft ACE June 2016

 Proof of Possession Tokens:

 An access token may be bound to a cryptographic key, which is then
 used by an RS to authenticate requests from a client. Such tokens
 are called proof-of-possession tokens (or PoP tokens)
 [I-D.ietf-oauth-pop-architecture].

 The proof-of-possession (PoP) security concept assumes that the AS
 acts as a trusted third party that binds keys to access tokens.
 These so called PoP keys are then used by the client to
 demonstrate the possession of the secret to the RS when accessing
 the resource. The RS, when receiving an access token, needs to
 verify that the key used by the client matches the one included in
 the access token. When this specification uses the term "access
 token" it is assumed to be a PoP token unless specifically stated
 otherwise.

 The key bound to the access token (aka PoP key) may be based on
 symmetric as well as on asymmetric cryptography. The appropriate
 choice of security depends on the constraints of the IoT devices
 as well as on the security requirements of the use case.

 Symmetric PoP key: The AS generates a random symmetric PoP key,
 encrypts it for the RS and includes it inside an access token.
 The PoP key is also encrypted for the client and sent together
 with the access token to the client.>

 Asymmetric PoP key: An asymmetric key pair is generated on the
 client and the public key is sent to the AS (if it does not
 already have knowledge of the client's public key).
 Information about the public key, which is the PoP key in this
 case, is then included inside the access token and sent back to
 the requesting client. The RS can identify the client's public
 key from the information in the token, which allows the client
 to use the corresponding private key for the proof of
 possession.

 The access token is protected against modifications using a MAC or
 a digital signature, which is added by the AS. The choice of PoP
 key does not necessarily imply a specific credential type for the
 integrity protection of the token. More information about PoP
 tokens can be found in [I-D.ietf-oauth-pop-architecture].

 Scopes and Permissions:

 In OAuth 2.0, the client specifies the type of permissions it is
 seeking to obtain (via the scope parameter) in the access request.
 In turn, the AS may use the scope response parameter to inform the

Seitz, et al. Expires December 12, 2016 [Page 7]

Internet-Draft ACE June 2016

 client of the scope of the access token issued. As the client
 could be a constrained device as well, this specification uses
 CBOR encoded messages for CoAP, defined in Section 5, to request
 scopes and to be informed what scopes the access token was
 actually authorized for by the AS.

 The values of the scope parameter are expressed as a list of
 space- delimited, case-sensitive strings, with a semantic that is
 well-known to the AS and the RS. More details about the concept
 of scopes is found under Section 3.3 in [RFC6749].

 Claims:

 Information carried in the access token, called claims, is in the
 form of type-value pairs. An access token may, for example,
 include a claim identifying the AS that issued the token (via the
 "iss" claim) and what audience the access token is intended for
 (via the "aud" claim). The audience of an access token can be a
 specific resource or one or many resource servers. The resource
 owner policies influence what claims are put into the access token
 by the authorization server.

 While the structure and encoding of the access token varies
 throughout deployments, a standardized format has been defined
 with the JSON Web Token (JWT) [RFC7519] where claims are encoded
 as a JSON object. In [I-D.ietf-ace-cbor-web-token] an equivalent
 format using CBOR encoding (CWT) has been defined.

 Introspection:

 Introspection is a method for a resource server to query the
 authorization server for the active state and content of a
 received access token. This is particularly useful in those cases
 where the authorization decisions are very dynamic and/or where
 the received access token itself is a reference rather than a
 self-contained token. More information about introspection in
 OAuth 2.0 can be found in [RFC7662].

3.2. CoAP

 CoAP is an application layer protocol similar to HTTP, but
 specifically designed for constrained environments. CoAP typically
 uses datagram-oriented transport, such as UDP, where reordering and
 loss of packets can occur. A security solution need to take the
 latter aspects into account.

https://datatracker.ietf.org/doc/html/rfc6749#section-3.3
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7662

Seitz, et al. Expires December 12, 2016 [Page 8]

Internet-Draft ACE June 2016

 While HTTP uses headers and query-strings to convey additional
 information about a request, CoAP encodes such information in so-
 called 'options'.

 CoAP supports application-layer fragmentation of the CoAP payloads
 through blockwise transfers [I-D.ietf-core-block]. However, block-
 wise transfer does not increase the size limits of CoAP options,
 therefore data encoded in options has to be kept small.

 Transport layer security for CoAP can be provided by DTLS 1.2
 [RFC6347] or TLS 1.2 [RFC5246]. CoAP defines a number of proxy
 operations which requires transport layer security to be terminated
 at the proxy. One approach for protecting CoAP communication end-to-
 end through proxies, and also to support security for CoAP over
 different transport in a uniform way, is to provide security on
 application layer using an object-based security mechanism such as
 CBOR Encoded Message Syntax [I-D.ietf-cose-msg].

 One application of COSE is OSCOAP [I-D.selander-ace-object-security],
 which provides end-to-end confidentiality, integrity and replay
 protection, and a secure binding between CoAP request and response
 messages. In OSCOAP, the CoAP messages are wrapped in COSE objects
 and sent using CoAP.

4. Protocol Interactions

 The ACE framework is based on the OAuth 2.0 protocol interactions
 using the /token and /introspect endpoints. A client obtains an
 access token from an AS using the /token endpoint and subsequently
 presents the access token to a RS to gain access to a protected
 resource. The RS, after receiving an access token, may present it to
 the AS via the /introspect endpoint to get information about the
 access token. In other deployments the RS may process the access
 token locally without the need to contact an AS. These interactions
 are shown in Figure 1. An overview of various OAuth concepts is
 provided in Section 3.1.

 The consent of the resource owner, for giving a client access to a
 protected resource, can be pre-configured authorization policies or
 dynamically at the time when the request is sent. The resource owner
 and the requesting party (i.e. client owner) are not shown in
 Figure 1.

 This framework supports a wide variety of communication security
 mechanisms between the ACE entities, such as client, AS, and RS. We
 assume that the client has been registered (also called enrolled or
 onboarded) to an AS using a mechanism defined outside the scope of
 this document. In practice, various techniques for onboarding have

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5246

Seitz, et al. Expires December 12, 2016 [Page 9]

Internet-Draft ACE June 2016

 been used, such as factory-based provisioning or the use of
 commissioning tools. Regardless of the onboarding technique, this
 registration procedure implies that the client and the AS share
 credentials, and configuration parameters. These credentials are
 used to mutually authenticate each other and to protect messages
 exchanged between the client and the AS.

 It is also assumed that the RS has been registered with the AS,
 potentially in a similar way as the client has been registered with
 the AS. Established keying material between the AS and the RS allows
 the AS to apply cryptographic protection to the access token to
 ensure that its content cannot be modified, and if needed, that the
 content is confidentiality protected.

 The keying material necessary for establishing communication security
 between C and RS is dynamically established as part of the protocol
 described in this document.

 At the start of the protocol there is an optional discovery step
 where the client discovers the resource server and the resources this
 server hosts. In this step the client might also determine what
 permissions are needed to access the protected resource. The
 detailed procedures for this discovery process may be defined in an
 ACE profile and depend on the protocols being used and the specific
 deployment environment.

 In Bluetooth Low Energy, for example, advertisements are broadcasted
 by a peripheral, including information about the primary services.
 In CoAP, as a second example, a client can makes a request to
 "/.well-known/core" to obtain information about available resources,
 which are returned in a standardized format as described in
 [RFC6690].

https://datatracker.ietf.org/doc/html/rfc6690

Seitz, et al. Expires December 12, 2016 [Page 10]

Internet-Draft ACE June 2016

 +--------+ +---------------+
	---(A)-- Token Request ------->	
		Authorization
	<--(B)-- Access Token ---------	Server
	+ Client Information	
	+---------------+	
	^	
	Introspection Request (D)	
Client		
	Response + Client Token	
		v
	+--------------+	
	---(C)-- Token + Request ----->	
		Resource
	<--(F)-- Protected Resource ---	Server
 +--------+ +--------------+

 Figure 1: Basic Protocol Flow.

 Requesting an Access Token (A):

 The client makes an access token request to the /token endpoint at
 the AS. This framework assumes the use of PoP tokens (see

Section 3.1 for a short description) wherein the AS binds a key to
 an access token. The client may include permissions it seeks to
 obtain, and information about the credentials it wants to use
 (e.g., symmetric/asymmetric cryptography or a reference to a
 specific credential).

 Access Token Response (B):

 If the AS successfully processes the request from the client, it
 returns an access token. It also returns various parameters,
 referred as "Client Information". In addition to the response
 parameters defined by OAuth 2.0 and the PoP token extension,
 further response parameters, such as information on which profile
 the client should use with the resource server(s). More
 information about these parameters can be found in in Section 6.4.

 Resource Request (C):

 The client interacts with the RS to request access to the
 protected resource and provides the access token. The protocol to
 use between the client and the RS is not restricted to CoAP.
 HTTP, HTTP/2, QUIC, MQTT, Bluetooth Low Energy, etc., are also
 viable candidates.

Seitz, et al. Expires December 12, 2016 [Page 11]

Internet-Draft ACE June 2016

 Depending on the device limitations and the selected protocol this
 exchange may be split up into two parts:

 (1) the client sends the access token containing, or
 referencing, the authorization information to the RS, that may
 be used for subsequent resource requests by the client, and
 (2) the client makes the resource access request, using the
 communication security protocol and other client information
 obtained from the AS.

 The Client and the RS mutually authenticate using the security
 protocol specified in the profile (see step B) and the keys
 obtained in the access token or the client information or the
 client token. The RS verifies that the token is integrity
 protected by the AS and compares the claims contained in the
 access token with the resource request. If the RS is online,
 validation can be handed over to the AS using token introspection
 (see messages D and E) over HTTP or CoAP, in which case the
 different parts of step C may be interleaved with introspection.

 Token Introspection Request (D):

 A resource server may be configured to introspect the access token
 by including it in a request to the /introspect endpoint at that
 AS. Token introspection over CoAP is defined in Section 7 and for
 HTTP in [RFC7662].

 Note that token introspection is an optional step and can be
 omitted if the token is self-contained and the resource server is
 prepared to perform the token validation on its own.

 Token Introspection Response (E):

 The AS validates the token and returns the most recent parameters,
 such as scope, audience, validity etc. associated with it back to
 the RS. The RS then uses the received parameters to process the
 request to either accept or to deny it. The AS can additionally
 return information that the RS needs to pass on to the client in
 the form of a client token. The latter is used to establish keys
 for mutual authentication between client and RS, when the client
 has no direct connectivity to the AS.

 Protected Resource (F):

 If the request from the client is authorized, the RS fulfills the
 request and returns a response with the appropriate response code.
 The RS uses the dynamically established keys to protect the
 response, according to used communication security protocol.

https://datatracker.ietf.org/doc/html/rfc7662

Seitz, et al. Expires December 12, 2016 [Page 12]

Internet-Draft ACE June 2016

5. Framework

 The following sections detail the profiling and extensions of OAuth
 2.0 for constrained environments which constitutes the ACE framework.

 Credential Provisioning

 For IoT we cannot generally assume that the client and RS are part
 of a common key infrastructure, so the AS provisions credentials
 or associated information to allow mutual authentication. These
 credentials need to be provided to the parties before or during
 the authentication protocol is executed, and may be re-used for
 subsequent token requests.

 Proof-of-Possession

 The ACE framework by default implements proof-of-possession for
 access tokens, i.e. that the authenticated token holder is bound
 to the token. The binding is provided by the "cnf" claim
 indicating what key is used for mutual authentication. If clients
 need to update a token, e.g. to get additional rights, they can
 request that the AS binds the new access token to the same
 credential as the previous token.

 ACE Profile Negotiation

 The client or RS may be limited in the encodings or protocols it
 supports. To support a variety of different deployment settings,
 specific interactions between client and RS are defined in an ACE
 profile. The ACE framework supports the negotiation of different
 ACE profiles between client and AS using the "profile" parameter
 in the token request and token response.

 OAuth 2.0 requires the use of TLS both to protect the communication
 between AS and client when requesting an access token and between AS
 and RS for introspection. In constrained settings TLS is not always
 feasible, or desirable. Nevertheless it is REQUIRED that the data
 exchanged with the AS is encrypted and integrity protected. It is
 furthermore REQUIRED that the AS and the endpoint communicating with
 it (client or RS) perform mutual authentication.

 Profiles are expected to specify the details of how this is done,
 depending e.g. on the communication protocol and the credentials used
 by the client or the RS.

 In OAuth 2.0 the communication with the Token and the Introspection
 resources at the AS is assumed to be via HTTP and may use Uri-query

Seitz, et al. Expires December 12, 2016 [Page 13]

Internet-Draft ACE June 2016

 parameters. This framework RECOMMENDS to use CoAP instead and
 RECOMMENDS the use of the following alternative instead of Uri-query
 parameters: The sender (client or RS) encodes the parameters of its
 request as a CBOR map and submits that map as the payload of the POST
 request. The Content-format MUST be "application/cbor" in that case.

 The OAuth 2.0 AS uses a JSON structure in the payload of its
 responses both to client and RS. This framework RECOMMENDS the use
 of CBOR [RFC7049] instead. The requesting device can explicitly
 request this encoding by setting the CoAP Accept option in the
 request to "application/cbor".

6. The 'Token' Resource

 In plain OAuth 2.0 the AS provides the /token resource for submitting
 access token requests. This framework extends the functionality of
 the /token resource, giving the AS the possibility to help client and
 RS to establish shared keys or to exchange their public keys.

 Communication between the client and the token resource at the AS
 MUST be integrity protected and encrypted. Furthermore AS and client
 MUST perform mutual authentication. Profiles of this framework are
 expected to specify how authentication and communication security is
 implemented.

 The figures of this section uses CBOR diagnostic notation without the
 integer abbreviations for the parameters or their values for better
 readability.

6.1. Client-to-AS Request

 When requesting an access token from the AS, the client MAY include
 the following parameters in the request in addition to the ones
 required or optional according to the OAuth 2.0 specification
 [RFC6749]:

 token_type
 OPTIONAL. See Section 6.4 for more details.

 alg
 OPTIONAL. See Section 6.4 for more details.

 profile
 OPTIONAL. This indicates the profile that the client would like
 to use with the RS. See Section 6.4 for more details on the
 formatting of this parameter. If the RS cannot support the
 requested profile, the AS MUST reply with an error message.

https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc6749

Seitz, et al. Expires December 12, 2016 [Page 14]

Internet-Draft ACE June 2016

 cnf
 OPTIONAL. This field contains information about a public key the
 client would like to bind to the access token. If the client
 requests an asymmetric proof-of-possession algorithm, but does not
 provide a public key, the AS MUST respond with an error message.
 See Section 6.4 for more details on the formatting of the 'cnf'
 parameter.

 These new parameters are optional in the case where the AS has prior
 knowledge of the capabilities of the client, otherwise these
 parameters are required. This prior knowledge may, for example, be
 set by the use of a dynamic client registration protocol exchange
 [RFC7591].

 The following examples illustrate different types of requests for
 proof-of-possession tokens.

 Figure 2 shows a request for a token with a symmetric proof-of-
 possession key.

 Header: POST (Code=0.02)
 Uri-Host: "server.example.com"
 Uri-Path: "token"
 Content-Type: "application/cbor"
 Payload:
 {
 "grant_type" : "client_credentials",
 "aud" : "tempSensor4711",
 "client_id" : "myclient",
 "client_secret" : b64'FWRUVGZUZmZFRkWSRlVGhA',
 "token_type" : "pop",
 "alg" : "HS256",
 "profile" : "coap_dtls"
 }

 Figure 2: Example request for an access token bound to a symmetric
 key.

 Figure 3 shows a request for a token with an asymmetric proof-of-
 possession key.

https://datatracker.ietf.org/doc/html/rfc7591

Seitz, et al. Expires December 12, 2016 [Page 15]

Internet-Draft ACE June 2016

 Header: POST (Code=0.02)
 Uri-Host: "server.example.com"
 Uri-Path: "token"
 Content-Type: "application/cbor"
 Payload:
 {
 "grant_type" : "token",
 "aud" : "lockOfDoor0815",
 "client_id" : "myclient",
 "token_type" : "pop",
 "alg" : "ES256",
 "profile" : "coap_oscoap"
 "cnf" : {
 "COSE_Key" : {
 "kty" : "EC",
 "kid" : h'11',
 "crv" : "P-256",
 "x" : b64'usWxHK2PmfnHKwXPS54m0kTcGJ90UiglWiGahtagnv8',
 "y" : b64'IBOL+C3BttVivg+lSreASjpkttcsz+1rb7btKLv8EX4'
 }
 }
 }

 Figure 3: Example request for an access token bound to an asymmetric
 key.

 Figure 4 shows a request for a token where a previously communicated
 proof-of-possession key is only referenced.

Seitz, et al. Expires December 12, 2016 [Page 16]

Internet-Draft ACE June 2016

 Header: POST (Code=0.02)
 Uri-Host: "server.example.com"
 Uri-Path: "token"
 Content-Type: "application/cbor"
 Payload:
 {
 "grant_type" : "client_credentials",
 "aud" : "valve424",
 "scope" : "read",
 "client_id" : "myclient",
 "token_type" : "pop",
 "alg" : "ES256",
 "profile" : "coap_oscoap"
 "cnf" : {
 "kid" : b64'6kg0dXJM13U'
 }
 }

 Figure 4: Example request for an access token bound to a key
 reference.

6.2. AS-to-Client Response

 If the access token request has been successfully verified by the AS
 and the client is authorized to obtain a PoP token for the indicated
 audience and scopes (if any), the AS issues an access token. If
 client authentication failed or is invalid, the authorization server
 returns an error response as described in Section 6.3.

 The following parameters may also be part of a successful response in
 addition to those defined in section 5.1 of [RFC6749]:

 profile
 REQUIRED. This indicates the profile that the client MUST use
 towards the RS. See Section 6.4 for the formatting of this
 parameter.

 cnf
 REQUIRED. This field contains information about the proof-of
 possession key for this access token. See Section 6.4 for the
 formatting of this parameter.

 Note that the access token can also contains a 'cnf' claim, however,
 these two values are consumed by different parties. The access token
 is created by the AS and processed by the RS (and opaque to the
 client) whereas the Client Information is created by the AS and
 processed by the client; it is never forwarded to the resource
 server.

https://datatracker.ietf.org/doc/html/rfc6749#section-5.1

Seitz, et al. Expires December 12, 2016 [Page 17]

Internet-Draft ACE June 2016

 The following examples illustrate different types of responses for
 proof-of-possession tokens.

 Figure 5 shows a response containing a token and a 'cnf' parameter
 with a symmetric proof-of-possession key.

 Header: Created (Code=2.01)
 Content-Type: "application/cbor"
 Payload:
 {
 "access_token" : b64'SlAV32hkKG ...
 (remainder of CWT omitted for brevity;
 CWT contains COSE_Key in the 'cnf' claim)',
 "token_type" : "pop",
 "alg" : "HS256",
 "expires_in" : "3600",
 "profile" : "coap_dtls"
 "cnf" : {
 "COSE_Key" : {
 "kty" : "Symmetric",
 "kid" : b64'39Gqlw',
 "k" : b64'hJtXhkV8FJG+Onbc6mxCcQh'
 }
 }
 }

 Figure 5: Example AS response with an access token bound to a
 symmetric key.

6.3. Error Response

 The error responses for CoAP-based interactions with the AS are
 equivalent to the ones for HTTP-based interactions as defined in

section 5.2 of [RFC6749], with the following differences: The
 Content-Type MUST be set to "application/cbor", the payload MUST be
 encoded in a CBOR map and the CoAP response code 4.00 Bad Request
 MUST be used unless specified otherwise.

6.4. New Request and Response Parameters

 This section defines parameters that can be used in access token
 requests and responses, as well as abbreviations for more compact
 encoding of existing parameters and common values.

https://datatracker.ietf.org/doc/html/rfc6749#section-5.2

Seitz, et al. Expires December 12, 2016 [Page 18]

Internet-Draft ACE June 2016

6.4.1. Grant Type

 The abbreviations in Figure 6 MAY be used in CBOR encodings instead
 of the string values defined in [RFC6749].

 /--------------------+----------+--------------\
 | grant_type | CBOR Key | Major Type |
 |--------------------+----------+--------------|
 | password | 0 | 0 (uint) |
 | authorization_code | 1 | 0 |
 | client_credentials | 2 | 0 |
 | refresh_token | 3 | 0 |
 \--------------------+----------+--------------/

 Figure 6: CBOR abbreviations for common grant types

6.4.2. Token Type and Algorithms

 To allow clients to indicate support for specific token types and
 respective algorithms they need to interact with the AS. They can
 either provide this information out-of-band or via the 'token_type'
 and 'alg' parameter in the client request.

 The value in the 'alg' parameter together with value from the
 'token_type' parameter allow the client to indicate the supported
 algorithms for a given token type. The token type refers to the
 specification used by the client to interact with the resource server
 to demonstrate possession of the key. The 'alg' parameter provides
 further information about the algorithm, such as whether a symmetric
 or an asymmetric crypto-system is used. Hence, a client supporting a
 specific token type also knows how to populate the values to the
 'alg' parameter.

 This document registers the new value "pop" for the OAuth Access
 Token Types registry, specifying a Proof-of-Possession token. How
 the proof-of-possession is performed is specified by the 'alg'
 parameter. Profiles of this framework are responsible for defining
 values for the 'alg' parameter together with the corresponding proof-
 of-possession mechanisms.

 The values in the 'alg' parameter are case-sensitive. If the client
 supports more than one algorithm then each individual value MUST be
 separated by a space.

https://datatracker.ietf.org/doc/html/rfc6749

Seitz, et al. Expires December 12, 2016 [Page 19]

Internet-Draft ACE June 2016

6.4.3. Profile

 The "profile" parameter identifies the communication protocol and the
 communication security protocol between the client and the RS.

 An initial set of profile identifiers and their CBOR encodings are
 specified in Figure 7. Profiles using other combinations of
 protocols are expected to define their own profile identifiers.

 /--------------------+----------+--------------\
 | Profile identifier | CBOR Key | Major Type |
 |--------------------+----------+--------------|
 | http_tls | 0 | 0 (uint) |
 | coap_dtls | 1 | 0 |
 | coap_oscoap | 2 | 0 |
 \--------------------+----------+--------------/

 Figure 7: Profile identifiers and their CBOR mappings

 Profiles MAY define additional parameters for both the token request
 and the client information in the access token response in order to
 support negotioation or signalling of profile specific parameters.

6.4.4. Confirmation

 The "cnf" parameter identifies or provides the key used for proof-of-
 possession. This framework extends the definition of 'cnf' from
 [RFC7800] by defining CBOR/COSE encodings and the use of 'cnf' for
 transporting keys in the client information.

 A CBOR encoded payload MAY contain the 'cnf' parameter with the
 following contents:

 COSE_Key In this case the 'cnf' parameter contains the proof-of-
 possession key to be used by the client. An example is shown in
 Figure 8.

 "cnf" : {
 "COSE_Key" : {
 "kty" : "EC",
 "kid" : h'11',
 "crv" : "P-256",
 "x" : b64'usWxHK2PmfnHKwXPS54m0kTcGJ90UiglWiGahtagnv8',
 "y" : b64'IBOL+C3BttVivg+lSreASjpkttcsz+1rb7btKLv8EX4'
 }
 }

 Figure 8: Confirmation parameter containing a public key

https://datatracker.ietf.org/doc/html/rfc7800

Seitz, et al. Expires December 12, 2016 [Page 20]

Internet-Draft ACE June 2016

 COSE_Encrypted In this case the 'cnf' parameter contains an
 encrypted symmetriic key destined for the client. The client is
 assumed to be able to decrypt the cihpertext of this parameter.
 The parameter is encoded as COSE_Encrypted object wrapping a
 COSE_Key object. Figure 9 shows an example of this type of
 encoding.

 "cnf" : {
 "COSE_Encrypted" : {
 993(
 [h'a1010a' # protected header : {"alg" : "AES-CCM-16-64-128"}
 "iv" : b64'ifUvZaHFgJM7UmGnjA', # unprotected header
 b64'WXThuZo6TMCaZZqi6ef/8WHTjOdGk8kNzaIhIQ' # ciphertext
]
)
 }
 }

 Figure 9: Confirmation paramter containing an encrypted symmetric key

 The ciphertext here could e.g. contain a symmetric key as in
 Figure 10.

 {
 "kty" : "Symmetric",
 "kid" : b64'39Gqlw',
 "k" : b64'hJtXhkV8FJG+Onbc6mxCcQh'
 }

 Figure 10: Example plaintext of an encrypted cnf parameter

 Key Identifier In this case the 'cnf' parameter references a key
 that is assumed to be previously known by the recipient. This
 allows clients that perform repeated requests for an access token
 for the same audience but e.g. with different scopes to omit key
 transport in the access token, token request and token response.
 Figure 11 shows such an example.

 "cnf" : {
 "kid" : b64'39Gqlw'
 }

 Figure 11: A Confirmation parameter with just a key identifier

Seitz, et al. Expires December 12, 2016 [Page 21]

Internet-Draft ACE June 2016

6.5. Mapping parameters to CBOR

 All OAuth parameters in access token requests and responses are
 mapped to CBOR types as follows and are given an integer key value to
 save space.

 /-------------------+----------+-----------------\
 | Parameter name | CBOR Key | Major Type |
 |-------------------+----------+-----------------|
 | client_id | 1 | 3 (text string) |
 | client_secret | 2 | 2 (byte string) |
 | response_type | 3 | 3 |
 | redirect_uri | 4 | 3 |
 | scope | 5 | 3 |
 | state | 6 | 3 |
 | code | 7 | 2 |
 | error_description | 8 | 3 |
 | error_uri | 9 | 3 |
 | grant_type | 10 | 0 (unit) |
 | access_token | 11 | 3 |
 | token_type | 12 | 0 |
 | expires_in | 13 | 0 |
 | username | 14 | 3 |
 | password | 15 | 3 |
 | refresh_token | 16 | 3 |
 | alg | 17 | 3 |
 | cnf | 18 | 5 (map) |
 | aud | 19 | 3 |
 | profile | 20 | 0 |
 \---------------+--------------+-----------------/

 Figure 12: CBOR mappings used in token requests

7. The 'Introspect' Resource

 Token introspection [RFC7662] is used by the RS and potentially the
 client to query the AS for metadata about a given token e.g. validity
 or scope. Analogous to the protocol defined in RFC 7662 [RFC7662]
 for HTTP and JSON, this section defines adaptations to more
 constrained environments using CoAP and CBOR.

 Communication between the RS and the introspection resource at the AS
 MUST be integrity protected and encrypted. Furthermore AS and RS
 MUST perform mutual authentication. Finally the AS SHOULD to verify
 that the RS has the right to access introspection information about
 the provided token. Profiles of this framework are expected to
 specify how authentication and communication security is implemented.

https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7662

Seitz, et al. Expires December 12, 2016 [Page 22]

Internet-Draft ACE June 2016

 The figures of this section uses CBOR diagnostic notation without the
 integer abbreviations for the parameters or their values for better
 readability.

7.1. RS-to-AS Request

 The RS sends a CoAP POST request to the introspection resource at the
 AS, with payload sent as "application/cbor" data. The payload is a
 CBOR map with a 'token' parameter containing the access token along
 with optional parameters representing additional context that is
 known by the RS to aid the AS in its response.

 The same parameters are required and optional as in section 2.1 of
 RFC 7662 [RFC7662].

 For example, Figure 13 shows a RS calling the token introspection
 resource at the AS to query about an OAuth 2.0 proof-of-possession
 token.

 Header: POST (Code=0.02)
 Uri-Host: "server.example.com"
 Uri-Path: "introspect"
 Content-Type: "application/cbor"
 Payload:
 {
 "token" : b64'7gj0dXJQ43U',
 "token_type_hint" : "pop"
 }

 Figure 13: Example introspection request.

7.2. AS-to-RS Response

 The AS responds with a CBOR object in "application/cbor" format with
 the same required and optional parameters as in section 2.2. of RFC

7662 [RFC7662] with the following additions:

 alg
 OPTIONAL. See Section 6.4 for more details.

 cnf
 OPTIONAL. This field contains information about the proof-of-
 possession key that binds the client to the access token. See

Section 6.4 for more details on the formatting of the 'cnf'
 parameter.

 profile

https://datatracker.ietf.org/doc/html/rfc7662#section-2.1
https://datatracker.ietf.org/doc/html/rfc7662#section-2.1
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7662

Seitz, et al. Expires December 12, 2016 [Page 23]

Internet-Draft ACE June 2016

 OPTIONAL. This indicates the profile that the RS MUST use with
 the client. See Section 6.4 for more details on the formatting of
 this parameter.

 client_token
 OPTIONAL. This parameter contains information that the RS MUST
 pass on to the client. See Section 7.4 for more details.

 For example, Figure 14 shows an AS response to the introspection
 request in Figure 13.

 Header: Created Code=2.01)
 Content-Type: "application/cbor"
 Payload:
 {
 "active" : true,
 "scope" : "read",
 "token_type" : "pop",
 "alg" : "HS256",
 "profile" : "coap_dtls",
 "client_token" : b64'2QPhg0OhAQo ...
 (remainder of client token omitted for brevity)',
 "cnf" : {
 "COSE_Key" : {
 "kty" : "Symmetric",
 "kid" : b64'39Gqlw',
 "k" : b64'hJtXhkV8FJG+Onbc6mxCcQh'
 }
 }
 }

 Figure 14: Example introspection response.

7.3. Error Response

 The error responses for CoAP-based interactions with the AS are
 equivalent to the ones for HTTP-based interactions as defined in

section 2.3 of [RFC7662], with the following differences:

 o If content is sent, the Content-Type MUST be set to "application/
 cbor", and the payload MUST be encoded in a CBOR map.
 o If the credentials used by the RS are invalid the AS MUST respond
 with the CoAP response code code 4.01 (Unauthorized) and use the
 required and optional parameters from section 5.2 in RFC 6749
 [RFC6749].
 o If the RS does not have the right to perform this introspection
 request, the AS MUST respond with the CoAP response code 4.03
 (Forbidden). In this case no payload is returned.

https://datatracker.ietf.org/doc/html/rfc7662#section-2.3
https://datatracker.ietf.org/doc/html/rfc6749#section-5.2
https://datatracker.ietf.org/doc/html/rfc6749

Seitz, et al. Expires December 12, 2016 [Page 24]

Internet-Draft ACE June 2016

 Note that a properly formed and authorized query for an inactive or
 otherwise invalid token does not warrant an error response by this
 specification. In these cases, the authorization server MUST instead
 respond with an introspection response with the "active" field set to
 "false".

7.4. Client Token

 EDITORIAL NOTE: We have tentatively introduced this concept and would
 specifically like feedback if this is viewed as a useful addition to
 the framework.

 In cases where the client has limited connectivity and is requesting
 access to a previously unknown resource servers, using a long term
 token, there are situations where it would be beneficial to relay the
 proof-of-possession key and other relevant information from the AS to
 the client through the RS. The client_token parameter is designed to
 carry such information, and is intended to be used as described in
 Figure 15.

 Resource Authorization
 Client Server Server
 | | |
 | | |
 A: +--------------->| |
 | POST | |
 | Access Token | |
 | B: +--------------->|
 | | Introspection |
 | | Request |
 | | |
 | C: +<---------------+
 | | Introspection |
 | | Response |
 | | + Client Token |
 D: |<---------------+ |
 | 2.01 Created | |
 | + Client Token |

 Figure 15: Use of the client_token parameter.

 The client token is a COSE_Encrytped object, containing as payload a
 CBOR map with the following claims:

 cnf
 REQUIRED. Contains information about the proof-of-possession key
 the client is to use with its access token. See Section 6.4.4.

Seitz, et al. Expires December 12, 2016 [Page 25]

Internet-Draft ACE June 2016

 token_type
 OPTIONAL. See Section 6.4.2.

 alg
 OPTIONAL. See Section 6.4.2.

 profile
 REQUIRED. See Section 6.4.3.

 rs_cnf
 OPTIONAL. Contains information about the key that the RS uses to
 authenticate towards the client. If the key is symmetric then
 this claim MUST NOT be part of the Client Token, since this is the
 same key as the one specified through the 'cnf' claim. This claim
 uses the same encoding as the 'cnf' parameter. See Section 6.4.3.

 The AS encrypts this token using a key shared between the AS and the
 client, so that only the client can decrypt it and access its
 payload. How this key is established is out of scope of this
 framework.

7.5. Mapping Introspection parameters to CBOR

 The introspection request and response parameters are mapped to CBOR
 types as follows and are given an integer key value to save space.

Seitz, et al. Expires December 12, 2016 [Page 26]

Internet-Draft ACE June 2016

 /----------------+----------+-----------------\
 | Parameter name | CBOR Key | Major Type |
 |----------------+----------+-----------------|
 | active | 1 | 0 (uint) |
 | username | 2 | 3 (text string) |
 | client_id | 3 | 3 |
 | scope | 4 | 3 |
 | token_type | 5 | 3 |
 | exp | 6 | 6 tag value 1 |
 | iat | 7 | 6 tag value 1 |
 | nbf | 8 | 6 tag value 1 |
 | sub | 9 | 3 |
 | aud | 10 | 3 |
 | iss | 11 | 3 |
 | jti | 12 | 3 |
 | alg | 13 | 3 |
 | cnf | 14 | 5 (map) |
 | aud | 15 | 3 |
 | client_token | 16 | 3 |
 | rs_cnf | 17 | 5 |
 \----------------+----------+-----------------/

 Figure 16: CBOR Mappings to Token Introspection Parameters.

8. The Access Token

 This framework RECOMMENDS the use of CBOR web token (CWT) as
 specified in [I-D.ietf-ace-cbor-web-token].

 In order to facilitate offline processing of access tokens, this
 draft specfifies the "scope" claim for access tokens that explicitly
 encodes the scope of a given access token. This claim follows the
 same encoding rules as defined in section 3.3 of [RFC6749]. The
 meaning of a specific scope value is application specific and
 expected to be known to the RS running that application.

8.1. The 'Authorization Information' Resource

 The access token, containing authorization information and
 information of the key used by the client, is transported to the RS
 so that the RS can authenticate and authorize the client request.
 This section defines a method for transporting the access token to
 the RS using CoAP that MAY be used. An ACE profile MAY define other
 methods for token transport.

 This method REQUIRES the RS to implement an /authz-info resource. A
 client using this method MUST make a POST request to /authz-info on
 the RS with the access token in the payload. The RS receiving the

https://datatracker.ietf.org/doc/html/rfc6749#section-3.3

Seitz, et al. Expires December 12, 2016 [Page 27]

Internet-Draft ACE June 2016

 token MUST verify the validity of the token. If the token is valid,
 the RS MUST respond to the POST request with 2.04 (Changed).

 If the token is not valid, the RS MUST respond with error code 4.01
 (Unauthorized). If the token is valid but the audience of the token
 does not match the RS, the RS MUST respond with error code 4.03
 (Forbidden).

 The RS MAY make an introspection request to validate the token before
 responding to the POST /authz-info request. If the introspection
 response contains a client token (Section 7.4) then this token SHALL
 be included in the payload of the 2.04 (Changed) response.

8.2. Token Expiration

 Depending on the capabilities of the RS, there are various ways in
 which it can verify the validity of a received access token. We list
 the possibilities here including what functionality they require of
 the RS.

 o The token is a CWT/JWT and includes a 'exp' claim and possibly the
 'nbf' claim. The RS verifies these by comparing them to values
 from its internal clock as defined in [RFC7519]. In this case the
 RS must have a real time chip (RTC) or some other way of reliably
 measuring time.
 o The RS verifies the validity of the token by performing an
 introspection request as specified in Section 7. This requires
 the RS to have a reliable network connection to the AS and to be
 able to handle two secure sessions in parallel (C to RS and AS to
 RS).
 o The RS and the AS both store a sequence number linked to their
 common security association. The AS increments this number for
 each access token it issues and includes it in the access token,
 which is a CWT/JWT. The RS keeps track of the most recently
 received sequence number, and only accepts tokens as valid, that
 are in a certain range around this number. This method does only
 require the RS to keep track of the sequence number. The method
 does not provide timely expiration, but it makes sure that older
 tokens cease to be valid after a certain number of newer ones got
 issued. For a constrained RS with no network connectivity and no
 means of reliably measuring time, this is the best that can be
 achieved.

9. Security Considerations

 The entire document is about security. Security considerations
 applicable to authentication and authorization in RESTful
 environments provided in OAuth 2.0 [RFC6749] apply to this work, as

https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6749

Seitz, et al. Expires December 12, 2016 [Page 28]

Internet-Draft ACE June 2016

 well as the security considerations from [I-D.ietf-ace-actors].
 Furthermore [RFC6819] provides additional security considerations for
 OAuth which apply to IoT deployments as well. Finally
 [I-D.ietf-oauth-pop-architecture] discusses security and privacy
 threats as well as mitigation measures for Proof-of-Possession
 tokens.

10. IANA Considerations

 This specification registers new parameters for OAuth and establishes
 registries for mappings to CBOR.

10.1. OAuth Introspection Response Parameter Registration

 This specification registers the following parameters in the OAuth
 introspection response parameters

 o Name: "alg"
 o Description: Algorithm to use with PoP key, as defined in PoP
 token specification,
 o Change Controller: IESG
 o Specification Document(s): this document

 o Name: "cnf"
 o Description: Key to use to prove the right to use an access token,
 as defined in [RFC7800].
 o Change Controller: IESG
 o Specification Document(s): this document

 o Name: "aud"
 o Description: reference to intended receiving RS, as defined in PoP
 token specification.
 o Change Controller: IESG
 o Specification Document(s): this document

 o Name: "profile"
 o Description: The communication and communication security profile
 used between client and RS, as defined in ACE profiles.
 o Change Controller: IESG
 o Specification Document(s): this document

 o Name: "client_token"
 o Description: Information that the RS MUST pass to the client e.g.
 about the proof-of-possession keys.
 o Change Controller: IESG
 o Specification Document(s): this document

https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc7800

Seitz, et al. Expires December 12, 2016 [Page 29]

Internet-Draft ACE June 2016

10.2. OAuth Parameter Registration

 This specification registers the following parameters in the OAuth
 Parameters Registry

 o Name: "alg"
 o Description: Algorithm to use with PoP key, as defined in PoP
 token specification,
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "profile"
 o Parameter usage location: token request, and token response
 o Change Controller: IESG
 o Specification Document(s): this document

 o Name: "cnf"
 o Description: Key to use to prove the right to use an access token,
 as defined in [RFC7800].
 o Change Controller: IESG
 o Specification Document(s): this document

10.3. OAuth Access Token Types

 This specification registers the following new token type in the
 OAuth Access Token Types Registry

 o Name: "PoP"
 o Description: A proof-of-possession token.
 o Change Controller: IESG
 o Specification Document(s): this document

10.4. Token Type Mappings

 A new registry will be requested from IANA, entitled "Token Type
 Mappings". The registry is to be created as Expert Review Required.

10.4.1. Registration Template

 Token Type:
 Name of token type as registered in the OAuth token type registry
 e.g. "Bearer".
 Mapped value:
 Integer representation for the token type value. The key value
 MUST be an integer in the range of 1 to 65536.
 Change Controller:

https://datatracker.ietf.org/doc/html/rfc7800

Seitz, et al. Expires December 12, 2016 [Page 30]

Internet-Draft ACE June 2016

 For Standards Track RFCs, list the "IESG". For others, give the
 name of the responsible party. Other details (e.g., postal
 address, email address, home page URI) may also be included.
 Specification Document(s):
 Reference to the document or documents that specify the
 parameter,preferably including URIs that can be used to retrieve
 copies of the documents. An indication of the relevant sections
 may also be included but is not required.

10.4.2. Initial Registry Contents

 o Parameter name: "Bearer"
 o Mapped value: 1
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "pop"
 o Mapped value: 2
 o Change Controller: IESG
 o Specification Document(s): this document

10.5. JSON Web Token Claims

 This specification registers the following new claim in the JSON Web
 Token (JWT) registry.

 o Claim Name: "scope"
 o Claim Description: The scope of an access token as defined in
 [RFC6749].
 o Change Controller: IESG
 o Specification Document(s): this document

10.6. ACE Profile Registry

 A new registry will be requested from IANA, entitled "ACE Profile
 Registry". The registry is to be created as Expert Review Required.

10.6.1. Registration Template

 Profile name:
 Name of the profile to be included in the profile attribute.
 Profile description:
 Text giving an over view of the profile and the context it is
 developed for.
 Profile ID:
 Integer value to identify the profile. The value MUST be an
 integer in the range of 1 to 65536.
 Change Controller:

https://datatracker.ietf.org/doc/html/rfc6749

Seitz, et al. Expires December 12, 2016 [Page 31]

Internet-Draft ACE June 2016

 For Standards Track RFCs, list the "IESG". For others, give the
 name of the responsible party. Other details (e.g., postal
 address, email address, home page URI) may also be included.
 Specification Document(s):
 Reference to the document or documents that specify the
 parameter,preferably including URIs that can be used to retrieve
 copies of the documents. An indication of the relevant sections
 may also be included but is not required.

10.7. OAuth Parameter Mappings Registry

 A new registry will be requested from IANA, entitled "Token Resource
 CBOR Mappings Registry". The registry is to be created as Expert
 Review Required.

10.7.1. Registration Template

 Parameter name:
 OAuth Parameter name, refers to the name in the OAuth parameter
 registry e.g. "client_id".
 CBOR key value:
 Key value for the claim. The key value MUST be an integer in the
 range of 1 to 65536.
 Change Controller:
 For Standards Track RFCs, list the "IESG". For others, give the
 name of the responsible party. Other details (e.g., postal
 address, email address, home page URI) may also be included.
 Specification Document(s):
 Reference to the document or documents that specify the
 parameter,preferably including URIs that can be used to retrieve
 copies of the documents. An indication of the relevant sections
 may also be included but is not required.

10.7.2. Initial Registry Contents

 o Parameter name: "client_id"
 o CBOR key value: 1
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "client_secret"
 o CBOR key value: 2
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "response_type"
 o CBOR key value: 3
 o Change Controller: IESG

Seitz, et al. Expires December 12, 2016 [Page 32]

Internet-Draft ACE June 2016

 o Specification Document(s): this document

 o Parameter name: "redirect_uri"
 o CBOR key value: 4
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "scope"
 o CBOR key value: 5
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "state"
 o CBOR key value: 6
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "code"
 o CBOR key value: 7
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "error_description"
 o CBOR key value: 8
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "error_uri"
 o CBOR key value: 9
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "grant_type"
 o CBOR key value: 10
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "access_token"
 o CBOR key value: 11
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "token_type"
 o CBOR key value: 12
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "expires_in"

Seitz, et al. Expires December 12, 2016 [Page 33]

Internet-Draft ACE June 2016

 o CBOR key value: 13
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "username"
 o CBOR key value: 14
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "password"
 o CBOR key value: 15
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "refresh_token"
 o CBOR key value: 16
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "alg"
 o CBOR key value: 17
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "cnf"
 o CBOR key value: 18
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "aud"
 o CBOR key value: 19
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "profile"
 o CBOR key value: 20
 o Change Controller: IESG
 o Specification Document(s): this document

10.8. Introspection Resource CBOR Mappings Registry

 A new registry will be requested from IANA, entitled "Introspection
 Resource CBOR Mappings Registry". The registry is to be created as
 Expert Review Required.

Seitz, et al. Expires December 12, 2016 [Page 34]

Internet-Draft ACE June 2016

10.8.1. Registration Template

 Response parameter name:
 Name of the response parameter as defined in the "OAuth Token
 Introspection Response" registry e.g. "active".
 CBOR key value:
 Key value for the claim. The key value MUST be an integer in the
 range of 1 to 65536.
 Change Controller:
 For Standards Track RFCs, list the "IESG". For others, give the
 name of the responsible party. Other details (e.g., postal
 address, email address, home page URI) may also be included.
 Specification Document(s):
 Reference to the document or documents that specify the
 parameter,preferably including URIs that can be used to retrieve
 copies of the documents. An indication of the relevant sections
 may also be included but is not required.

10.8.2. Initial Registry Contents

 o Response parameter name: "active"
 o CBOR key value: 1
 o Change Controller: IESG
 o Specification Document(s): this document

 o Response parameter name: "username"
 o CBOR key value: 2
 o Change Controller: IESG
 o Specification Document(s): this document

 o Response parameter name: "client_id"
 o CBOR key value: 3
 o Change Controller: IESG
 o Specification Document(s): this document

 o Response parameter name: "scope"
 o CBOR key value: 4
 o Change Controller: IESG
 o Specification Document(s): this document

 o Response parameter name: "token_type"
 o CBOR key value: 5
 o Change Controller: IESG
 o Specification Document(s): this document

 o Response parameter name: "exp"
 o CBOR key value: 6
 o Change Controller: IESG

Seitz, et al. Expires December 12, 2016 [Page 35]

Internet-Draft ACE June 2016

 o Specification Document(s): this document

 o Response parameter name: "iat"
 o CBOR key value: 7
 o Change Controller: IESG
 o Specification Document(s): this document

 o Response parameter name: "nbf"
 o CBOR key value: 8
 o Change Controller: IESG
 o Specification Document(s): this document

 o Response parameter name: "sub"
 o CBOR key value: 9
 o Change Controller: IESG
 o Specification Document(s): this document

 o Response parameter name: "aud"
 o CBOR key value: 10
 o Change Controller: IESG
 o Specification Document(s): this document

 o Response parameter name: "iss"
 o CBOR key value: 11
 o Change Controller: IESG
 o Specification Document(s): this document

 o Response parameter name: "jti"
 o CBOR key value: 12
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "alg"
 o CBOR key value: 13
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "cnf"
 o CBOR key value: 14
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter name: "aud"
 o CBOR key value: 15
 o Change Controller: IESG
 o Specification Document(s): this document

Seitz, et al. Expires December 12, 2016 [Page 36]

Internet-Draft ACE June 2016

10.9. CoAP Option Number Registration

 This section registers the "Access-Token" CoAP Option Number in the
 "CoRE Parameters" sub-registry "CoAP Option Numbers" in the manner
 described in [RFC7252].

 Name

 Access-Token
 Number

 TBD
 Reference

 [This document].
 Meaning in Request

 Contains an Access Token according to [This document] containing
 access permissions of the client.
 Meaning in Response

 Not used in response
 Safe-to-Forward

 TBD
 Format

 Based on the observer the format is perceived differently. Opaque
 data to the client and CWT or reference token to the RS.
 Length

 Less then 255 bytes

11. Acknowledgments

 We would like to thank Eve Maler for her contributions to the use of
 OAuth 2.0 and UMA in IoT scenarios, Robert Taylor for his discussion
 input, and Malisa Vucinic for his input on the ACRE proposal
 [I-D.seitz-ace-core-authz] which was one source of inspiration for
 this work. Finally, we would like to thank the ACE working group in
 general for their feedback.

 Ludwig Seitz and Goeran Selander worked on this document as part of
 the CelticPlus project CyberWI, with funding from Vinnova.

https://datatracker.ietf.org/doc/html/rfc7252

Seitz, et al. Expires December 12, 2016 [Page 37]

Internet-Draft ACE June 2016

12. References

12.1. Normative References

 [I-D.ietf-ace-cbor-web-token]
 Wahlstroem, E., Jones, M., and H. Tschofenig, "CBOR Web
 Token (CWT)", draft-ietf-ace-cbor-web-token-00 (work in
 progress), May 2016.

 [I-D.ietf-cose-msg]
 Schaad, J., "CBOR Encoded Message Syntax", draft-ietf-

cose-msg-12 (work in progress), May 2016.

 [I-D.selander-ace-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security of CoAP (OSCOAP)", draft-selander-ace-

object-security-04 (work in progress), March 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
RFC 7662, DOI 10.17487/RFC7662, October 2015,

 <http://www.rfc-editor.org/info/rfc7662>.

 [RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",

RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <http://www.rfc-editor.org/info/rfc7800>.

12.2. Informative References

 [I-D.ietf-ace-actors]
 Gerdes, S., Seitz, L., Selander, G., and C. Bormann, "An
 architecture for authorization in constrained
 environments", draft-ietf-ace-actors-03 (work in
 progress), March 2016.

https://datatracker.ietf.org/doc/html/draft-ietf-ace-cbor-web-token-00
https://datatracker.ietf.org/doc/html/draft-ietf-cose-msg-12
https://datatracker.ietf.org/doc/html/draft-ietf-cose-msg-12
https://datatracker.ietf.org/doc/html/draft-selander-ace-object-security-04
https://datatracker.ietf.org/doc/html/draft-selander-ace-object-security-04
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7662
http://www.rfc-editor.org/info/rfc7662
https://datatracker.ietf.org/doc/html/rfc7800
http://www.rfc-editor.org/info/rfc7800
https://datatracker.ietf.org/doc/html/draft-ietf-ace-actors-03

Seitz, et al. Expires December 12, 2016 [Page 38]

Internet-Draft ACE June 2016

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Block-wise transfers in CoAP",

draft-ietf-core-block-20 (work in progress), April 2016.

 [I-D.ietf-oauth-pop-architecture]
 Hunt, P., Richer, J., Mills, W., Mishra, P., and H.
 Tschofenig, "OAuth 2.0 Proof-of-Possession (PoP) Security
 Architecture", draft-ietf-oauth-pop-architecture-07 (work
 in progress), December 2015.

 [I-D.seitz-ace-core-authz]
 Seitz, L., Selander, G., and M. Vucinic, "Authorization
 for Constrained RESTful Environments", draft-seitz-ace-

core-authz-00 (work in progress), June 2015.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <http://www.rfc-editor.org/info/rfc4949>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <http://www.rfc-editor.org/info/rfc6690>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <http://www.rfc-editor.org/info/rfc6749>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <http://www.rfc-editor.org/info/rfc6819>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

https://datatracker.ietf.org/doc/html/draft-ietf-core-block-20
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-architecture-07
https://datatracker.ietf.org/doc/html/draft-seitz-ace-core-authz-00
https://datatracker.ietf.org/doc/html/draft-seitz-ace-core-authz-00
https://datatracker.ietf.org/doc/html/rfc4949
http://www.rfc-editor.org/info/rfc4949
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6690
http://www.rfc-editor.org/info/rfc6690
https://datatracker.ietf.org/doc/html/rfc6749
http://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819
http://www.rfc-editor.org/info/rfc6819
https://datatracker.ietf.org/doc/html/rfc7049
http://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159

Seitz, et al. Expires December 12, 2016 [Page 39]

Internet-Draft ACE June 2016

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <http://www.rfc-editor.org/info/rfc7228>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://www.rfc-editor.org/info/rfc7519>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",

RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <http://www.rfc-editor.org/info/rfc7591>.

 [RFC7744] Seitz, L., Ed., Gerdes, S., Ed., Selander, G., Mani, M.,
 and S. Kumar, "Use Cases for Authentication and
 Authorization in Constrained Environments", RFC 7744,
 DOI 10.17487/RFC7744, January 2016,
 <http://www.rfc-editor.org/info/rfc7744>.

Appendix A. Design Justification

 This section provides further insight into the design decisions of
 the solution documented in this document. Section 3 lists several
 building blocks and briefly summarizes their importance. The
 justification for offering some of those building blocks, as opposed
 to using OAuth 2.0 as is, is given below.

 Common IoT constraints are:

 Low Power Radio:

 Many IoT devices are equipped with a small battery which needs to
 last for a long time. For many constrained wireless devices the
 highest energy cost is associated to transmitting or receiving
 messages. It is therefore important to keep the total
 communication overhead low, including minimizing the number and
 size of messages sent and received, which has an impact of choice
 on the message format and protocol. By using CoAP over UDP, and
 CBOR encoded messages some of these aspects are addressed.
 Security protocols contribute to the communication overhead and
 can in some cases be optimized. For example authentication and
 key establishment may in certain cases where security requirements

https://datatracker.ietf.org/doc/html/rfc7228
http://www.rfc-editor.org/info/rfc7228
https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7519
http://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc7591
http://www.rfc-editor.org/info/rfc7591
https://datatracker.ietf.org/doc/html/rfc7744
http://www.rfc-editor.org/info/rfc7744

Seitz, et al. Expires December 12, 2016 [Page 40]

Internet-Draft ACE June 2016

 so allows be replaced by provisioning of security context by a
 trusted third party, using transport or application layer
 security.

 Low CPU Speed:

 Some IoT devices are equipped with processors that are
 significantly slower than those found in most current devices on
 the Internet. This typically has implications on what timely
 cryptographic operations a device is capable to perform, which in
 turn impacts e.g. protocol latency. Symmetric key cryptography
 may be used instead of the computationally more expensive public
 key cryptography where the security requirements so allows, but
 this may also require support for trusted third party assisted
 secret key establishment using transport or application layer
 security.

 Small Amount of Memory:

 Microcontrollers embedded in IoT devices are often equipped with
 small amount of RAM and flash memory, which places limitations
 what kind of processing can be performed and how much code can be
 put on those devices. To reduce code size fewer and smaller
 protocol implementations can be put on the firmware of such a
 device. In this case, CoAP may be used instead of HTTP, symmetric
 key cryptography instead of public key cryptography, and CBOR
 instead of JSON. Authentication and key establishment protocol,
 e.g. the DTLS handshake, in comparison with assisted key
 establishment also has an impact on memory and code.

 User Interface Limitations:

 Protecting access to resources is both an important security as
 well as privacy feature. End users and enterprise customers do
 not want to give access to the data collected by their IoT device
 or to functions it may offer to third parties. Since the
 classical approach of requesting permissions from end users via a
 rich user interface does not work in many IoT deployment scenarios
 these functions need to be delegated to user controlled devices
 that are better suitable for such tasks, such as smart phones and
 tablets.
 Communication Constraints:

 In certain constrained settings an IoT device may not be able to
 communicate with a given device at all times. Devices may be
 sleeping, or just disconnected from the Internet because of
 general lack of connectivity in the area, for cost reasons, or for

Seitz, et al. Expires December 12, 2016 [Page 41]

Internet-Draft ACE June 2016

 security reasons, e.g. to avoid an entry point for Denial-of-
 Service attacks.

 The communication interactions this framework builds upon (as
 shown graphically in Figure 1) may be accomplished using a variety
 of different protocols, and not all parts of the message flow are
 used in all applications due to the communication constraints.
 While we envision deployments to make use of CoAP we explicitly
 want to support HTTP, HTTP/2 or specific protocols, such as
 Bluetooth Smart communication, which does not necessarily use IP.
 The latter raises the need for application layer security over the
 various interfaces.

Appendix B. Roles and Responsibilites

 Resource Owner

 * Make sure that the RS is registered at the AS.
 * Make sure that clients can discover the AS which is in charge
 of the RS.
 * Make sure that the AS has the necessary, up-to-date, access
 control policies for the RS.

 Requesting Party

 * Make sure that the client is provisioned the necessary
 credentials to authenticate to the AS.
 * Make sure that the client is configured to follow the security
 requirements of the Requesting Party, when issuing requests
 (e.g. minimum communication security requirements, trust
 anchors).
 * Register the client at the AS.

 Authorization Server

 * Register RS and manage corresponding security contexts.
 * Register clients and including authentication credentials.
 * Allow Resource Owners to configure and update access control
 policies related to their registered RS'
 * Expose a service that allows clients to request tokens.
 * Authenticate clients that wishes to request a token.
 * Process a token requests against the authorization policies
 configured for the RS.
 * Expose a service that allows RS's to submit token introspection
 requests.
 * Authenticate RS's that wishes to get an introspection response.
 * Process token introspection requests.
 * Optionally: Handle token revocation.

Seitz, et al. Expires December 12, 2016 [Page 42]

Internet-Draft ACE June 2016

 Client

 * Discover the AS in charge of the RS that is to be targeted with
 a request.
 * Submit the token request (A).

 + Authenticate towards the AS.
 + Specify which RS, which resource(s), and which action(s) the
 request(s) will target.
 + Specify preferences for communication security
 + If raw public key (rpk) or certificate is used, make sure
 the AS has the right rpk or certificate for this client.
 * Process the access token and client information (B)

 + Check that the token has the right format (e.g. CWT).
 + Check that the client information provides the necessary
 security parameters (e.g. PoP key, information on
 communication security protocols supported by the RS).
 * Send the token and request to the RS (C)

 + Authenticate towards the RS (this could coincide with the
 proof of possession process).
 + Transmit the token as specified by the AS (default is to an
 authorization information resource, alternative options are
 as a CoAP option or in the DTLS handshake).
 + Perform the proof-of-possession procedure as specified for
 the type of used token (this may already have been taken
 care of through the authentication procedure).
 * Process the RS response (F) requirements of the Requesting
 Party, when issuing requests (e.g. minimum communication
 security requirements, trust anchors).
 * Register the client at the AS.

 Resource Server

 * Expose a way to submit access tokens.
 * Process an access token.

 + Verify the token is from the right AS.
 + Verify that the token applies to this RS.
 + Check that the token has not expired (if the token provides
 expiration information).
 + Check the token's integrity.
 + Store the token so that it can be retrieved in the context
 of a matching request.
 * Process a request.

 + Set up communication security with the client.

Seitz, et al. Expires December 12, 2016 [Page 43]

Internet-Draft ACE June 2016

 + Authenticate the client.
 + Match the client against existing tokens.
 + Check that tokens belonging to the client actually authorize
 the requested action.
 + Optionally: Check that the matching tokens are still valid
 (if this is possible.
 * Send a response following the agreed upon communication
 security.

Appendix C. Deployment Examples

 There is a large variety of IoT deployments, as is indicated in
Appendix A, and this section highlights a few common variants. This

 section is not normative but illustrates how the framework can be
 applied.

 For each of the deployment variants there are a number of possible
 security setups between clients, resource servers and authorization
 servers. The main focus in the following subsections is on how
 authorization of a client request for a resource hosted by a RS is
 performed. This requires the the security of the requests and
 responses between the clients and the RS to consider.

 Note: CBOR diagnostic notation is used for examples of requests and
 responses.

C.1. Local Token Validation

 In this scenario we consider the case where the resource server is
 offline, i.e. it is not connected to the AS at the time of the access
 request. This access procedure involves steps A, B, C, and F of
 Figure 1.

 Since the resource server must be able to verify the access token
 locally, self-contained access tokens must be used.

 This example shows the interactions between a client, the
 authorization server and a temperature sensor acting as a resource
 server. Message exchanges A and B are shown in Figure 17.

 A: The client first generates a public-private key pair used for
 communication security with the RS.
 The client sends the POST request to /token at the AS. The
 request contains the public key of the client and the Audience
 parameter set to "tempSensorInLivingRoom", a value that the
 temperature sensor identifies itself with. The AS evaluates the
 request and authorizes the client to access the resource.

Seitz, et al. Expires December 12, 2016 [Page 44]

Internet-Draft ACE June 2016

 B: The AS responds with a PoP token and client information. The
 PoP token contains the public key of the client, and the client
 information contains the public key of the RS. For communication
 security this example uses DTLS RawPublicKey between the client
 and the RS. The issued token will have a short validity time,
 i.e. 'exp' close to 'iat', to protect the RS from replay attacks
 since it, that cannot do introspection to check the tokens current
 validity. The token includes the claim "aif" with the authorized
 access that an owner of the temperature device can enjoy. The
 'aif' claim, issued by the AS, informs the RS that the owner of
 the token, that can prove the possession of a key is authorized to
 make a GET request against the /temperature resource and a POST
 request on the /firmware resource.
 Note: In this example we assume that the client knows what
 resource it wants to access, and is therefore able to request
 specific audience and scope claims for the access token.

 Authorization
 Client Server
 | |
 | |
 A: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path:"token"
 | | Content-Type: application/cbor
 | | Payload: <Request-Payload>
 | |
 B: |<--------+ Header: 2.05 Content
 | 2.05 | Content-Type: application/cbor
 | | Payload: <Response-Payload>
 | |

 Figure 17: Token Request and Response Using Client Credentials.

 The information contained in the Request-Payload and the Response-
 Payload is shown in Figure 18.

Seitz, et al. Expires December 12, 2016 [Page 45]

Internet-Draft ACE June 2016

 Request-Payload :
 {
 "grant_type" : "client_credentials",
 "aud" : "tempSensorInLivingRoom",
 "client_id" : "myclient",
 "client_secret" : "qwerty"
 }

 Response-Payload :
 {
 "access_token" : b64'SlAV32hkKG ...',
 "token_type" : "pop",
 "csp" : "DTLS",
 "cnf" : {
 "COSE_Key" : {
 "kid" : b64'c29tZSBwdWJsaWMga2V5IGlk',
 "kty" : "EC",
 "crv" : "P-256",
 "x" : b64'MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4',
 "y" : b64'4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM'
 }
 }
 }

 Figure 18: Request and Response Payload Details.

 The content of the access token is shown in Figure 19.

 {
 "aud" : "tempSensorInLivingRoom",
 "iat" : "1360189224",
 "exp" : "1360289224",
 "aif" : [["/temperature", 0], ["/firmware", 2]],
 "cnf" : {
 "jwk" : {
 "kid" : b64'1Bg8vub9tLe1gHMzV76e8',
 "kty" : "EC",
 "crv" : "P-256",
 "x" : b64'f83OJ3D2xF1Bg8vub9tLe1gHMzV76e8Tus9uPHvRVEU',
 "y" : b64'x_FEzRu9m36HLN_tue659LNpXW6pCyStikYjKIWI5a0'
 }
 }
 }

 Figure 19: Access Token including Public Key of the Client.

 Messages C and F are shown in Figure 20 - Figure 21.

Seitz, et al. Expires December 12, 2016 [Page 46]

Internet-Draft ACE June 2016

 C: The client then sends the PoP token to the /authz-info resource
 at the RS. This is a plain CoAP request, i.e. no transport or
 application layer security between client and RS, since the token
 is integrity protected between AS and RS. The RS verifies that
 the PoP token was created by a known and trusted AS, is valid, and
 responds to the client. The RS caches the security context
 together with authorization information about this client
 contained in the PoP token.

 Resource
 Client Server
 | |
 C: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path:"authz-info"
 | | Payload: SlAV32hkKG ...
 | |
 |<--------+ Header: 2.01 Created
 | 2.01 |
 | |

 Figure 20: Access Token provisioning to RS
 The client and the RS runs the DTLS handshake using the raw public
 keys established in step B and C.
 The client sends the CoAP request GET to /temperature on RS over
 DTLS. The RS verifies that the request is authorized, based on
 previously established security context.
 F: The RS responds with a resource representation over DTLS.

 Resource
 Client Server
 | |
 |<=======>| DTLS Connection Establishment
 | | using Raw Public Keys
 | |
 +-------->| Header: GET (Code=0.01)
 | GET | Uri-Path: "temperature"
 | |
 | |
 | |
 F: |<--------+ Header: 2.05 Content
 | 2.05 | Payload: <sensor value>
 | |

 Figure 21: Resource Request and Response protected by DTLS.

Seitz, et al. Expires December 12, 2016 [Page 47]

Internet-Draft ACE June 2016

C.2. Introspection Aided Token Validation

 In this deployment scenario we assume that a client is not be able to
 access the AS at the time of the access request. Since the RS is,
 however, connected to the back-end infrastructure it can make use of
 token introspection. This access procedure involves steps A-F of
 Figure 1, but assumes steps A and B have been carried out during a
 phase when the client had connectivity to AS.

 Since the client is assumed to be offline, at least for a certain
 period of time, a pre-provisioned access token has to be long-lived.
 The resource server may use its online connectivity to validate the
 access token with the authorization server, which is shown in the
 example below.

 In the example we show the interactions between an offline client
 (key fob), a resource server (online lock), and an authorization
 server. We assume that there is a provisioning step where the client
 has access to the AS. This corresponds to message exchanges A and B
 which are shown in Figure 22.

 Authorization consent from the resource owner can be pre-configured,
 but it can also be provided via an interactive flow with the resource
 owner. An example of this for the key fob case could be that the
 resource owner has a connected car, he buys a generic key that he
 wants to use with the car. To authorize the key fob he connects it
 to his computer that then provides the UI for the device. After that
 OAuth 2.0 implicit flow can used to authorize the key for his car at
 the the car manufacturers AS.

 Note: In this example the client does not know the exact door it will
 be used to access since the token request is not send at the time of
 access. So the scope and audience parameters is set quite wide to
 start with and new values different form the original once can be
 returned from introspection later on.

 A: The client sends the request using POST to /token at AS. The
 request contains the Audience parameter set to "PACS1337" (PACS,
 Physical Access System), a value the that the online door in
 question identifies itself with. The AS generates an access token
 as on opaque string, which it can match to the specific client, a
 targeted audience and a symmetric key.
 B: The AS responds with the an access token and client
 information, the latter containing a symmetric key. Communication
 security between C and RS will be DTLS and PreSharedKey. The PoP
 key being used as the PreSharedKey.

Seitz, et al. Expires December 12, 2016 [Page 48]

Internet-Draft ACE June 2016

 Authorization
 Client Server
 | |
 | |
 A: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path:"token"
 | | Content-Type: application/cbor
 | | Payload: <Request-Payload>
 | |
 B: |<--------+ Header: 2.05 Content
 | | Content-Type: application/cbor
 | 2.05 | Payload: <Response-Payload>
 | |

 Figure 22: Token Request and Response using Client Credentials.

 The information contained in the Request-Payload and the Response-
 Payload is shown in Figure 23.

 Request-Payload:
 {
 "grant_type" : "client_credentials",
 "aud" : "lockOfDoor4711",
 "client_id" : "keyfob",
 "client_secret" : "qwerty"
 }

 Response-Payload:
 {
 "access_token" : b64'SlAV32hkKG ...'
 "token_type" : "pop",
 "csp" : "DTLS",
 "cnf" : {
 "COSE_Key" : {
 "kid" : b64'c29tZSBwdWJsaWMga2V5IGlk',
 "kty" : "oct",
 "alg" : "HS256",
 "k": b64'ZoRSOrFzN_FzUA5XKMYoVHyzff5oRJxl-IXRtztJ6uE'
 }
 }
 }

 Figure 23: Request and Response Payload for C offline

 The access token in this case is just an opaque string referencing
 the authorization information at the AS.

Seitz, et al. Expires December 12, 2016 [Page 49]

Internet-Draft ACE June 2016

 C: Next, the client POSTs the access token to the /authz-info
 resource in the RS. This is a plain CoAP request, i.e. no DTLS
 between client and RS. Since the token is an opaque string, the
 RS cannot verify it on its own, and thus defers to respond the
 client with a status code until after step E.
 D: The RS forwards the token to the /introspect resource on the
 AS. Introspection assumes a secure connection between the AS and
 the RS, e.g. using transport of application layer security, which
 is not detailed in this example.
 E: The AS provides the introspection response containing
 parameters about the token. This includes the confirmation key
 (cnf) parameter that allows the RS to verify the client's proof of
 possession in step F.
 After receiving message E, the RS responds to the client's POST in
 step C with Code 2.01 Created.

 Resource
 Client Server
 | |
 C: +-------->| Header: POST (T=CON, Code=0.02)
 | POST | Uri-Path:"authz-info"
 | | Content-Type: "application/cbor"
 | | Payload: b64'SlAV32hkKG ...''
 | |
 | | Authorization
 | | Server
 | | |
 D: | +--------->| Header: POST (Code=0.02)
 | | POST | Uri-Path: "introspect"
 | | | Content-Type: "application/cbor"
 | | | Payload: <Request-Payload>
 | | |
 E: | |<---------+ Header: 2.05 Content
 | | 2.05 | Content-Type: "application/cbor"
 | | | Payload: <Response-Payload>
 | | |
 | |
 C: |<--------+ Header: 2.01 Created
 | 2.01 |
 | |

 Figure 24: Token Introspection for C offline
 The information contained in the Request-Payload and the Response-
 Payload is shown in Figure 25.

Seitz, et al. Expires December 12, 2016 [Page 50]

Internet-Draft ACE June 2016

 Request-Payload:
 {
 "token" : b64'SlAV32hkKG...',
 "client_id" : "FrontDoor",
 "client_secret" : "ytrewq"
 }

 Response-Payload:
 {
 "active" : true,
 "aud" : "lockOfDoor4711",
 "scope" : "open, close",
 "iat" : 1311280970,
 "cnf" : {
 "kid" : b64'JDLUhTMjU2IiwiY3R5Ijoi ...'
 }
 }

 Figure 25: Request and Response Payload for Introspection

 The client uses the symmetric PoP key to establish a DTLS
 PreSharedKey secure connection to the RS. The CoAP request PUT is
 sent to the uri-path /state on RS changing state of the door to
 locked.
 F: The RS responds with a appropriate over the secure DTLS
 channel.

 Resource
 Client Server
 | |
 |<=======>| DTLS Connection Establishment
 | | using Pre Shared Key
 | |
 +-------->| Header: PUT (Code=0.03)
 | PUT | Uri-Path: "state"
 | | Payload: <new state for the lock>
 | |
 F: |<--------+ Header: 2.04 Changed
 | 2.04 | Payload: <new state for the lock>
 | |

 Figure 26: Resource request and response protected by OSCOAP

Appendix D. Document Updates

Seitz, et al. Expires December 12, 2016 [Page 51]

Internet-Draft ACE June 2016

D.1. Version -01 to -02

 o Restructured to remove communication security parts. These shall
 now be defined in profiles.
 o Restructured section 5 to create new sections on the OAuth
 endpoints /token, /introspect and /authz-info.
 o Pulled in material from draft-ietf-oauth-pop-key-distribution in
 order to define proof-of-possession key distribution.
 o Introduced the 'cnf' parameter as defined in RFC7800 to reference
 or transport keys used for proof of posession.
 o Introduced the 'client-token' to transport client information from
 the AS to the client via the RS in conjunction with introspection.
 o Expanded the IANA section to define parameters for token request,
 introspection and CWT claims.
 o Moved deployment scenarios to the appendix as examples.

D.2. Version -00 to -01

 o Changed 5.1. from "Communication Security Protocol" to "Client
 Information".
 o Major rewrite of 5.1 to clarify the information exchanged between
 C and AS in the PoP token request profile for IoT.

 * Allow the client to indicate preferences for the communication
 security protocol.
 * Defined the term "Client Information" for the additional
 information returned to the client in addition to the access
 token.
 * Require that the messages between AS and client are secured,
 either with (D)TLS or with COSE_Encrypted wrappers.
 * Removed dependency on OSCoAP and added generic text about
 object security instead.
 * Defined the "rpk" parameter in the client information to
 transmit the raw public key of the RS from AS to client.
 * (D)TLS MUST use the PoP key in the handshake (either as PSK or
 as client RPK with client authentication).
 * Defined the use of x5c, x5t and x5tS256 parameters when a
 client certificate is used for proof of possession.
 * Defined "tktn" parameter for signaling for how to transfer the
 access token.
 o Added 5.2. the CoAP Access-Token option for transferring access
 tokens in messages that do not have payload.
 o 5.3.2. Defined success and error responses from the RS when
 receiving an access token.
 o 5.6.:Added section giving guidance on how to handle token
 expiration in the absence of reliable time.
 o Appendix B Added list of roles and responsibilities for C, AS and
 RS.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-key-distribution
https://datatracker.ietf.org/doc/html/rfc7800

Seitz, et al. Expires December 12, 2016 [Page 52]

Internet-Draft ACE June 2016

Authors' Addresses

 Ludwig Seitz
 SICS
 Scheelevaegen 17
 Lund 223 70
 SWEDEN

 Email: ludwig@sics.se

 Goeran Selander
 Ericsson
 Faroegatan 6
 Kista 164 80
 SWEDEN

 Email: goran.selander@ericsson.com

 Erik Wahlstroem
 Nexus Technology
 Telefonvagen 26
 Hagersten 126 26
 Sweden

 Email: erik.wahlstrom@nexusgroup.com

 Samuel Erdtman
 Spotify AB
 Birger Jarlsgatan 61, 4tr
 Stockholm 113 56
 Sweden

 Email: erdtman@spotify.com

 Hannes Tschofenig
 ARM Ltd.
 Hall in Tirol 6060
 Austria

 Email: Hannes.Tschofenig@arm.com

Seitz, et al. Expires December 12, 2016 [Page 53]

