
ACE Working Group L. Seitz
Internet-Draft RISE
Intended status: Standards Track G. Selander
Expires: April 5, 2019 Ericsson
 E. Wahlstroem

 S. Erdtman
 Spotify AB
 H. Tschofenig
 Arm Ltd.
 October 2, 2018

Authentication and Authorization for Constrained Environments (ACE)
using the OAuth 2.0 Framework (ACE-OAuth)

draft-ietf-ace-oauth-authz-16

Abstract

 This specification defines a framework for authentication and
 authorization in Internet of Things (IoT) environments called ACE-
 OAuth. The framework is based on a set of building blocks including
 OAuth 2.0 and CoAP, thus making a well-known and widely used
 authorization solution suitable for IoT devices. Existing
 specifications are used where possible, but where the constraints of
 IoT devices require it, extensions are added and profiles are
 defined.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 5, 2019.

Seitz, et al. Expires April 5, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft ACE-OAuth October 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Terminology . 5
3. Overview . 5
3.1. OAuth 2.0 . 6
3.2. CoAP . 9

4. Protocol Interactions . 10
5. Framework . 14
5.1. Discovering Authorization Servers 15
5.1.1. Unauthorized Resource Request Message 15
5.1.2. AS Information 16

5.2. Authorization Grants 17
5.3. Client Credentials 18
5.4. AS Authentication . 18
5.5. The Authorization Endpoint 18
5.6. The Token Endpoint 19
5.6.1. Client-to-AS Request 19
5.6.2. AS-to-Client Response 22
5.6.3. Error Response 24
5.6.4. Request and Response Parameters 25
5.6.4.1. Grant Type 25
5.6.4.2. Token Type 26
5.6.4.3. Profile . 26

5.6.5. Mapping Parameters to CBOR 27
5.7. The Introspection Endpoint 27
5.7.1. Introspection Request 28
5.7.2. Introspection Response 29
5.7.3. Error Response 30
5.7.4. Mapping Introspection parameters to CBOR 30

5.8. The Access Token . 31
5.8.1. The Authorization Information Endpoint 32
5.8.2. Client Requests to the RS 33

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Seitz, et al. Expires April 5, 2019 [Page 2]

Internet-Draft ACE-OAuth October 2018

5.8.3. Token Expiration 33
6. Security Considerations 34
6.1. Unprotected AS Information 35
6.2. Use of Nonces for Replay Protection 36
6.3. Combining profiles 36
6.4. Error responses . 36

7. Privacy Considerations 36
8. IANA Considerations . 37
8.1. Authorization Server Information 37
8.2. OAuth Extensions Error Registration 38
8.3. OAuth Error Code CBOR Mappings Registry 38
8.4. OAuth Grant Type CBOR Mappings 39
8.5. OAuth Access Token Types 39
8.6. OAuth Token Type CBOR Mappings 39
8.6.1. Initial Registry Contents 40

8.7. ACE Profile Registry 40
8.8. OAuth Parameter Registration 41
8.9. OAuth CBOR Parameter Mappings Registry 41
8.10. OAuth Introspection Response Parameter Registration . . . 42
8.11. Introspection Endpoint CBOR Mappings Registry 42
8.12. JSON Web Token Claims 42
8.13. CBOR Web Token Claims 43
8.14. Media Type Registrations 44
8.15. CoAP Content-Format Registry 45

9. Acknowledgments . 45
10. References . 45
10.1. Normative References 45
10.2. Informative References 47

Appendix A. Design Justification 50
Appendix B. Roles and Responsibilities 53
Appendix C. Requirements on Profiles 55
Appendix D. Assumptions on AS knowledge about C and RS 56
Appendix E. Deployment Examples 56
E.1. Local Token Validation 57
E.2. Introspection Aided Token Validation 61

Appendix F. Document Updates 65
F.1. Version -15 to -16 65
F.2. Version -14 to -15 65
F.3. Version -13 to -14 65
F.4. Version -12 to -13 66
F.5. Version -11 to -12 66
F.6. Version -10 to -11 66
F.7. Version -09 to -10 66
F.8. Version -08 to -09 66
F.9. Version -07 to -08 67
F.10. Version -06 to -07 67
F.11. Version -05 to -06 67
F.12. Version -04 to -05 67

Seitz, et al. Expires April 5, 2019 [Page 3]

Internet-Draft ACE-OAuth October 2018

F.13. Version -03 to -04 68
F.14. Version -02 to -03 68
F.15. Version -01 to -02 68
F.16. Version -00 to -01 69

 Authors' Addresses . 69

1. Introduction

 Authorization is the process for granting approval to an entity to
 access a resource [RFC4949]. The authorization task itself can best
 be described as granting access to a requesting client, for a
 resource hosted on a device, the resource server (RS). This exchange
 is mediated by one or multiple authorization servers (AS). Managing
 authorization for a large number of devices and users can be a
 complex task.

 While prior work on authorization solutions for the Web and for the
 mobile environment also applies to the Internet of Things (IoT)
 environment, many IoT devices are constrained, for example, in terms
 of processing capabilities, available memory, etc. For web
 applications on constrained nodes, this specification RECOMMENDS the
 use of CoAP [RFC7252] as replacement for HTTP.

 A detailed treatment of constraints can be found in [RFC7228], and
 the different IoT deployments present a continuous range of device
 and network capabilities. Taking energy consumption as an example:
 At one end there are energy-harvesting or battery powered devices
 which have a tight power budget, on the other end there are mains-
 powered devices, and all levels in between.

 Hence, IoT devices may be very different in terms of available
 processing and message exchange capabilities and there is a need to
 support many different authorization use cases [RFC7744].

 This specification describes a framework for authentication and
 authorization in constrained environments (ACE) built on re-use of
 OAuth 2.0 [RFC6749], thereby extending authorization to Internet of
 Things devices. This specification contains the necessary building
 blocks for adjusting OAuth 2.0 to IoT environments.

 More detailed, interoperable specifications can be found in profiles.
 Implementations may claim conformance with a specific profile,
 whereby implementations utilizing the same profile interoperate while
 implementations of different profiles are not expected to be
 interoperable. Some devices, such as mobile phones and tablets, may
 implement multiple profiles and will therefore be able to interact
 with a wider range of low end devices. Requirements on profiles are

https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7744
https://datatracker.ietf.org/doc/html/rfc6749

Seitz, et al. Expires April 5, 2019 [Page 4]

Internet-Draft ACE-OAuth October 2018

 described at contextually appropriate places throughout this
 specification, and also summarized in Appendix C.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Certain security-related terms such as "authentication",
 "authorization", "confidentiality", "(data) integrity", "message
 authentication code", and "verify" are taken from [RFC4949].

 Since exchanges in this specification are described as RESTful
 protocol interactions, HTTP [RFC7231] offers useful terminology.

 Terminology for entities in the architecture is defined in OAuth 2.0
 [RFC6749] such as client (C), resource server (RS), and authorization
 server (AS).

 Note that the term "endpoint" is used here following its OAuth
 definition, which is to denote resources such as token and
 introspection at the AS and authz-info at the RS (see Section 5.8.1
 for a definition of the authz-info endpoint). The CoAP [RFC7252]
 definition, which is "An entity participating in the CoAP protocol"
 is not used in this specification.

 The specifications in this document is called the "framework" or "ACE
 framework". When referring to "profiles of this framework" it refers
 to additional specifications that define the use of this
 specification with concrete transport, and communication security
 protocols (e.g., CoAP over DTLS).

 We use the term "Access Information" for parameters other than the
 access token provided to the client by the AS to enable it to access
 the RS (e.g. public key of the RS, profile supported by RS).

3. Overview

 This specification defines the ACE framework for authorization in the
 Internet of Things environment. It consists of a set of building
 blocks.

 The basic block is the OAuth 2.0 [RFC6749] framework, which enjoys
 widespread deployment. Many IoT devices can support OAuth 2.0

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc6749

Seitz, et al. Expires April 5, 2019 [Page 5]

Internet-Draft ACE-OAuth October 2018

 without any additional extensions, but for certain constrained
 settings additional profiling is needed.

 Another building block is the lightweight web transfer protocol CoAP
 [RFC7252], for those communication environments where HTTP is not
 appropriate. CoAP typically runs on top of UDP, which further
 reduces overhead and message exchanges. While this specification
 defines extensions for the use of OAuth over CoAP, other underlying
 protocols are not prohibited from being supported in the future, such
 as HTTP/2, MQTT, BLE and QUIC.

 A third building block is CBOR [RFC7049], for encodings where JSON
 [RFC8259] is not sufficiently compact. CBOR is a binary encoding
 designed for small code and message size, which may be used for
 encoding of self contained tokens, and also for encoding payload
 transferred in protocol messages.

 A fourth building block is the compact CBOR-based secure message
 format COSE [RFC8152], which enables application layer security as an
 alternative or complement to transport layer security (DTLS [RFC6347]
 or TLS [RFC5246]). COSE is used to secure self-contained tokens such
 as proof-of-possession (PoP) tokens, which is an extension to the
 OAuth tokens. The default token format is defined in CBOR web token
 (CWT) [RFC8392]. Application layer security for CoAP using COSE can
 be provided with OSCORE [I-D.ietf-core-object-security].

 With the building blocks listed above, solutions satisfying various
 IoT device and network constraints are possible. A list of
 constraints is described in detail in RFC 7228 [RFC7228] and a
 description of how the building blocks mentioned above relate to the
 various constraints can be found in Appendix A.

 Luckily, not every IoT device suffers from all constraints. The ACE
 framework nevertheless takes all these aspects into account and
 allows several different deployment variants to co-exist, rather than
 mandating a one-size-fits-all solution. It is important to cover the
 wide range of possible interworking use cases and the different
 requirements from a security point of view. Once IoT deployments
 mature, popular deployment variants will be documented in the form of
 ACE profiles.

3.1. OAuth 2.0

 The OAuth 2.0 authorization framework enables a client to obtain
 scoped access to a resource with the permission of a resource owner.
 Authorization information, or references to it, is passed between the
 nodes using access tokens. These access tokens are issued to clients
 by an authorization server with the approval of the resource owner.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc8392
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7228

Seitz, et al. Expires April 5, 2019 [Page 6]

Internet-Draft ACE-OAuth October 2018

 The client uses the access token to access the protected resources
 hosted by the resource server.

 A number of OAuth 2.0 terms are used within this specification:

 The token and introspection Endpoints:
 The AS hosts the token endpoint that allows a client to request
 access tokens. The client makes a POST request to the token
 endpoint on the AS and receives the access token in the response
 (if the request was successful).
 In some deployments, a token introspection endpoint is provided by
 the AS, which can be used by the RS if it needs to request
 additional information regarding a received access token. The RS
 makes a POST request to the introspection endpoint on the AS and
 receives information about the access token in the response. (See
 "Introspection" below.)

 Access Tokens:
 Access tokens are credentials needed to access protected
 resources. An access token is a data structure representing
 authorization permissions issued by the AS to the client. Access
 tokens are generated by the AS and consumed by the RS. The access
 token content is opaque to the client.

 Access tokens can have different formats, and various methods of
 utilization (e.g., cryptographic properties) based on the security
 requirements of the given deployment.

 Refresh Tokens:
 Refresh tokens are credentials used to obtain access tokens.
 Refresh tokens are issued to the client by the authorization
 server and are used to obtain a new access token when the current
 access token becomes invalid or expires, or to obtain additional
 access tokens with identical or narrower scope (access tokens may
 have a shorter lifetime and fewer permissions than authorized by
 the resource owner). Issuing a refresh token is optional at the
 discretion of the authorization server. If the authorization
 server issues a refresh token, it is included when issuing an
 access token (i.e., step (B) in Figure 1).

 A refresh token is a string representing the authorization granted
 to the client by the resource owner. The string is usually opaque
 to the client. The token denotes an identifier used to retrieve
 the authorization information. Unlike access tokens, refresh
 tokens are intended for use only with authorization servers and
 are never sent to resource servers.

Seitz, et al. Expires April 5, 2019 [Page 7]

Internet-Draft ACE-OAuth October 2018

 Proof of Possession Tokens:
 An access token may be bound to a cryptographic key, which is then
 used by an RS to authenticate requests from a client. Such tokens
 are called proof-of-possession access tokens (or PoP access
 tokens).

 The proof-of-possession (PoP) security concept assumes that the AS
 acts as a trusted third party that binds keys to access tokens.
 These so called PoP keys are then used by the client to
 demonstrate the possession of the secret to the RS when accessing
 the resource. The RS, when receiving an access token, needs to
 verify that the key used by the client matches the one bound to
 the access token. When this specification uses the term "access
 token" it is assumed to be a PoP access token token unless
 specifically stated otherwise.

 The key bound to the access token (the PoP key) may use either
 symmetric or asymmetric cryptography. The appropriate choice of
 the kind of cryptography depends on the constraints of the IoT
 devices as well as on the security requirements of the use case.

 Symmetric PoP key:
 The AS generates a random symmetric PoP key. The key is either
 stored to be returned on introspection calls or encrypted and
 included in the access token. The PoP key is also encrypted
 for the client and sent together with the access token to the
 client.

 Asymmetric PoP key:
 An asymmetric key pair is generated on the client and the
 public key is sent to the AS (if it does not already have
 knowledge of the client's public key). Information about the
 public key, which is the PoP key in this case, is either stored
 to be returned on introspection calls or included inside the
 access token and sent back to the requesting client. The RS
 can identify the client's public key from the information in
 the token, which allows the client to use the corresponding
 private key for the proof of possession.

 The access token is either a simple reference, or a structured
 information object (e.g., CWT [RFC8392]) protected by a
 cryptographic wrapper (e.g., COSE [RFC8152]). The choice of PoP
 key does not necessarily imply a specific credential type for the
 integrity protection of the token.

https://datatracker.ietf.org/doc/html/rfc8392
https://datatracker.ietf.org/doc/html/rfc8152

Seitz, et al. Expires April 5, 2019 [Page 8]

Internet-Draft ACE-OAuth October 2018

 Scopes and Permissions:
 In OAuth 2.0, the client specifies the type of permissions it is
 seeking to obtain (via the scope parameter) in the access token
 request. In turn, the AS may use the scope response parameter to
 inform the client of the scope of the access token issued. As the
 client could be a constrained device as well, this specification
 defines the use of CBOR encoding as data format, see Section 5, to
 request scopes and to be informed what scopes the access token
 actually authorizes.

 The values of the scope parameter in OAuth 2.0 are expressed as a
 list of space-delimited, case-sensitive strings, with a semantic
 that is well-known to the AS and the RS. More details about the
 concept of scopes is found under Section 3.3 in [RFC6749].

 Claims:
 Information carried in the access token or returned from
 introspection, called claims, is in the form of name-value pairs.
 An access token may, for example, include a claim identifying the
 AS that issued the token (via the "iss" claim) and what audience
 the access token is intended for (via the "aud" claim). The
 audience of an access token can be a specific resource or one or
 many resource servers. The resource owner policies influence what
 claims are put into the access token by the authorization server.

 While the structure and encoding of the access token varies
 throughout deployments, a standardized format has been defined
 with the JSON Web Token (JWT) [RFC7519] where claims are encoded
 as a JSON object. In [RFC8392], an equivalent format using CBOR
 encoding (CWT) has been defined.

 Introspection:
 Introspection is a method for a resource server to query the
 authorization server for the active state and content of a
 received access token. This is particularly useful in those cases
 where the authorization decisions are very dynamic and/or where
 the received access token itself is an opaque reference rather
 than a self-contained token. More information about introspection
 in OAuth 2.0 can be found in [RFC7662].

3.2. CoAP

 CoAP is an application layer protocol similar to HTTP, but
 specifically designed for constrained environments. CoAP typically
 uses datagram-oriented transport, such as UDP, where reordering and

https://datatracker.ietf.org/doc/html/rfc6749#section-3.3
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc8392
https://datatracker.ietf.org/doc/html/rfc7662

Seitz, et al. Expires April 5, 2019 [Page 9]

Internet-Draft ACE-OAuth October 2018

 loss of packets can occur. A security solution needs to take the
 latter aspects into account.

 While HTTP uses headers and query strings to convey additional
 information about a request, CoAP encodes such information into
 header parameters called 'options'.

 CoAP supports application-layer fragmentation of the CoAP payloads
 through blockwise transfers [RFC7959]. However, blockwise transfer
 does not increase the size limits of CoAP options, therefore data
 encoded in options has to be kept small.

 Transport layer security for CoAP can be provided by DTLS 1.2
 [RFC6347] or TLS 1.2 [RFC5246]. CoAP defines a number of proxy
 operations that require transport layer security to be terminated at
 the proxy. One approach for protecting CoAP communication end-to-end
 through proxies, and also to support security for CoAP over a
 different transport in a uniform way, is to provide security at the
 application layer using an object-based security mechanism such as
 COSE [RFC8152].

 One application of COSE is OSCORE [I-D.ietf-core-object-security],
 which provides end-to-end confidentiality, integrity and replay
 protection, and a secure binding between CoAP request and response
 messages. In OSCORE, the CoAP messages are wrapped in COSE objects
 and sent using CoAP.

 This framework RECOMMENDS the use of CoAP as replacement for HTTP for
 use in constrained environments.

4. Protocol Interactions

 The ACE framework is based on the OAuth 2.0 protocol interactions
 using the token endpoint and optionally the introspection endpoint.
 A client obtains an access token, and optionally a refresh token,
 from an AS using the token endpoint and subsequently presents the
 access token to a RS to gain access to a protected resource. In most
 deployments the RS can process the access token locally, however in
 some cases the RS may present it to the AS via the introspection
 endpoint to get fresh information. These interactions are shown in
 Figure 1. An overview of various OAuth concepts is provided in

Section 3.1.

 The OAuth 2.0 framework defines a number of "protocol flows" via
 grant types, which have been extended further with extensions to
 OAuth 2.0 (such as RFC 7521 [RFC7521] and
 [I-D.ietf-oauth-device-flow]). What grant types works best depends
 on the usage scenario and RFC 7744 [RFC7744] describes many different

https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc7521
https://datatracker.ietf.org/doc/html/rfc7521
https://datatracker.ietf.org/doc/html/rfc7744
https://datatracker.ietf.org/doc/html/rfc7744

Seitz, et al. Expires April 5, 2019 [Page 10]

Internet-Draft ACE-OAuth October 2018

 IoT use cases but there are two preferred grant types, namely the
 Authorization Code Grant (described in Section 4.1 of [RFC7521]) and
 the Client Credentials Grant (described in Section 4.4 of [RFC7521]).
 The Authorization Code Grant is a good fit for use with apps running
 on smart phones and tablets that request access to IoT devices, a
 common scenario in the smart home environment, where users need to go
 through an authentication and authorization phase (at least during
 the initial setup phase). The native apps guidelines described in
 [RFC8252] are applicable to this use case. The Client Credential
 Grant is a good fit for use with IoT devices where the OAuth client
 itself is constrained. In such a case, the resource owner has pre-
 arranged access rights for the client with the authorization server,
 which is often accomplished using a commissioning tool.

 The consent of the resource owner, for giving a client access to a
 protected resource, can be provided dynamically as in the traditional
 OAuth flows, or it could be pre-configured by the resource owner as
 authorization policies at the AS, which the AS evaluates when a token
 request arrives. The resource owner and the requesting party (i.e.,
 client owner) are not shown in Figure 1.

 This framework supports a wide variety of communication security
 mechanisms between the ACE entities, such as client, AS, and RS. It
 is assumed that the client has been registered (also called enrolled
 or onboarded) to an AS using a mechanism defined outside the scope of
 this document. In practice, various techniques for onboarding have
 been used, such as factory-based provisioning or the use of
 commissioning tools. Regardless of the onboarding technique, this
 provisioning procedure implies that the client and the AS exchange
 credentials and configuration parameters. These credentials are used
 to mutually authenticate each other and to protect messages exchanged
 between the client and the AS.

 It is also assumed that the RS has been registered with the AS,
 potentially in a similar way as the client has been registered with
 the AS. Established keying material between the AS and the RS allows
 the AS to apply cryptographic protection to the access token to
 ensure that its content cannot be modified, and if needed, that the
 content is confidentiality protected.

 The keying material necessary for establishing communication security
 between C and RS is dynamically established as part of the protocol
 described in this document.

 At the start of the protocol, there is an optional discovery step
 where the client discovers the resource server and the resources this
 server hosts. In this step, the client might also determine what
 permissions are needed to access the protected resource. A generic

https://datatracker.ietf.org/doc/html/rfc7521#section-4.1
https://datatracker.ietf.org/doc/html/rfc7521#section-4.4
https://datatracker.ietf.org/doc/html/rfc8252

Seitz, et al. Expires April 5, 2019 [Page 11]

Internet-Draft ACE-OAuth October 2018

 procedure is described in Section 5.1, profiles MAY define other
 procedures for discovery.

 In Bluetooth Low Energy, for example, advertisements are broadcasted
 by a peripheral, including information about the primary services.
 In CoAP, as a second example, a client can make a request to "/.well-
 known/core" to obtain information about available resources, which
 are returned in a standardized format as described in [RFC6690].

 +--------+ +---------------+
	---(A)-- Token Request ------->	
		Authorization
	<--(B)-- Access Token ---------	Server
	+ Access Information	
	+ Refresh Token (optional) +---------------+	
	^	
	Introspection Request (D)	
Client	(optional)	
	Response	
	(optional)	v
	+--------------+	
	---(C)-- Token + Request ----->	
		Resource
	<--(F)-- Protected Resource ---	Server
 +--------+ +--------------+

 Figure 1: Basic Protocol Flow.

 Requesting an Access Token (A):
 The client makes an access token request to the token endpoint at
 the AS. This framework assumes the use of PoP access tokens (see

Section 3.1 for a short description) wherein the AS binds a key to
 an access token. The client may include permissions it seeks to
 obtain, and information about the credentials it wants to use
 (e.g., symmetric/asymmetric cryptography or a reference to a
 specific credential).

 Access Token Response (B):
 If the AS successfully processes the request from the client, it
 returns an access token and optionally a refresh token (note that
 only certain grant types support refresh tokens). It can also
 return additional parameters, referred to as "Access Information".
 In addition to the response parameters defined by OAuth 2.0 and
 the PoP access token extension, this framework defines parameters
 that can be used to inform the client about capabilities of the

https://datatracker.ietf.org/doc/html/rfc6690

Seitz, et al. Expires April 5, 2019 [Page 12]

Internet-Draft ACE-OAuth October 2018

 RS. More information about these parameters can be found in
Section 5.6.4.

 Resource Request (C):
 The client interacts with the RS to request access to the
 protected resource and provides the access token. The protocol to
 use between the client and the RS is not restricted to CoAP.
 HTTP, HTTP/2, QUIC, MQTT, Bluetooth Low Energy, etc., are also
 viable candidates.

 Depending on the device limitations and the selected protocol,
 this exchange may be split up into two parts:

 (1) the client sends the access token containing, or
 referencing, the authorization information to the RS, that may
 be used for subsequent resource requests by the client, and
 (2) the client makes the resource access request, using the
 communication security protocol and other Access Information
 obtained from the AS.

 The Client and the RS mutually authenticate using the security
 protocol specified in the profile (see step B) and the keys
 obtained in the access token or the Access Information. The RS
 verifies that the token is integrity protected by the AS and
 compares the claims contained in the access token with the
 resource request. If the RS is online, validation can be handed
 over to the AS using token introspection (see messages D and E)
 over HTTP or CoAP.

 Token Introspection Request (D):
 A resource server may be configured to introspect the access token
 by including it in a request to the introspection endpoint at that
 AS. Token introspection over CoAP is defined in Section 5.7 and
 for HTTP in [RFC7662].

 Note that token introspection is an optional step and can be
 omitted if the token is self-contained and the resource server is
 prepared to perform the token validation on its own.

 Token Introspection Response (E):
 The AS validates the token and returns the most recent parameters,
 such as scope, audience, validity etc. associated with it back to
 the RS. The RS then uses the received parameters to process the
 request to either accept or to deny it.

https://datatracker.ietf.org/doc/html/rfc7662

Seitz, et al. Expires April 5, 2019 [Page 13]

Internet-Draft ACE-OAuth October 2018

 Protected Resource (F):
 If the request from the client is authorized, the RS fulfills the
 request and returns a response with the appropriate response code.
 The RS uses the dynamically established keys to protect the
 response, according to used communication security protocol.

5. Framework

 The following sections detail the profiling and extensions of OAuth
 2.0 for constrained environments, which constitutes the ACE
 framework.

 Credential Provisioning
 For IoT, it cannot be assumed that the client and RS are part of a
 common key infrastructure, so the AS provisions credentials or
 associated information to allow mutual authentication. These
 credentials need to be provided to the parties before or during
 the authentication protocol is executed, and may be re-used for
 subsequent token requests.

 Proof-of-Possession
 The ACE framework, by default, implements proof-of-possession for
 access tokens, i.e., that the token holder can prove being a
 holder of the key bound to the token. The binding is provided by
 the "cnf" claim [I-D.ietf-ace-cwt-proof-of-possession] indicating
 what key is used for proof-of-possession. If a client needs to
 submit a new access token, e.g., to obtain additional access
 rights, they can request that the AS binds this token to the same
 key as the previous one.

 ACE Profiles
 The client or RS may be limited in the encodings or protocols it
 supports. To support a variety of different deployment settings,
 specific interactions between client and RS are defined in an ACE
 profile. In ACE framework the AS is expected to manage the
 matching of compatible profile choices between a client and an RS.
 The AS informs the client of the selected profile using the
 "profile" parameter in the token response.

 OAuth 2.0 requires the use of TLS both to protect the communication
 between AS and client when requesting an access token; between client
 and RS when accessing a resource and between AS and RS if
 introspection is used. In constrained settings TLS is not always
 feasible, or desirable. Nevertheless it is REQUIRED that the data
 exchanged with the AS is encrypted and integrity protected. It is

Seitz, et al. Expires April 5, 2019 [Page 14]

Internet-Draft ACE-OAuth October 2018

 furthermore REQUIRED that the AS and the endpoint communicating with
 it (client or RS) perform mutual authentication.

 Profiles MUST specify how mutual authentication is done, depending
 e.g. on the communication protocol and the credentials used by the
 client or the RS.

 In OAuth 2.0 the communication with the Token and the Introspection
 endpoints at the AS is assumed to be via HTTP and may use Uri-query
 parameters. When profiles of this framework use CoAP instead, this
 framework REQUIRES the use of the following alternative instead of
 Uri-query parameters: The sender (client or RS) encodes the
 parameters of its request as a CBOR map and submits that map as the
 payload of the POST request. Profiles that use CBOR encoding of
 protocol message parameters MUST use the media format 'application/
 ace+cbor', unless the protocol message is wrapped in another Content-
 Format (e.g. object security). If CoAP is used for communication,
 the Content-Format MUST be abbreviated with the ID: 19 (see

Section 8.15.

 The OAuth 2.0 AS uses a JSON structure in the payload of its
 responses both to client and RS. If CoAP is used, this framework
 REQUIRES the use of CBOR [RFC7049] instead of JSON. Depending on the
 profile, the CBOR payload MAY be enclosed in a non-CBOR cryptographic
 wrapper.

5.1. Discovering Authorization Servers

 In order to determine the AS in charge of a resource hosted at the
 RS, C MAY send an initial Unauthorized Resource Request message to
 RS. RS then denies the request and sends the address of its AS back
 to C.

 Instead of the initial Unauthorized Resource Request message, other
 discovery methods may be used, or the client may be pre-provisioned
 with the address of the AS.

5.1.1. Unauthorized Resource Request Message

 The optional Unauthorized Resource Request message is a request for a
 resource hosted by RS for which no proper authorization is granted.
 RS MUST treat any request for a protected resource as Unauthorized
 Resource Request message when any of the following holds:

 o The request has been received on an unprotected channel.
 o RS has no valid access token for the sender of the request
 regarding the requested action on that resource.

https://datatracker.ietf.org/doc/html/rfc7049

Seitz, et al. Expires April 5, 2019 [Page 15]

Internet-Draft ACE-OAuth October 2018

 o RS has a valid access token for the sender of the request, but
 this does not allow the requested action on the requested
 resource.

 Note: These conditions ensure that RS can handle requests
 autonomously once access was granted and a secure channel has been
 established between C and RS. The authz-info endpoint MUST NOT be
 protected as specified above, in order to allow clients to upload
 access tokens to RS (cf. Section 5.8.1).

 Unauthorized Resource Request messages MUST be denied with a client
 error response. In this response, the Resource Server SHOULD provide
 proper AS Information to enable the Client to request an access token
 from RS's AS as described in Section 5.1.2.

 The handling of all client requests (including unauthorized ones) by
 the RS is described in Section 5.8.2.

5.1.2. AS Information

 The AS Information is sent by RS as a response to an Unauthorized
 Resource Request message (see Section 5.1.1) to point the sender of
 the Unauthorized Resource Request message to RS's AS. The AS
 information is a set of attributes containing an absolute URI (see

Section 4.3 of [RFC3986]) that specifies the AS in charge of RS.

 The message MAY also contain a nonce generated by RS to ensure
 freshness in case that the RS and AS do not have synchronized clocks.

 Figure 2 summarizes the parameters that may be part of the AS
 Information.

 /-------+----------+-------------\
 | Name | CBOR Key | Value Type |
 |-------+----------+-------------|
 | AS | 0 | text string |
 | nonce | 5 | byte string |
 \-------+----------+-------------/

 Figure 2: AS Information parameters

 Note that the schema part of the AS parameter may need to be adapted
 to the security protocol that is used between the client and the AS.
 Thus the example AS value "coap://as.example.com/token" might need to
 be transformed to "coaps://as.example.com/token". It is assumed that
 the client can determine the correct schema part on its own depending
 on the way it communicates with the AS.

https://datatracker.ietf.org/doc/html/rfc3986#section-4.3

Seitz, et al. Expires April 5, 2019 [Page 16]

Internet-Draft ACE-OAuth October 2018

 Figure 3 shows an example for an AS Information message payload using
 CBOR [RFC7049] diagnostic notation, using the parameter names instead
 of the CBOR keys for better human readability.

 4.01 Unauthorized
 Content-Format: application/ace+cbor
 {AS: "coaps://as.example.com/token",
 nonce: h'e0a156bb3f'}

 Figure 3: AS Information payload example

 In this example, the attribute AS points the receiver of this message
 to the URI "coaps://as.example.com/token" to request access
 permissions. The originator of the AS Information payload (i.e., RS)
 uses a local clock that is loosely synchronized with a time scale
 common between RS and AS (e.g., wall clock time). Therefore, it has
 included a parameter "nonce" for replay attack prevention.

 Figure 4 illustrates the mandatory to use binary encoding of the
 message payload shown in Figure 3.

 a2 # map(2)
 00 # unsigned(0) (=AS)
 78 1c # text(28)
 636f6170733a2f2f61732e657861
 6d706c652e636f6d2f746f6b656e # "coaps://as.example.com/token"
 05 # unsigned(5) (=nonce)
 45 # bytes(5)
 e0a156bb3f

 Figure 4: AS Information example encoded in CBOR

5.2. Authorization Grants

 To request an access token, the client obtains authorization from the
 resource owner or uses its client credentials as grant. The
 authorization is expressed in the form of an authorization grant.

 The OAuth framework [RFC6749] defines four grant types. The grant
 types can be split up into two groups, those granted on behalf of the
 resource owner (password, authorization code, implicit) and those for
 the client (client credentials). Further grant types have been added
 later, such as [RFC7521] defining an assertion-based authorization
 grant.

 The grant type is selected depending on the use case. In cases where
 the client acts on behalf of the resource owner, authorization code
 grant is recommended. If the client acts on behalf of the resource

https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7521

Seitz, et al. Expires April 5, 2019 [Page 17]

Internet-Draft ACE-OAuth October 2018

 owner, but does not have any display or very limited interaction
 possibilities it is recommended to use the device code grant defined
 in [I-D.ietf-oauth-device-flow]. In cases where the client does not
 act on behalf of the resource owner, client credentials grant is
 recommended.

 For details on the different grant types, see the OAuth 2.0 framework
 [RFC6749]. The OAuth 2.0 framework provides an extension mechanism
 for defining additional grant types so profiles of this framework MAY
 define additional grant types, if needed.

5.3. Client Credentials

 Authentication of the client is mandatory independent of the grant
 type when requesting the access token from the token endpoint. In
 the case of client credentials grant type, the authentication and
 grant coincide.

 Client registration and provisioning of client credentials to the
 client is out of scope for this specification.

 The OAuth framework [RFC6749] defines one client credential type,
 client id and client secret. [I-D.erdtman-ace-rpcc] adds raw-public-
 key and pre-shared-key to the client credentials types. Profiles of
 this framework MAY extend with additional client credentials client
 certificates.

5.4. AS Authentication

 Client credential does not, by default, authenticate the AS that the
 client connects to. In classic OAuth, the AS is authenticated with a
 TLS server certificate.

 Profiles of this framework MUST specify how clients authenticate the
 AS and how communication security is implemented, otherwise server
 side TLS certificates, as defined by OAuth 2.0, are required.

5.5. The Authorization Endpoint

 The authorization endpoint is used to interact with the resource
 owner and obtain an authorization grant in certain grant flows.
 Since it requires the use of a user agent (i.e., browser), it is not
 expected that these types of grant flow will be used by constrained
 clients. This endpoint is therefore out of scope for this
 specification. Implementations should use the definition and
 recommendations of [RFC6749] and [RFC6819].

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819

Seitz, et al. Expires April 5, 2019 [Page 18]

Internet-Draft ACE-OAuth October 2018

 If clients involved cannot support HTTP and TLS, profiles MAY define
 mappings for the authorization endpoint.

5.6. The Token Endpoint

 In standard OAuth 2.0, the AS provides the token endpoint for
 submitting access token requests. This framework extends the
 functionality of the token endpoint, giving the AS the possibility to
 help the client and RS to establish shared keys or to exchange their
 public keys. Furthermore, this framework defines encodings using
 CBOR, as a substitute for JSON.

 The endpoint may, however, be exposed over HTTPS as in classical
 OAuth or even other transports. A profile MUST define the details of
 the mapping between the fields described below, and these transports.
 If HTTPS is used, JSON or CBOR payloads may be supported. If JSON
 payloads are used, the semantics of Section 4 of the OAuth 2.0
 specification MUST be followed (with additions as described below).
 If CBOR payload is supported, the semantics described below MUST be
 followed.

 For the AS to be able to issue a token, the client MUST be
 authenticated and present a valid grant for the scopes requested.
 Profiles of this framework MUST specify how the AS authenticates the
 client and how the communication between client and AS is protected.

 The default name of this endpoint in an url-path is '/token', however
 implementations are not required to use this name and can define
 their own instead.

 The figures of this section use CBOR diagnostic notation without the
 integer abbreviations for the parameters or their values for
 illustrative purposes. Note that implementations MUST use the
 integer abbreviations and the binary CBOR encoding, if the CBOR
 encoding is used.

5.6.1. Client-to-AS Request

 The client sends a POST request to the token endpoint at the AS. The
 profile MUST specify how the communication is protected. The content
 of the request consists of the parameters specified in Section 4 of
 the OAuth 2.0 specification [RFC6749].

 In addition to these parameters, a client MUST be able to use the
 parameters from [I-D.ietf-ace-oauth-params] in an access token
 request to the token endpoint and the AS MUST be able to process
 these additional parameters.

https://datatracker.ietf.org/doc/html/rfc6749

Seitz, et al. Expires April 5, 2019 [Page 19]

Internet-Draft ACE-OAuth October 2018

 If CBOR is used then this parameter MUST be encoded as a CBOR map.
 The "scope" parameter can be formatted as specified in [RFC6749] and
 additionally as a byte array, in order to allow compact encoding of
 complex scopes.

 When HTTP is used as a transport then the client makes a request to
 the token endpoint by sending the parameters using the "application/
 x-www-form-urlencoded" format with a character encoding of UTF-8 in
 the HTTP request entity-body, as defined in RFC 6749.

 The following examples illustrate different types of requests for
 proof-of-possession tokens.

 Figure 5 shows a request for a token with a symmetric proof-of-
 possession key. The content is displayed in CBOR diagnostic
 notation, without abbreviations for better readability.

 Header: POST (Code=0.02)
 Uri-Host: "as.example.com"
 Uri-Path: "token"
 Content-Format: "application/ace+cbor"
 Payload:
 {
 "grant_type" : "client_credentials",
 "client_id" : "myclient",
 "req_aud" : "tempSensor4711"
 }

 Figure 5: Example request for an access token bound to a symmetric
 key.

 Figure 6 shows a request for a token with an asymmetric proof-of-
 possession key. Note that in this example COSE is used to provide
 object-security, therefore the Content-Format is "application/cose"
 wrapping the "application/ace+cbor" type content. Also note that in
 this example the audience is implicitly known by both client and AS.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Seitz, et al. Expires April 5, 2019 [Page 20]

Internet-Draft ACE-OAuth October 2018

 Header: POST (Code=0.02)
 Uri-Host: "as.example.com"
 Uri-Path: "token"
 Content-Format: "application/cose"
 Payload:
 16(# COSE_ENCRYPTED
 [h'a1010a', # protected header: {"alg" : "AES-CCM-16-64-128"}
 {5 : b64'ifUvZaHFgJM7UmGnjA'}, # unprotected header, IV
 b64'WXThuZo6TMCaZZqi6ef/8WHTjOdGk8kNzaIhIQ' # ciphertext
]
)

 Decrypted payload:
 {
 "grant_type" : "client_credentials",
 "client_id" : "myclient",
 "req_cnf" : {
 "COSE_Key" : {
 "kty" : "EC",
 "kid" : h'11',
 "crv" : "P-256",
 "x" : b64'usWxHK2PmfnHKwXPS54m0kTcGJ90UiglWiGahtagnv8',
 "y" : b64'IBOL+C3BttVivg+lSreASjpkttcsz+1rb7btKLv8EX4'
 }
 }
 }

 Figure 6: Example token request bound to an asymmetric key.

 Figure 7 shows a request for a token where a previously communicated
 proof-of-possession key is only referenced. Note that the client
 performs a password based authentication in this example by
 submitting its client_secret (see Section 2.3.1 of [RFC6749]).

https://datatracker.ietf.org/doc/html/rfc6749#section-2.3.1

Seitz, et al. Expires April 5, 2019 [Page 21]

Internet-Draft ACE-OAuth October 2018

 Header: POST (Code=0.02)
 Uri-Host: "as.example.com"
 Uri-Path: "token"
 Content-Format: "application/ace+cbor"
 Payload:
 {
 "grant_type" : "client_credentials",
 "client_id" : "myclient",
 "client_secret" : "mysecret234",
 "req_aud" : "valve424",
 "scope" : "read",
 "req_cnf" : {
 "kid" : b64'6kg0dXJM13U'
 }
 }

 Figure 7: Example request for an access token bound to a key
 reference.

 Refresh tokens are typically not stored as securely as proof-of-
 possession keys in requesting clients. Proof-of-possession based
 refresh token requests MUST NOT request different proof-of-possession
 keys or different audiences in token requests. Refresh token
 requests can only use to request access tokens bound to the same
 proof-of-possession key and the same audience as access tokens issued
 in the initial token request.

5.6.2. AS-to-Client Response

 If the access token request has been successfully verified by the AS
 and the client is authorized to obtain an access token corresponding
 to its access token request, the AS sends a response with the
 response code equivalent to the CoAP response code 2.01 (Created).
 If client request was invalid, or not authorized, the AS returns an
 error response as described in Section 5.6.3.

 Note that the AS decides which token type and profile to use when
 issuing a successful response. It is assumed that the AS has prior
 knowledge of the capabilities of the client and the RS (see

Appendix D. This prior knowledge may, for example, be set by the use
 of a dynamic client registration protocol exchange [RFC7591].

 The content of the successful reply is the Access Information. When
 using CBOR payloads, the content MUST be encoded as CBOR map,
 containing parameters as specified in Section 5.1 of [RFC6749], with
 the following additions and changes:

 profile:

https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc6749#section-5.1

Seitz, et al. Expires April 5, 2019 [Page 22]

Internet-Draft ACE-OAuth October 2018

 OPTIONAL. This indicates the profile that the client MUST use
 towards the RS. See Section 5.6.4.3 for the formatting of this
 parameter. If this parameter is absent, the AS assumes that the
 client implicitly knows which profile to use towards the RS.
 token_type:
 This parameter is OPTIONAL, as opposed to 'required' in [RFC6749].
 By default implementations of this framework SHOULD assume that
 the token_type is "pop". If a specific use case requires another
 token_type (e.g., "Bearer") to be used then this parameter is
 REQUIRED.

 Furthermore [I-D.ietf-ace-oauth-params] defines additional parameters
 that the AS MUST be able to use when responding to a request to the
 token endpoint.

 Figure 8 summarizes the parameters that may be part of the Access
 Information. This does not include the additional parameters
 specified in [I-D.ietf-ace-oauth-params].

 /-------------------+-------------------------------\
 | Parameter name | Specified in |
 |-------------------+-------------------------------|
 | access_token | RFC 6749 |
 | token_type | RFC 6749 |
 | expires_in | RFC 6749 |
 | refresh_token | RFC 6749 |
 | scope | RFC 6749 |
 | state | RFC 6749 |
 | error | RFC 6749 |
 | error_description | RFC 6749 |
 | error_uri | RFC 6749 |
 | profile | [this document] |
 \-------------------+-------------------------------/

 Figure 8: Access Information parameters

 Figure 9 shows a response containing a token and a "cnf" parameter
 with a symmetric proof-of-possession key.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Seitz, et al. Expires April 5, 2019 [Page 23]

Internet-Draft ACE-OAuth October 2018

 Header: Created (Code=2.01)
 Content-Format: "application/ace+cbor"
 Payload:
 {
 "access_token" : b64'SlAV32hkKG ...
 (remainder of CWT omitted for brevity;
 CWT contains COSE_Key in the "cnf" claim)',
 "profile" : "coap_dtls",
 "expires_in" : "3600",
 "cnf" : {
 "COSE_Key" : {
 "kty" : "Symmetric",
 "kid" : b64'39Gqlw',
 "k" : b64'hJtXhkV8FJG+Onbc6mxCcQh'
 }
 }
 }

 Figure 9: Example AS response with an access token bound to a
 symmetric key.

5.6.3. Error Response

 The error responses for CoAP-based interactions with the AS are
 equivalent to the ones for HTTP-based interactions as defined in

Section 5.2 of [RFC6749], with the following differences:

 o When using CBOR the raw payload before being processed by the
 communication security protocol MUST be encoded as a CBOR map.
 o A response code equivalent to the CoAP code 4.00 (Bad Request)
 MUST be used for all error responses, except for invalid_client
 where a response code equivalent to the CoAP code 4.01
 (Unauthorized) MAY be used under the same conditions as specified
 in Section 5.2 of [RFC6749].
 o The parameters "error", "error_description" and "error_uri" MUST
 be abbreviated using the codes specified in Figure 12, when a CBOR
 encoding is used.
 o The error code (i.e., value of the "error" parameter) MUST be
 abbreviated as specified in Figure 10, when a CBOR encoding is
 used.

https://datatracker.ietf.org/doc/html/rfc6749#section-5.2
https://datatracker.ietf.org/doc/html/rfc6749#section-5.2

Seitz, et al. Expires April 5, 2019 [Page 24]

Internet-Draft ACE-OAuth October 2018

 /------------------------+-------------\
 | Name | CBOR Values |
 |------------------------+-------------|
 | invalid_request | 1 |
 | invalid_client | 2 |
 | invalid_grant | 3 |
 | unauthorized_client | 4 |
 | unsupported_grant_type | 5 |
 | invalid_scope | 6 |
 | unsupported_pop_key | 7 |
 | incompatible_profiles | 8 |
 \------------------------+-------------/

 Figure 10: CBOR abbreviations for common error codes

 In addition to the error responses defined in OAuth 2.0, the
 following behavior MUST be implemented by the AS:

 o If the client submits an asymmetric key in the token request that
 the RS cannot process, the AS MUST reject that request with a
 response code equivalent to the CoAP code 4.00 (Bad Request)
 including the error code "unsupported_pop_key" defined in
 Figure 10.
 o If the client and the RS it has requested an access token for do
 not share a common profile, the AS MUST reject that request with a
 response code equivalent to the CoAP code 4.00 (Bad Request)
 including the error code "incompatible_profiles" defined in
 Figure 10.

5.6.4. Request and Response Parameters

 This section provides more detail about the new parameters that can
 be used in access token requests and responses, as well as
 abbreviations for more compact encoding of existing parameters and
 common parameter values.

5.6.4.1. Grant Type

 The abbreviations in Figure 11 MUST be used in CBOR encodings instead
 of the string values defined in [RFC6749], if CBOR payloads are used.

https://datatracker.ietf.org/doc/html/rfc6749

Seitz, et al. Expires April 5, 2019 [Page 25]

Internet-Draft ACE-OAuth October 2018

 /--------------------+------------+------------------------\
 | Name | CBOR Value | Original Specification |
 |--------------------+------------+------------------------|
 | password | 0 | RFC6749 |
 | authorization_code | 1 | RFC6749 |
 | client_credentials | 2 | RFC6749 |
 | refresh_token | 3 | RFC6749 |
 \--------------------+------------+------------------------/

 Figure 11: CBOR abbreviations for common grant types

5.6.4.2. Token Type

 The "token_type" parameter, defined in [RFC6749], allows the AS to
 indicate to the client which type of access token it is receiving
 (e.g., a bearer token).

 This document registers the new value "pop" for the OAuth Access
 Token Types registry, specifying a proof-of-possession token. How
 the proof-of-possession by the client to the RS is performed MUST be
 specified by the profiles.

 The values in the "token_type" parameter MUST be CBOR text strings,
 if a CBOR encoding is used.

 In this framework the "pop" value for the "token_type" parameter is
 the default. The AS may, however, provide a different value.

5.6.4.3. Profile

 Profiles of this framework MUST define the communication protocol and
 the communication security protocol between the client and the RS.
 The security protocol MUST provide encryption, integrity and replay
 protection. Furthermore profiles MUST define proof-of-possession
 methods, if they support proof-of-possession tokens.

 A profile MUST specify an identifier that MUST be used to uniquely
 identify itself in the "profile" parameter. The textual
 representation of the profile identifier is just intended for human
 readability and MUST NOT be used in parameters and claims.

 Profiles MAY define additional parameters for both the token request
 and the Access Information in the access token response in order to
 support negotiation or signaling of profile specific parameters.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Seitz, et al. Expires April 5, 2019 [Page 26]

Internet-Draft ACE-OAuth October 2018

5.6.5. Mapping Parameters to CBOR

 If CBOR encoding is used, all OAuth parameters in access token
 requests and responses MUST be mapped to CBOR types as specified in
 Figure 12, using the given integer abbreviation for the map keys.

 Note that we have aligned these abbreviations with the claim
 abbreviations defined in [RFC8392].

 Note also that abbreviations from -24 to 23 have a 1 byte encoding
 size in CBOR. We have thus choosen to assign abbreviations in that
 range to parameters we expect to be used most frequently in
 constrained scenarios.

 /-------------------+----------+---------------------\
 | Name | CBOR Key | Value Type |
 |-------------------+----------+---------------------|
 | scope | 9 | text or byte string |
 | profile | 10 | unsigned integer |
 | error | 11 | unsigned integer |
 | grant_type | 12 | unsigned integer |
 | access_token | 13 | byte string |
 | token_type | 14 | unsigned integer |
 | client_id | 24 | text string |
 | client_secret | 25 | byte string |
 | response_type | 26 | text string |
 | state | 27 | text string |
 | redirect_uri | 28 | text string |
 | error_description | 29 | text string |
 | error_uri | 30 | text string |
 | code | 31 | byte string |
 | expires_in | 32 | unsigned integer |
 | username | 33 | text string |
 | password | 34 | text string |
 | refresh_token | 35 | byte string |
 \-------------------+----------+---------------------/

 Figure 12: CBOR mappings used in token requests

5.7. The Introspection Endpoint

 Token introspection [RFC7662] can be OPTIONALLY provided by the AS,
 and is then used by the RS and potentially the client to query the AS
 for metadata about a given token, e.g., validity or scope. Analogous
 to the protocol defined in RFC 7662 [RFC7662] for HTTP and JSON, this
 section defines adaptations to more constrained environments using
 CBOR and leaving the choice of the application protocol to the
 profile.

https://datatracker.ietf.org/doc/html/rfc8392
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7662

Seitz, et al. Expires April 5, 2019 [Page 27]

Internet-Draft ACE-OAuth October 2018

 Communication between the requesting entity and the introspection
 endpoint at the AS MUST be integrity protected and encrypted.
 Furthermore the two MUST perform mutual authentication. Finally the
 AS SHOULD verify that the requesting entity has the right to access
 introspection information about the provided token. Profiles of this
 framework that support introspection MUST specify how authentication
 and communication security between the requesting entity and the AS
 is implemented.

 The default name of this endpoint in an url-path is '/introspect',
 however implementations are not required to use this name and can
 define their own instead.

 The figures of this section uses CBOR diagnostic notation without the
 integer abbreviations for the parameters or their values for better
 readability.

 Note that supporting introspection is OPTIONAL for implementations of
 this framework.

5.7.1. Introspection Request

 The requesting entity sends a POST request to the introspection
 endpoint at the AS, the profile MUST specify how the communication is
 protected. If CBOR is used, the payload MUST be encoded as a CBOR
 map with a "token" entry containing either the access token or a
 reference to the token (e.g., the cti). Further optional parameters
 representing additional context that is known by the requesting
 entity to aid the AS in its response MAY be included.

 The same parameters are required and optional as in Section 2.1 of
 RFC 7662 [RFC7662].

 For example, Figure 13 shows a RS calling the token introspection
 endpoint at the AS to query about an OAuth 2.0 proof-of-possession
 token. Note that object security based on COSE is assumed in this
 example, therefore the Content-Format is "application/cose".
 Figure 14 shows the decoded payload.

 Header: POST (Code=0.02)
 Uri-Host: "as.example.com"
 Uri-Path: "introspect"
 Content-Format: "application/cose"
 Payload:
 ... COSE content ...

 Figure 13: Example introspection request.

https://datatracker.ietf.org/doc/html/rfc7662#section-2.1
https://datatracker.ietf.org/doc/html/rfc7662#section-2.1
https://datatracker.ietf.org/doc/html/rfc7662

Seitz, et al. Expires April 5, 2019 [Page 28]

Internet-Draft ACE-OAuth October 2018

 {
 "token" : b64'7gj0dXJQ43U',
 "token_type_hint" : "pop"
 }

 Figure 14: Decoded token.

5.7.2. Introspection Response

 If the introspection request is authorized and successfully
 processed, the AS sends a response with the response code equivalent
 to the CoAP code 2.01 (Created). If the introspection request was
 invalid, not authorized or couldn't be processed the AS returns an
 error response as described in Section 5.7.3.

 In a successful response, the AS encodes the response parameters in a
 map including with the same required and optional parameters as in

Section 2.2 of RFC 7662 [RFC7662] with the following addition:

 profile OPTIONAL. This indicates the profile that the RS MUST use
 with the client. See Section 5.6.4.3 for more details on the
 formatting of this parameter.

 Furthermore [I-D.ietf-ace-oauth-params] defines more parameters that
 the AS MUST be able to use when responding to a request to the
 introspection endpoint.

 For example, Figure 15 shows an AS response to the introspection
 request in Figure 13.

 Header: Created Code=2.01)
 Content-Format: "application/ace+cbor"
 Payload:
 {
 "active" : true,
 "scope" : "read",
 "profile" : "coap_dtls",
 "cnf" : {
 "COSE_Key" : {
 "kty" : "Symmetric",
 "kid" : b64'39Gqlw',
 "k" : b64'hJtXhkV8FJG+Onbc6mxCcQh'
 }
 }
 }

 Figure 15: Example introspection response.

https://datatracker.ietf.org/doc/html/rfc7662#section-2.2
https://datatracker.ietf.org/doc/html/rfc7662

Seitz, et al. Expires April 5, 2019 [Page 29]

Internet-Draft ACE-OAuth October 2018

5.7.3. Error Response

 The error responses for CoAP-based interactions with the AS are
 equivalent to the ones for HTTP-based interactions as defined in

Section 2.3 of [RFC7662], with the following differences:

 o If content is sent and CBOR is used the payload MUST be encoded as
 a CBOR map and the Content-Format "application/ace+cbor" MUST be
 used.
 o If the credentials used by the requesting entity (usually the RS)
 are invalid the AS MUST respond with the response code equivalent
 to the CoAP code 4.01 (Unauthorized) and use the required and
 optional parameters from Section 5.2 in RFC 6749 [RFC6749].
 o If the requesting entity does not have the right to perform this
 introspection request, the AS MUST respond with a response code
 equivalent to the CoAP code 4.03 (Forbidden). In this case no
 payload is returned.
 o The parameters "error", "error_description" and "error_uri" MUST
 be abbreviated using the codes specified in Figure 12.
 o The error codes MUST be abbreviated using the codes specified in
 Figure 10.

 Note that a properly formed and authorized query for an inactive or
 otherwise invalid token does not warrant an error response by this
 specification. In these cases, the authorization server MUST instead
 respond with an introspection response with the "active" field set to
 "false".

5.7.4. Mapping Introspection parameters to CBOR

 If CBOR is used, the introspection request and response parameters
 MUST be mapped to CBOR types as specified in Figure 16, using the
 given integer abbreviation for the map key.

 Note that we have aligned these abbreviations with the claim
 abbreviations defined in [RFC8392].

https://datatracker.ietf.org/doc/html/rfc7662#section-2.3
https://datatracker.ietf.org/doc/html/rfc6749#section-5.2
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc8392

Seitz, et al. Expires April 5, 2019 [Page 30]

Internet-Draft ACE-OAuth October 2018

 /-----------------+----------+----------------------------------\
 | Parameter name | CBOR Key | Value Type |
 |-----------------+----------+----------------------------------|
 | iss | 1 | text string |
 | sub | 2 | text string |
 | aud | 3 | text string |
 | exp | 4 | integer or floating-point number |
 | nbf | 5 | integer or floating-point number |
 | iat | 6 | integer or floating-point number |
 | cti | 7 | byte string |
 | scope | 9 | text OR byte string |
 | token_type | 13 | text string |
 | token | 14 | byte string |
 | active | 15 | True or False |
 | profile | 16 | unsigned integer |
 | client_id | 24 | text string |
 | username | 33 | text string |
 | token_type_hint | 36 | text string |
 \-----------------+----------+----------------------------------/

 Figure 16: CBOR Mappings to Token Introspection Parameters.

5.8. The Access Token

 This framework RECOMMENDS the use of CBOR web token (CWT) as
 specified in [RFC8392].

 In order to facilitate offline processing of access tokens, this
 draft uses the "cnf" claim from
 [I-D.ietf-ace-cwt-proof-of-possession] and specifies the "scope"
 claim for both JSON and CBOR web tokens.

 The "scope" claim explicitly encodes the scope of a given access
 token. This claim follows the same encoding rules as defined in

Section 3.3 of [RFC6749], but in addition implementers MAY use byte
 arrays as scope values, to achieve compact encoding of large scope
 elements. The meaning of a specific scope value is application
 specific and expected to be known to the RS running that application.

 If the AS needs to convey a hint to the RS about which key it should
 use to authenticate towards the client, the rs_cnf claim MAY be used
 with the same syntax and semantics as defined in
 [I-D.ietf-ace-oauth-params].

 If the AS needs to convey a hint to the RS about which profile it
 should use to communicate with the client, the AS MAY include a
 "profile" claim in the access token, with the same syntax and
 semantics as defined in Section 5.6.4.3.

https://datatracker.ietf.org/doc/html/rfc8392
https://datatracker.ietf.org/doc/html/rfc6749#section-3.3

Seitz, et al. Expires April 5, 2019 [Page 31]

Internet-Draft ACE-OAuth October 2018

5.8.1. The Authorization Information Endpoint

 The access token, containing authorization information and
 information about the key used by the client, needs to be transported
 to the RS so that the RS can authenticate and authorize the client
 request.

 This section defines a method for transporting the access token to
 the RS using a RESTful protocol such as CoAP. Profiles of this
 framework MAY define other methods for token transport.

 The method consists of an authz-info endpoint, implemented by the RS.
 A client using this method MUST make a POST request to the authz-info
 endpoint at the RS with the access token in the payload. The RS
 receiving the token MUST verify the validity of the token. If the
 token is valid, the RS MUST respond to the POST request with 2.01
 (Created). This response MAY contain an identifier of the token
 (e.g., the cti for a CWT) as a payload, in order to allow the client
 to refer to the token.

 The RS MUST be prepared to store at least one access token for future
 use. This is a difference to how access tokens are handled in OAuth
 2.0, where the access token is typically sent along with each
 request, and therefore not stored at the RS.

 If the payload sent to the authz-info endpoint does not parse to a
 token, the RS MUST respond with a response code equivalent to the
 CoAP code 4.00 (Bad Request). If the token is not valid, the RS MUST
 respond with a response code equivalent to the CoAP code 4.01
 (Unauthorized). If the token is valid but the audience of the token
 does not match the RS, the RS MUST respond with a response code
 equivalent to the CoAP code 4.03 (Forbidden). If the token is valid
 but is associated to claims that the RS cannot process (e.g., an
 unknown scope) the RS MUST respond with a response code equivalent to
 the CoAP code 4.00 (Bad Request). In the latter case the RS MAY
 provide additional information in the error response, in order to
 clarify what went wrong.

 The RS MAY use the error codes from section 3.1 of [RFC6750] when
 giving error responses, in order to provide additional detail.

 The RS MAY make an introspection request to validate the token before
 responding to the POST request to the authz-info endpoint.

 Profiles MUST specify whether the authz-info endpoint is protected,
 including whether error responses from this endpoint are protected.
 Note that since the token contains information that allow the client

https://datatracker.ietf.org/doc/html/rfc6750#section-3.1

Seitz, et al. Expires April 5, 2019 [Page 32]

Internet-Draft ACE-OAuth October 2018

 and the RS to establish a security context in the first place, mutual
 authentication may not be possible at this point.

 The default name of this endpoint in an url-path is '/authz-info',
 however implementations are not required to use this name and can
 define their own instead.

5.8.2. Client Requests to the RS

 If an RS receives a request from a client, and the target resource
 requires authorization, the RS MUST first verify that it has an
 access token that authorizes this request, and that the client has
 performed the proof-of-possession for that token.

 The response code MUST be 4.01 (Unauthorized) in case the client has
 not performed the proof-of-possession, or if RS has no valid access
 token for the client. If RS has an access token for the client but
 not for the resource that was requested, RS MUST reject the request
 with a 4.03 (Forbidden). If RS has an access token for the client
 but it does not cover the action that was requested on the resource,
 RS MUST reject the request with a 4.05 (Method Not Allowed).

 Note: The use of the response codes 4.03 and 4.05 is intended to
 prevent infinite loops where a dumb Client optimistically tries to
 access a requested resource with any access token received from AS.
 As malicious clients could pretend to be C to determine C's
 privileges, these detailed response codes must be used only when a
 certain level of security is already available which can be achieved
 only when the Client is authenticated.

 Note: The RS MAY use introspection for timely validation of an access
 token, at the time when a request is presented.

 Note: Matching the claims of the access token (e.g., scope) to a
 specific request is application specific.

 If the request matches a valid token and the client has performed the
 proof-of-possession for that token, the RS continues to process the
 request as specified by the underlying application.

5.8.3. Token Expiration

 Depending on the capabilities of the RS, there are various ways in
 which it can verify the validity of a received access token. Here
 follows a list of the possibilities including what functionality they
 require of the RS.

Seitz, et al. Expires April 5, 2019 [Page 33]

Internet-Draft ACE-OAuth October 2018

 o The token is a CWT and includes an "exp" claim and possibly the
 "nbf" claim. The RS verifies these by comparing them to values
 from its internal clock as defined in [RFC7519]. In this case the
 RS's internal clock must reflect the current date and time, or at
 least be synchronized with the AS's clock. How this clock
 synchronization would be performed is out of scope for this
 specification.
 o The RS verifies the validity of the token by performing an
 introspection request as specified in Section 5.7. This requires
 the RS to have a reliable network connection to the AS and to be
 able to handle two secure sessions in parallel (C to RS and AS to
 RS).
 o The RS and the AS both store a sequence number linked to their
 common security association. The AS increments this number for
 each access token it issues and includes it in the access token,
 which is a CWT. The RS keeps track of the most recently received
 sequence number, and only accepts tokens as valid, that are in a
 certain range around this number. This method does only require
 the RS to keep track of the sequence number. The method does not
 provide timely expiration, but it makes sure that older tokens
 cease to be valid after a certain number of newer ones got issued.
 For a constrained RS with no network connectivity and no means of
 reliably measuring time, this is the best that can be achieved.

 If a token that authorizes a long running request such as a CoAP
 Observe [RFC7641] expires, the RS MUST send an error response with
 the response code equivalent to the CoAP code 4.01 (Unauthorized) to
 the client and then terminate processing the long running request.

6. Security Considerations

 Security considerations applicable to authentication and
 authorization in RESTful environments provided in OAuth 2.0 [RFC6749]
 apply to this work. Furthermore [RFC6819] provides additional
 security considerations for OAuth which apply to IoT deployments as
 well.

 A large range of threats can be mitigated by protecting the contents
 of the access token by using a digital signature or a keyed message
 digest (MAC) or an Authenticated Encryption with Associated Data
 (AEAD) algorithm. Consequently, the token integrity protection MUST
 be applied to prevent the token from being modified, particularly
 since it contains a reference to the symmetric key or the asymmetric
 key. If the access token contains the symmetric key, this symmetric
 key MUST be encrypted by the authorization server so that only the
 resource server can decrypt it. Note that using an AEAD algorithm is
 preferable over using a MAC unless the message needs to be publicly
 readable.

https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819

Seitz, et al. Expires April 5, 2019 [Page 34]

Internet-Draft ACE-OAuth October 2018

 It is important for the authorization server to include the identity
 of the intended recipient (the audience), typically a single resource
 server (or a list of resource servers), in the token. Using a single
 shared secret with multiple resource servers to simplify key
 management is NOT RECOMMENDED since the benefit from using the proof-
 of-possession concept is significantly reduced.

 The authorization server MUST offer confidentiality protection for
 any interactions with the client. This step is extremely important
 since the client may obtain the proof-of-possession key from the
 authorization server for use with a specific access token. Not using
 confidentiality protection exposes this secret (and the access token)
 to an eavesdropper thereby completely negating proof-of-possession
 security. Profiles MUST specify how confidentiality protection is
 provided, and additional protection can be applied by encrypting the
 token, for example encryption of CWTs is specified in Section 5.1 of
 [RFC8392].

 Developers MUST ensure that the ephemeral credentials (i.e., the
 private key or the session key) are not leaked to third parties. An
 adversary in possession of the ephemeral credentials bound to the
 access token will be able to impersonate the client. Be aware that
 this is a real risk with many constrained environments, since
 adversaries can often easily get physical access to the devices.

 If clients are capable of doing so, they should frequently request
 fresh access tokens, as this allows the AS to keep the lifetime of
 the tokens short. This allows the AS to use shorter proof-of-
 possession key sizes, which translate to a performance benefit for
 the client and for the resource server. Shorter keys also lead to
 shorter messages (particularly with asymmetric keying material).

 When authorization servers bind symmetric keys to access tokens, they
 SHOULD scope these access tokens to a specific permissions.
 Furthermore access tokens using symmetric keys for proof-of-
 possession SHOULD NOT be targeted at an audience that contains more
 than one RS, since otherwise any RS in the audience that receives
 that access token can impersonate the client towards the other
 members of the audience.

6.1. Unprotected AS Information

 Initially, no secure channel exists to protect the communication
 between C and RS. Thus, C cannot determine if the AS information
 contained in an unprotected response from RS to an unauthorized
 request (see Section 5.1.2) is authentic. It is therefore advisable
 to provide C with a (possibly hard-coded) list of trustworthy

https://datatracker.ietf.org/doc/html/rfc8392#section-5.1
https://datatracker.ietf.org/doc/html/rfc8392#section-5.1

Seitz, et al. Expires April 5, 2019 [Page 35]

Internet-Draft ACE-OAuth October 2018

 authorization servers. AS information responses referring to a URI
 not listed there would be ignored.

6.2. Use of Nonces for Replay Protection

 The RS may add a nonce to the AS Information message sent as a
 response to an unauthorized request to ensure freshness of an Access
 Token subsequently presented to RS. While a time-stamp of some
 granularity would be sufficient to protect against replay attacks,
 using randomized nonce is preferred to prevent disclosure of
 information about RS's internal clock characteristics.

6.3. Combining profiles

 There may be use cases were different profiles of this framework are
 combined. For example, an MQTT-TLS profile is used between the
 client and the RS in combination with a CoAP-DTLS profile for
 interactions between the client and the AS. Ideally, profiles should
 be designed in a way that the security of system should not depend on
 the specific security mechanisms used in individual protocol
 interactions.

6.4. Error responses

 The various error responses defined in this framework may leak
 information to an adversary. For example errors responses for
 requests to the Authorization Information endpoint can reveal
 information about an otherwise opaque access token to an adversary
 who has intercepted this token. This framework is written under the
 assumption that, in general, the benefits of detailed error messages
 outweigh the risk due to information leakage. For particular use
 cases, where this assessment does not apply, detailed error messages
 can be replaced by more generic ones.

7. Privacy Considerations

 Implementers and users should be aware of the privacy implications of
 the different possible deployments of this framework.

 The AS is in a very central position and can potentially learn
 sensitive information about the clients requesting access tokens. If
 the client credentials grant is used, the AS can track what kind of
 access the client intends to perform. With other grants this can be
 prevented by the Resource Owner. To do so, the resource owner needs
 to bind the grants it issues to anonymous, ephemeral credentials that
 do not allow the AS to link different grants and thus different
 access token requests by the same client.

Seitz, et al. Expires April 5, 2019 [Page 36]

Internet-Draft ACE-OAuth October 2018

 If access tokens are only integrity protected and not encrypted, they
 may reveal information to attackers listening on the wire, or able to
 acquire the access tokens in some other way. In the case of CWTs the
 token may, e.g., reveal the audience, the scope and the confirmation
 method used by the client. The latter may reveal the identity of the
 device or application running the client. This may be linkable to
 the identity of the person using the client (if there is a person and
 not a machine-to-machine interaction).

 Clients using asymmetric keys for proof-of-possession should be aware
 of the consequences of using the same key pair for proof-of-
 possession towards different RSs. A set of colluding RSs or an
 attacker able to obtain the access tokens will be able to link the
 requests, or even to determine the client's identity.

 An unprotected response to an unauthorized request (see
Section 5.1.2) may disclose information about RS and/or its existing

 relationship with C. It is advisable to include as little
 information as possible in an unencrypted response. Means of
 encrypting communication between C and RS already exist, more
 detailed information may be included with an error response to
 provide C with sufficient information to react on that particular
 error.

8. IANA Considerations

8.1. Authorization Server Information

 This specification establishes the IANA "ACE Authorization Server
 Information" registry. The registry has been created to use the
 "Expert Review Required" registration procedure [RFC8126]. It should
 be noted that, in addition to the expert review, some portions of the
 registry require a specification, potentially a Standards Track RFC,
 be supplied as well.

 The columns of the registry are:

 Name The name of the parameter
 CBOR Key CBOR map key for the parameter. Different ranges of values
 use different registration policies [RFC8126]. Integer values
 from -256 to 255 are designated as Standards Action. Integer
 values from -65536 to -257 and from 256 to 65535 are designated as
 Specification Required. Integer values greater than 65535 are
 designated as Expert Review. Integer values less than -65536 are
 marked as Private Use.
 Value Type The CBOR data types allowable for the values of this
 parameter.

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126

Seitz, et al. Expires April 5, 2019 [Page 37]

Internet-Draft ACE-OAuth October 2018

 Reference This contains a pointer to the public specification of the
 grant type abbreviation, if one exists.

 This registry will be initially populated by the values in Figure 2.
 The Reference column for all of these entries will be this document.

8.2. OAuth Extensions Error Registration

 This specification registers the follwoing error values in the OAuth
 Extensions Error registry defined in [RFC6749].

 o Error name: "unsupported_pop_key"
 o Error usage location: AS token endpoint error response
 o Related protocol extension: The ACE framework [this document]
 o Change Controller: IESG
 o Specification doucment(s): Section 5.6.3 of [this document]

 o Error name: "incompatible_profiles"
 o Error usage location: AS token endpoint error response
 o Related protocol extension: The ACE framework [this document]
 o Change Controller: IESG
 o Specification doucment(s): Section 5.6.3 of [this document]

8.3. OAuth Error Code CBOR Mappings Registry

 This specification establishes the IANA "OAuth Error Code CBOR
 Mappings" registry. The registry has been created to use the "Expert
 Review Required" registration procedure [RFC8126]. It should be
 noted that, in addition to the expert review, some portions of the
 registry require a specification, potentially a Standards Track RFC,
 be supplied as well.

 The columns of the registry are:

 Name The OAuth Error Code name, refers to the name in Section 5.2.
 of [RFC6749], e.g., "invalid_request".
 CBOR Value CBOR abbreviation for this error code. Different ranges
 of values use different registration policies [RFC8126]. Integer
 values from -256 to 255 are designated as Standards Action.
 Integer values from -65536 to -257 and from 256 to 65535 are
 designated as Specification Required. Integer values greater than
 65535 are designated as Expert Review. Integer values less than
 -65536 are marked as Private Use.
 Reference This contains a pointer to the public specification of the
 grant type abbreviation, if one exists.

 This registry will be initially populated by the values in Figure 10.
 The Reference column for all of these entries will be this document.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc6749#section-5.2
https://datatracker.ietf.org/doc/html/rfc6749#section-5.2
https://datatracker.ietf.org/doc/html/rfc8126

Seitz, et al. Expires April 5, 2019 [Page 38]

Internet-Draft ACE-OAuth October 2018

8.4. OAuth Grant Type CBOR Mappings

 This specification establishes the IANA "OAuth Grant Type CBOR
 Mappings" registry. The registry has been created to use the "Expert
 Review Required" registration procedure [RFC8126]. It should be
 noted that, in addition to the expert review, some portions of the
 registry require a specification, potentially a Standards Track RFC,
 be supplied as well.

 The columns of this registry are:

 Name The name of the grant type as specified in Section 1.3 of
 [RFC6749].
 CBOR Value CBOR abbreviation for this grant type. Different ranges
 of values use different registration policies [RFC8126]. Integer
 values from -256 to 255 are designated as Standards Action.
 Integer values from -65536 to -257 and from 256 to 65535 are
 designated as Specification Required. Integer values greater than
 65535 are designated as Expert Review. Integer values less than
 -65536 are marked as Private Use.
 Reference This contains a pointer to the public specification of the
 grant type abbreviation, if one exists.
 Original Specification This contains a pointer to the public
 specification of the grant type, if one exists.

 This registry will be initially populated by the values in Figure 11.
 The Reference column for all of these entries will be this document.

8.5. OAuth Access Token Types

 This section registers the following new token type in the "OAuth
 Access Token Types" registry [IANA.OAuthAccessTokenTypes].

 o Name: "PoP"
 o Change Controller: IETF
 o Reference: [this document]

8.6. OAuth Token Type CBOR Mappings

 This specification established the IANA "Token Type CBOR Mappings"
 registry. The registry has been created to use the "Expert Review
 Required" registration procedure [RFC8126]. It should be noted that,
 in addition to the expert review, some portions of the registry
 require a specification, potentially a Standards Track RFC, be
 supplied as well.

 The columns of this registry are:

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc6749#section-1.3
https://datatracker.ietf.org/doc/html/rfc6749#section-1.3
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126

Seitz, et al. Expires April 5, 2019 [Page 39]

Internet-Draft ACE-OAuth October 2018

 Name The name of token type as registered in the OAuth Access Token
 Types registry, e.g., "Bearer".
 CBOR Value CBOR abbreviation for this token type. Different ranges
 of values use different registration policies [RFC8126]. Integer
 values from -256 to 255 are designated as Standards Action.
 Integer values from -65536 to -257 and from 256 to 65535 are
 designated as Specification Required. Integer values greater than
 65535 are designated as Expert Review. Integer values less than
 -65536 are marked as Private Use.
 Reference This contains a pointer to the public specification of the
 OAuth token type abbreviation, if one exists.
 Original Specification This contains a pointer to the public
 specification of the grant type, if one exists.

8.6.1. Initial Registry Contents

 o Name: "Bearer"
 o Value: 1
 o Reference: [this document]
 o Original Specification: [RFC6749]

 o Name: "pop"
 o Value: 2
 o Reference: [this document]
 o Original Specification: [this document]

8.7. ACE Profile Registry

 This specification establishes the IANA "ACE Profile" registry. The
 registry has been created to use the "Expert Review Required"
 registration procedure [RFC8126]. It should be noted that, in
 addition to the expert review, some portions of the registry require
 a specification, potentially a Standards Track RFC, be supplied as
 well.

 The columns of this registry are:

 Name The name of the profile, to be used as value of the profile
 attribute.
 Description Text giving an overview of the profile and the context
 it is developed for.
 CBOR Value CBOR abbreviation for this profile name. Different
 ranges of values use different registration policies [RFC8126].
 Integer values from -256 to 255 are designated as Standards
 Action. Integer values from -65536 to -257 and from 256 to 65535
 are designated as Specification Required. Integer values greater
 than 65535 are designated as Expert Review. Integer values less
 than -65536 are marked as Private Use.

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126

Seitz, et al. Expires April 5, 2019 [Page 40]

Internet-Draft ACE-OAuth October 2018

 Reference This contains a pointer to the public specification of the
 profile abbreviation, if one exists.

8.8. OAuth Parameter Registration

 This specification registers the following parameter in the "OAuth
 Parameters" registry [IANA.OAuthParameters]:

 o Name: "profile"
 o Parameter Usage Location: token response
 o Change Controller: IESG
 o Reference: Section 5.6.4.3 of [this document]

8.9. OAuth CBOR Parameter Mappings Registry

 This specification establishes the IANA "Token Endpoint CBOR
 Mappings" registry. The registry has been created to use the "Expert
 Review Required" registration procedure [RFC8126]. It should be
 noted that, in addition to the expert review, some portions of the
 registry require a specification, potentially a Standards Track RFC,
 be supplied as well.

 The columns of this registry are:

 Name The OAuth Parameter name, refers to the name in the OAuth
 parameter registry, e.g., "client_id".
 CBOR Key CBOR map key for this parameter. Different ranges of
 values use different registration policies [RFC8126]. Integer
 values from -256 to 255 are designated as Standards Action.
 Integer values from -65536 to -257 and from 256 to 65535 are
 designated as Specification Required. Integer values greater than
 65535 are designated as Expert Review. Integer values less than
 -65536 are marked as Private Use.
 Value Type The allowable CBOR data types for values of this
 parameter.
 Reference This contains a pointer to the public specification of the
 grant type abbreviation, if one exists.

 This registry will be initially populated by the values in Figure 12.
 The Reference column for all of these entries will be this document.

 Note that these mappings intentionally coincide with the CWT claim
 name mappings from [RFC8392].

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8392

Seitz, et al. Expires April 5, 2019 [Page 41]

Internet-Draft ACE-OAuth October 2018

8.10. OAuth Introspection Response Parameter Registration

 This specification registers the following parameter in the OAuth
 Token Introspection Response registry
 [IANA.TokenIntrospectionResponse].

 o Name: "profile"
 o Description: The communication and communication security profile
 used between client and RS, as defined in ACE profiles.
 o Change Controller: IESG
 o Reference: Section 5.7.2 of [this document]

8.11. Introspection Endpoint CBOR Mappings Registry

 This specification establishes the IANA "Introspection Endpoint CBOR
 Mappings" registry. The registry has been created to use the "Expert
 Review Required" registration procedure [RFC8126]. It should be
 noted that, in addition to the expert review, some portions of the
 registry require a specification, potentially a Standards Track RFC,
 be supplied as well.

 The columns of this registry are:

 Name The OAuth Parameter name, refers to the name in the OAuth
 parameter registry, e.g., "client_id".
 CBOR Key CBOR map key for this parameter. Different ranges of
 values use different registration policies [RFC8126]. Integer
 values from -256 to 255 are designated as Standards Action.
 Integer values from -65536 to -257 and from 256 to 65535 are
 designated as Specification Required. Integer values greater than
 65535 are designated as Expert Review. Integer values less than
 -65536 are marked as Private Use.
 Value Type The allowable CBOR data types for values of this
 parameter.
 Reference This contains a pointer to the public specification of the
 grant type abbreviation, if one exists.

 This registry will be initially populated by the values in Figure 16.
 The Reference column for all of these entries will be this document.

8.12. JSON Web Token Claims

 This specification registers the following new claims in the JSON Web
 Token (JWT) registry of JSON Web Token Claims
 [IANA.JsonWebTokenClaims]:

 o Claim Name: "scope"

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126

Seitz, et al. Expires April 5, 2019 [Page 42]

Internet-Draft ACE-OAuth October 2018

 o Claim Description: The scope of an access token as defined in
 [RFC6749].
 o Change Controller: IESG
 o Reference: Section 5.8 of [this document]

 o Claim Name: "profile"
 o Claim Description: The profile a token is supposed to be used
 with.
 o Change Controller: IESG
 o Reference: Section 5.8 of [this document]

 o Claim Name: "rs_cnf"
 o Claim Description: The public key the RS is supposed to use to
 authenticate to the client wielding this token.
 o Change Controller: IESG
 o Reference: Section 5.8 of [this document]

8.13. CBOR Web Token Claims

 This specification registers the following new claims in the "CBOR
 Web Token (CWT) Claims" registry [IANA.CborWebTokenClaims].

 o Claim Name: "scope"
 o Claim Description: The scope of an access token as defined in
 [RFC6749].
 o JWT Claim Name: N/A
 o Claim Key: 12
 o Claim Value Type(s): byte string or text string
 o Change Controller: IESG
 o Specification Document(s): Section 5.8 of [this document]

 o Claim Name: "profile"
 o Claim Description: The profile a token is supposed to be used
 with.
 o JWT Claim Name: N/A
 o Claim Key: 16
 o Claim Value Type(s): integer
 o Change Controller: IESG
 o Specification Document(s): Section 5.8 of [this document]

 o Claim Name: "rs_cnf"
 o Claim Description: The public key the RS is supposed to use to
 authenticate to the client wielding this token.
 o JWT Claim Name: N/A
 o Claim Key: 17
 o Claim Value Type(s): map
 o Change Controller: IESG
 o Specification Document(s): Section 5.8 of [this document]

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Seitz, et al. Expires April 5, 2019 [Page 43]

Internet-Draft ACE-OAuth October 2018

8.14. Media Type Registrations

 This specification registers the 'application/ace+cbor' media type
 for messages of the protocols defined in this document carrying
 parameters encoded in CBOR. This registration follows the procedures
 specified in [RFC6838].

 Type name: application

 Subtype name: ace+cbor

 Required parameters: none

 Optional parameters: none

 Encoding considerations: Must be encoded as CBOR map containing the
 protocol parameters defined in [this document].

 Security considerations: See Section 6 of this document.

 Interoperability considerations: n/a

 Published specification: [this document]

 Applications that use this media type: The type is used by
 authorization servers, clients and resource servers that support the
 ACE framework as specified in [this document].

 Additional information:

 Magic number(s): n/a

 File extension(s): .ace

 Macintosh file type code(s): n/a

 Person & email address to contact for further information: Ludwig
 Seitz <ludwig.seitz@ri.se>

 Intended usage: COMMON

 Restrictions on usage: None

 Author: Ludwig Seitz <ludwig.setiz@ri.se>

 Change controller: IESG

https://datatracker.ietf.org/doc/html/rfc6838

Seitz, et al. Expires April 5, 2019 [Page 44]

Internet-Draft ACE-OAuth October 2018

8.15. CoAP Content-Format Registry

 This specification registers the following entry to the "CoAP
 Content-Formats" registry:

 Media Type: application/ace+cbor

 Encoding

 ID: 19

 Reference: [this document]

9. Acknowledgments

 This document is a product of the ACE working group of the IETF.

 Thanks to Eve Maler for her contributions to the use of OAuth 2.0 and
 UMA in IoT scenarios, Robert Taylor for his discussion input, and
 Malisa Vucinic for his input on the predecessors of this proposal.

 Thanks to the authors of draft-ietf-oauth-pop-key-distribution, from
 where large parts of the security considerations where copied.

 Thanks to Stefanie Gerdes, Olaf Bergmann, and Carsten Bormann for
 contributing their work on AS discovery from draft-gerdes-ace-dcaf-

authorize (see Section 5.1).

 Thanks to Jim Schaad and Mike Jones for their comprehensive reviews.

 Ludwig Seitz and Goeran Selander worked on this document as part of
 the CelticPlus project CyberWI, with funding from Vinnova.

10. References

10.1. Normative References

 [I-D.ietf-ace-cwt-proof-of-possession]
 Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
 Tschofenig, "Proof-of-Possession Key Semantics for CBOR
 Web Tokens (CWTs)", draft-ietf-ace-cwt-proof-of-

possession-03 (work in progress), June 2018.

 [I-D.ietf-ace-oauth-params]
 Seitz, L., "Additional OAuth Parameters for Authorization
 in Constrained Environments (ACE)", draft-ietf-ace-oauth-

params-00 (work in progress), September 2018.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-key-distribution
https://datatracker.ietf.org/doc/html/draft-gerdes-ace-dcaf-authorize
https://datatracker.ietf.org/doc/html/draft-gerdes-ace-dcaf-authorize
https://datatracker.ietf.org/doc/html/draft-ietf-ace-cwt-proof-of-possession-03
https://datatracker.ietf.org/doc/html/draft-ietf-ace-cwt-proof-of-possession-03
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-params-00
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-params-00

Seitz, et al. Expires April 5, 2019 [Page 45]

Internet-Draft ACE-OAuth October 2018

 [IANA.CborWebTokenClaims]
 IANA, "CBOR Web Token (CWT) Claims",
 <https://www.iana.org/assignments/cwt/cwt.xhtml#claims-

registry>.

 [IANA.JsonWebTokenClaims]
 IANA, "JSON Web Token Claims",
 <https://www.iana.org/assignments/jwt/jwt.xhtml#claims>.

 [IANA.OAuthAccessTokenTypes]
 IANA, "OAuth Access Token Types",
 <https://www.iana.org/assignments/oauth-parameters/oauth-

parameters.xhtml#token-types>.

 [IANA.OAuthParameters]
 IANA, "OAuth Parameters",
 <https://www.iana.org/assignments/oauth-parameters/oauth-

parameters.xhtml#parameters>.

 [IANA.TokenIntrospectionResponse]
 IANA, "OAuth Token Introspection Response",
 <https://www.iana.org/assignments/oauth-parameters/oauth-

parameters.xhtml#token-introspection-response>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012, <https://www.rfc-

editor.org/info/rfc6750>.

https://www.iana.org/assignments/cwt/cwt.xhtml#claims-registry
https://www.iana.org/assignments/cwt/cwt.xhtml#claims-registry
https://www.iana.org/assignments/jwt/jwt.xhtml#claims
https://www.iana.org/assignments/oauth-parameters/oauth-parameters.xhtml#token-types
https://www.iana.org/assignments/oauth-parameters/oauth-parameters.xhtml#token-types
https://www.iana.org/assignments/oauth-parameters/oauth-parameters.xhtml#parameters
https://www.iana.org/assignments/oauth-parameters/oauth-parameters.xhtml#parameters
https://www.iana.org/assignments/oauth-parameters/oauth-parameters.xhtml#token-introspection-response
https://www.iana.org/assignments/oauth-parameters/oauth-parameters.xhtml#token-introspection-response
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750

Seitz, et al. Expires April 5, 2019 [Page 46]

Internet-Draft ACE-OAuth October 2018

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,

RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014, <https://www.rfc-

editor.org/info/rfc7252>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
RFC 7662, DOI 10.17487/RFC7662, October 2015,

 <https://www.rfc-editor.org/info/rfc7662>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,

 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

10.2. Informative References

 [I-D.erdtman-ace-rpcc]
 Seitz, L. and S. Erdtman, "Raw-Public-Key and Pre-Shared-
 Key as OAuth client credentials", draft-erdtman-ace-

rpcc-02 (work in progress), October 2017.

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", draft-ietf-core-object-security-15 (work in
 progress), August 2018.

https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7662
https://www.rfc-editor.org/info/rfc7662
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://datatracker.ietf.org/doc/html/draft-erdtman-ace-rpcc-02
https://datatracker.ietf.org/doc/html/draft-erdtman-ace-rpcc-02
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security-15

Seitz, et al. Expires April 5, 2019 [Page 47]

Internet-Draft ACE-OAuth October 2018

 [I-D.ietf-oauth-device-flow]
 Denniss, W., Bradley, J., Jones, M., and H. Tschofenig,
 "OAuth 2.0 Device Flow for Browserless and Input
 Constrained Devices", draft-ietf-oauth-device-flow-12
 (work in progress), August 2018.

 [Margi10impact]
 Margi, C., de Oliveira, B., de Sousa, G., Simplicio Jr,
 M., Barreto, P., Carvalho, T., Naeslund, M., and R. Gold,
 "Impact of Operating Systems on Wireless Sensor Networks
 (Security) Applications and Testbeds", Proceedings of
 the 19th International Conference on Computer
 Communications and Networks (ICCCN), 2010 August.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008, <https://www.rfc-

editor.org/info/rfc5246>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <https://www.rfc-editor.org/info/rfc6690>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013, <https://www.rfc-

editor.org/info/rfc6819>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014, <https://www.rfc-

editor.org/info/rfc7228>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-device-flow-12
https://datatracker.ietf.org/doc/html/rfc4949
https://www.rfc-editor.org/info/rfc4949
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6690
https://www.rfc-editor.org/info/rfc6690
https://datatracker.ietf.org/doc/html/rfc6819
https://www.rfc-editor.org/info/rfc6819
https://www.rfc-editor.org/info/rfc6819
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231

Seitz, et al. Expires April 5, 2019 [Page 48]

Internet-Draft ACE-OAuth October 2018

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7521] Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
 "Assertion Framework for OAuth 2.0 Client Authentication
 and Authorization Grants", RFC 7521, DOI 10.17487/RFC7521,
 May 2015, <https://www.rfc-editor.org/info/rfc7521>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",

RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015, <https://www.rfc-

editor.org/info/rfc7641>.

 [RFC7744] Seitz, L., Ed., Gerdes, S., Ed., Selander, G., Mani, M.,
 and S. Kumar, "Use Cases for Authentication and
 Authorization in Constrained Environments", RFC 7744,
 DOI 10.17487/RFC7744, January 2016, <https://www.rfc-

editor.org/info/rfc7744>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016, <https://www.rfc-

editor.org/info/rfc7959>.

 [RFC8252] Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",
BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,

 <https://www.rfc-editor.org/info/rfc8252>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017, <https://www.rfc-

editor.org/info/rfc8259>.

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", RFC 8414,
 DOI 10.17487/RFC8414, June 2018, <https://www.rfc-

editor.org/info/rfc8414>.

https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc7521
https://www.rfc-editor.org/info/rfc7521
https://datatracker.ietf.org/doc/html/rfc7591
https://www.rfc-editor.org/info/rfc7591
https://datatracker.ietf.org/doc/html/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://datatracker.ietf.org/doc/html/rfc7744
https://www.rfc-editor.org/info/rfc7744
https://www.rfc-editor.org/info/rfc7744
https://datatracker.ietf.org/doc/html/rfc7959
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc7959
https://datatracker.ietf.org/doc/html/bcp212
https://datatracker.ietf.org/doc/html/rfc8252
https://www.rfc-editor.org/info/rfc8252
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://datatracker.ietf.org/doc/html/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8414

Seitz, et al. Expires April 5, 2019 [Page 49]

Internet-Draft ACE-OAuth October 2018

Appendix A. Design Justification

 This section provides further insight into the design decisions of
 the solution documented in this document. Section 3 lists several
 building blocks and briefly summarizes their importance. The
 justification for offering some of those building blocks, as opposed
 to using OAuth 2.0 as is, is given below.

 Common IoT constraints are:

 Low Power Radio:

 Many IoT devices are equipped with a small battery which needs to
 last for a long time. For many constrained wireless devices, the
 highest energy cost is associated to transmitting or receiving
 messages (roughly by a factor of 10 compared to AES)
 [Margi10impact]. It is therefore important to keep the total
 communication overhead low, including minimizing the number and
 size of messages sent and received, which has an impact of choice
 on the message format and protocol. By using CoAP over UDP and
 CBOR encoded messages, some of these aspects are addressed.
 Security protocols contribute to the communication overhead and
 can, in some cases, be optimized. For example, authentication and
 key establishment may, in certain cases where security
 requirements allow, be replaced by provisioning of security
 context by a trusted third party, using transport or application
 layer security.

 Low CPU Speed:

 Some IoT devices are equipped with processors that are
 significantly slower than those found in most current devices on
 the Internet. This typically has implications on what timely
 cryptographic operations a device is capable of performing, which
 in turn impacts, e.g., protocol latency. Symmetric key
 cryptography may be used instead of the computationally more
 expensive public key cryptography where the security requirements
 so allows, but this may also require support for trusted third
 party assisted secret key establishment using transport or
 application layer security.
 Small Amount of Memory:

 Microcontrollers embedded in IoT devices are often equipped with
 small amount of RAM and flash memory, which places limitations
 what kind of processing can be performed and how much code can be
 put on those devices. To reduce code size fewer and smaller
 protocol implementations can be put on the firmware of such a
 device. In this case, CoAP may be used instead of HTTP, symmetric

Seitz, et al. Expires April 5, 2019 [Page 50]

Internet-Draft ACE-OAuth October 2018

 key cryptography instead of public key cryptography, and CBOR
 instead of JSON. Authentication and key establishment protocol,
 e.g., the DTLS handshake, in comparison with assisted key
 establishment also has an impact on memory and code.

 User Interface Limitations:

 Protecting access to resources is both an important security as
 well as privacy feature. End users and enterprise customers may
 not want to give access to the data collected by their IoT device
 or to functions it may offer to third parties. Since the
 classical approach of requesting permissions from end users via a
 rich user interface does not work in many IoT deployment
 scenarios, these functions need to be delegated to user-controlled
 devices that are better suitable for such tasks, such as smart
 phones and tablets.

 Communication Constraints:

 In certain constrained settings an IoT device may not be able to
 communicate with a given device at all times. Devices may be
 sleeping, or just disconnected from the Internet because of
 general lack of connectivity in the area, for cost reasons, or for
 security reasons, e.g., to avoid an entry point for Denial-of-
 Service attacks.

 The communication interactions this framework builds upon (as
 shown graphically in Figure 1) may be accomplished using a variety
 of different protocols, and not all parts of the message flow are
 used in all applications due to the communication constraints.
 Deployments making use of CoAP are expected, but not limited to,
 other protocols such as HTTP, HTTP/2 or other specific protocols,
 such as Bluetooth Smart communication, that do not necessarily use
 IP could also be used. The latter raises the need for application
 layer security over the various interfaces.

 In the light of these constraints we have made the following design
 decisions:

 CBOR, COSE, CWT:

 This framework REQUIRES the use of CBOR [RFC7049] as data format.
 Where CBOR data needs to be protected, the use of COSE [RFC8152]
 is RECOMMENDED. Furthermore where self-contained tokens are
 needed, this framework RECOMMENDS the use of CWT [RFC8392]. These
 measures aim at reducing the size of messages sent over the wire,
 the RAM size of data objects that need to be kept in memory and
 the size of libraries that devices need to support.

https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8392

Seitz, et al. Expires April 5, 2019 [Page 51]

Internet-Draft ACE-OAuth October 2018

 CoAP:

 This framework RECOMMENDS the use of CoAP [RFC7252] instead of
 HTTP. This does not preclude the use of other protocols
 specifically aimed at constrained devices, like, e.g., Bluetooth
 Low Energy (see Section 3.2). This aims again at reducing the
 size of messages sent over the wire, the RAM size of data objects
 that need to be kept in memory and the size of libraries that
 devices need to support.

 Access Information:

 This framework defines the name "Access Information" for data
 concerning the RS that the AS returns to the client in an access
 token response (see Section 5.6.2). This includes the "profile"
 and the "rs_cnf" parameters. This aims at enabling scenarios,
 where a powerful client, supporting multiple profiles, needs to
 interact with a RS for which it does not know the supported
 profiles and the raw public key.

 Proof-of-Possession:

 This framework makes use of proof-of-possession tokens, using the
 "cnf" claim [I-D.ietf-ace-cwt-proof-of-possession]. A
 semantically and syntactically identical request and response
 parameter is defined for the token endpoint, to allow requesting
 and stating confirmation keys. This aims at making token theft
 harder. Token theft is specifically relevant in constrained use
 cases, as communication often passes through middle-boxes, which
 could be able to steal bearer tokens and use them to gain
 unauthorized access.

 Auth-Info endpoint:

 This framework introduces a new way of providing access tokens to
 a RS by exposing a authz-info endpoint, to which access tokens can
 be POSTed. This aims at reducing the size of the request message
 and the code complexity at the RS. The size of the request
 message is problematic, since many constrained protocols have
 severe message size limitations at the physical layer (e.g., in
 the order of 100 bytes). This means that larger packets get
 fragmented, which in turn combines badly with the high rate of
 packet loss, and the need to retransmit the whole message if one
 packet gets lost. Thus separating sending of the request and
 sending of the access tokens helps to reduce fragmentation.

 Client Credentials Grant:

https://datatracker.ietf.org/doc/html/rfc7252

Seitz, et al. Expires April 5, 2019 [Page 52]

Internet-Draft ACE-OAuth October 2018

 This framework RECOMMENDS the use of the client credentials grant
 for machine-to-machine communication use cases, where manual
 intervention of the resource owner to produce a grant token is not
 feasible. The intention is that the resource owner would instead
 pre-arrange authorization with the AS, based on the client's own
 credentials. The client can the (without manual intervention)
 obtain access tokens from the AS.

 Introspection:

 This framework RECOMMENDS the use of access token introspection in
 cases where the client is constrained in a way that it can not
 easily obtain new access tokens (i.e. it has connectivity issues
 that prevent it from communicating with the AS). In that case
 this framework RECOMMENDS the use of a long-term token, that could
 be a simple reference. The RS is assumed to be able to
 communicate with the AS, and can therefore perform introspection,
 in order to learn the claims associated with the token reference.
 The advantage of such an approach is that the resource owner can
 change the claims associated to the token reference without having
 to be in contact with the client, thus granting or revoking access
 rights.

Appendix B. Roles and Responsibilities

 Resource Owner

 * Make sure that the RS is registered at the AS. This includes
 making known to the AS which profiles, token_types, scopes, and
 key types (symmetric/asymmetric) the RS supports. Also making
 it known to the AS which audience(s) the RS identifies itself
 with.
 * Make sure that clients can discover the AS that is in charge of
 the RS.
 * If the client-credentials grant is used, make sure that the AS
 has the necessary, up-to-date, access control policies for the
 RS.

 Requesting Party

 * Make sure that the client is provisioned the necessary
 credentials to authenticate to the AS.
 * Make sure that the client is configured to follow the security
 requirements of the Requesting Party when issuing requests
 (e.g., minimum communication security requirements, trust
 anchors).

Seitz, et al. Expires April 5, 2019 [Page 53]

Internet-Draft ACE-OAuth October 2018

 * Register the client at the AS. This includes making known to
 the AS which profiles, token_types, and key types (symmetric/
 asymmetric) the client.

 Authorization Server

 * Register the RS and manage corresponding security contexts.
 * Register clients and authentication credentials.
 * Allow Resource Owners to configure and update access control
 policies related to their registered RSs.
 * Expose the token endpoint to allow clients to request tokens.
 * Authenticate clients that wish to request a token.
 * Process a token request using the authorization policies
 configured for the RS.
 * Optionally: Expose the introspection endpoint that allows RS's
 to submit token introspection requests.
 * If providing an introspection endpoint: Authenticate RSs that
 wish to get an introspection response.
 * If providing an introspection endpoint: Process token
 introspection requests.
 * Optionally: Handle token revocation.
 * Optionally: Provide discovery metadata. See [RFC8414]
 * Optionally: Handle refresh tokens.

 Client

 * Discover the AS in charge of the RS that is to be targeted with
 a request.
 * Submit the token request (see step (A) of Figure 1).

 + Authenticate to the AS.
 + Optionally (if not pre-configured): Specify which RS, which
 resource(s), and which action(s) the request(s) will target.
 + If raw public keys (rpk) or certificates are used, make sure
 the AS has the right rpk or certificate for this client.
 * Process the access token and Access Information (see step (B)
 of Figure 1).

 + Check that the Access Information provides the necessary
 security parameters (e.g., PoP key, information on
 communication security protocols supported by the RS).
 + Safely store the proof-of-possession key.
 + If provided by the AS: Safely store the refresh token.
 * Send the token and request to the RS (see step (C) of
 Figure 1).

 + Authenticate towards the RS (this could coincide with the
 proof of possession process).

https://datatracker.ietf.org/doc/html/rfc8414

Seitz, et al. Expires April 5, 2019 [Page 54]

Internet-Draft ACE-OAuth October 2018

 + Transmit the token as specified by the AS (default is to the
 authz-info endpoint, alternative options are specified by
 profiles).
 + Perform the proof-of-possession procedure as specified by
 the profile in use (this may already have been taken care of
 through the authentication procedure).
 * Process the RS response (see step (F) of Figure 1) of the RS.

 Resource Server

 * Expose a way to submit access tokens. By default this is the
 authz-info endpoint.
 * Process an access token.

 + Verify the token is from a recognized AS.
 + Verify that the token applies to this RS.
 + Check that the token has not expired (if the token provides
 expiration information).
 + Check the token's integrity.
 + Store the token so that it can be retrieved in the context
 of a matching request.
 * Process a request.

 + Set up communication security with the client.
 + Authenticate the client.
 + Match the client against existing tokens.
 + Check that tokens belonging to the client actually authorize
 the requested action.
 + Optionally: Check that the matching tokens are still valid,
 using introspection (if this is possible.)
 * Send a response following the agreed upon communication
 security.
 * Safely store credentials such as raw public keys for
 authentication or proof-of-possession keys linked to access
 tokens.

Appendix C. Requirements on Profiles

 This section lists the requirements on profiles of this framework,
 for the convenience of profile designers.

 o Specify the communication protocol the client and RS the must use
 (e.g., CoAP). Section 5 and Section 5.6.4.3
 o Specify the security protocol the client and RS must use to
 protect their communication (e.g., OSCORE or DTLS over CoAP).
 This must provide encryption, integrity and replay protection.

Section 5.6.4.3

Seitz, et al. Expires April 5, 2019 [Page 55]

Internet-Draft ACE-OAuth October 2018

 o Specify how the client and the RS mutually authenticate.
Section 4

 o Specify the proof-of-possession protocol(s) and how to select one,
 if several are available. Also specify which key types (e.g.,
 symmetric/asymmetric) are supported by a specific proof-of-
 possession protocol. Section 5.6.4.2
 o Specify a unique profile identifier. Section 5.6.4.3
 o If introspection is supported: Specify the communication and
 security protocol for introspection.Section 5.7
 o Specify the communication and security protocol for interactions
 between client and AS. Section 5.6
 o Specify how/if the authz-info endpoint is protected, including how
 error responses are protected. Section 5.8.1
 o Optionally define other methods of token transport than the authz-
 info endpoint. Section 5.8.1

Appendix D. Assumptions on AS knowledge about C and RS

 This section lists the assumptions on what an AS should know about a
 client and a RS in order to be able to respond to requests to the
 token and introspection endpoints. How this information is
 established is out of scope for this document.

 o The identifier of the client or RS.
 o The profiles that the client or RS supports.
 o The scopes that the RS supports.
 o The audiences that the RS identifies with.
 o The key types (e.g., pre-shared symmetric key, raw public key, key
 length, other key parameters) that the client or RS supports.
 o The types of access tokens the RS supports (e.g., CWT).
 o If the RS supports CWTs, the COSE parameters for the crypto
 wrapper (e.g., algorithm, key-wrap algorithm, key-length).
 o The expiration time for access tokens issued to this RS (unless
 the RS accepts a default time chosen by the AS).
 o The symmetric key shared between client or RS and AS (if any).
 o The raw public key of the client or RS (if any).

Appendix E. Deployment Examples

 There is a large variety of IoT deployments, as is indicated in
Appendix A, and this section highlights a few common variants. This

 section is not normative but illustrates how the framework can be
 applied.

 For each of the deployment variants, there are a number of possible
 security setups between clients, resource servers and authorization
 servers. The main focus in the following subsections is on how
 authorization of a client request for a resource hosted by a RS is

Seitz, et al. Expires April 5, 2019 [Page 56]

Internet-Draft ACE-OAuth October 2018

 performed. This requires the security of the requests and responses
 between the clients and the RS to consider.

 Note: CBOR diagnostic notation is used for examples of requests and
 responses.

E.1. Local Token Validation

 In this scenario, the case where the resource server is offline is
 considered, i.e., it is not connected to the AS at the time of the
 access request. This access procedure involves steps A, B, C, and F
 of Figure 1.

 Since the resource server must be able to verify the access token
 locally, self-contained access tokens must be used.

 This example shows the interactions between a client, the
 authorization server and a temperature sensor acting as a resource
 server. Message exchanges A and B are shown in Figure 17.

 A: The client first generates a public-private key pair used for
 communication security with the RS.
 The client sends the POST request to the token endpoint at the AS.
 The security of this request can be transport or application
 layer. It is up the the communication security profile to define.
 In the example transport layer identification of the AS is done
 and the client identifies with client_id and client_secret as in
 classic OAuth. The request contains the public key of the client
 and the Audience parameter set to "tempSensorInLivingRoom", a
 value that the temperature sensor identifies itself with. The AS
 evaluates the request and authorizes the client to access the
 resource.
 B: The AS responds with a PoP access token and Access Information.
 The PoP access token contains the public key of the client, and
 the Access Information contains the public key of the RS. For
 communication security this example uses DTLS RawPublicKey between
 the client and the RS. The issued token will have a short
 validity time, i.e., "exp" close to "iat", to protect the RS from
 replay attacks. The token includes the claim such as "scope" with
 the authorized access that an owner of the temperature device can
 enjoy. In this example, the "scope" claim, issued by the AS,
 informs the RS that the owner of the token, that can prove the
 possession of a key is authorized to make a GET request against
 the /temperature resource and a POST request on the /firmware
 resource. Note that the syntax and semantics of the scope claim
 are application specific.

Seitz, et al. Expires April 5, 2019 [Page 57]

Internet-Draft ACE-OAuth October 2018

 Note: In this example it is assumed that the client knows what
 resource it wants to access, and is therefore able to request
 specific audience and scope claims for the access token.

 Authorization
 Client Server
 | |
 |<=======>| DTLS Connection Establishment
 | | to identify the AS
 | |
 A: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path:"token"
 | | Content-Format: application/ace+cbor
 | | Payload: <Request-Payload>
 | |
 B: |<--------+ Header: 2.05 Content
 | 2.05 | Content-Format: application/ace+cbor
 | | Payload: <Response-Payload>
 | |

 Figure 17: Token Request and Response Using Client Credentials.

 The information contained in the Request-Payload and the Response-
 Payload is shown in Figure 18.

Seitz, et al. Expires April 5, 2019 [Page 58]

Internet-Draft ACE-OAuth October 2018

 Request-Payload :
 {
 "grant_type" : "client_credentials",
 "req_aud" : "tempSensorInLivingRoom",
 "client_id" : "myclient",
 "client_secret" : "qwerty"
 "req_cnf" : {
 "COSE_Key" : {
 "kid" : b64'1Bg8vub9tLe1gHMzV76e8',
 "kty" : "EC",
 "crv" : "P-256",
 "x" : b64'f83OJ3D2xF1Bg8vub9tLe1gHMzV76e8Tus9uPHvRVEU',
 "y" : b64'x_FEzRu9m36HLN_tue659LNpXW6pCyStikYjKIWI5a0'
 }
 }
 }

 Response-Payload :
 {
 "access_token" : b64'SlAV32hkKG ...',
 "token_type" : "pop",
 "rs_cnf" : {
 "COSE_Key" : {
 "kid" : b64'c29tZSBwdWJsaWMga2V5IGlk',
 "kty" : "EC",
 "crv" : "P-256",
 "x" : b64'MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4',
 "y" : b64'4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM'
 }
 }
 }

 Figure 18: Request and Response Payload Details.

 The content of the access token is shown in Figure 19.

Seitz, et al. Expires April 5, 2019 [Page 59]

Internet-Draft ACE-OAuth October 2018

 {
 "aud" : "tempSensorInLivingRoom",
 "iat" : "1360189224",
 "exp" : "1360289224",
 "scope" : "temperature_g firmware_p",
 "cnf" : {
 "COSE_Key" : {
 "kid" : b64'1Bg8vub9tLe1gHMzV76e8',
 "kty" : "EC",
 "crv" : "P-256",
 "x" : b64'f83OJ3D2xF1Bg8vub9tLe1gHMzV76e8Tus9uPHvRVEU',
 "y" : b64'x_FEzRu9m36HLN_tue659LNpXW6pCyStikYjKIWI5a0'
 }
 }
 }

 Figure 19: Access Token including Public Key of the Client.

 Messages C and F are shown in Figure 20 - Figure 21.

 C: The client then sends the PoP access token to the authz-info
 endpoint at the RS. This is a plain CoAP request, i.e., no
 transport or application layer security is used between client and
 RS since the token is integrity protected between the AS and RS.
 The RS verifies that the PoP access token was created by a known
 and trusted AS, is valid, and has been issued to the client. The
 RS caches the security context together with authorization
 information about this client contained in the PoP access token.

 Resource
 Client Server
 | |
 C: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path:"authz-info"
 | | Payload: SlAV32hkKG ...
 | |
 |<--------+ Header: 2.04 Changed
 | 2.04 |
 | |

 Figure 20: Access Token provisioning to RS
 The client and the RS runs the DTLS handshake using the raw public
 keys established in step B and C.
 The client sends the CoAP request GET to /temperature on RS over
 DTLS. The RS verifies that the request is authorized, based on
 previously established security context.
 F: The RS responds with a resource representation over DTLS.

Seitz, et al. Expires April 5, 2019 [Page 60]

Internet-Draft ACE-OAuth October 2018

 Resource
 Client Server
 | |
 |<=======>| DTLS Connection Establishment
 | | using Raw Public Keys
 | |
 +-------->| Header: GET (Code=0.01)
 | GET | Uri-Path: "temperature"
 | |
 | |
 | |
 F: |<--------+ Header: 2.05 Content
 | 2.05 | Payload: <sensor value>
 | |

 Figure 21: Resource Request and Response protected by DTLS.

E.2. Introspection Aided Token Validation

 In this deployment scenario it is assumed that a client is not able
 to access the AS at the time of the access request, whereas the RS is
 assumed to be connected to the back-end infrastructure. Thus the RS
 can make use of token introspection. This access procedure involves
 steps A-F of Figure 1, but assumes steps A and B have been carried
 out during a phase when the client had connectivity to AS.

 Since the client is assumed to be offline, at least for a certain
 period of time, a pre-provisioned access token has to be long-lived.
 Since the client is constrained, the token will not be self contained
 (i.e. not a CWT) but instead just a reference. The resource server
 uses its connectivity to learn about the claims associated to the
 access token by using introspection, which is shown in the example
 below.

 In the example interactions between an offline client (key fob), a RS
 (online lock), and an AS is shown. It is assumed that there is a
 provisioning step where the client has access to the AS. This
 corresponds to message exchanges A and B which are shown in
 Figure 22.

 Authorization consent from the resource owner can be pre-configured,
 but it can also be provided via an interactive flow with the resource
 owner. An example of this for the key fob case could be that the
 resource owner has a connected car, he buys a generic key that he
 wants to use with the car. To authorize the key fob he connects it
 to his computer that then provides the UI for the device. After that
 OAuth 2.0 implicit flow can used to authorize the key for his car at
 the the car manufacturers AS.

Seitz, et al. Expires April 5, 2019 [Page 61]

Internet-Draft ACE-OAuth October 2018

 Note: In this example the client does not know the exact door it will
 be used to access since the token request is not send at the time of
 access. So the scope and audience parameters are set quite wide to
 start with and new values different form the original once can be
 returned from introspection later on.

 A: The client sends the request using POST to the token endpoint
 at AS. The request contains the Audience parameter set to
 "PACS1337" (PACS, Physical Access System), a value the that the
 online door in question identifies itself with. The AS generates
 an access token as an opaque string, which it can match to the
 specific client, a targeted audience and a symmetric key. The
 security is provided by identifying the AS on transport layer
 using a pre shared security context (psk, rpk or certificate) and
 then the client is identified using client_id and client_secret as
 in classic OAuth.
 B: The AS responds with the an access token and Access
 Information, the latter containing a symmetric key. Communication
 security between C and RS will be DTLS and PreSharedKey. The PoP
 key is used as the PreSharedKey.

 Authorization
 Client Server
 | |
 | |
 A: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path:"token"
 | | Content-Format: application/ace+cbor
 | | Payload: <Request-Payload>
 | |
 B: |<--------+ Header: 2.05 Content
 | | Content-Format: application/ace+cbor
 | 2.05 | Payload: <Response-Payload>
 | |

 Figure 22: Token Request and Response using Client Credentials.

 The information contained in the Request-Payload and the Response-
 Payload is shown in Figure 23.

Seitz, et al. Expires April 5, 2019 [Page 62]

Internet-Draft ACE-OAuth October 2018

 Request-Payload:
 {
 "grant_type" : "client_credentials",
 "client_id" : "keyfob",
 "client_secret" : "qwerty"
 }

 Response-Payload:
 {
 "access_token" : b64'VGVzdCB0b2tlbg==',
 "token_type" : "pop",
 "cnf" : {
 "COSE_Key" : {
 "kid" : b64'c29tZSBwdWJsaWMga2V5IGlk',
 "kty" : "oct",
 "alg" : "HS256",
 "k": b64'ZoRSOrFzN_FzUA5XKMYoVHyzff5oRJxl-IXRtztJ6uE'
 }
 }
 }

 Figure 23: Request and Response Payload for C offline

 The access token in this case is just an opaque byte string
 referencing the authorization information at the AS.

 C: Next, the client POSTs the access token to the authz-info
 endpoint in the RS. This is a plain CoAP request, i.e., no DTLS
 between client and RS. Since the token is an opaque string, the
 RS cannot verify it on its own, and thus defers to respond the
 client with a status code until after step E.
 D: The RS forwards the token to the introspection endpoint on the
 AS. Introspection assumes a secure connection between the AS and
 the RS, e.g., using transport of application layer security. In
 the example AS is identified using pre shared security context
 (psk, rpk or certificate) while RS is acting as client and is
 identified with client_id and client_secret.
 E: The AS provides the introspection response containing
 parameters about the token. This includes the confirmation key
 (cnf) parameter that allows the RS to verify the client's proof of
 possession in step F.
 After receiving message E, the RS responds to the client's POST in
 step C with the CoAP response code 2.01 (Created).

Seitz, et al. Expires April 5, 2019 [Page 63]

Internet-Draft ACE-OAuth October 2018

 Resource
 Client Server
 | |
 C: +-------->| Header: POST (T=CON, Code=0.02)
 | POST | Uri-Path:"authz-info"
 | | Content-Format: "application/ace+cbor"
 | | Payload: b64'VGVzdCB0b2tlbg=='
 | |
 | | Authorization
 | | Server
 | | |
 | D: +--------->| Header: POST (Code=0.02)
 | | POST | Uri-Path: "introspect"
 | | | Content-Format: "application/ace+cbor"
 | | | Payload: <Request-Payload>
 | | |
 | E: |<---------+ Header: 2.05 Content
 | | 2.05 | Content-Format: "application/ace+cbor"
 | | | Payload: <Response-Payload>
 | | |
 | |
 |<--------+ Header: 2.01 Created
 | 2.01 |
 | |

 Figure 24: Token Introspection for C offline
 The information contained in the Request-Payload and the Response-
 Payload is shown in Figure 25.

 Request-Payload:
 {
 "token" : b64'VGVzdCB0b2tlbg==',
 "client_id" : "FrontDoor",
 "client_secret" : "ytrewq"
 }

 Response-Payload:
 {
 "active" : true,
 "aud" : "lockOfDoor4711",
 "scope" : "open, close",
 "iat" : 1311280970,
 "cnf" : {
 "kid" : b64'c29tZSBwdWJsaWMga2V5IGlk'
 }
 }

 Figure 25: Request and Response Payload for Introspection

Seitz, et al. Expires April 5, 2019 [Page 64]

Internet-Draft ACE-OAuth October 2018

 The client uses the symmetric PoP key to establish a DTLS
 PreSharedKey secure connection to the RS. The CoAP request PUT is
 sent to the uri-path /state on the RS, changing the state of the
 door to locked.
 F: The RS responds with a appropriate over the secure DTLS
 channel.

 Resource
 Client Server
 | |
 |<=======>| DTLS Connection Establishment
 | | using Pre Shared Key
 | |
 +-------->| Header: PUT (Code=0.03)
 | PUT | Uri-Path: "state"
 | | Payload: <new state for the lock>
 | |
 F: |<--------+ Header: 2.04 Changed
 | 2.04 | Payload: <new state for the lock>
 | |

 Figure 26: Resource request and response protected by OSCORE

Appendix F. Document Updates

 RFC EDITOR: PLEASE REMOVE THIS SECTION.

F.1. Version -15 to -16

 o Added text the RS using RFC6750 error codes.
 o Defined an error code for incompatible token request parameters.
 o Removed references to the actors draft.
 o Fixed errors in examples.

F.2. Version -14 to -15

 o Added text about refresh tokens.
 o Added text about protection of credentials.
 o Rephrased introspection so that other entities than RS can do it.
 o Editorial improvements.

F.3. Version -13 to -14

 o Split out the 'aud', 'cnf' and 'rs_cnf' parameters to
 [I-D.ietf-ace-oauth-params]
 o Introduced the "application/ace+cbor" Content-Type.
 o Added claim registrations from 'profile' and 'rs_cnf'.
 o Added note on schema part of AS Information Section 5.1.2

https://datatracker.ietf.org/doc/html/rfc6750

Seitz, et al. Expires April 5, 2019 [Page 65]

Internet-Draft ACE-OAuth October 2018

 o Realigned the parameter abbreviations to push rarely used ones to
 the 2-byte encoding size of CBOR integers.

F.4. Version -12 to -13

 o Changed "Resource Information" to "Access Information" to avoid
 confusion.
 o Clarified section about AS discovery.
 o Editorial changes

F.5. Version -11 to -12

 o Moved the Request error handling to a section of its own.
 o Require the use of the abbreviation for profile identifiers.
 o Added rs_cnf parameter in the introspection response, to inform
 RS' with several RPKs on which key to use.
 o Allowed use of rs_cnf as claim in the access token in order to
 inform an RS with several RPKs on which key to use.
 o Clarified that profiles must specify if/how error responses are
 protected.
 o Fixed label number range to align with COSE/CWT.
 o Clarified the requirements language in order to allow profiles to
 specify other payload formats than CBOR if they do not use CoAP.

F.6. Version -10 to -11

 o Fixed some CBOR data type errors.
 o Updated boilerplate text

F.7. Version -09 to -10

 o Removed CBOR major type numbers.
 o Removed the client token design.
 o Rephrased to clarify that other protocols than CoAP can be used.
 o Clarifications regarding the use of HTTP

F.8. Version -08 to -09

 o Allowed scope to be byte arrays.
 o Defined default names for endpoints.
 o Refactored the IANA section for briefness and consistency.
 o Refactored tables that define IANA registry contents for
 consistency.
 o Created IANA registry for CBOR mappings of error codes, grant
 types and Authorization Server Information.
 o Added references to other document sections defining IANA entries
 in the IANA section.

Seitz, et al. Expires April 5, 2019 [Page 66]

Internet-Draft ACE-OAuth October 2018

F.9. Version -07 to -08

 o Moved AS discovery from the DTLS profile to the framework, see
Section 5.1.

 o Made the use of CBOR mandatory. If you use JSON you can use
 vanilla OAuth.
 o Made it mandatory for profiles to specify C-AS security and RS-AS
 security (the latter only if introspection is supported).
 o Made the use of CBOR abbreviations mandatory.
 o Added text to clarify the use of token references as an
 alternative to CWTs.
 o Added text to clarify that introspection must not be delayed, in
 case the RS has to return a client token.
 o Added security considerations about leakage through unprotected AS
 discovery information, combining profiles and leakage through
 error responses.
 o Added privacy considerations about leakage through unprotected AS
 discovery.
 o Added text that clarifies that introspection is optional.
 o Made profile parameter optional since it can be implicit.
 o Clarified that CoAP is not mandatory and other protocols can be
 used.
 o Clarified the design justification for specific features of the
 framework in appendix A.
 o Clarified appendix E.2.
 o Removed specification of the "cnf" claim for CBOR/COSE, and
 replaced with references to [I-D.ietf-ace-cwt-proof-of-possession]

F.10. Version -06 to -07

 o Various clarifications added.
 o Fixed erroneous author email.

F.11. Version -05 to -06

 o Moved sections that define the ACE framework into a subsection of
 the framework Section 5.
 o Split section on client credentials and grant into two separate
 sections, Section 5.2, and Section 5.3.
 o Added Section 5.4 on AS authentication.
 o Added Section 5.5 on the Authorization endpoint.

F.12. Version -04 to -05

 o Added RFC 2119 language to the specification of the required
 behavior of profile specifications.
 o Added Section 5.3 on the relation to the OAuth2 grant types.

https://datatracker.ietf.org/doc/html/rfc2119

Seitz, et al. Expires April 5, 2019 [Page 67]

Internet-Draft ACE-OAuth October 2018

 o Added CBOR abbreviations for error and the error codes defined in
 OAuth2.
 o Added clarification about token expiration and long-running
 requests in Section 5.8.3
 o Added security considerations about tokens with symmetric pop keys
 valid for more than one RS.
 o Added privacy considerations section.
 o Added IANA registry mapping the confirmation types from RFC 7800
 to equivalent COSE types.
 o Added appendix D, describing assumptions about what the AS knows
 about the client and the RS.

F.13. Version -03 to -04

 o Added a description of the terms "framework" and "profiles" as
 used in this document.
 o Clarified protection of access tokens in section 3.1.
 o Clarified uses of the "cnf" parameter in section 6.4.5.
 o Clarified intended use of Client Token in section 7.4.

F.14. Version -02 to -03

 o Removed references to draft-ietf-oauth-pop-key-distribution since
 the status of this draft is unclear.
 o Copied and adapted security considerations from draft-ietf-oauth-

pop-key-distribution.
 o Renamed "client information" to "RS information" since it is
 information about the RS.
 o Clarified the requirements on profiles of this framework.
 o Clarified the token endpoint protocol and removed negotiation of
 "profile" and "alg" (section 6).
 o Renumbered the abbreviations for claims and parameters to get a
 consistent numbering across different endpoints.
 o Clarified the introspection endpoint.
 o Renamed token, introspection and authz-info to "endpoint" instead
 of "resource" to mirror the OAuth 2.0 terminology.
 o Updated the examples in the appendices.

F.15. Version -01 to -02

 o Restructured to remove communication security parts. These shall
 now be defined in profiles.
 o Restructured section 5 to create new sections on the OAuth
 endpoints token, introspection and authz-info.
 o Pulled in material from draft-ietf-oauth-pop-key-distribution in
 order to define proof-of-possession key distribution.
 o Introduced the "cnf" parameter as defined in RFC7800 to reference
 or transport keys used for proof of possession.

https://datatracker.ietf.org/doc/html/rfc7800
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-key-distribution
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-key-distribution
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-key-distribution
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-key-distribution
https://datatracker.ietf.org/doc/html/rfc7800

Seitz, et al. Expires April 5, 2019 [Page 68]

Internet-Draft ACE-OAuth October 2018

 o Introduced the "client-token" to transport client information from
 the AS to the client via the RS in conjunction with introspection.
 o Expanded the IANA section to define parameters for token request,
 introspection and CWT claims.
 o Moved deployment scenarios to the appendix as examples.

F.16. Version -00 to -01

 o Changed 5.1. from "Communication Security Protocol" to "Client
 Information".
 o Major rewrite of 5.1 to clarify the information exchanged between
 C and AS in the PoP access token request profile for IoT.

 * Allow the client to indicate preferences for the communication
 security protocol.
 * Defined the term "Client Information" for the additional
 information returned to the client in addition to the access
 token.
 * Require that the messages between AS and client are secured,
 either with (D)TLS or with COSE_Encrypted wrappers.
 * Removed dependency on OSCOAP and added generic text about
 object security instead.
 * Defined the "rpk" parameter in the client information to
 transmit the raw public key of the RS from AS to client.
 * (D)TLS MUST use the PoP key in the handshake (either as PSK or
 as client RPK with client authentication).
 * Defined the use of x5c, x5t and x5tS256 parameters when a
 client certificate is used for proof of possession.
 * Defined "tktn" parameter for signaling for how to transfer the
 access token.
 o Added 5.2. the CoAP Access-Token option for transferring access
 tokens in messages that do not have payload.
 o 5.3.2. Defined success and error responses from the RS when
 receiving an access token.
 o 5.6.:Added section giving guidance on how to handle token
 expiration in the absence of reliable time.
 o Appendix B Added list of roles and responsibilities for C, AS and
 RS.

Authors' Addresses

 Ludwig Seitz
 RISE
 Scheelevaegen 17
 Lund 223 70
 Sweden

 Email: ludwig.seitz@ri.se

Seitz, et al. Expires April 5, 2019 [Page 69]

Internet-Draft ACE-OAuth October 2018

 Goeran Selander
 Ericsson
 Faroegatan 6
 Kista 164 80
 Sweden

 Email: goran.selander@ericsson.com

 Erik Wahlstroem
 Sweden

 Email: erik@wahlstromstekniska.se

 Samuel Erdtman
 Spotify AB
 Birger Jarlsgatan 61, 4tr
 Stockholm 113 56
 Sweden

 Email: erdtman@spotify.com

 Hannes Tschofenig
 Arm Ltd.
 Absam 6067
 Austria

 Email: Hannes.Tschofenig@arm.com

Seitz, et al. Expires April 5, 2019 [Page 70]

