
Workgroup: ACE Working Group

Internet-Draft:

draft-ietf-ace-pubsub-profile-03

Published: 30 June 2021

Intended Status: Standards Track

Expires: 1 January 2022

Authors: F. Palombini

Ericsson

C. Sengul

Brunel University

Pub-Sub Profile for Authentication and Authorization for Constrained

Environments (ACE)

Abstract

This specification defines an application profile for authentication

and authorization for publishers and subscribers in a constrained

pub-sub scenario, using the ACE framework. This profile relies on

transport layer or application layer security to authorize the pub-

sub clients to the broker. Moreover, it describes application layer

security for publisher-subscriber communication going through the

broker.

Note to Readers

Source for this draft and an issue tracker can be found at https://

github.com/ace-wg/pubsub-profile.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 1 January 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

https://github.com/ace-wg/pubsub-profile
https://github.com/ace-wg/pubsub-profile
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Application Profile Overview

3. PubSub Authorisation

3.1. AS Discovery (Optional)

3.2. Authorising to the Broker

4. Key Distribution for PubSub Content Protection

4.1. Token POST

4.2. Join Request

5. PubSub Protected Communication

5.1. Using COSE Objects To Protect The Resource Representation

6. Profile-specific Considerations

6.1. CoAP PubSub Application Profile

6.2. MQTT PubSub Application Profile

7. Security Considerations

8. IANA Considerations

8.1. ACE Groupcomm Profile Registry

8.1.1. CoAP Profile Registration

8.1.2. MQTT Profile Registration

8.2. ACE Groupcomm Key Registry

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Requirements on Application Profiles

Acknowledgments

Authors' Addresses

1. Introduction

In the publish-subscribe (pub-sub) scenario, devices with limited

reachability communicate via a broker, which enables store-and-

forward messaging between the devices. This document defines a way

to authorize pub-sub clients using the ACE framework [I-D.ietf-ace-

oauth-authz], and to provide the keys for protecting the

communication between them. The pub-sub communication using the

Constrained Application Protocol (CoAP) is specified in [I-D.ietf-

core-coap-pubsub], while the one using MQTT is specified in [MQTT-

¶

https://trustee.ietf.org/license-info

OASIS-Standard-v5]. This document gives detailed specifications for

MQTT and CoAP pub-sub, but can easily be adapted for other transport

protocols as well.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

Readers are expected to be familiar with the terms and concepts

described in [I-D.ietf-ace-oauth-authz], [I-D.ietf-ace-key-

groupcomm]. In particular, analogously to [I-D.ietf-ace-oauth-

authz], terminology for entities in the architecture such as Client

(C), Resource Server (RS), and Authorization Server (AS) is defined

in OAuth 2.0 [RFC6749] and [I-D.ietf-ace-actors], and terminology

for entities such as the Key Distribution Center (KDC) and

Dispatcher in [I-D.ietf-ace-key-groupcomm].

Readers are expected to be familiar with terms and concepts of pub-

sub group communication, as described in [I-D.ietf-core-coap-

pubsub], or MQTT [MQTT-OASIS-Standard-v5].

2. Application Profile Overview

The objective of this document is to specify how to authorize nodes,

provide keys, and protect a pub-sub communication, using [I-D.ietf-

ace-key-groupcomm], which expands from the ACE framework ([I-D.ietf-

ace-oauth-authz]), and transport profiles ([I-D.ietf-ace-dtls-

authorize], [I-D.ietf-ace-oscore-profile], [I-D.ietf-ace-mqtt-tls-

profile]). The pub-sub communication protocol can be based on CoAP,

as described in [I-D.ietf-core-coap-pubsub], MQTT [MQTT-OASIS-

Standard-v5] , or other transport. Note that both publishers and

subscribers use the same profiles.

The architecture of the scenario is shown in Figure 1.

¶

¶

¶

¶

¶

¶

Figure 1: Architecture for Pub-Sub with Authorization Servers

Publisher or Subscriber Clients is referred to as Client in short.

This profile specifies:

The establishment of a secure connection between a Client and

Broker, using an ACE transport profile such as DTLS [I-D.ietf-

ace-dtls-authorize], OSCORE [I-D.ietf-ace-oscore-profile], or

MQTT-TLS [I-D.ietf-ace-mqtt-tls-profile] (A and C).

The Clients retrieval of keying material for the Publisher

Client to publish protected publications to the Broker, and for

the Subscriber Client to read protected publications (B).

These exchanges aim at setting up two different security

associations. On the one hand, the Publisher and the Subscriber

clients have a security association with the Broker (i.e. RS), so

that RS can authorize the Clients (Security Association 1). On the

other hand, the Publisher has a security association with the

Subscriber, to protect the publication content (Security Association

2) while sending it through the broker (i.e. here, the broker

corresponds to the Dispatcher in [I-D.ietf-ace-key-groupcomm]). The

Security Association 1 is set up using AS and a transport profile of

[I-D.ietf-ace-oauth-authz], the Security Association 2 is set up

using AS, KDC and [I-D.ietf-ace-key-groupcomm]. Note that, given

that the publication content is protected, the Broker MAY accept

unauthorised Subscribers. In this case, the Subscriber client can

skip setting up Security Association 1 with the Broker.

 +----------------+ +----------------+

 | | | Key |

 | Authorization | | Distribution |

 | Server | | Center |

 | (AS) | | (KDC) |

 +----------------+ +----------------+

 ^ ^

 | |

 +---------(A)----+ |

 | +--------------------(B)--------+

 v v

+------------+ +------------+

| | | |

| Pub-Sub | <-- (C)---> | Broker |

| Client | | |

| | | |

+------------+ +------------+

¶

1.

¶

2.

¶

¶

Figure 2: Security Associations between Publisher, Broker, Subscriber

pairs.

3. PubSub Authorisation

Since [I-D.ietf-ace-oauth-authz] recommends the use of CoAP and

CBOR, this document describes the exchanges assuming CoAP and CBOR

are used. However, using HTTP instead of CoAP is possible, using the

corresponding parameters and methods. Analogously, JSON [RFC8259]

can be used instead of CBOR, using the conversion method specified

in Sections 6.1 and 6.2 of [RFC8949]. In case JSON is used, the

Content Format or Media Type of the message has to be changed

accordingly. Exact definition of these exchanges are considered out

of scope for this document.

Figure 3 shows the message flow for authorisation purposes.

Figure 3: Authorisation Flow

+------------+ +------------+ +------------+

| | | | | |

| Publisher | | Broker | | Subscriber |

| | | | | |

| | | | | |

+------------+ +------------+ +------------+

 : : : : : :

 : '------ Security -------' '-----------------------' :

 : Association 1 :

 '------------------------------- Security --------------'

 Association 2

¶

¶

 Client Broker AS KDC

 | [--Resource Request (CoAP/MQTT/other)-->] | | |

 | | | |

 | [<----AS Information (CoAP/MQTT/other)--] | | |

 | | |

 | ----- Authorisation Request (CoAP/HTTP/other)---->| |

 | | |

 | <------Authorisation Response (CoAP/HTTP/other) --| |

 | |

 |----------------------Token Post (CoAP)------------------->|

 | |

 |------------------- Joining Request (CoAP) --------------->|

 | |

 |------------------ Joining Response (CoAP) --------------->|

3.1. AS Discovery (Optional)

Complementary to what is defined in [I-D.ietf-ace-oauth-authz]

(Section 5.1) for AS discovery, the Broker MAY send the address of

the AS to the Client in the 'AS' parameter in the AS Information as

a response to an Unauthorized Resource Request (Section 5.2). An

example using CBOR diagnostic notation and CoAP is given below:

Figure 4: AS Information example

Authorisation Server (AS) Discovery is also defined in Section

2.2.6.1 of [I-D.ietf-ace-mqtt-tls-profile] for MQTT v5 clients (and

not supported for MQTT v3 clients).

3.2. Authorising to the Broker

After retrieving the AS address, the Client sends an Authorisation

Request to the AS for the KDC and the Broker. Note that the AS

authorises:

What endpoints are allowed to Publish or Subscribe to the

Broker.

What endpoints are allowed to access to which topic(s).

The request includes the following fields from the Authorization

Request (Section 3.1 of [I-D.ietf-ace-key-groupcomm]):

'scope', containing the topic identifier, that the Client wishes

to access

'audience', an array with identifiers of the KDC and the Broker.

Other additional parameters can be included if necessary, as defined

in [I-D.ietf-ace-oauth-authz].

The 'scope' parameter is encoded as follows, where 'gname' is

treated as topic identifier or filter.

¶

 4.01 Unauthorized

 Content-Format: application/ace+cbor

 {"AS": "coaps://as.example.com/token"}

¶

¶

1.

¶

2. ¶

¶

*

¶

* ¶

¶

¶

Figure 5: CDLL definition of scope, using as example group name encoded

as tstr and role as tstr.

Other scope representations are also possible and are described in

(Section 3.1 of [I-D.ietf-ace-key-groupcomm]). Note that in the AIF-

MQTT data model is described in Section 3 of the [I-D.ietf-ace-mqtt-

tls-profile], the role values have been further constrained to "pub"

and "sub".

The AS responds with an Authorization Response as defined in Section

5.8.2 of [I-D.ietf-ace-oauth-authz] and Section 3.2 of [I-D.ietf-

ace-key-groupcomm]. If a token is returned, then the audience of

this token are the KDC and the Broker, and the client uses the same

token for both. In case CoAP PubSub is used as communication

protocol, 'profile' is set to "coap_pubsub_app" as defined in

Section 8.1.1. In case MQTT PubSub is used as communication

protocol, 'profile' is set to "mqtt_pubsub_app" as defined in

Section 8.1.2.

4. Key Distribution for PubSub Content Protection

4.1. Token POST

After receiving a token from the AS, the Client posts the token to

the KDC (Section 3.3 [I-D.ietf-ace-key-groupcomm]). In addition to

the token post, a Subscriber Client MAY ask for the public keys in

the group, used for source authentication, as well as any other

group parameters. In this case, the message MUST have Content-Format

set to "application/ace+cbor" defined in Section 8.16 of [I-D.ietf-

ace-oauth-authz]. The message payload MUST be formatted as a CBOR

map, which MUST include the access token and the 'sign_info'

parameter. The details for the 'sign_info' parameter can be found in

Section 3.3 of [I-D.ietf-ace-key-groupcomm]. Alternatively, the

joining node may retrieve this information by other means as

described in [I-D.ietf-ace-key-groupcomm].

The KDC verifies that the Client is authorized to access the topic

with the requested role. After successful verification, the Client

is authorized to receive the group keying material from the KDC and

join the group. The KDC replies to the Client with a 2.01 (Created)

response, using Content-Format "application/ace+cbor". The payload

of the 2.01 response is a CBOR map.

 gname = tstr

 role = tstr

 scope_entry = [gname , ? (role / [2*role])]

 scope = << [+ scope_entry] >>

¶

¶

¶

¶

A Publisher Client MUST send its own public key to the KDC when

joining the group. Since the access token from a Publisher Client

will have "pub" role, the KDC MUST include 'kdcchallenge' in the

CBOR map, specifying a dedicated challenge N_S generated by the KDC.

The Client uses this challenge to prove possession of its own

private key (see [I-D.ietf-ace-key-groupcomm] for details).

4.2. Join Request

In the next step, a joining node MUST have a secure communication

association established with the KDC, before starting to join a

group under that KDC. Possible ways to provide a secure

communication association are described in the DTLS transport

profile [I-D.ietf-ace-dtls-authorize] and OSCORE transport profile

[I-D.ietf-ace-oscore-profile] of ACE.

After establishing a secure communication, the Client sends a

Joining Request to the KDC as described in Section 4.3 of [I-D.ietf-

ace-key-groupcomm]. More specifically, the Client sends a POST

request to the /ace-group/GROUPNAME endpoint on KDC, with Content-

Format = "application/ace+cbor" that MUST contain in the payload

(formatted as a CBOR map, Section 4.1.2.1 of [I-D.ietf-ace-key-

groupcomm]):

'scope' parameter as defined earlier

'get_pub_keys' parameter set to the empty array if the Client

needs to retrieve the public keys of the other pubsub members,

'client_cred' parameter containing the Client's public key

formatted as a COSE_Key (as defined in Section 8.2), if the

Client is a Publisher,

'cnonce', encoded as a CBOR byte string, and including a

dedicated nonce N_C generated by the Client, if 'client_cred' is

present,

'client_cred_verify', set to a singature computed over the

'rsnonce' concatenated with cnonce, if 'client_cred' is present,

OPTIONALLY, if needed, the 'pub_keys_repos' parameter

TODO: Check 'cnonce'

Note that for a Subscriber-only Client, the Joining Request MUST NOT

contain the 'client_cred parameter', the role element in the 'scope'

parameter MUST be set to "sub". The Subscriber MUST have access to

the public keys of all the Publishers; this MAY be achieved in the

Joining Request by using the parameter 'get_pub_keys' set to receive

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

the public key of all Publishers using "pub" as the 'role_filter'

(as described in Section 4.1.2.1 of [I-D.ietf-ace-key-groupcomm]).

If the 'client_cred' parameter is present, KDC stores the public key

of the Client. Note that the alg parameter in the 'client_cred'

COSE_Key MUST be a signing algorithm, as defined in section 8 of

[RFC8152], and that it is the same algorithm used to compute the

signature sent in 'client_cred_verify'.

The KDC response to Joining Response has the Content-Format =

"application/ace+cbor". The payload (formatted as a CBOR map) MUST

contain the following fields from the Joining Response (Section 4.2

of [I-D.ietf-ace-key-groupcomm]):

'kty' identifies a key type "COSE_Key".

'key', which contains a "COSE_Key" object (defined in [RFC8152],

containing:

'kty' with value 4 (symmetric)

'alg' with value defined by the AS2 (Content Encryption

Algorithm)

'Base IV' with value defined by the AS2

'k' with value the symmetric key value

OPTIONALLY, 'kid' with an identifier for the key value

OPTIONALLY, 'exp' with the expiration time of the key

'pub_keys', containing the public keys of all authorized signing

members formatted as COSE_Keys, if the 'get_pub_keys' parameter

was present and set to the empty array in the Key Distribution

Request. For Subscriber Clients, the Joining Response MUST

contain the 'pub_keys' parameter.

An example of the Joining Request and corresponding Response for a

CoAP Publisher using CoAP and CBOR is specified in Figure 6 and

Figure 7, where SIG is a signature computed using the private key

associated to the public key and the algorithm in 'client_cred'.

¶

¶

¶

* ¶

*

¶

- ¶

-

¶

- ¶

- ¶

- ¶

* ¶

*

¶

¶

Figure 6: Joining Request payload for a Publisher

Figure 7: Joining Response payload for a Publisher

An example of the payload of a Joining Request and corresponding

Response for a Subscriber using CoAP and CBOR is specified in Figure

8 and Figure 9.

Figure 8: Joining Request payload for a Subscriber

{

 "scope" : ["Broker1/Temp", "pub"],

 "client_cred" :

 { / COSE_Key /

 / type / 1 : 2, / EC2 /

 / kid / 2 : h'11',

 / alg / 3 : -7, / ECDSA with SHA-256 /

 / crv / -1 : 1 , / P-256 /

 / x / -2 : h'65eda5a12577c2bae829437fe338701a10aaa375e1bb5b5de1

 08de439c08551d',

 / y /-3 : h'1e52ed75701163f7f9e40ddf9f341b3dc9ba860af7e0ca7ca7e

 9eecd0084d19c',

 "cnonce" : h'd36b581d1eef9c7c,

 "client_cred_verify" : SIG

 }

}

{

 "kty" : "COSE_Key",

 "key" : {1: 4, 2: h'1234', 3: 12, 5: h'1f389d14d17dc7',

 -1: h'02e2cc3a9b92855220f255fff1c615bc'}

}

¶

{

 "scope" : ["Broker1/Temp", "sub"],

 "get_pub_keys" : [true, ["pub"], []]

}

Figure 9: Joining Response payload for a Subscriber

5. PubSub Protected Communication

Figure 10: Secure communication between Publisher and Subscriber

(D) corresponds to the publication of a topic on the Broker. The

publication (the resource representation) is protected with COSE

([RFC8152]). The (E) message is the subscription of the Subscriber.

The subscription MAY be unprotected. The (F) message is the response

from the Broker, where the publication is protected with COSE.

Figure 11: (E), (F), (G): Example of protected communication for CoAP

{

 "scope" : ["Broker1/Temp", "sub"],

 "kty" : "COSE_Key"

 "key" : {1: 4, 2: h'1234', 3: 12, 5: h'1f389d14d17dc7',

 -1: h'02e2cc3a9b92855220f255fff1c615bc'},

 "pub_keys" : [

 {

 1 : 2, / type EC2 /

 2 : h'11', / kid /

 3 : -7, / alg ECDSA with SHA-256 /

 -1 : 1 , / crv P-256 /

 -2 : h'65eda5a12577c2bae829437fe338701a10aaa375e1bb5b5de108de43

 9c08551d', / x /

 -3 : h'1e52ed75701163f7f9e40ddf9f341b3dc9ba860af7e0ca7ca7e9eecd

 0084d19c' / y /

 }

]

}

+------------+ +------------+ +------------+

| | | | | |

| Publisher | ----(D)---> | Broker | | Subscriber |

| | | | <----(E)---- | |

| | | | -----(F)---> | |

+------------+ +------------+ +------------+

¶

 Publisher Broker Subscriber

 | --- PUT /topic ----> | |

 | protected with COSE | |

 | | <--- GET /topic ----- |

 | | |

 | | ---- response ------> |

 | | protected with COSE |

The flow graph is presented below for CoAP. The message flow is

similar for MQTT, where PUT corresponds to a PUBLISH message, and

GET corresponds to a SUBSCRIBE message. Whenever a Client publishes

a new message, the Broker sends this message to all valid

subscribers.

5.1. Using COSE Objects To Protect The Resource Representation

The Publisher uses the symmetric COSE Key received from the KDC

(Section 4) to protect the payload of the PUBLISH operation (Section

4.3 of [I-D.ietf-core-coap-pubsub] and [MQTT-OASIS-Standard-v5]).

Specifically, the COSE Key is used to create a COSE_Encrypt0 with

algorithm specified by KDC. The Publisher uses the private key

corresponding to the public key sent to the KDC in exchange B

(Section 4) to countersign the COSE Object as specified in Section

4.5 of [RFC8152]. The payload is replaced by the COSE object before

the publication is sent to the Broker.

The Subscriber uses the 'kid' in the 'countersignature' field in the

COSE object to retrieve the right public key to verify the

countersignature. It then uses the symmetric key received from KDC

to verify and decrypt the publication received in the payload from

the Broker (in the case of CoAP the publication is received by the

CoAP Notification and for MQTT, it is received as a PUBLISH message

from the Broker to the subscribing client).

The COSE object is constructed in the following way:

The protected Headers (as described in Section 3 of [RFC8152])

MAY contain the kid parameter, with value the kid of the

symmetric COSE Key received in Section 4 and MUST contain the

content encryption algorithm.

The unprotected Headers MUST contain the Partial IV, with value a

sequence number that is incremented for every message sent, and

the counter signature that includes:

the algorithm (same value as in the asymmetric COSE Key

received in (B)) in the protected header;

the kid (same value as the kid of the asymmetric COSE Key

received in (B)) in the unprotected header;

the signature computed as specified in Section 4.5 of

[RFC8152].

The ciphertext, computed over the plaintext that MUST contain the

message payload.

The 'external_aad' is an empty string.

¶

¶

¶

¶

*

¶

*

¶

-

¶

-

¶

-

¶

*

¶

¶

An example is given in Figure 12:

Figure 12: Example of COSE Object sent in the payload of a PUBLISH

operation

The encryption and decryption operations are described in sections

5.3 and 5.4 of [RFC8152].

6. Profile-specific Considerations

This section summarises the CoAP and MQTT specific pub-sub

communications, and considerations respectively.

6.1. CoAP PubSub Application Profile

A CoAP Pub-Sub Client and Broker use an ACE transport profile such

as DTLS [I-D.ietf-ace-dtls-authorize], OSCORE [I-D.ietf-ace-oscore-

profile].

As shown in Figure 1, (A) is an Access Token Request and Response

exchange between Publisher and Authorization Server to retrieve the

Access Token and RS (Broker) Information. As specified, the Client

has the role of a CoAP client, the Broker has the role of the CoAP

server.

¶

16(

 [

 / protected / h'a2010c04421234' / {

 \ alg \ 1:12, \ AES-CCM-64-64-128 \

 \ kid \ 4: h'1234'

 } / ,

 / unprotected / {

 / iv / 5:h'89f52f65a1c580',

 / countersign / 7:[

 / protected / h'a10126' / {

 \ alg \ 1:-7

 } / ,

 / unprotected / {

 / kid / 4:h'11'

 },

 / signature / SIG / 64 bytes signature /

]

 },

 / ciphertext / h'8df0a3b62fccff37aa313c8020e971f8aC8d'

]

)

¶

¶

¶

¶

(B) corresponds to the retrieval of the keying material to protect

the publication end-to-end (see Section 5.1), and uses [I-D.ietf-

ace-key-groupcomm]. The details are defined in Section 4.

(C) corresponds to the exchange between the Client and the Broker,

where the Client sends its access token to the Broker and

establishes a secure connection with the Broker. Depending on the

Information received in (A), this can be for example DTLS handshake,

or other protocols. Depending on the application, there may not be

the need for this set up phase: for example, if OSCORE is used

directly. Note that, in line with what defined in the ACE transport

profile used, the access token includes the scope (i.e. pubsub

topics on the Broker) the Publisher is allowed to publish to. For

implementation simplicity, it is RECOMMENDED that the ACE transport

profile used and this specification use the same format of "scope".

After the previous phases have taken place, the pub-sub

communication can commence. The operations of publishing and

subscribing are defined in [I-D.ietf-core-coap-pubsub].

6.2. MQTT PubSub Application Profile

The steps MQTT clients go through are similar to the CoAP clients as

described in Section 6.1. The payload that is carried in MQTT

messages will be protected using COSE.

In MQTT, topics are organised as a tree, and in the [I-D.ietf-ace-

mqtt-tls-profile] 'scope' captures permissions for not a single

topic but a topic filter. Therefore, topic names (i.e., group names)

may include wildcards spanning several levels of the topic tree.

Hence, it is important to distinguish application groups and

security groups defined in [I-D.ietf-core-groupcomm-bis]. An

application group has relevance at the application level - for

example, in MQTT an application group could denote all topics stored

under ""home/lights/". On the other hand, a security group is a

group of endpoints that each store group security material to

exchange secure communication within the group. The group

communication in [I-D.ietf-ace-key-groupcomm] refers to security

groups.

To be able join the right security group associated with requested

topics (application groups), the client needs to discover the

(application group, security group) association. In MQTT, $SYS/ has

been widely adopted as a prefix to topics that contain broker-

specific information, and hence, can be used by the broker for this

purpose. In typical implementations, Clients that subscribe to one

or more SYS-Topics receive the current value on the SYS topics as

soon as they subscribe, and then after periodically.

¶

¶

¶

¶

¶

¶

For an MQTT client we envision the following steps to take place:

Client learns the (application group, security group)

associations from the $SYS topic (this topic is RECOMMENDED to

be a protected topic). These associations MAY be published

under another topic.

Client computes the corresponding security groups for its

application groups, and sends token requests for the security

groups to AS.

Client sends join requests to KDC to gets the keys for these

security groups.

Client authorises to the Broker with the token (described in

[I-D.ietf-ace-mqtt-tls-profile]).

A Publisher Client sends PUBLISH messages for a given topic and

protects the payload with the corresponding key for the

associated security group. RS validates the PUBLISH message by

checking the topic's security group association and the stored

token.

A Subscriber Client may send SUBSCRIBE messages with one or

multiple topic filters. A topic filter may correspond to

multiple topics but MUST belong to a single security group. If

requested topics are in multiple security groups, then these

topics SHOULD be separated into the corresponding topic filters

in the SUBSCRIBE message.

7. Security Considerations

In the profile described above, the Publisher and Subscriber use

asymmetric crypto, which would make the message exchange quite heavy

for small constrained devices. Moreover, all Subscribers must be

able to access the public keys of all the Publishers to a specific

topic to be able to verify the publications. Such a database could

be set up and managed by the same entity having control of the

topic, i.e. KDC.

An application where it is not critical that only authorized

Publishers can publish on a topic may decide not to make use of the

asymmetric crypto and only use symmetric encryption/MAC to

confidentiality and integrity protection of the publication.

However, this is not recommended since, as a result, any authorized

Subscribers with access to the Broker may forge unauthorized

publications without being detected. In this symmetric case the

Subscribers would only need one symmetric key per topic, and would

not need to know any information about the Publishers, that can be

anonymous to it and the Broker.

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

¶

¶

Subscribers can be excluded from future publications through re-

keying for a certain topic. This could be set up to happen on a

regular basis, for certain applications. How this could be done is

out of scope for this work.

The Broker is only trusted with verifying that the Publisher is

authorized to publish, but is not trusted with the publications

itself, which it cannot read nor modify. In this setting, caching of

publications on the Broker is still allowed.

TODO: expand on security and privacy considerations

8. IANA Considerations

8.1. ACE Groupcomm Profile Registry

The following registrations are done for the "ACE Groupcomm Profile"

Registry following the procedure specified in [I-D.ietf-ace-key-

groupcomm].

Note to RFC Editor: Please replace all occurrences of "[[This

document]]" with the RFC number of this specification and delete

this paragraph.

8.1.1. CoAP Profile Registration

Name: coap_pubsub_app

Description: Profile for delegating client authentication and

authorization for publishers and subscribers in a CoAP pub-sub

setting scenario in a constrained environment.

CBOR Key: TBD

Reference: [[This document]]

8.1.2. MQTT Profile Registration

Name: mqtt_pubsub_app

Description: Profile for delegating client authentication and

authorization for publishers and subscribers in a MQTT pub-sub

setting scenario in a constrained environment.

CBOR Key: TBD

Reference: [[This document]]

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-ace-key-groupcomm]

[I-D.ietf-ace-oauth-authz]

[I-D.ietf-core-coap-pubsub]

[I-D.ietf-core-groupcomm-bis]

8.2. ACE Groupcomm Key Registry

The following registrations are done for the ACE Groupcomm Key

Registry following the procedure specified in [I-D.ietf-ace-key-

groupcomm].

Note to RFC Editor: Please replace all occurrences of "[[This

document]]" with the RFC number of this specification and delete

this paragraph.

Name: COSE_Key

Key Type Value: TBD

Profile: coap_pubsub_app

Description: COSE_Key object

References: [RFC8152], [[This document]]

9. References

9.1. Normative References

Palombini, F. and M. Tiloca, "Key

Provisioning for Group Communication using ACE", Work in

Progress, Internet-Draft, draft-ietf-ace-key-

groupcomm-11, 22 February 2021, <https://www.ietf.org/

archive/id/draft-ietf-ace-key-groupcomm-11.txt>.

Seitz, L., Selander, G., Wahlstroem, E.,

Erdtman, S., and H. Tschofenig, "Authentication and

Authorization for Constrained Environments (ACE) using

the OAuth 2.0 Framework (ACE-OAuth)", Work in Progress,

Internet-Draft, draft-ietf-ace-oauth-authz-40, 26 April

2021, <https://www.ietf.org/archive/id/draft-ietf-ace-

oauth-authz-40.txt>.

Koster, M., Keranen, A., and J. Jimenez,

"Publish-Subscribe Broker for the Constrained Application

Protocol (CoAP)", Work in Progress, Internet-Draft,

draft-ietf-core-coap-pubsub-09, 30 September 2019,

<https://www.ietf.org/archive/id/draft-ietf-core-coap-

pubsub-09.txt>.

Dijk, E., Wang, C., and M. Tiloca,

"Group Communication for the Constrained Application

Protocol (CoAP)", Work in Progress, Internet-Draft,

draft-ietf-core-groupcomm-bis-03, 22 February 2021,

¶

¶

¶

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-ietf-ace-key-groupcomm-11.txt
https://www.ietf.org/archive/id/draft-ietf-ace-key-groupcomm-11.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oauth-authz-40.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oauth-authz-40.txt
https://www.ietf.org/archive/id/draft-ietf-core-coap-pubsub-09.txt
https://www.ietf.org/archive/id/draft-ietf-core-coap-pubsub-09.txt

[MQTT-OASIS-Standard-v5]

[RFC2119]

[RFC6749]

[RFC8152]

[RFC8949]

[I-D.ietf-ace-actors]

[I-D.ietf-ace-dtls-authorize]

[I-D.ietf-ace-mqtt-tls-profile]

<https://www.ietf.org/archive/id/draft-ietf-core-

groupcomm-bis-03.txt>.

Banks, A., Briggs, E., Borgendale, K., and

R. Gupta, "OASIS Standard MQTT Version 5.0", 2017,

<http://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-

os.html>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/info/rfc8152>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

9.2. Informative References

Gerdes, S., Seitz, L., Selander, G., and C.

Bormann, "An architecture for authorization in

constrained environments", Work in Progress, Internet-

Draft, draft-ietf-ace-actors-07, 22 October 2018,

<https://www.ietf.org/archive/id/draft-ietf-ace-

actors-07.txt>.

Gerdes, S., Bergmann, O., Bormann, C.,

Selander, G., and L. Seitz, "Datagram Transport Layer

Security (DTLS) Profile for Authentication and

Authorization for Constrained Environments (ACE)", Work

in Progress, Internet-Draft, draft-ietf-ace-dtls-

authorize-16, 8 March 2021, <https://www.ietf.org/

archive/id/draft-ietf-ace-dtls-authorize-16.txt>.

Sengul, C. and A. Kirby, "Message

Queuing Telemetry Transport (MQTT)-TLS profile of

Authentication and Authorization for Constrained

Environments (ACE) Framework", Work in Progress,

Internet-Draft, draft-ietf-ace-mqtt-tls-profile-11, 14

April 2021, <https://www.ietf.org/archive/id/draft-ietf-

ace-mqtt-tls-profile-11.txt>.

https://www.ietf.org/archive/id/draft-ietf-core-groupcomm-bis-03.txt
https://www.ietf.org/archive/id/draft-ietf-core-groupcomm-bis-03.txt
http://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
http://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.ietf.org/archive/id/draft-ietf-ace-actors-07.txt
https://www.ietf.org/archive/id/draft-ietf-ace-actors-07.txt
https://www.ietf.org/archive/id/draft-ietf-ace-dtls-authorize-16.txt
https://www.ietf.org/archive/id/draft-ietf-ace-dtls-authorize-16.txt
https://www.ietf.org/archive/id/draft-ietf-ace-mqtt-tls-profile-11.txt
https://www.ietf.org/archive/id/draft-ietf-ace-mqtt-tls-profile-11.txt

[I-D.ietf-ace-oscore-profile]

[RFC8259]

Palombini, F., Seitz, L., Selander,

G., and M. Gunnarsson, "OSCORE Profile of the

Authentication and Authorization for Constrained

Environments Framework", Work in Progress, Internet-

Draft, draft-ietf-ace-oscore-profile-18, 14 April 2021,

<https://www.ietf.org/archive/id/draft-ietf-ace-oscore-

profile-18.txt>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

Appendix A. Requirements on Application Profiles

This section lists the specifications on this profile based on the

requirements defined in Appendix A of [I-D.ietf-ace-key-groupcomm]

REQ1: Specify the encoding and value of the identifier of group

or topic of 'scope': see Section 4).

REQ2: Specify the encoding and value of roles of 'scope': see

Section 4).

REQ3: Optionally, specify the acceptable values for 'sign_alg':

TODO

REQ4: Optionally, specify the acceptable values for

'sign_parameters': TODO

REQ5: Optionally, specify the acceptable values for

'sign_key_parameters': TODO

REQ6: Optionally, specify the acceptable values for

'pub_key_enc': TODO

REQ7: Specify the exact format of the 'key' value: COSE_Key, see

Section 4.

REQ8: Specify the acceptable values of 'kty' : "COSE_Key", see

Section 4.

REQ9: Specity the format of the identifiers of group members:

TODO

REQ10: Optionally, specify the format and content of

'group_policies' entries: not defined

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://www.ietf.org/archive/id/draft-ietf-ace-oscore-profile-18.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oscore-profile-18.txt
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259

REQ11: Specify the communication protocol the members of the

group must use: CoAP pub/sub.

REQ12: Specify the security protocol the group members must use

to protect their communication. This must provide encryption,

integrity and replay protection: Object Security of Content using

COSE, see Section 5.1.

REQ13: Specify and register the application profile identifier :

"coap_pubsub_app", see Section 8.1.

REQ14: Optionally, specify the encoding of public keys, of

'client_cred', and of 'pub_keys' if COSE_Keys are not used: NA.

REQ15: Specify policies at the KDC to handle id that are not

included in get_pub_keys: TODO

REQ16: Specify the format and content of 'group_policies': TODO

REQ17: Specify the format of newly-generated individual keying

material for group members, or of the information to derive it,

and corresponding CBOR label : not defined

REQ18: Specify how the communication is secured between Client

and KDC. Optionally, specify tranport profile of ACE [I-D.ietf-

ace-oauth-authz] to use between Client and KDC: pre-set, as KDC

is AS.

OPT1: Optionally, specify the encoding of public keys, of

'client_cred', and of 'pub_keys' if COSE_Keys are not used: NA

OPT2: Optionally, specify the negotiation of parameter values for

signature algorithm and signature keys, if 'sign_info' and

'pub_key_enc' are not used: NA

OPT3: Optionally, specify the format and content of

'mgt_key_material': not defined

OPT4: Optionally, specify policies that instruct clients to

retain unsuccessfully decrypted messages and for how long, so

that they can be decrypted after getting updated keying material:

not defined

Acknowledgments

The author wishes to thank Ari Keraenen, John Mattsson, Ludwig

Seitz, Goeran Selander, Jim Schaad and Marco Tiloca for the useful

discussion and reviews that helped shape this document.

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

Authors' Addresses

Francesca Palombini

Ericsson

Email: francesca.palombini@ericsson.com

Cigdem Sengul

Brunel University

Email: csengul@acm.org

mailto:francesca.palombini@ericsson.com
mailto:csengul@acm.org

	Pub-Sub Profile for Authentication and Authorization for Constrained Environments (ACE)
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Application Profile Overview
	3. PubSub Authorisation
	3.1. AS Discovery (Optional)
	3.2. Authorising to the Broker

	4. Key Distribution for PubSub Content Protection
	4.1. Token POST
	4.2. Join Request

	5. PubSub Protected Communication
	5.1. Using COSE Objects To Protect The Resource Representation

	6. Profile-specific Considerations
	6.1. CoAP PubSub Application Profile
	6.2. MQTT PubSub Application Profile

	7. Security Considerations
	8. IANA Considerations
	8.1. ACE Groupcomm Profile Registry
	8.1.1. CoAP Profile Registration
	8.1.2. MQTT Profile Registration

	8.2. ACE Groupcomm Key Registry

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Requirements on Application Profiles
	Acknowledgments
	Authors' Addresses

