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Abstract

This document specifies an authentication service that uses the

Extensible Authentication Protocol (EAP) transported employing

Constrained Application Protocol (CoAP) messages. As such, it

defines an EAP lower layer based on CoAP called CoAP-EAP. One of the

main goals is to authenticate a CoAP-enabled IoT device (EAP peer)

that intends to join a security domain managed by a Controller (EAP

authenticator). Secondly, it allows deriving key material to protect

CoAP messages exchanged between them based on Object Security for

Constrained RESTful Environments (OSCORE), enabling the

establishment of a security association between them.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 November 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1.  Introduction

1.1.  Requirements Language

2.  General Architecture

3.  CoAP-EAP Operation

3.1.  Discovery

3.2.  Flow of operation (OSCORE establishment)

3.3.  Reauthentication

3.4.  Managing the State of the Service

3.5.  Error handling

3.5.1.  EAP authentication failure

3.5.2.  Non-responding endpoint

3.5.3.  Duplicated message with /.well-known/coap-eap

3.6.  Proxy operation in CoAP-EAP

4.  CBOR Objects in CoAP-EAP

5.  Cipher suite negotiation and key derivation

5.1.  Cipher suite negotiation

5.2.  Deriving the OSCORE Security Context

6.  Discussion

6.1.  CoAP as EAP lower layer

6.2.  Size of the EAP lower layer vs EAP method size

7.  Security Considerations

7.1.  Authorization

7.2.  Freshness of the key material

7.3.  Channel Binding support

7.4.  Additional Security Consideration

8.  IANA Considerations

9.  Acknowledgments

10. References

10.1.  Normative References

10.2.  Informative References

Appendix A.  Flow of operation (DTLS establishment)

A.1.  Cryptographic suite negotiation for DTLS

A.2.  Deriving DTLS PSK and identity

Appendix B.  Examples of Use Case Scenario

B.1.  Example 1: CoAP-EAP in ACE

B.2.  Example 2: Multi-domain with AAA infrastructures

B.3.  Example 3: Single domain with AAA infrastructure

B.4.  Example 4: Single domain without AAA infrastructure

B.5.  Other use cases

B.5.1.  CoAP-EAP for network access control

B.5.2.  CoAP-EAP for service authentication

Authors' Addresses

¶



1. Introduction

This document specifies an authentication service (application) that

uses the Extensible Authentication Protocol (EAP) [RFC3748] and is

built on top of the Constrained Application Protocol (CoAP) 

[RFC7252] called CoAP-EAP. CoAP-EAP is an application that allows

authenticating two CoAP endpoints by using EAP, and establishing a

Object Security for Constrained RESTful Environments (OSCORE)

security association between them.

More specifically, this document specifies how CoAP can be used as a

constrained, link-layer independent, reliable EAP lower layer 

[RFC3748] to transport EAP messages between a CoAP server (acting as

EAP peer) and a CoAP client (acting as EAP authenticator) using CoAP

messages. The CoAP client has the option of contacting a backend AAA

infrastructure to complete the EAP negotiation as described in the

EAP specification [RFC3748].

EAP methods transported in CoAP MUST generate cryptographic material

[RFC5247] for this specification. This way, CoAP messages are

protected after the authentication. After CoAP-EAP's operation, an

OSCORE security association is established between endpoints of the

service. Using the keying material derived from the authentication,

other security associations could be generated. Appendix A shows how

to establish a (D)TLS security association using the keying material

from the EAP authentication.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119] [RFC8174]

when, and only when, they appear in all capitals, as shown here.

Readers are expected to be familiar with the terms and concepts of

described in CoAP [RFC7252], EAP [RFC3748][RFC5247] and OSCORE 

[RFC8613].

2. General Architecture

Figure 1 illustrates the architecture defined in this document.

Basically, an IoT device, acting as the EAP peer, wants to be

authenticated by using EAP to join a domain that is managed by a

Controller acting as EAP authenticator. The IoT device will act a

CoAP server for this service, and the EAP authenticator as a CoAP

client. The rationale behind this decision, as expanded later, is

that EAP requests go always from the EAP server to the EAP peer.

Accordingly, the EAP responses go from the EAP peer to the EAP

server.
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It is worth noting that the CoAP client (EAP authenticator) MAY

interact with a backend AAA infrastructure when EAP pass-through

mode is used, which will place the EAP server in the AAA server that

contains the information required to authenticate the EAP peer.

The protocol stack is described in Figure 2. CoAP-EAP is an

application built on top of CoAP. On top of the application, there

is an EAP state machine that can run any EAP method. For this

specification, the EAP method MUST be able to derive keying

material. CoAP-EAP also relies on CoAP reliability mechanisms in

CoAP to transport EAP: CoAP over UDP with Confirmable messages

([RFC7252]) or CoAP over TCP, TLS and WebSocket, which is specified

in [RFC8323].

Figure 1: CoAP-EAP Architecture

Figure 2: CoAP-EAP Stack

3. CoAP-EAP Operation

Since CoAP-EAP uses reliable delivery in CoAP ([RFC7252], 

[RFC8323]), EAP retransmission time is set to infinite as mentioned

in [RFC3748]. To keep ordering guarantee, CoAP-EAP uses Hypermedia

as the Engine of Application State (HATEOAS). Each step during the

EAP authentication is represented as a new resource in the EAP peer

(CoAP server). The previous resource is removed once the new

resource is created indicating the resource that will process the

next expected step of the EAP authentication.

¶
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+----------+        +--------------+            +----------+

| EAP peer |        |      EAP     |            |   AAA/   |

|   peer   |<------>| authenticator|<---------->|EAP Server|

+----------+  CoAP  +--------------+     AAA    +----------+

                                     (Optional)

<---(SCOPE OF THIS DOCUMENT)---->

                +-------------------------------+

                |        EAP State Machine      |

                +-------------------------------+ \

                |     Application(CoAP-EAP)     |  | This Document

                +-------------------------------+ /

                | Request/Responses/Signaling   | RFC 7252 / RFC 8323

                +-------------------------------+

                |    Message / Message Framing  | RFC 7252 / RFC 8323

                +-------------------------------+

                |Unreliable / Reliable Transport| RFC 7252 / RFC 8323

                +-------------------------------+
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An EAP method that does not export keying material MUST NOT be used.

One of the benefits of using EAP is that we can choose over a large

variety of authentication methods. Although for IoT, where we can

find very constrained links (e.g., limited bandwidth) and devices

with limited capabilities, EAP methods that do not require many

exchanges, with short messages, and that use cryptographic

algorithms that are manageable by constrained devices are

preferable.

In CoAP-EAP, the IoT device (EAP peer/CoAP server) will only have

one authentication session with a specific Controller (EAP

authenticator/ CoAP client) and it will not process any other EAP

authentication in parallel (with the same Controller). That is, a

single ongoing EAP authentication is permitted for the same IoT

device and the same Controller. Moreover, EAP is a lock-step

protocol ([RFC3748]). The benefits of the EAP framework in IoT are

highlighted in [eap-framework].

To access the authentication service, this document defines the

well-known URI "/.well-known/coap-eap" (to be assigned by IANA).

This URI is referring to the authentication service that is present

in the Controller so that IoT devices can start the service.

3.1. Discovery

Prior to the CoAP-EAP exchange taking place, the IoT device needs to

discovers the Controller or the entity that will enable the exchange

between the IoT and the Controller (e.g., an intermediary such as a

proxy).

The discovery process is out of the scope of this document. This

document provides the specification using the mechanisms provided by

CoAP to discover the Controller for CoAP-EAP.

The CoAP-EAP application is designated by the well-known URI "coap-

eap" for the trigger message (Step 0). The CoAP-EAP service can be

discovered by asking directly about the services offered. This

information can be also available in the resource directory [I-

D.ietf-core-resource-directory].

Implementation Notes: On the methods on how the IPv6 address of the

Controller or intermediary entity can be discovered, there can be

different methods depending on the specific deployment. For example,

on a 6LoWPAN network, the Border Router will typically act as the

Controller hence, after receiving the Router Advertisement (RA)

messages from the Border Router, the IoT device may engage on the

CoAP-EAP exchange. Different protocols can be used to discover the

IP of the Controller. Examples of such protocols are Multicast DNS

(mDNS) [RFC6762] or DHCPv6 [RFC8415].
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3.2. Flow of operation (OSCORE establishment)

Figure 3 shows the general flow of operation for CoAP-EAP to

authenticate using EAP and establish an OSCORE security context. The

flow does not show a specific EAP method. Instead, we represent the

chosen EAP method by using a generic name (EAP-X). The flow assumes

that the IoT device knows the Controller implements the CoAP-EAP

service. The specific mechanism of discovery is out-of-scope of this

document. Some comments about Controller discovery is in Section

3.1.

The steps for the operation are as follows:

Step 0. The IoT device MUST start the authentication process by

sending a "POST /.well-known/coap-eap" request (trigger message).

This message carries the 'No-Response' [RFC7967] CoAP option to

avoid waiting for a response that is not needed. This message is

the only instance where the Controller acts as a CoAP server and

the IoT device as a CoAP client. The message also includes a URI

in the payload of the message to indicate to what resource (e.g.

'/a/x') the Controller MUST send the first message with the EAP

authentication. The name of the resource is selected by the CoAP

server as it pleases. After this, the exchange continues with the

Controller as a CoAP client and the IoT device as a CoAP server.

Step 1. The Controller sends a "POST" message to the resource

indicated by the IoT device in Step 0 (e.g., '/a/x'). The payload

in this message contains the first EAP message (EAP Request/

Identity), the Recipient ID of the Controller (RID-C) for OSCORE

and it MAY contain a CBOR array containing a list with the cipher

suites (CS) for OSCORE. If the cipher suite is not included the

default cipher suite for OSCORE is used. The details of the

cipher suite negotiation are discussed in Section 5.1.

Step 2. The IoT device processes the POST message passing the EAP

request (EAP-Req/Id) to the EAP peer state machine, which returns

an EAP response (EAP Resp/Id); it assigns a new resource to the

ongoing authentication process (e.g., '/a/y'), and deletes the

previous one ('/a/x'). It finally sends a '2.01 Created' response

with the new resource identifier in the Location-Path (and/or

Location-Query) options for the next step; the EAP response, the

Recipient ID of the IoT device (RID-I) and the selected cipher

suite for OSCORE are in the payload. In this step, the IoT device

MAY create an OSCORE security context (see Section 5.2). The

required key, the Master Session Key (MSK), will be available

once the EAP authentication is successful in step 7.

Step 3-6. From now on, the Controller and the IoT device will

exchange EAP packets related to the EAP method (EAP-X),
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transported in the CoAP message payload. The Controller will use

the POST method to send EAP requests to the IoT device. The IoT

device will use a response to carry the EAP response in the

payload. EAP requests and responses are represented in Figure 3

using the nomenclature (EAP-X-Req and EAP-X-Resp, respectively.

When a POST message arrives (e.g, '/a/x') carrying an EAP request

message, if processed correctly by the EAP peer state machine,

returns an EAP Response. Along with each EAP Response, a new

resource is created (e.g, '/a/z') for processing the next EAP

request and the ongoing resource (e.g., '/a/y') is erased. This

way ordering guarantee is achieved. Finally, an EAP response is

sent in the payload of a CoAP response that will also indicate

the new resource in the Location-Path (and/or Location-Query)

Options. In case there is an error processing a legitimate

message, the server will return a (4.00 Bad Request). There is a

discussion about error handling in Section 3.5.

Step 7. When the EAP authentication ends with success, the

Controller obtains the Master Session Key (MSK) exported by the

EAP method, an EAP Success message and some authorization

information (i.e. session lifetime) [RFC5247]. The Controller

creates the OSCORE security context using the MSK and Sender ID

and Recipient ID exchanged in Steps 1 and 2. The establishment of

the OSCORE Security Context is defined in Section 5.2. Then, the

Controller sends the POST message protected with OSCORE for key

confirmation including the EAP Success. The Controller MAY also

send a Session Lifetime, in seconds, which is represented with an

unsigned integer in a CBOR object (see Section 4. If this Session

Lifetime is not sent, the IoT device assumes a default value of 8

hours as RECOMMENDED in [RFC5247]. The verification of the

received OSCORE protected "POST" message using RID-I (Recipient

ID of the IoT device) sent in Step 2 is considered by the IoT

device as an alternate indication of success ([RFC3748]). The EAP

peer state machine in the IoT device interprets the alternate

indication of success in a similar way to the arrival of an EAP

Success and returns the MSK, which is used for the OSCORE

security context in the IoT device to process the protected POST

message received from the Controller.

Step 8. If the EAP authentication and the verification of the

OSCORE protected "POST" in Step 7 is successful, then the IoT

Device answers with an OSCORE protected '2.04 Changed'. From this

point on, the communication with the last resource (e.g. '/a/w')

MUST be protected with OSCORE. If allowed by application policy,

the same OSCORE security context MAY be used to protect

communication to other resources between the same endpoints.
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Figure 3: CoAP-EAP flow of operation with OSCORE

3.3. Reauthentication

When the CoAP-EAP state is close to expiring, the IoT device MAY

want to start a new authentication process (re-authentication) to

renew the state. The main goal is to derive new and fresh keying

material (MSK/EMSK) that, in turn, allows deriving a new OSCORE

security context, increasing the protection against key leakage. The

keying material MUST be renewed before the expiration of the

Session-Lifetime. By default, the EAP Key Management Framework

establishes a default value of 8 hours to refresh the keying

               IoT device                              Controller

             -------------                            ------------

                 |  POST /.well-known/coap-eap             |

              0) |  No-Response                            |

                 |  Payload("/a/x")                        |

                 |---------------------------------------->|

                 |                               POST /a/x |

                 |          Payload(EAP Req/Id||CS||RID-C) |

              1) |<----------------------------------------|

                 | 2.01 Created Location-Path [/a/y]       |

                 | Payload(EAP Resp/Id||CS||RID-I)         |

              2) |---------------------------------------->|

                 |                               POST /a/y |

                 |                     Payload(EAP-X Req)  |

              3) |<----------------------------------------|

                 | 2.01 Created Location-Path [/a/z]       |

                 | Payload(EAP-X Resp)                     |

              4) |---------------------------------------->|

                                    ....

                 |                             POST /a/q   |

                 |                     Payload(EAP-X Req)  |

              5) |<----------------------------------------|

                 | 2.01 Created Location-Path [/a/w]       |

                 | Payload (EAP-X Resp)                    |

              6) |---------------------------------------->|

                 |                                         |  MSK

                 |                               POST /a/w |   |

                 |                                  OSCORE |   V

                 | Payload (EAP Success||*Session-Lifetime)| OSCORE

         MSK  7) |<----------------------------------------| CONTEXT

          |      |                                         |

          V      | 2.04 Changed                            |

        OSCORE   | OSCORE                                  |

      CONTEXT 8 )|---------------------------------------->|

                   (*) Session-Lifetime is optional.



material. Certain EAP methods such as EAP-NOOB [I-D.ietf-emu-eap-

noob] or EAP-AKA' [RFC5448] provides fast reconnect for quicker re-

authentication. The EAP re-authentication protocol (ERP) [RFC6696]

MAY be also used for avoiding the repetition of the entire EAP

exchange.

The message flow for the re-authentication will be the same as the

one shown in Figure 3. Nevertheless, two different CoAP-EAP states

will be active during the re-authentication: the current CoAP-EAP

state and the new CoAP-EAP state, which will be created once the re-

authentication has finished with success. Once the re-authentication

is completed successfully, the current CoAP-EAP state is deleted and

the new CoAP-EAP becomes the current one. If for any reason, the re-

authentication fails to complete, the current CoAP-EAP state will be

available until it expires, or it is renewed in another try of re-

authentication.

If the re-authentication fails, it is up to the IoT device to decide

when to restart a re-authentication before the current EAP state

expires.

3.4. Managing the State of the Service

The IoT device and the Controller keep a state during the CoAP-EAP

negotiation. The CoAP-EAP state includes several important parts:

A reference to an instance of the EAP (peer or authenticator/

server) state machine.

The resource for the next message in the negotiation (e.g '/a/y')

The MSK exported when the EAP authentication is successful. In

particular, CoAP-EAP is able to access to the different variables

by the EAP state machine (i.e. [RFC4137]).

A reference to the OSCORE context.

Once created, the Controller MAY choose to delete it as described in

Figure 4. On the other hand, the IoT device may need to renew the

CoAP-EAP state because the key material is close to expire, as

mentioned in Section 3.3.

There are situations where the current CoAP-EAP state might need to

be removed. For instance, due to its expiration or a forced removal

if the IoT device needs to be expelled from the security domain.

This exchange is illustrated in Figure 4.

If the Controller deems necessary the removal of the CoAP-EAP state

from the IoT device before it expires, it can send a DELETE command

in a request to the IoT device, referencing the last CoAP-EAP state
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resource given by the CoAP server, whose identifier will be the last

one received (e.g., '/a/w' in Figure 3). This message is protected

with the OSCORE security association to prevent forgery. Upon

reception of this message, the CoAP server sends a response to the

Controller with the Code '2.02 Deleted', which is also protected

with the OSCORE security association. If a response from the IoT

device does not arrive after EXCHANGE_LIFETIME the Controller will

remove the state from its side.

Figure 4: Deleting state

3.5. Error handling

This section elaborates on how different errors are handled. From

EAP authentication failure, a non-responding endpoint, lost messages

or initial POST message arriving out of place.

3.5.1. EAP authentication failure

EAP authentication MAY fail for different situations (e.g. wrong

credentials). The result is that the Controller will send an EAP

failure because of the EAP authentication (Step 7 in Figure 3). In

this case, the IoT device MUST send a response '4.01 Unauthorized'

in Step 8. Therefore, Step 7 and Step 8 are not protected in this

case because no MSK is exported and the OSCORE security context is

not generated.

If the EAP authentication fails during the re-authentication and the

Controller sends an EAP failure, the current CoAP-EAP state will be

still usable until it expires.

3.5.2. Non-responding endpoint

If, for any reason, one of the entities becomes non-responding, the

CoAP-EAP state SHOULD be kept only for a period of time before it is

removed. The removal of the CoAP-EAP state in the Controller assumes

that the IoT device will need to authenticate again. According to

CoAP, EXCHANGE_LIFETIME considers the time it takes until a client

¶

             IoT device                             Controller

           -------------                           -------------

                |                                         |

                |                             DELETE /a/w |

                |                                  OSCORE |

                |<----------------------------------------|

                |                                         |

                | 2.02 Deleted                            |

                | OSCORE                                  |

                |---------------------------------------->|
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stops expecting a response to a request. A timer is reset every time

a message is sent. If EXCHANGE_LIFETIME has passed waiting for the

next message, both entities will delete the CoAP-EAP state if the

authentication process has not finished correctly.

3.5.3. Duplicated message with /.well-known/coap-eap

The reception of the trigger message in Step 0 containing /.well-

known/coap-eap needs some additional considerations, as the resource

is always available in the EAP authenticator.

If a trigger message (Step 0) arrives to the Controller during an

ongoing authentication, the Controller MUST silently discard this

trigger message.

If an old "POST /.well-known/coap-eap" (Step 0) arrives to the

Controller and there is no authentication ongoing, the Controller

may understand that a new authentication process is requested.

Consequently, the Controller will start a new EAP authentication.

However, the IoT device did not start any authentication and

therefore, it has not selected any resource for the EAP

authentication. Thus, IoT device sends a '4.04 Not found' in the

response (Figure 5).

Figure 5: /.well-known/coap-eap with no ongoing authentication from the

EAP authenticator

3.6. Proxy operation in CoAP-EAP

The CoAP-EAP operation is intended to be compatible with the use of

intermediary entities between the IoT device and the Controller,

when direct communication is not possible. In this context, CoAP

proxies can be used as enablers of the CoAP-EAP exchange.

¶

¶

¶

¶

    IoT device                                 Controller

  -------------                              -------------

        |  *POST /.well-known/coap-eap            |

     0) |  , No-Response                          |

        |  Payload("/a/x")                        |

        |               ------------------------->|

        |                              POST /a/x  |

        |                Payload (EAP Req/Id||CS) |

     1) |<----------------------------------------|

        |                                         |

        | 4.04 Not found                          |

        |---------------------------------------->|

        * Old
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This specification is limited to using standard CoAP [RFC7252] as

well as standardized CoAP options [RFC8613]. It does not specify any

addition in the form of CoAP options. This is expected to ease the

integration of CoAP intermediaries in the CoAP-EAP exchange.

There is a consideration that needs to be considered, when using

proxies in the CoAP-EAP, as the exchange contains a role-reversal

process at the beginning of the exchange. In the first message, the

IoT device acts as a CoAP client, and the Controller as the CoAP

server. After that, the remaining exchanges the roles are reversed,

being the IoT device, the CoAP server and the Controller, the CoAP

client.

4. CBOR Objects in CoAP-EAP

In the CoAP-EAP exchange, there is information that needs to be

exchanged between the two entities. Examples of these are the cipher

suites that need to be negotiated or authorization information

(Session-lifetime). There may be also a need of extending the

information that has to be exchanged in the future. This section

specifies the CBOR [RFC8949] data structure to exchange information

between the IoT device and the Controller in the CoAP payload.

Next, is the specification of the CBOR Object to exchange

information in CoAP-EAP

Figure 6: CBOR data structure for CoAP-EAP

The parameters contain the following information:

cipher suite: It contains an array with the list of the

proposed or selected CBOR algorithms for OSCORE. If the field

is carried over a request, the meaning is the proposed cipher

suite, if it is carried over a response, corresponds to the

response.

RID-I: It contains the Recipient ID of the IoT device. The

Controller uses this value as Sender ID for its OSCORE Sender

Context. The IoT device uses this value as Recipient ID for its

Recipient Context.
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     CoAP-EAP_Info = {

         ?  1 : array,                      ; cipher suite

         ?  2 : bstr,                       ; RID-C

         ?  3 : bstr,                       ; RID-I

         ?  4 : uint                        ; Session-Lifetime

     }

¶

1. 

¶

2. 

¶



RID-C: It contains the Recipient ID of the Controller. The IoT

device uses this value as Sender ID for its OSCORE Sender

Context. The Controller uses this value as Recipient ID for its

Recipient Context.

Session-Lifetime: Contains the time the session is valid in

seconds.

The indexes from 65000 to 65535 are reserved for experimentation.

5. Cipher suite negotiation and key derivation

5.1. Cipher suite negotiation

OSCORE runs after the EAP authentication, using the cipher suite

selected in the cipher suite negotiation (Steps 1 and 2). To

negotiate the cipher suite, CoAP-EAP follows a simple approach: the

Controller sends a list, in decreasing order of preference, with the

identifiers of the supported cipher suites (Step 1). In the response

to that message (Step 2), the IoT device sends a response with the

choice.

This list is included in the payload after the EAP message with a

CBOR array that contains the cipher suites. An example of how the

fields are arranged in the CoAP payload can be seen in Figure 7. An

example of the exchange with the cipher suite negotiation is shown

in Figure 8, where can be appreciated the disposition of both EAP-

Request/Identity and EAP-Response/Identity, followed by the CBOR

object defined in Section 4, containing in the cipher suite field

the CBOR array for the cipher suite negotiation.

Figure 7: cipher suites are in the CoAP payload

3. 

¶

4. 

¶

¶

¶

¶

+-----+-----------+-------+------++-------------+

|Code |Identifier |Length | Data ||cipher suites|

+-----+-----------+-------+------++-------------+

          EAP Packet                CBOR Object



Figure 8: cipher suite negotiation

In case there is no CBOR array stating the cipher suites, the

default cipher suites are applied. If the Controller sends a

restricted list of cipher suites that is willing to accept it MUST

include the default value 0 since it is mandatory to implement. The

IoT device will have at least that option available.

The cipher suite requirements are inherited from the ones

established by OSCORE. By default, the HKDF algorithm is SHA-256 and

the AEAD algorithm is AES-CCM-16-64-128. Both are mandatory to

implement. The other cipher suites supported and negotiated in the

cipher suite negotiation are the following:

0. AES-CCM-16-64-128, SHA-256 (default)

1. A128GCM, SHA-256

2. A256GCM, SHA-384

3. ChaCha20/Poly1305, SHA-256

4. ChaCha20/Poly1305, SHAKE256

This specification uses the (HMAC)-based key derivation function

(HKDF) defined in [RFC5869] to derive the necessary key material.

Since the key derivation process uses the MSK, which is considered

fresh key material, we will use the HKDF-Expand function, which we

will shorten here as KDF.

5.2. Deriving the OSCORE Security Context

The derivation of the security context for OSCORE allows securing

the communication between the IoT device and the Controller once the

MSK has been exported providing, confidentiality, integrity, key

confirmation (Steps 7 and 8), and detecting a downgrading attack.

    EAP peer                                  EAP Auth.

 (CoAP server)                              (CoAP client)

 -------------                             -------------

       |                                         |

       |                  ...                    |

       |---------------------------------------->|

       |                              POST /a/x  |

       |  Payload (EAP Req/Id, CBORArray[0,1,2]) |

    1) |<----------------------------------------|

       | 2.01 Created Location-Path [/a/y]       |

       | Payload (EAP Resp/Id, CBORArray[0])     |

    2) |---------------------------------------->|

                          ...
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The Master Secret can be derived by using the chosen cipher suite

and the KDF. The Master Secret can be derived as follows:

Master Secret = KDF(MSK, CS | "COAP-EAP OSCORE MASTER SECRET",

length)

where:

The algorithms for OSCORE are agreed in the cipher suite

negotiation.

The MSK is exported by the EAP method. Discussion about the use

of the MSK for the key derivation is done in Section 7.

CS is the concatenation of the content of the cipher suite

negotiation, that is, the list of cipher suites sent by the

Controller (Step 1) the selected option by the IoT device (Step

2). If any of the messages did not contain the CBOR array

(default algorithms), the null string is used.

"COAP-EAP OSCORE MASTER SECRET" is the ASCII code representation

of the non-NULL terminated string (excluding the double quotes

around it).

CS and "COAP-EAP OSCORE MASTER SECRET" are concatenated.

length is the size of the output key material.

The Master Salt, similarly to the Master Secret, can be derived as

follows:

Master Salt = KDF(MSK, CS | "OSCORE MASTER SALT", length)

where:

The algorithms are agreed upon in the cipher suite negotiation.

The MSK is exported by the EAP method. Discussion about the use

of the MSK for the key derivation is done in Section 7.

CS is the concatenation of the content of the cipher suite

negotiation, in the request and response. If any of the messages

did not contain the CBOR array, the null string is used.

"OSCORE MASTER SALT" is the ASCII code representation of the non-

NULL-terminated string (excluding the double quotes around it).

CS and "COAP-EAP OSCORE MASTER SECRET" are concatenated.

length is the size of the output key material.
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Since the MSK is used to derive the Master Key, the correct

verification of the OSCORE protected request (Step 7) and response

(Step 8) confirms the Controller and the IoT device have the same

Master Secret, achieving key confirmation.

To prevent a downgrading attack, the content of the cipher suites

negotiation (which we refer to here as CS) is embedded in the Master

Secret derivation. If an attacker changes the value of the cipher

suite negotiation, the result will be different OSCORE security

contexts, that ends up with a failure in Step 7 and 8.

The Controller will use the Recipient ID of the IoT device (RID-I)

as Sender ID for its OSCORE Sender Context. The IoT device will use

this value as Recipient ID for its Recipient Context.

The IoT device will use the Recipient ID of the Controller (RID-C)

as Sender ID for its OSCORE Sender Context. The Controller will use

this value as Recipient ID for its Recipient Context.

6. Discussion

6.1. CoAP as EAP lower layer

This section discusses the suitability of the CoAP protocol as EAP

lower layer, and reviews the requisites imposed by the EAP protocol

on any protocol that transports EAP. What EAP expects from its lower

layers can be found in section 3.1 of [RFC3748], which is elaborated

next:

Unreliable transport. EAP does not assume that lower layers are

reliable but it can benefit from a reliable lower layer. In this

sense, CoAP provides a reliability mechanism (e.g. through the use

of Confirmable messages).

Lower layer error detection. EAP relies on lower layer error

detection (e.g., CRC, Checksum, MIC, etc.). CoAP goes on top of UDP/

TCP which provides a checksum mechanism over its payload.

Lower layer security. EAP does not require security services from

the lower layers.

Minimum MTU. Lower layers need to provide an EAP MTU size of 1020

octets or greater. CoAP assumes an upper bound of 1024 for its

payload which covers the requirements of EAP.

Ordering guarantees. EAP relies on lower layer ordering guarantees

for correct operation. Regarding message ordering, every time a new

message arrives at the authentication service hosted by the IoT

device, a new resource is created and this is indicated in a "2.01

Created" response code along with the name of the new resource via
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Location-Path or Location-Query. This way the application shows that

its state has advanced. Although the [RFC3748] states: "EAP provides

its own support for duplicate elimination and retransmission", EAP

is also reliant on lower layer ordering guarantees. In this regard, 

[RFC3748] talks about possible duplication and says: "Where the

lower layer is reliable, it will provide the EAP layer with a non-

duplicated stream of packets. However, while it is desirable that

lower layers provide for non-duplication, this is not a

requirement". CoAP is providing a non-duplicated stream of packets

and accomplish the "desirable" non-duplication. In addition, 

[RFC3748] says that when EAP runs over a reliable lower layer "the

authenticator retransmission timer SHOULD be set to an infinite

value, so that retransmissions do not occur at the EAP layer."

6.2. Size of the EAP lower layer vs EAP method size

Regarding the impact that an EAP lower layer will have on the total

byte size of the whole exchange, there is a comparison with another

network layer based EAP lower layer, PANA [RFC5191], in [coap-eap].

Comparing the EAP lower layer (alone) and taking into account EAP.

On the one hand, at the EAP lower layer level, the usage of CoAP

gives important benefits. On the other hand, when taking into

account the EAP method overload, this reduction is less but still

significant if the EAP method generates large EAP messages. If the

EAP method is very taxing, the impact of the reduction in the size

of the EAP lower layer is less significant. This leads to the

conclusion that possible next steps in this field could be designing

new EAP methods that can be better adapted to the requirements of

IoT devices and networks. For example, authors in [coap-eap] used

EAP-PSK as an example, since it only involves 4 messages and their

length can be less than 60 bytes. Moreover, it only uses symmetric

cryptography.

However, the impact of the EAP lower layer itself cannot be ignored,

hence the proposal of using CoAP as a lightweight protocol for this

purpose. Other EAP methods such as EAP-AKA'[RFC5448] or new EAP

methods such as EAP-NOOB [I-D.ietf-emu-eap-noob] or EAP-EDHOC [I-

D.ingles-eap-edhoc] that can benefit, as well as new ones that may

be proposed in the future with IoT constraints in mind, from a CoAP-

based EAP lower layer.

7. Security Considerations

There are some aspects to be considered such as how authorization is

managed, the use of MSK as keying material and how the trust in the

Controller is established. Additional considerations such as EAP

channel binding as per [RFC6677] are also discussed here.
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7.1. Authorization

Authorization is part of bootstrapping. It serves to establish

whether the node can join and the set of conditions it has to adhere

to. The authorization data will be gathered from the organization

that is responsible for the IoT device and sent to the EAP

authenticator in case of AAA infrastructure is deployed.

In standalone mode, the authorization information will be in the

Controller. If the pass-through mode is used, authorization data

received from the AAA server can be delivered by the AAA protocol

(e.g. RADIUS or Diameter). Providing more fine-grained authorization

data can be with the transport of SAML in RADIUS [RFC7833].

After bootstrapping, additional authorization information to operate

in the security domain, e.g., access services offered by other

nodes, can be taken care of by the solutions proposed in the ACE WG.

7.2. Freshness of the key material

In CoAP-EAP there is no nonce exchange to provide freshness to the

keys derived from the MSK. The MSK and Extended Master Session Key

(EMSK) keys according to the EAP Key Management Framework [RFC5247]

are fresh key material. Since only one authentication is established

per EAP authenticator, there is no need for generating additional

key material. In case a new MSK is required, a re-authentication can

be done, by running the process again, or using a more lightweight

EAP method to derive additional key material as elaborated in 

Section 3.3.

7.3. Channel Binding support

According to the [RFC6677], channel binding related to EAP, is sent

through the EAP method that supports it.

To satisfy the requirements of the document, we need to send the EAP

lower layer identifier (To be assigned by IANA), in the EAP Lower-

Layer Attribute if RADIUS is used.

7.4. Additional Security Consideration

In the process of authentication, there is a possibility of an

entity forging messages to generate a denial of service (DoS)

attacks on any of the entities involved. For instance, an attacker

can forge multiple initial messages to start an authentication (Step

0) with the Controller as if they were sent by different IoT

devices. Consequently, the Controller will start an authentication

per each message received in Step 0, sending the EAP Request/Id

(Step 1).
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To minimize the effects of this DoS attack, it is RECOMMENDED that

the Controller limits the rate at which it processes incoming

messages in Step 0 to provide robustness against denial of service

(DoS) attacks. The details of rate limiting are outside the scope of

this specification. Nevertheless, the rate of these messages is also

limited by the bandwidth available between the IoT device and the

Controller. This bandwidth will be especially limited in constrained

links (e.g., LPWAN). Lastly, it is also RECOMMENDED to reduce at a

minimum the state in the Controller at least until the EAP Response/

Ids received by the Controller.

Other security-related concerns can be how to ensure that the IoT

device joining the security domain can in fact trust the Controller.

This issue is elaborated in the EAP Key Management Framework 

[RFC5247]. In particular, the IoT device knows it can trust the

Controller because the key that is used to establish the security

association is derived from the MSK. If the Controller has the MSK,

it is clear the AAA Server of the node trusted the Controller, which

can be considered as a trusted party.

8. IANA Considerations

Considerations for IANA regarding this document:

Assignment of EAP lower layer identifier.

Assignment of the URI /.well-known/coap-eap

Assignment of the media type "application/coap-eap"

Assignment of the content format "application/coap-eap"

Assignment of the resource type (rt=) "core.coap-eap"

Assignment of the numbers assigned for the cipher suite

negotiation

Assignment of the numbers assigned for the numbers of the CBOR

object in CoAP-EAP
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Appendix A. Flow of operation (DTLS establishment)

CoAP-EAP makes possible to derive a PSK for (D)TLS to allow PSK-

based authentication between the IoT device and the Controller. In

the instance of using (D)TLS to establish a security association,

there is a limitation to the use of intermediaries between the IoT

device and the Controller, as (D)TLS breaks the end-to-end

communications when using intermediaries such as proxies.

Figure 9: CoAP-EAP flow of operation with DTLS

Figure 9 shows the last steps of the operation for CoAP-EAP when

(D)TLS is used to protect the communication between the IoT device
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and the Controller using the keying material exported by the EAP

authentication. The general flow is essentially the same as in the

case of OSCORE, except that DTLS negotiation is established in Step

7). Once DTLS negotiation has finished successfully the IoT device

is granted access to the domain. Step 7 MUST be interpreted by the

IoT device as an alternate success indication, which will end up

with the MSK and the DTLS_PSK derivation for the (D)TLS

authentication based on PSK.

According to [RFC8446] the provision of the PSK out-of-band also

requires the provision of the KDF hash algorithm and the PSK

identity. To simplify the design in CoAP-EAP, the KDF hash algorithm

can be included in the list of cipher suites exchange in Step 1 and

Step 2 if DTLS wants to be used instead of OSCORE. For the same

reason, the PSK identity is derived from (RID-C) (RID-I) as defined

in Appendix A.2.

A.1. Cryptographic suite negotiation for DTLS

It is also possible to derive a pre-shared key for DTLS to establish

a DLTS security association after a successful EAP authentication.

Analogously to how the cipher suite is negotiated for OSCORE Section

5.1, the Controller sends a list, in decreasing order of preference,

with the identifiers of the cipher suites supported (Step 1). In the

response, the IoT device sends the choice.

This list is included in the payload after the EAP message with a

CBOR array that contains the cipher suites. This CBOR array is

enclosed as one of the elements of the CBOR Object used for

transporting information in CoAP-EAP (See Section 4. An example of

how the fields are arranged in the CoAP payload can be seen in 

Figure 7.

In case there is no CBOR array stating the cipher suites, the

default cipher suites are applied. If the Controller sends a

restricted list of cipher suites that is willing to accept it MUST

include the default value 0 since it is mandatory to implement. The

IoT device will have at least that option available.

The cipher suites are the following:

3. TLS_SHA256

4. TLS_SHA384

5. TLS_SHA512
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A.2. Deriving DTLS PSK and identity

To enable DTLS after an EAP authentication using the key material

generated, we define the Identity and the PSK for DTLS. The Identity

in this case is generated by concatenating the exchanged Sender ID

and the Recipient ID.

CoAP-EAP PSK Identity = RID-C || RID-I

It is also possible to derive a pre-shared key for DTLS [RFC6347],

refereed to here as "DTLS PSK", from the MSK between both IoT device

and Controller if required. The length of the DTLS PSK will depend

on the cipher suite. To have keying material with sufficient length

a key of 32 bytes is derived that can be later truncated if needed:

DTLS PSK = KDF(MSK, "CoAP-EAP DTLS PSK", length).

where:

MSK is exported by the EAP method.

"CoAP-EAP DTLS PSK" is the ASCII code representation of the non-

NULL terminated string (excluding the double quotes around it).

length is the size of the output key material.

Appendix B. Examples of Use Case Scenario

For a IoT device to act as a trustworthy entity within a security

domain, certain key material is needed to be shared between the IoT

device and the Controller.

Next, we elaborate on examples of different use case scenarios about

the usage of CoAP-EAP. Generally, we are dealing with 4 entities:

2 nodes (A and B), which are IoT devices. They are the EAP peers.

1 controller (C). The controller manages a domain where nodes can

be deployed. It can be considered a more powerful machine than

the IoT devices.

1 AAA server (AAA) - Optional. The AAA is an Authentication,

Authorization and Accounting Server, which is not constrained.

Here, the Controller acts as EAP authenticator in pass-through

mode.

Generally, any IoT device wanting to join the domain managed by the

Controller MUST perform a CoAP-EAP authentication with the

Controller (C). This authentication MAY involve an external AAA

server. This means that A and B, once deployed, will run CoAP-EAP
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once, as a bootstrapping phase, to establish a security association

with C. Moreover, any other entity, which wants to join and

establish communications with nodes under C's domain must also do

the same. By using EAP, we can have the flexibility of having

different types of credentials. For instance, if we have a device

that is not battery dependent, and not very constrained, we could

use a heavier authentication method. With varied IoT devices and

networks we might need to resort to more lightweight authentication

methods (e.g., EAP-NOOB[I-D.ietf-emu-eap-noob], EAP-AKA'[RFC5448],

EAP-PSK[RFC4764], EAP-EDHOC[I-D.ingles-eap-edhoc], etc.) being able

to adapt to different types of devices according to organization

policies or devices capabilities.

B.1. Example 1: CoAP-EAP in ACE

In ACE, the process of Client registration and provisioning of

credentials to the client is not specified. The process of Client

registration and provisioning can be achieved using CoAP-EAP. Once

the process of authentication with EAP is completed, fresh key

material is shared between the IoT device and the Controller. In

this instance, the Controller and the Authorization Server (AS) of

ACE can be co-located.

Next, we exemplify how CoAP-EAP can be used to perform the Client

registration in a general way, to allow two IoT devices (A and B) to

communicate and interact after a successful client registration.

Node A wants to communicate with node B (e.g. to activate a light

switch). The overall process is divided into three phases. Let's

start with node A. In the first phase, the node A (EAP peer) does

not yet belong to Controller C's domain. Then, it communicates with

C (EAP authenticator) and authenticates with CoAP-EAP, which,

optionally, communicates with the AAA server to complete the

authentication process. If the authentication is successful, a fresh

MSK is shared between C and node A. This key material allows node A

to establish a security association with the C. Some authorization

information may be also provided in this step. In case EAP is used

in standalone mode, the AS itself having information about the

devices can be the entity providing said authorization information.

If authentication and authorization are correct, node A is enrolled

in controller C's domain for a period of time. In particular, 

[RFC5247] recommends 8 hours, though the the entity providing the

authorization information can establish this lifetime. In the same

manner, B needs to perform the same process with CoAP-EAP to be part

of the controller C's domain.

In the second phase, when node A wants to talk with node B, it

contacts controller C for authorization to access node B and obtain

all the required information to do that securely (e.g. keys, tokens,

¶

¶

¶

¶



authorization information, etc.). This phase does NOT require the

usage of CoAP-EAP. The details of this phase are out-of-scope of

this document, and the ACE framework is used for this purpose [I-

D.ietf-ace-oauth-authz].

In the third phase, the node A can access node B with the

credentials and information obtained from the controller C in the

second phase. This access can be repeated without contacting the

controller, while the credentials given to A are still valid. The

details of this phase are out-of-scope of this document.

It is worth noting that first phase with CoAP-EAP is required to

join the controller C's domain. Once it is performed with success,

the communications are local to the controller C's domain and there

is no need to perform a new EAP authentication as long as the key

material is still valid. When the keys are about to expire, the IoT

device can engage in a re-authentication as explained in Section

3.3, to renew the key material.

B.2. Example 2: Multi-domain with AAA infrastructures

We assume we have a device (A) of the domain acme.org, which uses a

specific kind of credential (e.g., AKA) and intends to join the

um.es domain. This user does not belong to this domain, for which

first it performs a client registration using CoAP-EAP. For this, it

interacts with the controller's domain acting as EAP authenticator,

which in turn communicates with a AAA infrastructure (acting as AAA

client). Through the local AAA server to communicate with the home

AAA server to complete the authentication and integrate the device

as a trustworthy entity into the domain of controller C. In this

scenario, the AS under the role of the Controller receives the key

material from the AAA infrastructure

B.3. Example 3: Single domain with AAA infrastructure

A University Campus, we have several Faculty buildings and each one

has its own criteria or policies in place to manage IoT devices

under an AS. All buildings belong to the same domain (e.g., um.es).

All these buildings are managed with a AAA infrastructure. A new

device (A) with credentials from the domain (e.g., um.es) will be

able to perform the device registration with a Controller (C) of any

building as long as they are managed by the same general domain.

B.4. Example 4: Single domain without AAA infrastructure

In another case, without a AAA infrastructure, we have a Controller

that has co-located the EAP server and using EAP standalone mode we

can manage all the devices within the same domain locally. Client

registration of a node (A) with Controller (C) can also be performed

in the same manner.
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B.5. Other use cases

B.5.1. CoAP-EAP for network access control

One of the first steps for an IoT device life-cycle is to perform

the authentication to gain access to the network. To do so, the

device first has to be authenticated and granted authorization to

gain access to the network. Additionally, security parameters such

as credentials can be derived from the authentication process

allowing the trustworthy operation of the IoT device in a particular

network by joining the security domain. By using EAP, we are able to

achieve this with flexibility and scalability, because of the

different EAP methods available and the ability to rely on AAA

infrastructures if needed to support multi-domain scenarios, which

is a key feature when the IoT devices deployed under the same

security domain, belong to different organizations. Given that EAP

is also used for network access control, we can adapt this service

for other technologies. For instance, to provide network access

control to very constrained technologies (e.g., LoRa network).

Authors in [lo-coap-eap] provide an study of a minimal version of

CoAP-EAP for LPWAN networks with interesting results. In this

specific case, we could leverage the compression by SCHC for CoAP 

[RFC8824].

B.5.2. CoAP-EAP for service authentication

It is not uncommon that the infrastructure where the device is

deployed and the services of the IoT device are managed by different

organizations. Therefore, in addition to the authentication for

network access control, we have to consider the possibility of a

secondary authentication to access different services. This process

of authentication, for example, will provide with the necessary key

material to establish a secure channel and interact with the entity

in charge of granting access to different services. In 5G, for

example, consider a primary and secondary authentication using EAP 

[TS133.501].
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