
Network Working Group R. Barnes
Internet-Draft Mozilla
Intended status: Standards Track J. Hoffman-Andrews
Expires: May 4, 2017 EFF
 J. Kasten
 University of Michigan
 October 31, 2016

Automatic Certificate Management Environment (ACME)
draft-ietf-acme-acme-04

Abstract

 Certificates in the Web's X.509 PKI (PKIX) are used for a number of
 purposes, the most significant of which is the authentication of
 domain names. Thus, certificate authorities in the Web PKI are
 trusted to verify that an applicant for a certificate legitimately
 represents the domain name(s) in the certificate. Today, this
 verification is done through a collection of ad hoc mechanisms. This
 document describes a protocol that a certificate authority (CA) and
 an applicant can use to automate the process of verification and
 certificate issuance. The protocol also provides facilities for
 other certificate management functions, such as certificate
 revocation.

 DISCLAIMER: This is a work in progress draft of ACME and has not yet
 had a thorough security analysis.

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH: The source for
 this draft is maintained in GitHub. Suggested changes should be
 submitted as pull requests at https://github.com/ietf-wg-acme/acme .
 Instructions are on that page as well. Editorial changes can be
 managed in GitHub, but any substantive change should be discussed on
 the ACME mailing list (acme@ietf.org).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Barnes, et al. Expires May 4, 2017 [Page 1]

https://github.com/ietf-wg-acme/acme
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft ACME October 2016

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 4, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Deployment Model and Operator Experience 4
3. Terminology . 6
4. Protocol Overview . 6
5. Message Transport . 8
5.1. HTTPS Requests . 8
5.2. Request Authentication 9
5.3. Equivalence of JWKs 10
5.4. Request URI Integrity 10
5.4.1. "url" (URL) JWS header parameter 11

5.5. Replay protection . 11
5.5.1. Replay-Nonce . 12
5.5.2. "nonce" (Nonce) JWS header parameter 12

5.6. Rate limits . 13
5.7. Errors . 13

6. Certificate Management 15
6.1. Resources . 15
6.1.1. Directory . 17
6.1.2. Registration Objects 19
6.1.3. Application Objects 20
6.1.4. Authorization Objects 23

6.2. Getting a Nonce . 25
6.3. Registration . 25
6.3.1. Changes of Terms of Service 28
6.3.2. Account Key Roll-over 29
6.3.3. Account deactivation 31

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Barnes, et al. Expires May 4, 2017 [Page 2]

Internet-Draft ACME October 2016

6.4. Applying for Certificate Issuance 32
6.4.1. Pre-Authorization 34
6.4.2. Downloading the Certificate 36

6.5. Identifier Authorization 38
6.5.1. Responding to Challenges 39
6.5.2. Deactivating an Authorization 41

6.6. Certificate Revocation 42
7. Identifier Validation Challenges 44
7.1. Key Authorizations 46
7.2. HTTP . 46
7.3. TLS with Server Name Indication (TLS SNI) 48
7.4. DNS . 50
7.5. Out-of-Band . 52

8. IANA Considerations . 52
8.1. Well-Known URI for the HTTP Challenge 53
8.2. Replay-Nonce HTTP Header 53
8.3. "url" JWS Header Parameter 53
8.4. "nonce" JWS Header Parameter 53
8.5. URN Sub-namespace for ACME (urn:ietf:params:acme) 54
8.6. New Registries . 54
8.6.1. Error Codes . 54
8.6.2. Resource Types 55
8.6.3. Identifier Types 55
8.6.4. Challenge Types 56

9. Security Considerations 57
9.1. Threat model . 57
9.2. Integrity of Authorizations 58
9.3. Denial-of-Service Considerations 60
9.4. Server-Side Request Forgery 61
9.5. CA Policy Considerations 62

10. Operational Considerations 62
10.1. DNS over TCP . 62
10.2. Default Virtual Hosts 63
10.3. Use of DNSSEC Resolvers 63

11. Acknowledgements . 64
12. References . 64
12.1. Normative References 64
12.2. Informative References 66

 Authors' Addresses . 67

1. Introduction

 Certificates in the Web PKI [RFC5280] are most commonly used to
 authenticate domain names. Thus, certificate authorities in the Web
 PKI are trusted to verify that an applicant for a certificate
 legitimately represents the domain name(s) in the certificate.

https://datatracker.ietf.org/doc/html/rfc5280

Barnes, et al. Expires May 4, 2017 [Page 3]

Internet-Draft ACME October 2016

 Existing Web PKI certificate authorities tend to run on a set of ad
 hoc protocols for certificate issuance and identity verification. A
 typical user experience is something like:

 o Generate a PKCS#10 [RFC2986] Certificate Signing Request (CSR).

 o Cut-and-paste the CSR into a CA web page.

 o Prove ownership of the domain by one of the following methods:

 * Put a CA-provided challenge at a specific place on the web
 server.

 * Put a CA-provided challenge at a DNS location corresponding to
 the target domain.

 * Receive CA challenge at a (hopefully) administrator-controlled
 e-mail address corresponding to the domain and then respond to
 it on the CA's web page.

 o Download the issued certificate and install it on their Web
 Server.

 With the exception of the CSR itself and the certificates that are
 issued, these are all completely ad hoc procedures and are
 accomplished by getting the human user to follow interactive natural-
 language instructions from the CA rather than by machine-implemented
 published protocols. In many cases, the instructions are difficult
 to follow and cause significant confusion. Informal usability tests
 by the authors indicate that webmasters often need 1-3 hours to
 obtain and install a certificate for a domain. Even in the best
 case, the lack of published, standardized mechanisms presents an
 obstacle to the wide deployment of HTTPS and other PKIX-dependent
 systems because it inhibits mechanization of tasks related to
 certificate issuance, deployment, and revocation.

 This document describes an extensible framework for automating the
 issuance and domain validation procedure, thereby allowing servers
 and infrastructural software to obtain certificates without user
 interaction. Use of this protocol should radically simplify the
 deployment of HTTPS and the practicality of PKIX authentication for
 other protocols based on TLS [RFC5246].

2. Deployment Model and Operator Experience

 The major guiding use case for ACME is obtaining certificates for Web
 sites (HTTPS [RFC2818]). In that case, the server is intended to
 speak for one or more domains, and the process of certificate

https://datatracker.ietf.org/doc/html/rfc2986
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2818

Barnes, et al. Expires May 4, 2017 [Page 4]

Internet-Draft ACME October 2016

 issuance is intended to verify that the server actually speaks for
 the domain(s).

 Different types of certificates reflect different kinds of CA
 verification of information about the certificate subject. "Domain
 Validation" (DV) certificates are by far the most common type. For
 DV validation, the CA merely verifies that the requester has
 effective control of the web server and/or DNS server for the domain,
 but does not explicitly attempt to verify their real-world identity.
 (This is as opposed to "Organization Validation" (OV) and "Extended
 Validation" (EV) certificates, where the process is intended to also
 verify the real-world identity of the requester.)

 DV certificate validation commonly checks claims about properties
 related to control of a domain name - properties that can be observed
 by the issuing authority in an interactive process that can be
 conducted purely online. That means that under typical
 circumstances, all steps in the request, verification, and issuance
 process can be represented and performed by Internet protocols with
 no out-of-band human intervention.

 When deploying a current HTTPS server, an operator generally gets a
 prompt to generate a self-signed certificate. When an operator
 deploys an ACME-compatible web server, the experience would be
 something like this:

 o The ACME client prompts the operator for the intended domain
 name(s) that the web server is to stand for.

 o The ACME client presents the operator with a list of CAs from
 which it could get a certificate. (This list will change over
 time based on the capabilities of CAs and updates to ACME
 configuration.) The ACME client might prompt the operator for
 payment information at this point.

 o The operator selects a CA.

 o In the background, the ACME client contacts the CA and requests
 that a certificate be issued for the intended domain name(s).

 o Once the CA is satisfied, the certificate is issued and the ACME
 client automatically downloads and installs it, potentially
 notifying the operator via e-mail, SMS, etc.

 o The ACME client periodically contacts the CA to get updated
 certificates, stapled OCSP responses, or whatever else would be
 required to keep the server functional and its credentials up-to-
 date.

Barnes, et al. Expires May 4, 2017 [Page 5]

Internet-Draft ACME October 2016

 The overall idea is that it's nearly as easy to deploy with a CA-
 issued certificate as a self-signed certificate, and that once the
 operator has done so, the process is self-sustaining with minimal
 manual intervention. Close integration of ACME with HTTPS servers,
 for example, can allow the immediate and automated deployment of
 certificates as they are issued, optionally sparing the human
 administrator from additional configuration work.

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The two main roles in ACME are "client" and "server". The ACME
 client uses the protocol to request certificate management actions,
 such as issuance or revocation. An ACME client therefore typically
 runs on a web server, mail server, or some other server system which
 requires valid TLS certificates. The ACME server runs at a
 certificate authority, and responds to client requests, performing
 the requested actions if the client is authorized.

 An ACME client is represented by an "account key pair". The client
 uses the private key of this key pair to sign all messages sent to
 the server. The server uses the public key to verify the
 authenticity and integrity of messages from the client.

4. Protocol Overview

 ACME allows a client to request certificate management actions using
 a set of JSON messages carried over HTTPS. In some ways, ACME
 functions much like a traditional CA, in which a user creates an
 account, adds identifiers to that account (proving control of the
 domains), and requests certificate issuance for those domains while
 logged in to the account.

 In ACME, the account is represented by an account key pair. The "add
 a domain" function is accomplished by authorizing the key pair for a
 given domain. Certificate issuance and revocation are authorized by
 a signature with the key pair.

 The first phase of ACME is for the client to register with the ACME
 server. The client generates an asymmetric key pair and associates
 this key pair with a set of contact information by signing the
 contact information. The server acknowledges the registration by
 replying with a registration object echoing the client's input.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Barnes, et al. Expires May 4, 2017 [Page 6]

Internet-Draft ACME October 2016

 Client Server

 Contact Information
 Signature ------->

 <------- Registration

 Once the client is registered, there are three major steps it needs
 to take to get a certificate:

 1. Apply for a certificate to be issued

 2. Fulfill the server's requirements for issuance

 3. Await issuance and download the issued certificate

 The client's application for a certificate describes the desired
 certificate using a PKCS#10 Certificate Signing Request (CSR) plus a
 few additional fields that capture semantics that are not supported
 in the CSR format. If the server is willing to consider issuing such
 a certificate, it responds with a list of requirements that the
 client must satisfy before the certificate will be issued.

 For example, in most cases, the server will require the client to
 demonstrate that it controls the identifiers in the requested
 certificate. Because there are many different ways to validate
 possession of different types of identifiers, the server will choose
 from an extensible set of challenges that are appropriate for the
 identifier being claimed. The client responds with a set of
 responses that tell the server which challenges the client has
 completed. The server then validates the challenges to check that
 the client has accomplished the challenge.

 Once the validation process is complete and the server is satisfied
 that the client has met its requirements, the server will issue the
 requested certificate and make it available to the client.

 Application
 Signature ------->
 <------- Requirements
 (e.g., Challenges)

 Responses
 Signature ------->

 <~~~~~~~~Validation~~~~~~~~>

 <------- Certificate

Barnes, et al. Expires May 4, 2017 [Page 7]

Internet-Draft ACME October 2016

 To revoke a certificate, the client simply sends a revocation request
 indicating the certificate to be revoked, signed with an authorized
 key pair. The server indicates whether the request has succeeded.

 Client Server

 Revocation request
 Signature -------->

 <-------- Result

 Note that while ACME is defined with enough flexibility to handle
 different types of identifiers in principle, the primary use case
 addressed by this document is the case where domain names are used as
 identifiers. For example, all of the identifier validation
 challenges described in Section 7 below address validation of domain
 names. The use of ACME for other protocols will require further
 specification, in order to describe how these identifiers are encoded
 in the protocol, and what types of validation challenges the server
 might require.

5. Message Transport

 Communications between an ACME client and an ACME server are done
 over HTTPS, using JSON Web Signature (JWS) [RFC7515] to provide some
 additional security properties for messages sent from the client to
 the server. HTTPS provides server authentication and
 confidentiality. With some ACME-specific extensions, JWS provides
 authentication of the client's request payloads, anti-replay
 protection, and integrity for the HTTPS request URI.

5.1. HTTPS Requests

 Each ACME function is accomplished by the client sending a sequence
 of HTTPS requests to the server, carrying JSON messages
 [RFC2818][RFC7159]. Use of HTTPS is REQUIRED. Clients SHOULD
 support HTTP public key pinning [RFC7469], and servers SHOULD emit
 pinning headers. Each subsection of Section 6 below describes the
 message formats used by the function, and the order in which messages
 are sent.

 In most HTTPS transactions used by ACME, the ACME client is the HTTPS
 client and the ACME server is the HTTPS server. The ACME server acts
 as an HTTP and HTTPS client when validating challenges via HTTP.

 ACME clients SHOULD send a User-Agent header in accordance with
 [RFC7231], including the name and version of the ACME software in

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc7469
https://datatracker.ietf.org/doc/html/rfc7231

Barnes, et al. Expires May 4, 2017 [Page 8]

Internet-Draft ACME October 2016

 addition to the name and version of the underlying HTTP client
 software.

 ACME clients SHOULD send an Accept-Language header in accordance with
 [RFC7231] to enable localization of error messages.

 ACME servers that are intended to be generally accessible need to use
 Cross-Origin Resource Sharing (CORS) in order to be accessible from
 browser-based clients [W3C.CR-cors-20130129]. Such servers SHOULD
 set the Access-Control-Allow-Origin header field to the value "*".

 Binary fields in the JSON objects used by ACME are encoded using
 base64url encoding described in [RFC4648] Section 5, according to the
 profile specified in JSON Web Signature [RFC7515] Section 2. This
 encoding uses a URL safe character set. Trailing '=' characters MUST
 be stripped.

5.2. Request Authentication

 All ACME requests with a non-empty body MUST encapsulate the body in
 a JWS object, signed using the account key pair. The server MUST
 verify the JWS before processing the request. (For readability,
 however, the examples below omit this encapsulation.) Encapsulating
 request bodies in JWS provides a simple authentication of requests by
 way of key continuity.

 JWS objects sent in ACME requests MUST meet the following additional
 criteria:

 o The JWS MUST be encoded using UTF-8

 o The JWS MUST NOT have the value "none" in its "alg" field

 o The JWS Protected Header MUST include the following fields:

 * "alg"

 * "jwk" (only for requests to new-reg and revoke-cert resources)

 * "kid" (for all other requests).

 * "nonce" (defined below)

 * "url" (defined below)

 The "jwk" and "kid" fields are mutually exclusive. Servers MUST
 reject requests that contain both.

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc7515#section-2

Barnes, et al. Expires May 4, 2017 [Page 9]

Internet-Draft ACME October 2016

 For new-reg requests, and for revoke-cert requests authenticated by
 certificate key, there MUST be a "jwk" field.

 For all other requests, there MUST be a "kid" field. This field must
 contain the account URI received by POSTing to the new-reg resource.

 Note that authentication via signed POST implies that GET requests
 are not authenticated. Servers MUST NOT respond to GET requests for
 resources that might be considered sensitive.

 In the examples below, JWS objects are shown in the JSON or flattened
 JSON serialization, with the protected header and payload expressed
 as base64url(content) instead of the actual base64-encoded value, so
 that the content is readable. Some fields are omitted for brevity,
 marked with "...".

5.3. Equivalence of JWKs

 At some points in the protocol, it is necessary for the server to
 determine whether two JSON Web Key (JWK) [RFC7517] objects represent
 the same key. In performing these checks, the server MUST consider
 two JWKs to match if and only if they have the identical values in
 all fields included in the computation of a JWK thumbprint for that
 key. That is, the keys must have the same "kty" value and contain
 identical values in the fields used in the computation of a JWK
 thumbprint for that key type:

 o "RSA": "n", "e"

 o "EC": "crv", "x", "y"

 Note that this comparison is equivalent to computing the JWK
 thumbprints of the two keys and comparing thumbprints. The only
 difference is that there is no requirement for a hash computation
 (and thus it is independent of the choice of hash function) and no
 risk of hash collision.

5.4. Request URI Integrity

 It is common in deployment for the entity terminating TLS for HTTPS
 to be different from the entity operating the logical HTTPS server,
 with a "request routing" layer in the middle. For example, an ACME
 CA might have a content delivery network terminate TLS connections
 from clients so that it can inspect client requests for denial-of-
 service protection.

 These intermediaries can also change values in the request that are
 not signed in the HTTPS request, e.g., the request URI and headers.

https://datatracker.ietf.org/doc/html/rfc7517

Barnes, et al. Expires May 4, 2017 [Page 10]

Internet-Draft ACME October 2016

 ACME uses JWS to provide a limited integrity mechanism, which
 protects against an intermediary changing the request URI to another
 ACME URI of a different type. (It does not protect against changing
 between URIs of the same type, e.g., from one authorization URI to
 another).

 As noted above, all ACME request objects carry a "url" parameter in
 their protected header. This header parameter encodes the URL to
 which the client is directing the request. On receiving such an
 object in an HTTP request, the server MUST compare the "url"
 parameter to the request URI. If the two do not match, then the
 server MUST reject the request as unauthorized.

 Except for the directory resource, all ACME resources are addressed
 with URLs provided to the client by the server. For these resources,
 the client MUST set the "url" field to the exact string provided by
 the server (rather than performing any re-encoding on the URL). The
 server SHOULD perform the corresponding string equality check,
 configuring each resource with the URL string provided to clients and
 having the resource check that requests have the same string in their
 "url" fields.

5.4.1. "url" (URL) JWS header parameter

 The "url" header parameter specifies the URL to which this JWS object
 is directed [RFC3986]. The "url" parameter MUST be carried in the
 protected header of the JWS. The value of the "url" header MUST be a
 JSON string representing the URL.

5.5. Replay protection

 In order to protect ACME resources from any possible replay attacks,
 ACME requests have a mandatory anti-replay mechanism. This mechanism
 is based on the server maintaining a list of nonces that it has
 issued to clients, and requiring any signed request from the client
 to carry such a nonce.

 An ACME server provides nonces to clients using the Replay-Nonce
 header field, as specified below. The server MUST include a Replay-
 Nonce header field in every successful response to a POST request,
 and SHOULD provide it in error responses as well.

 Every JWS sent by an ACME client MUST include, in its protected
 header, the "nonce" header parameter, with contents as defined below.
 As part of JWS verification, the ACME server MUST verify that the
 value of the "nonce" header is a value that the server previously
 provided in a Replay-Nonce header field. Once a nonce value has

https://datatracker.ietf.org/doc/html/rfc3986

Barnes, et al. Expires May 4, 2017 [Page 11]

Internet-Draft ACME October 2016

 appeared in an ACME request, the server MUST consider it invalid, in
 the same way as a value it had never issued.

 When a server rejects a request because its nonce value was
 unacceptable (or not present), it SHOULD provide HTTP status code 400
 (Bad Request), and indicate the ACME error code
 "urn:ietf:params:acme:error:badNonce". An error response with the
 "badNonce" error code MUST include a Replay-Nonce header with a fresh
 nonce. On receiving such a response, a client SHOULD retry the
 request using the new nonce.

 The precise method used to generate and track nonces is up to the
 server. For example, the server could generate a random 128-bit
 value for each response, keep a list of issued nonces, and strike
 nonces from this list as they are used.

5.5.1. Replay-Nonce

 The "Replay-Nonce" header field includes a server-generated value
 that the server can use to detect unauthorized replay in future
 client requests. The server should generate the value provided in
 Replay-Nonce in such a way that they are unique to each message, with
 high probability.

 The value of the Replay-Nonce field MUST be an octet string encoded
 according to the base64url encoding described in Section 2 of
 [RFC7515]. Clients MUST ignore invalid Replay-Nonce values.

 base64url = [A-Z] / [a-z] / [0-9] / "-" / "_"

 Replay-Nonce = *base64url

 The Replay-Nonce header field SHOULD NOT be included in HTTP request
 messages.

5.5.2. "nonce" (Nonce) JWS header parameter

 The "nonce" header parameter provides a unique value that enables the
 verifier of a JWS to recognize when replay has occurred. The "nonce"
 header parameter MUST be carried in the protected header of the JWS.

 The value of the "nonce" header parameter MUST be an octet string,
 encoded according to the base64url encoding described in Section 2 of
 [RFC7515]. If the value of a "nonce" header parameter is not valid
 according to this encoding, then the verifier MUST reject the JWS as
 malformed.

https://datatracker.ietf.org/doc/html/rfc7515#section-2
https://datatracker.ietf.org/doc/html/rfc7515#section-2
https://datatracker.ietf.org/doc/html/rfc7515#section-2
https://datatracker.ietf.org/doc/html/rfc7515#section-2

Barnes, et al. Expires May 4, 2017 [Page 12]

Internet-Draft ACME October 2016

5.6. Rate limits

 Creation of resources can be rate limited to ensure fair usage and
 prevent abuse. Once the rate limit is exceeded, the server MUST
 respond with an error with the code "rateLimited". Additionally, the
 server SHOULD send a "Retry-After" header indicating when the current
 request may succeed again. If multiple rate limits are in place,
 that is the time where all rate limits allow access again for the
 current request with exactly the same parameters.

 In addition to the human readable "detail" field of the error
 response, the server MAY send one or multiple tokens in the "Link"
 header pointing to documentation about the specific hit rate limits
 using the "rate-limit" relation.

5.7. Errors

 Errors can be reported in ACME both at the HTTP layer and within ACME
 payloads. ACME servers can return responses with an HTTP error
 response code (4XX or 5XX). For example: If the client submits a
 request using a method not allowed in this document, then the server
 MAY return status code 405 (Method Not Allowed).

 When the server responds with an error status, it SHOULD provide
 additional information using problem document [RFC7807]. To
 facilitate automatic response to errors, this document defines the
 following standard tokens for use in the "type" field (within the
 "urn:ietf:params:acme:error:" namespace):

https://datatracker.ietf.org/doc/html/rfc7807

Barnes, et al. Expires May 4, 2017 [Page 13]

Internet-Draft ACME October 2016

 +-----------------------+---+
 | Code | Description |
 +-----------------------+---+
badCSR	The CSR is unacceptable (e.g., due to a
	short key)
badNonce	The client sent an unacceptable anti-
	replay nonce
connection	The server could not connect to
	validation target
dnssec	DNSSEC validation failed
caa	CAA records forbid the CA from issuing
malformed	The request message was malformed
serverInternal	The server experienced an internal error
tls	The server received a TLS error during
	validation
unauthorized	The client lacks sufficient authorization
unknownHost	The server could not resolve a domain
	name
rateLimited	The request exceeds a rate limit
invalidContact	The contact URI for a registration was
	invalid
rejectedIdentifier	The server will not issue for the
	identifier
unsupportedIdentifier	Identifier is not supported, but may be
	in future
agreementRequired	The client must agree to terms before
	proceeding
 +-----------------------+---+

 This list is not exhaustive. The server MAY return errors whose
 "type" field is set to a URI other than those defined above. Servers
 MUST NOT use the ACME URN namespace for errors other than the
 standard types. Clients SHOULD display the "detail" field of such
 errors.

Barnes, et al. Expires May 4, 2017 [Page 14]

Internet-Draft ACME October 2016

 Authorization and challenge objects can also contain error
 information to indicate why the server was unable to validate
 authorization.

6. Certificate Management

 In this section, we describe the certificate management functions
 that ACME enables:

 o Account Key Registration

 o Application for a Certificate

 o Account Key Authorization

 o Certificate Issuance

 o Certificate Revocation

6.1. Resources

 ACME is structured as a REST application with a few types of
 resources:

 o Registration resources, representing information about an account

 o Application resources, representing an account's requests to issue
 certificates

 o Authorization resources, representing an account's authorization
 to act for an identifier

 o Challenge resources, representing a challenge to prove control of
 an identifier

 o Certificate resources, representing issued certificates

 o A "directory" resource

 o A "new-nonce" resource

 o A "new-registration" resource

 o A "new-application" resource

 o A "revoke-certificate" resource

 o A "key-change" resource

Barnes, et al. Expires May 4, 2017 [Page 15]

Internet-Draft ACME October 2016

 The server MUST provide "directory" and "new-nonce" resources.

 For the singular resources above ("directory", "new-nonce", "new-
 registration", "new-application", "revoke-certificate", and "key-
 change") the resource may be addressed by multiple URIs, but all must
 provide equivalent functionality.

 ACME uses different URIs for different management functions. Each
 function is listed in a directory along with its corresponding URI,
 so clients only need to be configured with the directory URI. These
 URIs are connected by a few different link relations [RFC5988].

 The "up" link relation is used with challenge resources to indicate
 the authorization resource to which a challenge belongs. It is also
 used from certificate resources to indicate a resource from which the
 client may fetch a chain of CA certificates that could be used to
 validate the certificate in the original resource.

 The "directory" link relation is present on all resources other than
 the directory and indicates the directory URL.

 The following diagram illustrates the relations between resources on
 an ACME server. For the most part, these relations are expressed by
 URLs provided as strings in the resources' JSON representations.
 Lines with labels in quotes indicate HTTP link relations

 directory
 |
 |--> new-nonce
 |
 --+
 | | | |
 | | | |
 V V V V
 new-reg new-authz new-app revoke-cert
 | | | ^
 | | | | "revoke"
 V | V |
 reg | app ---------> cert ---------+
 | | ^ |
 | | | "up" | "up"
 | V | V
 +------> authz cert-chain
 | ^
 | | "up"
 V |
 challenge

https://datatracker.ietf.org/doc/html/rfc5988

Barnes, et al. Expires May 4, 2017 [Page 16]

Internet-Draft ACME October 2016

 The following table illustrates a typical sequence of requests
 required to establish a new account with the server, prove control of
 an identifier, issue a certificate, and fetch an updated certificate
 some time after issuance. The "->" is a mnemonic for a Location
 header pointing to a created resource.

 +--------------------+----------------+------------+
 | Action | Request | Response |
 +--------------------+----------------+------------+
 | Get a nonce | HEAD new-nonce | 200 |
 | | | |
 | Register | POST new-reg | 201 -> reg |
 | | | |
 | Apply for a cert | POST new-app | 201 -> app |
 | | | |
 | Fetch challenges | GET authz | 200 |
 | | | |
 | Answer challenges | POST challenge | 200 |
 | | | |
 | Poll for status | GET authz | 200 |
 | | | |
 | Request issuance | POST app | 200 |
 | | | |
 | Check for new cert | GET cert | 200 |
 +--------------------+----------------+------------+

 The remainder of this section provides the details of how these
 resources are structured and how the ACME protocol makes use of them.

6.1.1. Directory

 In order to help clients configure themselves with the right URIs for
 each ACME operation, ACME servers provide a directory object. This
 should be the only URL needed to configure clients. It is a JSON
 dictionary, whose keys are drawn from the following table and whose
 values are the corresponding URLs.

Barnes, et al. Expires May 4, 2017 [Page 17]

Internet-Draft ACME October 2016

 +-------------+--------------------+
 | Key | URL in value |
 +-------------+--------------------+
 | new-nonce | New nonce |
 | | |
 | new-reg | New registration |
 | | |
 | new-app | New application |
 | | |
 | new-authz | New authorization |
 | | |
 | revoke-cert | Revoke certificate |
 | | |
 | key-change | Key change |
 +-------------+--------------------+

 There is no constraint on the actual URI of the directory except that
 it should be different from the other ACME server resources' URIs,
 and that it should not clash with other services. For instance:

 o a host which function as both an ACME and Web server may want to
 keep the root path "/" for an HTML "front page", and and place the
 ACME directory under path "/acme".

 o a host which only functions as an ACME server could place the
 directory under path "/".

 The dictionary MAY additionally contain a key "meta". If present, it
 MUST be a JSON dictionary; each item in the dictionary is an item of
 metadata relating to the service provided by the ACME server.

 The following metadata items are defined, all of which are OPTIONAL:

 "terms-of-service" (optional, string): A URI identifying the current
 terms of service.

 "website" (optional, string)): An HTTP or HTTPS URL locating a
 website providing more information about the ACME server.

 "caa-identities" (optional, array of string): Each string MUST be a
 lowercase hostname which the ACME server recognises as referring
 to itself for the purposes of CAA record validation as defined in
 [RFC6844]. This allows clients to determine the correct issuer
 domain name to use when configuring CAA record.

 Clients access the directory by sending a GET request to the
 directory URI.

https://datatracker.ietf.org/doc/html/rfc6844

Barnes, et al. Expires May 4, 2017 [Page 18]

Internet-Draft ACME October 2016

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "new-nonce": "https://example.com/acme/new-nonce",
 "new-reg": "https://example.com/acme/new-reg",
 "new-app": "https://example.com/acme/new-app",
 "new-authz": "https://example.com/acme/new-authz",
 "revoke-cert": "https://example.com/acme/revoke-cert",
 "key-change": "https://example.com/acme/key-change",
 "meta": {
 "terms-of-service": "https://example.com/acme/terms",
 "website": "https://www.example.com/",
 "caa-identities": ["example.com"]
 }
 }

6.1.2. Registration Objects

 An ACME registration resource represents a set of metadata associated
 to an account key pair. Registration resources have the following
 structure:

 key (required, dictionary): The public key of the account key pair,
 encoded as a JSON Web Key object [RFC7517]. This field is not
 updateable by the client.

 status (required, string): The status of this registration.
 Possible values are: "valid", "deactivated", and "revoked".
 "deactivated" should be used to indicate user initiated
 deactivation whereas "revoked" should be used to indicate
 administratively initiated deactivation.

 contact (optional, array of string): An array of URIs that the
 server can use to contact the client for issues related to this
 authorization. For example, the server may wish to notify the
 client about server-initiated revocation.

 terms-of-service-agreed (optional, boolean): Including this field in
 a new-registration request, with a value of true, indicates the
 client's agreement with the terms of service. This field is not
 updateable by the client.

 applications (required, string): A URI from which a list of
 authorizations submitted by this account can be fetched via a GET
 request. The result of the GET request MUST be a JSON object
 whose "applications" field is an array of strings, where each
 string is the URI of an authorization belonging to this

https://datatracker.ietf.org/doc/html/rfc7517

Barnes, et al. Expires May 4, 2017 [Page 19]

Internet-Draft ACME October 2016

 registration. The server SHOULD include pending applications, and
 SHOULD NOT include applications that are invalid. The server MAY
 return an incomplete list, along with a Link header with link
 relation "next" indicating a URL to retrieve further entries.
 This field is not updateable by the client.

 {
 "contact": [
 "mailto:cert-admin@example.com",
 "tel:+12025551212"
],
 "terms-of-service-agreed": true,
 "applications": "https://example.com/acme/reg/1/apps"
 }

6.1.2.1. Applications List

 Each registration object includes an applications URI from which a
 list of applications created by the registration can be fetched via
 GET request. The result of the GET request MUST be a JSON object
 whose "applications" field is an array of URIs, each identifying an
 applications belonging to the registration. The server SHOULD
 include pending applications, and SHOULD NOT include applications
 that are invalid in the array of URIs. The server MAY return an
 incomplete list, along with a Link header with link relation "next"
 indicating a URL to retrieve further entries.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Link: href="/acme/reg/1/apps?cursor=2", rel="next"

 {
 "applications": [
 "https://example.com/acme/reg/1/apps/1",
 "https://example.com/acme/reg/1/apps/2",
 /* 47 more URLs not shown for example brevity */
 "https://example.com/acme/reg/1/apps/50"
]
 }

6.1.3. Application Objects

 An ACME application object represents a client's request for a
 certificate, and is used to track the progress of that application
 through to issuance. Thus, the object contains information about the
 requested certificate, the server's requirements, and any
 certificates that have resulted from this application.

Barnes, et al. Expires May 4, 2017 [Page 20]

Internet-Draft ACME October 2016

 status (required, string): The status of this application. Possible
 values are: "pending", "valid", and "invalid".

 expires (optional, string): The timestamp after which the server
 will consider this application invalid, encoded in the format
 specified in RFC 3339 [RFC3339]. This field is REQUIRED for
 objects with "pending" or "valid" in the status field.

 csr (required, string): A CSR encoding the parameters for the
 certificate being requested [RFC2986]. The CSR is sent in the
 Base64url-encoded version of the DER format. (Note: This field
 uses the same modified Base64 encoding rules used elsewhere in
 this document, so it is different from PEM.)

 notBefore (optional, string): The requested value of the notBefore
 field in the certificate, in the date format defined in [RFC3339]

 notAfter (optional, string): The requested value of the notAfter
 field in the certificate, in the date format defined in [RFC3339]

 requirements (required, array): The requirements that the client
 needs to fulfill before the requested certificate can be granted
 (for pending applications). For final applications, the
 requirements that were met. Each entry is a dictionary with
 parameters describing the requirement (see below).

 certificate (optional, string): A URL for the certificate that has
 been issued in response to this application.

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc2986
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Barnes, et al. Expires May 4, 2017 [Page 21]

Internet-Draft ACME October 2016

 {
 "status": "pending",
 "expires": "2015-03-01T14:09:00Z",

 "csr": "jcRf4uXra7FGYW5ZMewvV...rhlnznwy8YbpMGqwidEXfE",
 "notBefore": "2016-01-01T00:00:00Z",
 "notAfter": "2016-01-08T00:00:00Z",

 "requirements": [
 {
 "type": "authorization",
 "status": "valid",
 "url": "https://example.com/acme/authz/1234"
 },
 {
 "type": "out-of-band",
 "status": "pending",
 "url": "https://example.com/acme/payment/1234"
 }
]

 "certificate": "https://example.com/acme/cert/1234"
 }

 The elements of the "requirements" array are immutable once set,
 except for their "status" fields. If any other part of the object
 changes after the object is created, the client MUST consider the
 application invalid.

 The "requirements" array in the challenge SHOULD reflect everything
 that the CA required the client to do before issuance, even if some
 requirements were fulfilled in earlier applications. For example, if
 a CA allows multiple applications to be fufilled based on a single
 authorization transaction, then it must reflect that authorization in
 all of the applications.

 Each entry in the "requirements" array expresses a requirement from
 the CA for the client to take a particular action. All requirements
 objects have the following basic fields:

 type (required, string): The type of requirement (see below for
 defined types)

 status (required, string): The status of this requirement. Possible
 values are: "pending", "valid", and "invalid".

 All additional fields are specified by the requirement type.

Barnes, et al. Expires May 4, 2017 [Page 22]

Internet-Draft ACME October 2016

6.1.3.1. Authorization Requirement

 A requirement with type "authorization" requests that the ACME client
 complete an authorization transaction. The server specifies the
 authorization by pre-provisioning a pending authorization resource
 and providing the URI for this resource in the requirement.

 url (required, string): The URL for the authorization resource

 To fulfill this requirement, the ACME client should fetch the
 authorization object from the indicated URL, then follow the process
 for obtaining authorization as specified in Section 6.5.

6.1.3.2. Out-of-Band Requirement

 A requirement with type "out-of-band" requests that the ACME client
 have a human user visit a web page in order to receive further
 instructions for how to fulfill the requirement. The requirement
 object provides a URI for the web page to be visited.

 url (required, string): The URL to be visited. The scheme of this
 URL MUST be "http" or "https"

 To fulfill this requirement, the ACME client should direct the user
 to the indicated web page.

6.1.4. Authorization Objects

 An ACME authorization object represents a server's authorization for
 an account to represent an identifier. In addition to the
 identifier, an authorization includes several metadata fields, such
 as the status of the authorization (e.g., "pending", "valid", or
 "revoked") and which challenges were used to validate possession of
 the identifier.

 The structure of an ACME authorization resource is as follows:

 identifier (required, dictionary of string): The identifier that the
 account is authorized to represent

 type (required, string): The type of identifier.

 value (required, string): The identifier itself.

 status (required, string): The status of this authorization.
 Possible values are: "pending", "processing", "valid", "invalid"
 and "revoked". If this field is missing, then the default value
 is "pending".

Barnes, et al. Expires May 4, 2017 [Page 23]

Internet-Draft ACME October 2016

 expires (optional, string): The timestamp after which the server
 will consider this authorization invalid, encoded in the format
 specified in RFC 3339 [RFC3339]. This field is REQUIRED for
 objects with "valid" in the "status" field.

 scope (optional, string): If this field is present, then it MUST
 contain a URI for an application resource, such that this
 authorization is only valid for that resource. If this field is
 absent, then the CA MUST consider this authorization valid for all
 applications until the authorization expires. [[Open issue: More
 flexible scoping?]]

 challenges (required, array): The challenges that the client can
 fulfill in order to prove possession of the identifier (for
 pending authorizations). For final authorizations, the challenges
 that were used. Each array entry is a dictionary with parameters
 required to validate the challenge, as specified in Section 7. A
 client should attempt to fulfill at most one of these challenges,
 and a server should consider any one of the challenges sufficient
 to make the authorization valid.

 The only type of identifier defined by this specification is a fully-
 qualified domain name (type: "dns"). The value of the identifier
 MUST be the ASCII representation of the domain name. If a domain
 name contains Unicode characters it MUST be encoded using the rules
 defined in [RFC3492]. Servers MUST verify any identifier values that
 begin with the ASCII Compatible Encoding prefix "xn-" as defined in
 [RFC5890] are properly encoded. Wildcard domain names (with "*" as
 the first label) MUST NOT be included in authorization requests.

 {
 "status": "valid",
 "expires": "2015-03-01T14:09:00Z",

 "identifier": {
 "type": "dns",
 "value": "example.org"
 },

 "challenges": [
 {
 "type": "http-01",
 "status": "valid",
 "validated": "2014-12-01T12:05:00Z",
 "keyAuthorization": "SXQe-2XODaDxNR...vb29HhjjLPSggwiE"
 }
]
 }

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3492
https://datatracker.ietf.org/doc/html/rfc5890

Barnes, et al. Expires May 4, 2017 [Page 24]

Internet-Draft ACME October 2016

6.2. Getting a Nonce

 Before sending a POST request to the server, an ACME client needs to
 have a fresh anti-replay nonce to put in the "nonce" header of the
 JWS. In most cases, the client will have gotten a nonce from a
 previous request. However, the client might sometimes need to get a
 new nonce, e.g., on its first request to the server or if an existing
 nonce is no longer valid.

 To get a fresh nonce, the client sends a HEAD request to the new-
 nonce resource on the server. The server's response MUST include a
 Replay-Nonce header field containing a fresh nonce, and SHOULD have
 status code 200 (OK). The server SHOULD also respond to GET requests
 for this resource, returning an empty body (while still providing a
 Replay-Nonce header).

 HEAD /acme/new-nonce HTTP/1.1
 Host: example.com

 HTTP/1.1 200 OK
 Replay-Nonce: oFvnlFP1wIhRlYS2jTaXbA
 Cache-Control: no-store

 Caching of responses from the new-nonce resource can cause clients to
 be unable to communicate with the ACME server. The server MUST
 include a Cache-Control header field with the "no-store" directive in
 responses for the new-nonce resource, in order to prevent caching of
 this resource.

6.3. Registration

 A client creates a new account with the server by sending a POST
 request to the server's new-registration URI. The body of the
 request is a stub registration object containing only the "contact"
 field.

Barnes, et al. Expires May 4, 2017 [Page 25]

Internet-Draft ACME October 2016

 POST /acme/new-reg HTTP/1.1
 Host: example.com
 Content-Type: application/jose+json

 {
 "protected": base64url({
 "alg": "ES256",
 "jwk": {...},
 "nonce": "6S8IqOGY7eL2lsGoTZYifg",
 "url": "https://example.com/acme/new-reg"
 })
 "payload": base64url({
 "terms-of-service-agreed": true,
 "contact": [
 "mailto:cert-admin@example.com",
 "tel:+12025551212"
]
 }),
 "signature": "RZPOnYoPs1PhjszF...-nh6X1qtOFPB519I"
 }

 The server MUST ignore any values provided in the "key", and
 "applications" fields in registration bodies sent by the client, as
 well as any other fields that it does not recognize. If new fields
 are specified in the future, the specification of those fields MUST
 describe whether they may be provided by the client.

 The server SHOULD validate that the contact URLs in the "contact"
 field are valid and supported by the server. If the client provides
 the server with an invalid or unsupported contact URL, then the
 server MUST return an error of type "invalidContact", with a
 description describing the error and what types of contact URL the
 server considers acceptable.

 The server creates a registration object with the included contact
 information. The "key" element of the registration is set to the
 public key used to verify the JWS (i.e., the "jwk" element of the JWS
 header). The server returns this registration object in a 201
 (Created) response, with the registration URI in a Location header
 field.

 If the server already has a registration object with the provided
 account key, then it MUST return a 200 (OK) response and provide the
 URI of that registration in a Content-Location header field. This
 allows a client that has an account key but not the corresponding
 registration URI to recover the registration URI.

Barnes, et al. Expires May 4, 2017 [Page 26]

Internet-Draft ACME October 2016

 If the server wishes to present the client with terms under which the
 ACME service is to be used, it MUST indicate the URI where such terms
 can be accessed in the "terms-of-service" subfield of the "meta"
 field in the directory object, and the server MUST reject new-
 registration requests that do not have the "terms-of-service-agreed"
 set to "true".

 HTTP/1.1 201 Created
 Content-Type: application/json
 Replay-Nonce: D8s4D2mLs8Vn-goWuPQeKA
 Location: https://example.com/acme/reg/asdf
 Link: <https://example.com/acme/some-directory>;rel="directory"

 {
 "key": { /* JWK from JWS header */ },
 "status": "valid",

 "contact": [
 "mailto:cert-admin@example.com",
 "tel:+12025551212"
]
 }

 If the client wishes to update this information in the future, it
 sends a POST request with updated information to the registration
 URI. The server MUST ignore any updates to the "key", or
 "applications" fields or any other fields it does not recognize. The
 server MUST verify that the request is signed with the private key
 corresponding to the "key" field of the request before updating the
 registration.

 For example, to update the contact information in the above
 registration, the client could send the following request:

Barnes, et al. Expires May 4, 2017 [Page 27]

Internet-Draft ACME October 2016

 POST /acme/reg/asdf HTTP/1.1
 Host: example.com
 Content-Type: application/jose+json

 {
 "protected": base64url({
 "alg": "ES256",
 "kid": "https://example.com/acme/reg/asdf",
 "nonce": "ax5RnthDqp_Yf4_HZnFLmA",
 "url": "https://example.com/acme/reg/asdf"
 })
 "payload": base64url({
 "contact": [
 "mailto:certificates@example.com",
 "tel:+12125551212"
]
 }),
 "signature": "hDXzvcj8T6fbFbmn...rDzXzzvzpRy64N0o"
 }

 Servers SHOULD NOT respond to GET requests for registration resources
 as these requests are not authenticated. If a client wishes to query
 the server for information about its account (e.g., to examine the
 "contact" or "certificates" fields), then it SHOULD do so by sending
 a POST request with an empty update. That is, it should send a JWS
 whose payload is trivial ({}).

6.3.1. Changes of Terms of Service

 As described above, a client can indicate its agreement with the CA's
 terms of service by setting the "terms-of-service-agreed" field in
 its registration object to "true".

 If the server has changed its terms of service since a client
 initially agreed, and the server is unwilling to process a request
 without explicit agreement to the new terms, then it MUST return an
 error response with status code 403 (Forbidden) and type
 "urn:ietf:params:acme:error:agreementRequired". This response MUST
 include a Link header with link relation "terms-of-service" and the
 latest terms-of-service URL.

 The problem document returned with the error MUST also include an
 "instance" field, indicating a URL that the client should direct a
 human user to visit in order for instructions on how to agree to the
 terms.

Barnes, et al. Expires May 4, 2017 [Page 28]

Internet-Draft ACME October 2016

 HTTP/1.1 403 Forbidden
 Replay-Nonce: IXVHDyxIRGcTE0VSblhPzw
 Content-Type: application/problem+json
 Content-Language: en

 {
 "type": "urn:ietf:params:acme:error:agreementRequired"
 "detail": "Terms of service have changed"
 "instance": "http://example.com/agreement/?token=W8Ih3PswD-8"
 }

6.3.2. Account Key Roll-over

 A client may wish to change the public key that is associated with a
 registration in order to recover from a key compromise or proactively
 mitigate the impact of an unnoticed key compromise.

 To change the key associated with an account, the client first
 constructs a key-change object describing the change that it would
 like the server to make:

 account (required, string): The URL for account being modified. The
 content of this field MUST be the exact string provided in the
 Location header field in response to the new-registration request
 that created the account.

 newKey (required, JWK): The JWK representation of the new key

 The client then encapsulates the key-change object in a JWS, signed
 with the requested new account key (i.e., the key matching the
 "newKey" value).

 The outer JWS MUST meet the normal requirements for an ACME JWS (see
Section 5.2). The inner JWS MUST meet the normal requirements, with

 the following exceptions:

 o The inner JWS MUST have the same "url" parameter as the outer JWS.

 o The inner JWS is NOT REQUIRED to have a "nonce" parameter. The
 server MUST ignore any value provided for the "nonce" header
 parameter.

 This transaction has signatures from both the old and new keys so
 that the server can verify that the holders of the two keys both
 agree to the change. The signatures are nested to preserve the
 property that all signatures on POST messages are signed by exactly
 one key.

Barnes, et al. Expires May 4, 2017 [Page 29]

Internet-Draft ACME October 2016

 POST /acme/key-change HTTP/1.1
 Host: example.com
 Content-Type: application/jose+json

 {
 "protected": base64url({
 "alg": "ES256",
 "jwk": /* old key */,
 "nonce": "K60BWPrMQG9SDxBDS_xtSw",
 "url": "https://example.com/acme/key-change"
 }),
 "payload": base64url({
 "protected": base64url({
 "alg": "ES256",
 "jwk": /* new key */,
 }),
 "payload": base64url({
 "account": "https://example.com/acme/reg/asdf",
 "newKey": /* new key */
 })
 "signature": "Xe8B94RD30Azj2ea...8BmZIRtcSKPSd8gU"
 }),
 "signature": "5TWiqIYQfIDfALQv...x9C2mg8JGPxl5bI4"
 }

 On receiving key-change request, the server MUST perform the
 following steps in addition to the typical JWS validation:

 1. Validate the POST request belongs to a currently active account,
 as described in Message Transport.

 2. Check that the payload of the JWS is a well-formed JWS object
 (the "inner JWS")

 3. Check that the JWS protected header of the inner JWS has a "jwk"
 field.

 4. Check that the inner JWS verifies using the key in its "jwk"
 field

 5. Check that the payload of the inner JWS is a well-formed key-
 change object (as described above)

 6. Check that the "url" parameters of the inner and outer JWSs are
 the same

 7. Check that the "account" field of the key-change object contains
 the URL for the registration matching the old key

Barnes, et al. Expires May 4, 2017 [Page 30]

Internet-Draft ACME October 2016

 8. Check that the "newKey" field of the key-change object contains
 the key used to sign the inner JWS.

 If all of these checks pass, then the server updates the
 corresponding registration by replacing the old account key with the
 new public key and returns status code 200. Otherwise, the server
 responds with an error status code and a problem document describing
 the error.

6.3.3. Account deactivation

 A client may deactivate an account by posting a signed update to the
 server with a status field of "deactivated." Clients may wish to do
 this when the account key is compromised.

 POST /acme/reg/asdf HTTP/1.1
 Host: example.com
 Content-Type: application/jose+json

 {
 "protected": base64url({
 "alg": "ES256",
 "kid": "https://example.com/acme/reg/asdf",
 "nonce": "ntuJWWSic4WVNSqeUmshgg",
 "url": "https://example.com/acme/reg/asdf"
 })
 "payload": base64url({
 "status": "deactivated"
 }),
 "signature": "earzVLd3m5M4xJzR...bVTqn7R08AKOVf3Y"
 }

 The server MUST verify that the request is signed by the account key.
 If the server accepts the deactivation request, it should reply with
 a 200 (OK) status code and the current contents of the registration
 object.

 Once an account is deactivated, the server MUST NOT accept further
 requests authorized by that account's key. It is up to server policy
 how long to retain data related to that account, whether to revoke
 certificates issued by that account, and whether to send email to
 that account's contacts. ACME does not provide a way to reactivate a
 deactivated account.

Barnes, et al. Expires May 4, 2017 [Page 31]

Internet-Draft ACME October 2016

6.4. Applying for Certificate Issuance

 The holder of an account key pair may use ACME to submit an
 application for a certificate to be issued. The client makes this
 request by sending a POST request to the server's new-application
 resource. The body of the POST is a JWS object whose JSON payload is
 a subset of the application object defined in Section 6.1.3,
 containing the fields that describe the certificate to be issued:

 csr (required, string): A CSR encoding the parameters for the
 certificate being requested [RFC2986]. The CSR is sent in the
 Base64url-encoded version of the DER format. (Note: This field
 uses the same modified Base64 encoding rules used elsewhere in
 this document, so it is different from PEM.)

 notBefore (optional, string): The requested value of the notBefore
 field in the certificate, in the date format defined in [RFC3339]

 notAfter (optional, string): The requested value of the notAfter
 field in the certificate, in the date format defined in [RFC3339]

 POST /acme/new-app HTTP/1.1
 Host: example.com
 Content-Type: application/jose+json

 {
 "protected": base64url({
 "alg": "ES256",
 "kid": "https://example.com/acme/reg/asdf",
 "nonce": "5XJ1L3lEkMG7tR6pA00clA",
 "url": "https://example.com/acme/new-app"
 })
 "payload": base64url({
 "csr": "5jNudRx6Ye4HzKEqT5...FS6aKdZeGsysoCo4H9P",
 "notBefore": "2016-01-01T00:00:00Z",
 "notAfter": "2016-01-08T00:00:00Z"
 }),
 "signature": "H6ZXtGjTZyUnPeKn...wEA4TklBdh3e454g"
 }

 The CSR encodes the client's requests with regard to the content of
 the certificate to be issued. The CSR MUST indicate the requested
 identifiers, either in the commonName portion of the requested
 subject name, or in an extensionRequest attribute [RFC2985]
 requesting a subjectAltName extension.

 The server MUST return an error if it cannot fulfil the request as
 specified, and MUST NOT issue a certificate with contents other than

https://datatracker.ietf.org/doc/html/rfc2986
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc2985

Barnes, et al. Expires May 4, 2017 [Page 32]

Internet-Draft ACME October 2016

 those requested. If the server requires the request to be modified
 in a certain way, it should indicate the required changes using an
 appropriate error code and description.

 If the server is willing to issue the requested certificate, it
 responds with a 201 (Created) response. The body of this response is
 an application object reflecting the client's request and any
 requirements the client must fulfill before the certificate will be
 issued.

 HTTP/1.1 201 Created
 Replay-Nonce: MYAuvOpaoIiywTezizk5vw
 Location: https://example.com/acme/app/asdf

 {
 "status": "pending",
 "expires": "2015-03-01T14:09:00Z",

 "csr": "jcRf4uXra7FGYW5ZMewvV...rhlnznwy8YbpMGqwidEXfE",
 "notBefore": "2016-01-01T00:00:00Z",
 "notAfter": "2016-01-08T00:00:00Z",

 "requirements": [
 {
 "type": "authorization",
 "status": "valid",
 "url": "https://example.com/acme/authz/1234"
 },
 {
 "type": "out-of-band",
 "status": "pending",
 "url": "https://example.com/acme/payment/1234"
 }
]
 }

 The application object returned by the server represents a promise
 that if the client fulfills the server's requirements before the
 "expires" time, then the server will issue the requested certificate.
 In the application object, any object in the "requirements" array
 whose status is "pending" represents an action that the client must
 perform before the server will issue the certificate. If the client
 fails to complete the required actions before the "expires" time,
 then the server SHOULD change the status of the application to
 "invalid" and MAY delete the application resource.

 The server MUST issue the requested certificate and update the
 application resource with a URL for the certificate as soon as the

Barnes, et al. Expires May 4, 2017 [Page 33]

Internet-Draft ACME October 2016

 client has fulfilled the server's requirements. If the client has
 already satisfied the server's requirements at the time of this
 request (e.g., by obtaining authorization for all of the identifiers
 in the certificate in previous transactions), then the server MUST
 proactively issue the requested certificate and provide a URL for it
 in the "certificate" field of the application. The server MUST,
 however, still list the satisfied requirements in the "requirements"
 array, with the state "valid".

 Once the client believes it has fulfilled the server's requirements,
 it should send a GET request to the application resource to obtain
 its current state. The status of the application will indicate what
 action the client should take:

 o "invalid": The certificate will not be issued. Consider this
 application process abandoned.

 o "pending": The server does not believe that the client has
 fulfilled the requirements. Check the "requirements" array for
 requirements that are still pending.

 o "processing": The server agrees that the requirements have been
 fulfilled, and is in the process of generating the certificate.
 Retry after the time given in the "Retry-After" header field of
 the response, if any.

 o "valid": The server has issued the certificate and provisioned its
 URL to the "certificate" field of the application. Download the
 certificate.

6.4.1. Pre-Authorization

 The application process described above presumes that authorization
 objects are created reactively, in response to an application for
 issuance. Some servers may also wish to enable clients to obtain
 authorization for an identifier proactively, outside of the context
 of a specific issuance. For example, a client hosting virtual
 servers for a collection of names might wish to obtain authorization
 before any servers are created, and only create a certificate when a
 server starts up.

 In some cases, a CA running an ACME server might have a completely
 external, non-ACME process for authorizing a client to issue for an
 identifier. In these case, the CA should provision its ACME server
 with authorization objects corresponding to thsee authorizations and
 reflect them as alread-valid requirements in any issuance
 applications requested by the client.

Barnes, et al. Expires May 4, 2017 [Page 34]

Internet-Draft ACME October 2016

 If a CA wishes to allow pre-authorization within ACME, it can offer a
 "new authorization" resource in its directory by adding the key "new-
 authz" with a URL for the new authorization resource.

 To request authorization for an identifier, the client sends a POST
 request to the new-authorization resource specifying the identifier
 for which authorization is being requested and how the server should
 behave with respect to existing authorizations for this identifier.

 identifier (required, dictionary of string): The identifier that the
 account is authorized to represent

 type (required, string): The type of identifier.

 value (required, string): The identifier itself.

 existing (optional, string): How an existing authorization should be
 handled. Possible values are "accept" and "require".

 POST /acme/new-authz HTTP/1.1
 Host: example.com
 Content-Type: application/jose+json

 {
 "protected": base64url({
 "alg": "ES256",
 "jwk": {...},
 "nonce": "uQpSjlRb4vQVCjVYAyyUWg",
 "url": "https://example.com/acme/new-authz"
 })
 "payload": base64url({
 "identifier": {
 "type": "dns",
 "value": "example.net"
 },
 "existing": "accept"
 }),
 "signature": "nuSDISbWG8mMgE7H...QyVUL68yzf3Zawps"
 }

 Before processing the authorization request, the server SHOULD
 determine whether it is willing to issue certificates for the
 identifier. For example, the server should check that the identifier
 is of a supported type. Servers might also check names against a
 blacklist of known high-value identifiers. If the server is
 unwilling to issue for the identifier, it SHOULD return a 403
 (Forbidden) error, with a problem document describing the reason for
 the rejection.

Barnes, et al. Expires May 4, 2017 [Page 35]

Internet-Draft ACME October 2016

 If the authorization request specifies "existing" with a value of
 "accept" or "require", before proceeding, the server SHOULD determine
 whether there are any existing, valid authorization resources for the
 account and given identifier. If one or more such authorizations
 exists, a response SHOULD returned with status code 303 (See Other)
 and a Location header pointing to the existing resource URL;
 processing of the request then stops. If there are multiple such
 authorizations, the authorization with the latest expiry date SHOULD
 be returned. If no existing authorizations were found and the value
 for "existing" was "require", then the server MUST return status code
 404 (Not Found); if it was "accept" or was any other value or was
 absent, processing continues as follows.

 If the server is willing to proceed, it builds a pending
 authorization object from the inputs submitted by the client.

 o "identifier" the identifier submitted by the client

 o "status": MUST be "pending" unless the server has out-of-band
 information about the client's authorization status

 o "challenges" and "combinations": As selected by the server's
 policy for this identifier

 The server allocates a new URI for this authorization, and returns a
 201 (Created) response, with the authorization URI in a Location
 header field, and the JSON authorization object in the body. The
 client then follows the process described in Section 6.5 to complete
 the authorization process.

6.4.2. Downloading the Certificate

 To download the issued certificate, the client simply sends a GET
 request to the certificate URL.

 The default format of the certificate is PEM (application/x-pem-file)
 as specified by [RFC7468]. This format should contain the end-entity
 certificate first, followed by any intermediate certificates that are
 needed to build a path to a trusted root. Servers SHOULD NOT include
 self-signed trust anchors. The client may request other formats by
 including an Accept header in its request. For example, the client
 may use the media type application/pkix-cert to request the end-
 entity certificate in DER format.

 The server MAY provide one or more link relation header fields
 [RFC5988] with relation "alternate". Each such field should express
 an alternative certificate chain starting with the same end-entity
 certificate. This can be used to express paths to various trust

https://datatracker.ietf.org/doc/html/rfc7468
https://datatracker.ietf.org/doc/html/rfc5988

Barnes, et al. Expires May 4, 2017 [Page 36]

Internet-Draft ACME October 2016

 anchors. Clients can fetch these alternates and use their own
 heuristics to decide which is optimal.

 The server MUST also provide a link relation header field with
 relation "author" to indicate the application under which this
 certificate was issued.

 If the CA participates in Certificate Transparency (CT) [RFC6962],
 then they may want to provide the client with a Signed Certificate
 Timestamp (SCT) that can be used to prove that a certificate was
 submitted to a CT log. An SCT can be included as an extension in the
 certificate or as an extension to OCSP responses for the certificate.
 The server can also provide the client with direct access to an SCT
 for a certificate using a Link relation header field with relation
 "ct-sct".

 GET /acme/cert/asdf HTTP/1.1
 Host: example.com
 Accept: application/pkix-cert

 HTTP/1.1 200 OK
 Content-Type: application/pkix-cert
 Link: <https://example.com/acme/ca-cert>;rel="up";title="issuer"
 Link: <https://example.com/acme/revoke-cert>;rel="revoke"
 Link: <https://example.com/acme/app/asdf>;rel="author"
 Link: <https://example.com/acme/sct/asdf>;rel="ct-sct"
 Link: <https://example.com/acme/some-directory>;rel="directory"

 -----BEGIN CERTIFICATE-----
 [End-entity certificate contents]
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 [Issuer certificate contents]
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 [Other certificate contents]
 -----END CERTIFICATE-----

 A certificate resource represents a single, immutable certificate.
 If the client wishes to obtain a renewed certificate, the client
 initiates a new application process to request one.

 Because certificate resources are immutable once issuance is
 complete, the server MAY enable the caching of the resource by adding
 Expires and Cache-Control headers specifying a point in time in the
 distant future. These headers have no relation to the certificate's
 period of validity.

https://datatracker.ietf.org/doc/html/rfc6962

Barnes, et al. Expires May 4, 2017 [Page 37]

Internet-Draft ACME October 2016

6.5. Identifier Authorization

 The identifier authorization process establishes the authorization of
 an account to manage certificates for a given identifier. This
 process must assure the server of two things: First, that the client
 controls the private key of the account key pair, and second, that
 the client holds the identifier in question. This process may be
 repeated to associate multiple identifiers to a key pair (e.g., to
 request certificates with multiple identifiers), or to associate
 multiple accounts with an identifier (e.g., to allow multiple
 entities to manage certificates). The server may declare that an
 authorization is only valid for a specific application by setting the
 "scope" field of the authorization to the URI for that application.

 Authorization resources are created by the server in response to
 certificate applications or authorization requests submitted by an
 account key holder; their URLs are provided to the client in the
 responses to these requests. The authorization object is implicitly
 tied to the account key used to sign the request.

 When a client receives an application from the server with an
 "authorization" requirement, it downloads the authorization resource
 by sending a GET request to the indicated URL. If the client
 initiates authorization using a request to the new authorization
 resource, it will have already recevied the pending authorization
 object in the response to that request.

Barnes, et al. Expires May 4, 2017 [Page 38]

Internet-Draft ACME October 2016

 GET /acme/authz/1234 HTTP/1.1
 Host: example.com

 HTTP/1.1 200 OK
 Content-Type: application/json
 Link: <https://example.com/acme/some-directory>;rel="directory"

 {
 "status": "pending",

 "identifier": {
 "type": "dns",
 "value": "example.org"
 },

 "challenges": [
 {
 "type": "http-01",
 "url": "https://example.com/authz/asdf/0",
 "token": "IlirfxKKXAsHtmzK29Pj8A"
 },
 {
 "type": "dns-01",
 "url": "https://example.com/authz/asdf/1",
 "token": "DGyRejmCefe7v4NfDGDKfA"
 }
],
 }

6.5.1. Responding to Challenges

 To prove control of the identifier and receive authorization, the
 client needs to respond with information to complete the challenges.
 To do this, the client updates the authorization object received from
 the server by filling in any required information in the elements of
 the "challenges" dictionary. (This is also the stage where the
 client should perform any actions required by the challenge.)

 The client sends these updates back to the server in the form of a
 JSON object with the response fields required by the challenge type,
 carried in a POST request to the challenge URI (not authorization
 URI). This allows the client to send information only for challenges
 it is responding to.

 For example, if the client were to respond to the "http-01" challenge
 in the above authorization, it would send the following request:

Barnes, et al. Expires May 4, 2017 [Page 39]

Internet-Draft ACME October 2016

 POST /acme/authz/asdf/0 HTTP/1.1
 Host: example.com
 Content-Type: application/jose+json

 {
 "protected": base64url({
 "alg": "ES256",
 "kid": "https://example.com/acme/reg/asdf",
 "nonce": "Q_s3MWoqT05TrdkM2MTDcw",
 "url": "https://example.com/acme/authz/asdf/0"
 })
 "payload": base64url({
 "type": "http-01",
 "keyAuthorization": "IlirfxKKXA...vb29HhjjLPSggwiE"
 }),
 "signature": "9cbg5JO1Gf5YLjjz...SpkUfcdPai9uVYYQ"
 }

 The server updates the authorization document by updating its
 representation of the challenge with the response fields provided by
 the client. The server MUST ignore any fields in the response object
 that are not specified as response fields for this type of challenge.
 The server provides a 200 (OK) response with the updated challenge
 object as its body.

 If the client's response is invalid for some reason, or does not
 provide the server with appropriate information to validate the
 challenge, then the server MUST return an HTTP error. On receiving
 such an error, the client SHOULD undo any actions that have been
 taken to fulfill the challenge, e.g., removing files that have been
 provisioned to a web server.

 The server is said to "finalize" the authorization when it has
 completed one of the validations, by assigning the authorization a
 status of "valid" or "invalid", corresponding to whether it considers
 the account authorized for the identifier. If the final state is
 "valid", the server MUST add an "expires" field to the authorization.
 When finalizing an authorization, the server MAY remove challenges
 other than the one that was completed. The server SHOULD NOT remove
 challenges with status "invalid".

 Usually, the validation process will take some time, so the client
 will need to poll the authorization resource to see when it is
 finalized. For challenges where the client can tell when the server
 has validated the challenge (e.g., by seeing an HTTP or DNS request
 from the server), the client SHOULD NOT begin polling until it has
 seen the validation request from the server.

Barnes, et al. Expires May 4, 2017 [Page 40]

Internet-Draft ACME October 2016

 To check on the status of an authorization, the client sends a GET
 request to the authorization URI, and the server responds with the
 current authorization object. In responding to poll requests while
 the validation is still in progress, the server MUST return a 202
 (Accepted) response, and MAY include a Retry-After header field to
 suggest a polling interval to the client.

 GET /acme/authz/asdf HTTP/1.1
 Host: example.com

 HTTP/1.1 200 OK

 {
 "status": "valid",
 "expires": "2015-03-01T14:09:00Z",

 "identifier": {
 "type": "dns",
 "value": "example.org"
 },

 "challenges": [
 {
 "type": "http-01"
 "status": "valid",
 "validated": "2014-12-01T12:05:00Z",
 "token": "IlirfxKKXAsHtmzK29Pj8A",
 "keyAuthorization": "IlirfxKKXA...vb29HhjjLPSggwiE"
 }
]
 }

6.5.2. Deactivating an Authorization

 If a client wishes to relinquish its authorization to issue
 certificates for an identifier, then it may request that the server
 deactivate each authorization associated with that identifier by
 sending a POST request with the static object {"status":
 "deactivated"}.

Barnes, et al. Expires May 4, 2017 [Page 41]

Internet-Draft ACME October 2016

 POST /acme/authz/asdf HTTP/1.1
 Host: example.com
 Content-Type: application/jose+json

 {
 "protected": base64url({
 "alg": "ES256",
 "kid": "https://example.com/acme/reg/asdf",
 "nonce": "xWCM9lGbIyCgue8di6ueWQ",
 "url": "https://example.com/acme/authz/asdf"
 })
 "payload": base64url({
 "status": "deactivated"
 }),
 "signature": "srX9Ji7Le9bjszhu...WTFdtujObzMtZcx4"
 }

 The server MUST verify that the request is signed by the account key
 corresponding to the account that owns the authorization. If the
 server accepts the deactivation, it should reply with a 200 (OK)
 status code and the current contents of the authorization object.

 The server MUST NOT treat deactivated authorization objects as
 sufficient for issuing certificates.

6.6. Certificate Revocation

 To request that a certificate be revoked, the client sends a POST
 request to the ACME server's revoke-cert URI. The body of the POST
 is a JWS object whose JSON payload contains the certificate to be
 revoked:

 certificate (required, string): The certificate to be revoked, in
 the base64url-encoded version of the DER format. (Note: This
 field uses the same modified Base64 encoding rules used elsewhere
 in this document, so it is different from PEM.)

 reason (optional, int): One of the revocation reasonCodes defined in
RFC 5280 [RFC5280] Section 5.3.1 to be used when generating OCSP

 responses and CRLs. If this field is not set the server SHOULD
 use the unspecified (0) reasonCode value when generating OCSP
 responses and CRLs. The server MAY disallow a subset of
 reasonCodes from being used by the user.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280#section-5.3.1

Barnes, et al. Expires May 4, 2017 [Page 42]

Internet-Draft ACME October 2016

 POST /acme/revoke-cert HTTP/1.1
 Host: example.com
 Content-Type: application/jose+json

 {
 "protected": base64url({
 "alg": "ES256",
 "kid": "https://example.com/acme/reg/asdf", // OR "jwk"
 "nonce": "JHb54aT_KTXBWQOzGYkt9A",
 "url": "https://example.com/acme/revoke-cert"
 })
 "payload": base64url({
 "certificate": "MIIEDTCCAvegAwIBAgIRAP8...",
 "reason": 1
 }),
 "signature": "Q1bURgJoEslbD1c5...3pYdSMLio57mQNN4"
 }

 Revocation requests are different from other ACME request in that
 they can be signed either with an account key pair or the key pair in
 the certificate. Before revoking a certificate, the server MUST
 verify that the key used to sign the request is authorized to revoke
 the certificate. The server SHOULD consider at least the following
 keys authorized for a given certificate:

 o the public key in the certificate.

 o an account key that is authorized to act for all of the
 identifier(s) in the certificate.

 If the revocation succeeds, the server responds with status code 200
 (OK). If the revocation fails, the server returns an error.

Barnes, et al. Expires May 4, 2017 [Page 43]

Internet-Draft ACME October 2016

 HTTP/1.1 200 OK
 Replay-Nonce: IXVHDyxIRGcTE0VSblhPzw
 Content-Length: 0

 --- or ---

 HTTP/1.1 403 Forbidden
 Replay-Nonce: IXVHDyxIRGcTE0VSblhPzw
 Content-Type: application/problem+json
 Content-Language: en

 {
 "type": "urn:ietf:params:acme:error:unauthorized"
 "detail": "No authorization provided for name example.net"
 "instance": "http://example.com/doc/unauthorized"
 }

7. Identifier Validation Challenges

 There are few types of identifiers in the world for which there is a
 standardized mechanism to prove possession of a given identifier. In
 all practical cases, CAs rely on a variety of means to test whether
 an entity applying for a certificate with a given identifier actually
 controls that identifier.

 Challenges provide the server with assurance that an account key
 holder is also the entity that controls an identifier. For each type
 of challenge, it must be the case that in order for an entity to
 successfully complete the challenge the entity must both:

 o Hold the private key of the account key pair used to respond to
 the challenge

 o Control the identifier in question

Section 9 documents how the challenges defined in this document meet
 these requirements. New challenges will need to document how they
 do.

 ACME uses an extensible challenge/response framework for identifier
 validation. The server presents a set of challenges in the
 authorization object it sends to a client (as objects in the
 "challenges" array), and the client responds by sending a response
 object in a POST request to a challenge URI.

 This section describes an initial set of challenge types. Each
 challenge must describe:

Barnes, et al. Expires May 4, 2017 [Page 44]

Internet-Draft ACME October 2016

 1. Content of challenge objects

 2. Content of response objects

 3. How the server uses the challenge and response to verify control
 of an identifier

 Challenge objects all contain the following basic fields:

 type (required, string): The type of challenge encoded in the
 object.

 url (required, string): The URL to which a response can be posted.

 status (required, string): The status of this authorization.
 Possible values are: "pending", "valid", and "invalid".

 validated (optional, string): The time at which this challenge was
 completed by the server, encoded in the format specified in RFC

3339 [RFC3339]. This field is REQUIRED if the "status" field is
 "valid".

 error (optional, dictionary of string): The error that occurred
 while the server was validating the challenge, if any. This field
 is structured as a problem document [RFC7807].

 All additional fields are specified by the challenge type. If the
 server sets a challenge's "status" to "invalid", it SHOULD also
 include the "error" field to help the client diagnose why they failed
 the challenge.

 Different challenges allow the server to obtain proof of different
 aspects of control over an identifier. In some challenges, like HTTP
 and TLS SNI, the client directly proves its ability to do certain
 things related to the identifier. The choice of which challenges to
 offer to a client under which circumstances is a matter of server
 policy.

 The identifier validation challenges described in this section all
 relate to validation of domain names. If ACME is extended in the
 future to support other types of identifier, there will need to be
 new challenge types, and they will need to specify which types of
 identifier they apply to.

 [[Editor's Note: In pre-RFC versions of this specification,
 challenges are labeled by type, and with the version of the draft in
 which they were introduced. For example, if an HTTP challenge were
 introduced in version -03 and a breaking change made in version -05,

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc7807

Barnes, et al. Expires May 4, 2017 [Page 45]

Internet-Draft ACME October 2016

 then there would be a challenge labeled "http-03" and one labeled
 "http-05" - but not one labeled "http-04", since challenge in version
 -04 was compatible with one in version -04.]]

7.1. Key Authorizations

 Several of the challenges in this document makes use of a key
 authorization string. A key authorization is a string that expresses
 a domain holder's authorization for a specified key to satisfy a
 specified challenge, by concatenating the token for the challenge
 with a key fingerprint, separated by a "." character:

 key-authz = token || '.' || base64url(JWK_Thumbprint(accountKey))

 The "JWK_Thumbprint" step indicates the computation specified in
 [RFC7638], using the SHA-256 digest. As specified in the individual
 challenges below, the token for a challenge is a JSON string
 comprised entirely of characters in the URL-safe Base64 alphabet.
 The "||" operator indicates concatenation of strings.

 In computations involving key authorizations, such as the digest
 computations required for the DNS and TLS SNI challenges, the key
 authorization string MUST be represented in UTF-8 form (or,
 equivalently, ASCII).

 An example of how to compute a JWK thumbprint can be found in
Section 3.1 of [RFC7638]. Note that some cryptographic libraries

 prepend a zero octet to the representation of the RSA public key
 parameters N and E, in order to avoid ambiguity with regard to the
 sign of the number. As noted in JWA [RFC7518], a JWK object MUST NOT
 include this zero octet. That is, any initial zero octets MUST be
 stripped before the values are base64url-encoded.

7.2. HTTP

 With HTTP validation, the client in an ACME transaction proves its
 control over a domain name by proving that it can provision resources
 on an HTTP server that responds for that domain name. The ACME
 server challenges the client to provision a file at a specific path,
 with a specific string as its content.

 As a domain may resolve to multiple IPv4 and IPv6 addresses, the
 server will connect to at least one of the hosts found in A and AAAA
 records, at its discretion. Because many webservers allocate a
 default HTTPS virtual host to a particular low-privilege tenant user
 in a subtle and non-intuitive manner, the challenge must be completed
 over HTTP, not HTTPS.

https://datatracker.ietf.org/doc/html/rfc7638
https://datatracker.ietf.org/doc/html/rfc7638#section-3.1
https://datatracker.ietf.org/doc/html/rfc7518

Barnes, et al. Expires May 4, 2017 [Page 46]

Internet-Draft ACME October 2016

 type (required, string): The string "http-01"

 token (required, string): A random value that uniquely identifies
 the challenge. This value MUST have at least 128 bits of entropy,
 in order to prevent an attacker from guessing it. It MUST NOT
 contain any characters outside the URL-safe Base64 alphabet and
 MUST NOT contain any padding characters ("=").

 {
 "type": "http-01",
 "token": "evaGxfADs6pSRb2LAv9IZf17Dt3juxGJ-PCt92wr-oA"
 }

 A client responds to this challenge by constructing a key
 authorization from the "token" value provided in the challenge and
 the client's account key. The client then provisions the key
 authorization as a resource on the HTTP server for the domain in
 question.

 The path at which the resource is provisioned is comprised of the
 fixed prefix ".well-known/acme-challenge/", followed by the "token"
 value in the challenge. The value of the resource MUST be the ASCII
 representation of the key authorization.

 .well-known/acme-challenge/evaGxfADs6pSRb2LAv9IZf17Dt3juxGJ-PCt92wr-oA

 The client's response to this challenge indicates its agreement to
 this challenge by sending the server the key authorization covering
 the challenge's token and the client's account key.

 keyAuthorization (required, string): The key authorization for this
 challenge. This value MUST match the token from the challenge and
 the client's account key.

 /* BEGIN JWS-signed content */
 {
 "keyAuthorization": "evaGxfADs...62jcerQ"
 }
 /* END JWS-signed content */

 On receiving a response, the server MUST verify that the key
 authorization in the response matches the "token" value in the
 challenge and the client's account key. If they do not match, then
 the server MUST return an HTTP error in response to the POST request
 in which the client sent the challenge.

Barnes, et al. Expires May 4, 2017 [Page 47]

Internet-Draft ACME October 2016

 Given a challenge/response pair, the server verifies the client's
 control of the domain by verifying that the resource was provisioned
 as expected.

 1. Form a URI by populating the URI template [RFC6570]
 "http://{domain}/.well-known/acme-challenge/{token}", where:

 * the domain field is set to the domain name being verified; and

 * the token field is set to the token in the challenge.

 2. Verify that the resulting URI is well-formed.

 3. Dereference the URI using an HTTP GET request. This request MUST
 be sent to TCP port 80 on the server.

 4. Verify that the body of the response is well-formed key
 authorization. The server SHOULD ignore whitespace characters at
 the end of the body.

 5. Verify that key authorization provided by the server matches the
 token for this challenge and the client's account key.

 If all of the above verifications succeed, then the validation is
 successful. If the request fails, or the body does not pass these
 checks, then it has failed.

7.3. TLS with Server Name Indication (TLS SNI)

 The TLS with Server Name Indication (TLS SNI) validation method
 proves control over a domain name by requiring the client to
 configure a TLS server referenced by an A/AAAA record under the
 domain name to respond to specific connection attempts utilizing the
 Server Name Indication extension [RFC6066]. The server verifies the
 client's challenge by accessing the reconfigured server and verifying
 a particular challenge certificate is presented.

 type (required, string): The string "tls-sni-02"

 token (required, string): A random value that uniquely identifies
 the challenge. This value MUST have at least 128 bits of entropy,
 in order to prevent an attacker from guessing it. It MUST NOT
 contain any characters outside the URL-safe Base64 alphabet and
 MUST NOT contain any padding characters ("=").

https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc6066

Barnes, et al. Expires May 4, 2017 [Page 48]

Internet-Draft ACME October 2016

 {
 "type": "tls-sni-02",
 "token": "evaGxfADs6pSRb2LAv9IZf17Dt3juxGJ-PCt92wr-oA"
 }

 A client responds to this challenge by constructing a self-signed
 certificate which the client MUST provision at the domain name
 concerned in order to pass the challenge.

 The certificate may be constructed arbitrarily, except that each
 certificate MUST have exactly two subjectAlternativeNames, SAN A and
 SAN B. Both MUST be dNSNames.

 SAN A MUST be constructed as follows: compute the SHA-256 digest of
 the UTF-8-encoded challenge token and encode it in lowercase
 hexadecimal form. The dNSName is "x.y.token.acme.invalid", where x
 is the first half of the hexadecimal representation and y is the
 second half.

 SAN B MUST be constructed as follows: compute the SHA-256 digest of
 the UTF-8 encoded key authorization and encode it in lowercase
 hexadecimal form. The dNSName is "x.y.ka.acme.invalid" where x is
 the first half of the hexadecimal representation and y is the second
 half.

 The client MUST ensure that the certificate is served to TLS
 connections specifying a Server Name Indication (SNI) value of SAN A.

 The response to the TLS-SNI challenge simply acknowledges that the
 client is ready to fulfill this challenge.

 keyAuthorization (required, string): The key authorization for this
 challenge. This value MUST match the token from the challenge and
 the client's account key.

 /* BEGIN JWS-signed content */
 {
 "keyAuthorization": "evaGxfADs...62jcerQ"
 }
 /* END JWS-signed content */

 On receiving a response, the server MUST verify that the key
 authorization in the response matches the "token" value in the
 challenge and the client's account key. If they do not match, then
 the server MUST return an HTTP error in response to the POST request
 in which the client sent the challenge.

Barnes, et al. Expires May 4, 2017 [Page 49]

Internet-Draft ACME October 2016

 Given a challenge/response pair, the ACME server verifies the
 client's control of the domain by verifying that the TLS server was
 configured appropriately, using these steps:

 1. Compute SAN A and SAN B in the same way as the client.

 2. Open a TLS connection to the domain name being validated,
 presenting SAN A in the SNI field. This connection MUST be sent
 to TCP port 443 on the server. In the ClientHello initiating the
 TLS handshake, the server MUST include a server_name extension
 (i.e., SNI) containing SAN A. The server SHOULD ensure that it
 does not reveal SAN B in any way when making the TLS connection,
 such that the presentation of SAN B in the returned certificate
 proves association with the client.

 3. Verify that the certificate contains a subjectAltName extension
 containing dNSName entries of SAN A and SAN B and no other
 entries. The comparison MUST be insensitive to case and ordering
 of names.

 It is RECOMMENDED that the ACME server validation TLS connections
 from multiple vantage points to reduce the risk of DNS hijacking
 attacks.

 If all of the above verifications succeed, then the validation is
 successful. Otherwise, the validation fails.

7.4. DNS

 When the identifier being validated is a domain name, the client can
 prove control of that domain by provisioning a resource record under
 it. The DNS challenge requires the client to provision a TXT record
 containing a designated value under a specific validation domain
 name.

 type (required, string): The string "dns-01"

 token (required, string): A random value that uniquely identifies
 the challenge. This value MUST have at least 128 bits of entropy,
 in order to prevent an attacker from guessing it. It MUST NOT
 contain any characters outside the URL-safe Base64 alphabet and
 MUST NOT contain any padding characters ("=").

 {
 "type": "dns-01",
 "token": "evaGxfADs6pSRb2LAv9IZf17Dt3juxGJ-PCt92wr-oA"
 }

Barnes, et al. Expires May 4, 2017 [Page 50]

Internet-Draft ACME October 2016

 A client responds to this challenge by constructing a key
 authorization from the "token" value provided in the challenge and
 the client's account key. The client then computes the SHA-256
 digest of the key authorization.

 The record provisioned to the DNS is the base64url encoding of this
 digest. The client constructs the validation domain name by
 prepending the label "_acme-challenge" to the domain name being
 validated, then provisions a TXT record with the digest value under
 that name. For example, if the domain name being validated is
 "example.com", then the client would provision the following DNS
 record:

 _acme-challenge.example.com. 300 IN TXT "gfj9Xq...Rg85nM"

 The response to the DNS challenge provides the computed key
 authorization to acknowledge that the client is ready to fulfill this
 challenge.

 keyAuthorization (required, string): The key authorization for this
 challenge. This value MUST match the token from the challenge and
 the client's account key.

 /* BEGIN JWS-signed content */
 {
 "keyAuthorization": "evaGxfADs...62jcerQ"
 }
 /* END JWS-signed content */

 On receiving a response, the server MUST verify that the key
 authorization in the response matches the "token" value in the
 challenge and the client's account key. If they do not match, then
 the server MUST return an HTTP error in response to the POST request
 in which the client sent the challenge.

 To validate a DNS challenge, the server performs the following steps:

 1. Compute the SHA-256 digest of the key authorization

 2. Query for TXT records under the validation domain name

 3. Verify that the contents of one of the TXT records matches the
 digest value

 If all of the above verifications succeed, then the validation is
 successful. If no DNS record is found, or DNS record and response
 payload do not pass these checks, then the validation fails.

Barnes, et al. Expires May 4, 2017 [Page 51]

Internet-Draft ACME October 2016

7.5. Out-of-Band

 There may be cases where a server cannot perform automated validation
 of an identifier, for example if validation requires some manual
 steps. In such cases, the server may provide an "out of band" (OOB)
 challenge to request that the client perform some action outside of
 ACME in order to validate possession of the identifier.

 The OOB challenge requests that the client have a human user visit a
 web page to receive instructions on how to validate possession of the
 identifier, by providing a URL for that web page.

 type (required, string): The string "oob-01"

 href (required, string): The URL to be visited. The scheme of this
 URL MUST be "http" or "https". Note that this field is distinct
 from the "url" field of the challenge, which identifies the
 challenge itself.

 {
 "type": "oob-01",
 "href": "https://example.com/validate/evaGxfADs6pSRb2LAv9IZ"
 }

 A client responds to this challenge by presenting the indicated URL
 for a human user to navigate to. If the user choses to complete this
 challege (by vising the website and completing its instructions), the
 client indicates this by sending a simple acknowledgement response to
 the server.

 type (required, string): The string "oob-01"

 /* BEGIN JWS-signed content */
 {
 "type": "oob-01"
 }
 /* END JWS-signed content */

 On receiving a response, the server MUST verify that the value of the
 "type" field is as required. Otherwise, the steps the server takes
 to validate identifier possession are determined by the server's
 local policy.

8. IANA Considerations

 [[Editor's Note: Should we create a registry for tokens that go into
 the various JSON objects used by this protocol, i.e., the field names
 in the JSON objects?]]

Barnes, et al. Expires May 4, 2017 [Page 52]

Internet-Draft ACME October 2016

8.1. Well-Known URI for the HTTP Challenge

 The "Well-Known URIs" registry should be updated with the following
 additional value (using the template from [RFC5785]):

 URI suffix: acme-challenge

 Change controller: IETF

 Specification document(s): This document, Section Section 7.2

 Related information: N/A

8.2. Replay-Nonce HTTP Header

 The "Message Headers" registry should be updated with the following
 additional value:

 | Header Field Name | Protocol | Status | Reference |
 +:------------+:------+:------+:-----------+ | Replay-Nonce | http |
 standard | Section 5.5.1 |

8.3. "url" JWS Header Parameter

 The "JSON Web Signature and Encryption Header Parameters" registry
 should be updated with the following additional value:

 o Header Parameter Name: "url"

 o Header Parameter Description: URL

 o Header Parameter Usage Location(s): JWE, JWS

 o Change Controller: IESG

 o Specification Document(s): Section 5.4.1 of RFC XXXX

 [[RFC EDITOR: Please replace XXXX above with the RFC number assigned
 to this document]]

8.4. "nonce" JWS Header Parameter

 The "JSON Web Signature and Encryption Header Parameters" registry
 should be updated with the following additional value:

 o Header Parameter Name: "nonce"

 o Header Parameter Description: Nonce

https://datatracker.ietf.org/doc/html/rfc5785

Barnes, et al. Expires May 4, 2017 [Page 53]

Internet-Draft ACME October 2016

 o Header Parameter Usage Location(s): JWE, JWS

 o Change Controller: IESG

 o Specification Document(s): Section 5.5.2 of RFC XXXX

 [[RFC EDITOR: Please replace XXXX above with the RFC number assigned
 to this document]]

8.5. URN Sub-namespace for ACME (urn:ietf:params:acme)

 The "IETF URN Sub-namespace for Registered Protocol Parameter
 Identifiers" registry should be updated with the following additional
 value, following the template in [RFC3553]:

 Registry name: acme

 Specification: RFC XXXX

 Repository: URL-TBD

 Index value: No transformation needed. The

 [[RFC EDITOR: Please replace XXXX above with the RFC number assigned
 to this document, and replace URL-TBD with the URL assigned by IANA
 for registries of ACME parameters.]]

8.6. New Registries

 This document requests that IANA create the following new registries:

 1. ACME Error Codes

 2. ACME Resource Types

 3. ACME Identifier Types

 4. ACME Challenge Types

 All of these registries should be administered under a Specification
 Required policy [RFC5226].

8.6.1. Error Codes

 This registry lists values that are used within URN values that are
 provided in the "type" field of problem documents in ACME.

 Template:

https://datatracker.ietf.org/doc/html/rfc3553
https://datatracker.ietf.org/doc/html/rfc5226

Barnes, et al. Expires May 4, 2017 [Page 54]

Internet-Draft ACME October 2016

 o Code: The label to be included in the URN for this error,
 following "urn:ietf:params:acme:"

 o Description: A human-readable description of the error

 o Reference: Where the error is defined

 Initial contents: The codes and descriptions in the table in
Section 5.7 above, with the Reference field set to point to this

 specification.

8.6.2. Resource Types

 This registry lists the types of resources that ACME servers may list
 in their directory objects.

 Template:

 o Key: The value to be used as a dictionary key in the directory
 object

 o Resource type: The type of resource labeled by the key

 o Reference: Where the identifier type is defined

 Initial contents:

 +-------------+--------------------+-----------+
 | Key | Resource type | Reference |
 +-------------+--------------------+-----------+
 | new-reg | New registration | RFC XXXX |
 | | | |
 | new-app | New application | RFC XXXX |
 | | | |
 | revoke-cert | Revoke certificate | RFC XXXX |
 | | | |
 | key-change | Key change | RFC XXXX |
 +-------------+--------------------+-----------+

 [[RFC EDITOR: Please replace XXXX above with the RFC number assigned
 to this document]]

8.6.3. Identifier Types

 This registry lists the types of identifiers that ACME clients may
 request authorization to issue in certificates.

 Template:

Barnes, et al. Expires May 4, 2017 [Page 55]

Internet-Draft ACME October 2016

 o Label: The value to be put in the "type" field of the identifier
 object

 o Reference: Where the identifier type is defined

 Initial contents:

 +-------+-----------+
 | Label | Reference |
 +-------+-----------+
 | dns | RFC XXXX |
 +-------+-----------+

 [[RFC EDITOR: Please replace XXXX above with the RFC number assigned
 to this document]]

8.6.4. Challenge Types

 This registry lists the ways that ACME servers can offer to validate
 control of an identifier. The "Identifier Type" field in template
 must be contained in the Label column of the ACME Identifier Types
 registry.

 Template:

 o Label: The value to be put in the "type" field of challenge
 objects using this validation mechanism

 o Identifier Type: The type of identifier that this mechanism
 applies to

 o Reference: Where the challenge type is defined

 Initial Contents

 +---------+-----------------+-----------+
 | Label | Identifier Type | Reference |
 +---------+-----------------+-----------+
 | http | dns | RFC XXXX |
 | | | |
 | tls-sni | dns | RFC XXXX |
 | | | |
 | dns | dns | RFC XXXX |
 +---------+-----------------+-----------+

 [[RFC EDITOR: Please replace XXXX above with the RFC number assigned
 to this document]]

Barnes, et al. Expires May 4, 2017 [Page 56]

Internet-Draft ACME October 2016

9. Security Considerations

 ACME is a protocol for managing certificates that attest to
 identifier/key bindings. Thus the foremost security goal of ACME is
 to ensure the integrity of this process, i.e., to ensure that the
 bindings attested by certificates are correct, and that only
 authorized entities can manage certificates. ACME identifies clients
 by their account keys, so this overall goal breaks down into two more
 precise goals:

 1. Only an entity that controls an identifier can get an account key
 authorized for that identifier

 2. Once authorized, an account key's authorizations cannot be
 improperly transferred to another account key

 In this section, we discuss the threat model that underlies ACME and
 the ways that ACME achieves these security goals within that threat
 model. We also discuss the denial-of-service risks that ACME servers
 face, and a few other miscellaneous considerations.

9.1. Threat model

 As a service on the Internet, ACME broadly exists within the Internet
 threat model [RFC3552]. In analyzing ACME, it is useful to think of
 an ACME server interacting with other Internet hosts along two
 "channels":

 o An ACME channel, over which the ACME HTTPS requests are exchanged

 o A validation channel, over which the ACME server performs
 additional requests to validate a client's control of an
 identifier

 +------------+
 | ACME | ACME Channel
 | Client |--------------------+
 +------------+ |
 V
 +------------+
 | ACME |
 | Server |
 +------------+
 +------------+ |
 | Validation |<-------------------+
 | Server | Validation Channel
 +------------+

https://datatracker.ietf.org/doc/html/rfc3552

Barnes, et al. Expires May 4, 2017 [Page 57]

Internet-Draft ACME October 2016

 In practice, the risks to these channels are not entirely separate,
 but they are different in most cases. Each channel, for example,
 uses a different communications pattern: the ACME channel will
 comprise inbound HTTPS connections to the ACME server and the
 validation channel outbound HTTP or DNS requests.

 Broadly speaking, ACME aims to be secure against active and passive
 attackers on any individual channel. Some vulnerabilities arise
 (noted below), when an attacker can exploit both the ACME channel and
 one of the others.

 On the ACME channel, in addition to network-layer attackers, we also
 need to account for application-layer man in the middle attacks, and
 for abusive use of the protocol itself. Protection against
 application-layer MitM addresses potential attackers such as Content
 Distribution Networks (CDNs) and middleboxes with a TLS MitM
 function. Preventing abusive use of ACME means ensuring that an
 attacker with access to the validation channel can't obtain
 illegitimate authorization by acting as an ACME client (legitimately,
 in terms of the protocol).

9.2. Integrity of Authorizations

 ACME allows anyone to request challenges for an identifier by
 registering an account key and sending a new-application request
 under that account key. The integrity of the authorization process
 thus depends on the identifier validation challenges to ensure that
 the challenge can only be completed by someone who both (1) holds the
 private key of the account key pair, and (2) controls the identifier
 in question.

 Validation responses need to be bound to an account key pair in order
 to avoid situations where an ACME MitM can switch out a legitimate
 domain holder's account key for one of his choosing, e.g.:

 o Legitimate domain holder registers account key pair A

 o MitM registers account key pair B

 o Legitimate domain holder sends a new-application request signed
 under account key A

 o MitM suppresses the legitimate request, but sends the same request
 signed under account key B

 o ACME server issues challenges and MitM forwards them to the
 legitimate domain holder

Barnes, et al. Expires May 4, 2017 [Page 58]

Internet-Draft ACME October 2016

 o Legitimate domain holder provisions the validation response

 o ACME server performs validation query and sees the response
 provisioned by the legitimate domain holder

 o Because the challenges were issued in response to a message signed
 account key B, the ACME server grants authorization to account key
 B (the MitM) instead of account key A (the legitimate domain
 holder)

 All of the challenges above have a binding between the account
 private key and the validation query made by the server, via the key
 authorization. The key authorization is signed by the account
 private key, reflects the corresponding public key, and is provided
 to the server in the validation response.

 The association of challenges to identifiers is typically done by
 requiring the client to perform some action that only someone who
 effectively controls the identifier can perform. For the challenges
 in this document, the actions are:

 o HTTP: Provision files under .well-known on a web server for the
 domain

 o TLS SNI: Configure a TLS server for the domain

 o DNS: Provision DNS resource records for the domain

 There are several ways that these assumptions can be violated, both
 by misconfiguration and by attack. For example, on a web server that
 allows non-administrative users to write to .well-known, any user can
 claim to own the server's hostname by responding to an HTTP
 challenge, and likewise for TLS configuration and TLS SNI.

 The use of hosting providers is a particular risk for ACME
 validation. If the owner of the domain has outsourced operation of
 DNS or web services to a hosting provider, there is nothing that can
 be done against tampering by the hosting provider. As far as the
 outside world is concerned, the zone or web site provided by the
 hosting provider is the real thing.

 More limited forms of delegation can also lead to an unintended party
 gaining the ability to successfully complete a validation
 transaction. For example, suppose an ACME server follows HTTP
 redirects in HTTP validation and a web site operator provisions a
 catch-all redirect rule that redirects requests for unknown resources
 to a different domain. Then the target of the redirect could use

Barnes, et al. Expires May 4, 2017 [Page 59]

Internet-Draft ACME October 2016

 that to get a certificate through HTTP validation, since the
 validation path will not be known to the primary server.

 The DNS is a common point of vulnerability for all of these
 challenges. An entity that can provision false DNS records for a
 domain can attack the DNS challenge directly, and can provision false
 A/AAAA records to direct the ACME server to send its TLS SNI or HTTP
 validation query to a server of the attacker's choosing. There are a
 few different mitigations that ACME servers can apply:

 o Always querying the DNS using a DNSSEC-validating resolver
 (enhancing security for zones that are DNSSEC-enabled)

 o Querying the DNS from multiple vantage points to address local
 attackers

 o Applying mitigations against DNS off-path attackers, e.g., adding
 entropy to requests [I-D.vixie-dnsext-dns0x20] or only using TCP

 Given these considerations, the ACME validation process makes it
 impossible for any attacker on the ACME channel, or a passive
 attacker on the validation channel to hijack the authorization
 process to authorize a key of the attacker's choice.

 An attacker that can only see the ACME channel would need to convince
 the validation server to provide a response that would authorize the
 attacker's account key, but this is prevented by binding the
 validation response to the account key used to request challenges. A
 passive attacker on the validation channel can observe the correct
 validation response and even replay it, but that response can only be
 used with the account key for which it was generated.

 An active attacker on the validation channel can subvert the ACME
 process, by performing normal ACME transactions and providing a
 validation response for his own account key. The risks due to
 hosting providers noted above are a particular case. For identifiers
 where the server already has some public key associated with the
 domain this attack can be prevented by requiring the client to prove
 control of the corresponding private key.

9.3. Denial-of-Service Considerations

 As a protocol run over HTTPS, standard considerations for TCP-based
 and HTTP-based DoS mitigation also apply to ACME.

 At the application layer, ACME requires the server to perform a few
 potentially expensive operations. Identifier validation transactions
 require the ACME server to make outbound connections to potentially

Barnes, et al. Expires May 4, 2017 [Page 60]

Internet-Draft ACME October 2016

 attacker-controlled servers, and certificate issuance can require
 interactions with cryptographic hardware.

 In addition, an attacker can also cause the ACME server to send
 validation requests to a domain of its choosing by submitting
 authorization requests for the victim domain.

 All of these attacks can be mitigated by the application of
 appropriate rate limits. Issues closer to the front end, like POST
 body validation, can be addressed using HTTP request limiting. For
 validation and certificate requests, there are other identifiers on
 which rate limits can be keyed. For example, the server might limit
 the rate at which any individual account key can issue certificates,
 or the rate at which validation can be requested within a given
 subtree of the DNS.

9.4. Server-Side Request Forgery

 Server-Side Request Forgery (SSRF) attacks can arise when an attacker
 can cause a server to perform HTTP requests to an attacker-chosen
 URL. In the ACME HTTP challenge validation process, the ACME server
 performs an HTTP GET request to a URL in which the attacker can
 choose the domain. This request is made before the server has
 verified that the client controls the domain, so any client can cause
 a query to any domain.

 Some server implementations include information from the validation
 server's response (in order to facilitate debugging). Such
 implementations enable an attacker to extract this information from
 any web server that is accessible to the ACME server, even if it is
 not accessible to the ACME client.

 It might seem that the risk of SSRF through this channel is limited
 by the fact that the attacker can only control the domain of the URL,
 not the path. However, if the attacker first sets the domain to one
 they control, then they can send the server an HTTP redirect (e.g., a
 302 response) which will cause the server to query an arbitrary URI.

 In order to further limit the SSRF risk, ACME server operators should
 ensure that validation queries can only be sent to servers on the
 public Internet, and not, say, web services within the server
 operator's internal network. Since the attacker could make requests
 to these public servers himself, he can't gain anything extra through
 an SSRF attack on ACME aside from a layer of anonymization.

Barnes, et al. Expires May 4, 2017 [Page 61]

Internet-Draft ACME October 2016

9.5. CA Policy Considerations

 The controls on issuance enabled by ACME are focused on validating
 that a certificate applicant controls the identifier he claims.
 Before issuing a certificate, however, there are many other checks
 that a CA might need to perform, for example:

 o Has the client agreed to a subscriber agreement?

 o Is the claimed identifier syntactically valid?

 o For domain names:

 * If the leftmost label is a '*', then have the appropriate
 checks been applied?

 * Is the name on the Public Suffix List?

 * Is the name a high-value name?

 * Is the name a known phishing domain?

 o Is the key in the CSR sufficiently strong?

 o Is the CSR signed with an acceptable algorithm?

 CAs that use ACME to automate issuance will need to ensure that their
 servers perform all necessary checks before issuing.

10. Operational Considerations

 There are certain factors that arise in operational reality that
 operators of ACME-based CAs will need to keep in mind when
 configuring their services. For example:

10.1. DNS over TCP

 As noted above, DNS forgery attacks against the ACME server can
 result in the server making incorrect decisions about domain control
 and thus mis-issuing certificates. Servers SHOULD verify DNSSEC when
 it is available for a domain. When DNSSEC is not available, servers
 SHOULD perform DNS queries over TCP, which provides better resistance
 to some forgery attacks than DNS over UDP.

Barnes, et al. Expires May 4, 2017 [Page 62]

Internet-Draft ACME October 2016

10.2. Default Virtual Hosts

 In many cases, TLS-based services are deployed on hosted platforms
 that use the Server Name Indication (SNI) TLS extension to
 distinguish between different hosted services or "virtual hosts".
 When a client initiates a TLS connection with an SNI value indicating
 a provisioned host, the hosting platform routes the connection to
 that host.

 When a connection comes in with an unknown SNI value, one might
 expect the hosting platform to terminate the TLS connection.
 However, some hosting platforms will choose a virtual host to be the
 "default", and route connections with unknown SNI values to that
 host.

 In such cases, the owner of the default virtual host can complete a
 TLS-based challenge (e.g., "tls-sni-02") for any domain with an A
 record that points to the hosting platform. This could result in
 mis-issuance in cases where there are multiple hosts with different
 owners resident on the hosting platform.

 A CA that accepts TLS-based proof of domain control should attempt to
 check whether a domain is hosted on a domain with a default virtual
 host before allowing an authorization request for this host to use a
 TLS-based challenge. A default virtual host can be detected by
 initiating TLS connections to the host with random SNI values within
 the namespace used for the TLS-based challenge (the "acme.invalid"
 namespace for "tls-sni-02").

10.3. Use of DNSSEC Resolvers

 An ACME-based CA will often need to make DNS queries, e.g., to
 validate control of DNS names. Because the security of such
 validations ultimately depends on the authenticity of DNS data, every
 possible precaution should be taken to secure DNS queries done by the
 CA. It is therefore RECOMMENDED that ACME-based CAs make all DNS
 queries via DNSSEC-validating stub or recursive resolvers. This
 provides additional protection to domains which choose to make use of
 DNSSEC.

 An ACME-based CA must use only a resolver if it trusts the resolver
 and every component of the network route by which it is accessed. It
 is therefore RECOMMENDED that ACME-based CAs operate their own
 DNSSEC-validating resolvers within their trusted network and use
 these resolvers both for both CAA record lookups and all record
 lookups in furtherance of a challenge scheme (A, AAAA, TXT, etc.).

Barnes, et al. Expires May 4, 2017 [Page 63]

Internet-Draft ACME October 2016

11. Acknowledgements

 In addition to the editors listed on the front page, this document
 has benefited from contributions from a broad set of contributors,
 all the way back to its inception.

 o Peter Eckersley, EFF

 o Eric Rescorla, Mozilla

 o Seth Schoen, EFF

 o Alex Halderman, University of Michigan

 o Martin Thomson, Mozilla

 o Jakub Warmuz, University of Oxford

 This document draws on many concepts established by Eric Rescorla's
 "Automated Certificate Issuance Protocol" draft. Martin Thomson
 provided helpful guidance in the use of HTTP.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <http://www.rfc-editor.org/info/rfc2818>.

 [RFC2985] Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object
 Classes and Attribute Types Version 2.0", RFC 2985,
 DOI 10.17487/RFC2985, November 2000,
 <http://www.rfc-editor.org/info/rfc2985>.

 [RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 DOI 10.17487/RFC2986, November 2000,
 <http://www.rfc-editor.org/info/rfc2986>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
http://www.rfc-editor.org/info/rfc2818
https://datatracker.ietf.org/doc/html/rfc2985
http://www.rfc-editor.org/info/rfc2985
https://datatracker.ietf.org/doc/html/rfc2986
http://www.rfc-editor.org/info/rfc2986
https://datatracker.ietf.org/doc/html/rfc3339
http://www.rfc-editor.org/info/rfc3339

Barnes, et al. Expires May 4, 2017 [Page 64]

Internet-Draft ACME October 2016

 [RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode
 for Internationalized Domain Names in Applications
 (IDNA)", RFC 3492, DOI 10.17487/RFC3492, March 2003,
 <http://www.rfc-editor.org/info/rfc3492>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",

RFC 5890, DOI 10.17487/RFC5890, August 2010,
 <http://www.rfc-editor.org/info/rfc5890>.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988,
 DOI 10.17487/RFC5988, October 2010,
 <http://www.rfc-editor.org/info/rfc5988>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <http://www.rfc-editor.org/info/rfc6066>.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570,
 DOI 10.17487/RFC6570, March 2012,
 <http://www.rfc-editor.org/info/rfc6570>.

 [RFC6844] Hallam-Baker, P. and R. Stradling, "DNS Certification
 Authority Authorization (CAA) Resource Record", RFC 6844,
 DOI 10.17487/RFC6844, January 2013,
 <http://www.rfc-editor.org/info/rfc6844>.

https://datatracker.ietf.org/doc/html/rfc3492
http://www.rfc-editor.org/info/rfc3492
https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc4648
http://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
http://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc5890
http://www.rfc-editor.org/info/rfc5890
https://datatracker.ietf.org/doc/html/rfc5988
http://www.rfc-editor.org/info/rfc5988
https://datatracker.ietf.org/doc/html/rfc6066
http://www.rfc-editor.org/info/rfc6066
https://datatracker.ietf.org/doc/html/rfc6570
http://www.rfc-editor.org/info/rfc6570
https://datatracker.ietf.org/doc/html/rfc6844
http://www.rfc-editor.org/info/rfc6844

Barnes, et al. Expires May 4, 2017 [Page 65]

Internet-Draft ACME October 2016

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7468] Josefsson, S. and S. Leonard, "Textual Encodings of PKIX,
 PKCS, and CMS Structures", RFC 7468, DOI 10.17487/RFC7468,
 April 2015, <http://www.rfc-editor.org/info/rfc7468>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <http://www.rfc-editor.org/info/rfc7517>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <http://www.rfc-editor.org/info/rfc7518>.

 [RFC7638] Jones, M. and N. Sakimura, "JSON Web Key (JWK)
 Thumbprint", RFC 7638, DOI 10.17487/RFC7638, September
 2015, <http://www.rfc-editor.org/info/rfc7638>.

 [RFC7807] Nottingham, M. and E. Wilde, "Problem Details for HTTP
 APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016,
 <http://www.rfc-editor.org/info/rfc7807>.

12.2. Informative References

 [I-D.vixie-dnsext-dns0x20]
 Vixie, P. and D. Dagon, "Use of Bit 0x20 in DNS Labels to
 Improve Transaction Identity", draft-vixie-dnsext-

dns0x20-00 (work in progress), March 2008.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <http://www.rfc-editor.org/info/rfc3552>.

https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7468
http://www.rfc-editor.org/info/rfc7468
https://datatracker.ietf.org/doc/html/rfc7515
http://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7517
http://www.rfc-editor.org/info/rfc7517
https://datatracker.ietf.org/doc/html/rfc7518
http://www.rfc-editor.org/info/rfc7518
https://datatracker.ietf.org/doc/html/rfc7638
http://www.rfc-editor.org/info/rfc7638
https://datatracker.ietf.org/doc/html/rfc7807
http://www.rfc-editor.org/info/rfc7807
https://datatracker.ietf.org/doc/html/draft-vixie-dnsext-dns0x20-00
https://datatracker.ietf.org/doc/html/draft-vixie-dnsext-dns0x20-00
https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552
http://www.rfc-editor.org/info/rfc3552

Barnes, et al. Expires May 4, 2017 [Page 66]

Internet-Draft ACME October 2016

 [RFC3553] Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
 IETF URN Sub-namespace for Registered Protocol
 Parameters", BCP 73, RFC 3553, DOI 10.17487/RFC3553, June
 2003, <http://www.rfc-editor.org/info/rfc3553>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <http://www.rfc-editor.org/info/rfc5785>.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <http://www.rfc-editor.org/info/rfc6962>.

 [RFC7469] Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning
 Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469, April
 2015, <http://www.rfc-editor.org/info/rfc7469>.

 [W3C.CR-cors-20130129]
 Kesteren, A., "Cross-Origin Resource Sharing", World Wide
 Web Consortium CR CR-cors-20130129, January 2013,
 <http://www.w3.org/TR/2013/CR-cors-20130129>.

Authors' Addresses

 Richard Barnes
 Mozilla

 Email: rlb@ipv.sx

 Jacob Hoffman-Andrews
 EFF

 Email: jsha@eff.org

 James Kasten
 University of Michigan

 Email: jdkasten@umich.edu

https://datatracker.ietf.org/doc/html/bcp73
https://datatracker.ietf.org/doc/html/rfc3553
http://www.rfc-editor.org/info/rfc3553
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc5785
http://www.rfc-editor.org/info/rfc5785
https://datatracker.ietf.org/doc/html/rfc6962
http://www.rfc-editor.org/info/rfc6962
https://datatracker.ietf.org/doc/html/rfc7469
http://www.rfc-editor.org/info/rfc7469
http://www.w3.org/TR/2013/CR-cors-20130129

Barnes, et al. Expires May 4, 2017 [Page 67]

