
AFT Working Group D. Chouinard
Internet Draft Intel Corporation
Expires in six months November 20, 1997

SOCKS V5 UDP and Multicast Extensions to
Facilitate Multicast Firewall Traversal

draft-ietf-aft-mcast-fw-traversal-01.txt

Status of this Memo

 This document is a submission to the IETF Authenticated Firewall
 Traversal (AFT) Working Group. Comments are solicited and should be
 addressed to the working group mailing list (aft@socks.nec.com) or
 to the editor.

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as ``work in
 progress.''

 To learn the current status of any Internet-Draft, please check the
 1id-abstracts.txt listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

Abstract

 This proposal creates a mechanism for managing the ingress or egress
 of IP multicast through a firewall. It does this by defining
 extensions to the existing SOCKS V5 protocol [RFC-1928], which
 provides a framework for doing user-level, authenticated firewall
 traversal of unicast TCP and UDP traffic. However, because the
 current UDP support in SOCKS V5 has scalability problems as well as
 other deficiencies -- and these need to be addressed before
 multicast support can be achieved -- the extensions are defined in
 two parts: Base-level UDP extensions, and Multicast UDP extensions.

 Using the SOCKS framework for managing multicast flows in/out of an
 organization, offers numerous security advantages over what is
 possible with a conventional firewall approach. These are spelled
 out in the draft.

https://datatracker.ietf.org/doc/html/draft-ietf-aft-mcast-fw-traversal-01.txt
https://datatracker.ietf.org/doc/html/rfc1928

 Chouinard [Page 1]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

Table of Contents

1. Conventions used in this document................................3
2. Introduction...3
3. Use of Feature Discovery...4
4. Base-level UDP Extensions..5
4.1. SOCKS Requests...6

4.1.1. ENHANCED_UDP_MODE..6
4.2. SOCKS Replies..7
4.3. UDP Control Channel..8

4.3.1. UDP BIND...9
4.3.2. UDP RELEASE...11

4.4. Procedure for TCP-Encapsulation.................................11
4.5. Procedure for UDP-based Clients.................................12
5. Multicast Extensions..13
5.1. Assumptions and Requirements....................................14
5.2. UDP Control Commands and Flags..................................16

5.2.1. Receiving From a Multicast Group........................16
5.2.2. Sending to a Multicast Group............................18
5.2.3. Releasing a Multicast Association.......................19
5.2.4. Setting the TTL...19

6. Security Considerations...20
7. Acknowledgments...21
8. References..21
9. Disclaimer..21
10. Authors' Address..21

What s Changed

 This revision contains the following changes from the version 00,
 dated July 23, 1997.

 @ The title was modified to include "to Facilitate Multicast
 Firewall Traversal."

 @ The document name was changed to draft-ietf-aft-mcast-fw-
traversal-01.txt to better reflect the purpose of the

 document.

 @ The abstract was shortened.

 @ The Introduction section was added to provide background on
 the security issues with multicast and firewalls, and how
 SOCKS can solve them.

 @ Clarification was added indicating that addressing
 information must be included in UDP BIND messages for an
 existing association.

https://datatracker.ietf.org/doc/html/draft-ietf-aft-mcast-fw-traversal-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-aft-mcast-fw-traversal-01.txt

 @ Clarification was added on how non-proxy-based SOCKS servers
 respond to UDP BIND commands.

 @ The section on Multicast Assumptions and Requirements
 (Section 5.1) was supplemented with a discussion about non-
 proxy-based multicast-capable SOCKS servers.

Chouinard [Page 2]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

1. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in [RFC-2119].

2. Introduction

 The main impetus for writing this draft is to provide a solution to
 getting multicast safely through firewalls. This section presents
 the case why an augmented SOCKS protocol provides such a solution.

 Following are some of the security concerns that come to mind when
 considering allowing multicast through a firewall:

 1.Prevent users from inadvertently sending stuff out (i.e.,
 limit who can send content out, and with what scope)

 2.Limit who can bring multicast content into an organization

 3.Limit what groups can be joined

 4.Provide protection to internal users who have joined an
 external multicast group (consistent with the protection
 defined by the unicast security policy)

 5.Provide a detailed log of all multicast session activity (who
 was listening/sending and for how long)

 6.Limit how much bandwidth is consumed by flows (which could by
 user dependent) to prevent over-utilization of an
 organization s network.

 Nearly all of these concerns require that the firewall know the
 identity of the user and what they are attempting to do. While the
 same argument could be made for unicast protocols, it is actually a
 more pervasive argument for multicast. The reasons are:

 @ Most multicast applications have no formal control protocol
 that a firewall can monitor in order to dynamically modify
 filtering rules for UDP flows

 @ The only real "control protocol" a firewall can always
 monitor is the IGMP messages that carry multicast routing
 protocol information (DVMRP, PIM, etc.). However, since
 these messages are router-to-router, they do not contain
 anything about the original initiator of the message. What s
 more, only the first IGMP join for a given group will even

https://datatracker.ietf.org/doc/html/rfc2119

 traverse the firewall; subsequent joins for the same group
 will be assimilated into the routing tree formed inside the
 firewall.

 The end result is that without some light-weight out-of-band
 control protocol that authenticates a multicast client to the

Chouinard [Page 3]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 firewall and makes requests of the firewall, it is not possible to
 address most of the security concerns mentioned above.

 Given that such a protocol is needed, ideally it should be
 implementable in such a way that it is transparent to, and
 independent of, the multicast application running on the client.
 Because SOCKS is implemented at the session layer, and provides the
 same kinds of capabilities for unicast applications, it is ideally
 situated to provide these services for multicast applications;
 indeed, even more so for multicast applications because of the
 inherent challenges with IP multicast!

 Using a multicast SOCKS solution offers the following advantages
 over a conventional firewall that provides class D address filtering
 as well as IGMP monitoring and filtering:

 @ The Multicast SOCKS Server (MSS) knows the identity of the
 user who has asked to a join a group (due to user
 authentication). In a conventional approach, simply
 monitoring the IGMP only reveals that somebody issued a join
 of a particular group.

 @ The MSS not only knows the group address that a client wishes
 to join, it also knows the port. This enables the MSS to
 filter traffic specific to that group address and port, and
 block traffic to the group address that is for other ports
 (where unsuspecting unicast services may be listening on).
 This enables better protection of clients that have joined an
 external group. In a conventional approach where the
 firewall monitors IGMP, only the group address is specified;
 not the port.

 @ A proxy-based SOCKS server can convert multicast to unicast,
 and in doing so, can provide enhanced security
 (authentication, integrity, and privacy).

 The remainder of the document discusses how the aforementioned
 extensions are manifested into the SOCKS V5 protocol.

3. Use of Feature Discovery

 Using the SOCKS feature discovery extension documented in [Van97], a
 SOCKS client MAY query a SOCKS server to see if it supports the UDP
 and/or Multicast extensions. In Feature Description List (FDL)
 syntax, the tag-subtag used by the SOCKS server to indicate this
 support is COMMAND-ENHANCED_UDP_MODE (04 04 in hexadecimal). Note,
 ENHANCED_UDP_MODE is a new command which is described in Section

4.1.1.

 The values are:

 Value Description
 --
 X'01' Base-level UDP extensions (covered in Section 4)

Chouinard [Page 4]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 X'02' Multicast UDP extensions (covered in Section 5)

 SOCKS servers that support *only* the Base-level UDP extensions do
 so only for unicast addresses.

 SOCKS servers that support *only* the Multicast UDP extensions still
 support the base-level UDP extensions, but only in the context of
 providing the services described in Section 5.

 SOCKS servers that support both extensions (i.e., for unicast and
 multicast) must explicitly indicate both values in the tag-subtag
 for enhanced UDP mode (e.g., 04 04 02 01 02 in hexadecimal).

4. Base-level UDP Extensions

 The base-level UDP extensions augment the current SOCKS UDP support
 by increasing efficiency and scalability, as well as providing the
 foundation for the multicast extensions (discussed in Section 5).

 The base-level UDP extensions provide the following new
 functionality:

 * Ability to control multiple UDP sockets over one control
 connection

 * Reduced overhead on UDP datagram handling (by reducing the
 size of the SOCKS UDP datagram header).

 * Ability for SOCKS client to send and *receive* TCP-
 encapsulated UDP.

 * Correct handling of fragmentation.

 In order to provide these extensions, new commands are added, as
 well as changes to some of the existing SOCKS V5 packet structures
 and procedures. These changes are done in a way to maintain
 compatibility between a SOCKS client or server that does not support
 the extensions.

 The following is a summary of the changes:

 * The packet structure for both the UDP control channel packets
 and the reply packet changes after the SOCKS client and
 server enter "UDP enhanced-mode" (described below).

 * All UDP-related commands are done on the UDP control channel
 and, among other new fields, include an Association
 IDentifier (AID) that uniquely identifies a particular UDP
 session (association) between an address/port on the SOCKS
 client and an address/port on a remote host.

 * The following new UDP commands are added:

Chouinard [Page 5]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 * UDP Bind: Establishes a UDP association for sending and/or
 receiving (replaces the UDP Associate command as well as
 the INTERFACE DATA subcommand specified in [SOCKS5])
 * UDP Release: Releases a previously established association.

 * Support for TCP-encapsulation of UDP data is supported by
 first establishing a UDP send and/or receive association for
 TCP-encapsulation, and then sending a new packet type (SOCKS-
 UDP-DATA-REQUEST) specifically for encapsulating UDP over
 TCP.

 * The TCP control connection is not terminated when a command
 for a particular socket cannot be satisfied (since multiple
 UDP sessions can be controlled over the connection)

 * The SOCKS UDP data header is reduced in size by using the
 association identifier instead of the actual destination
 address. Further, a Datagram Identifier field is added to
 this header to address problems with fragmentation.

 The details of these extensions are spelled out in the following
 sections (in a manner consistent with that used in RFC 1928).

 4.1. SOCKS Requests

 The SOCKS Request message has not changed, however, a new command
 (ENHANCED_UDP_MODE) is added.

 * CMD
 Existing commands:
 * CONNECT X'01' (used only for TCP)
 * BIND X'02' (used only for TCP)
 * UDP ASSOCIATE X'03' (not supported once Enhanced UDP Mode
 is achieved)

 New command:
 * ENHANCED_UDP_MODE X'04'

 4.1.1. ENHANCED_UDP_MODE

 4.1.1.1. Request

 Providing the SOCKS server advertises support for the base-level UDP
 extensions (or even the multicast extensions), the client may send
 this command to the server, indicating its desire to use the base-
 level UDP extensions. The message is populated as follows:

 VER: X'05'
 CMD: ENHANCED_UDP_MODE (X'04')

https://datatracker.ietf.org/doc/html/rfc1928

 All other fields are unused and SHOULD be 0s.

 4.1.1.2. Reply

Chouinard [Page 6]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 The reply message is the same as that used in SOCKS V5, however the
 version number will contain the version of the UDP extension instead
 of the SOCKS version number. The current version is X'01'.

 Upon receiving a successful reply, the TCP control channel has
 achieved "Enhanced UDP Mode," and subsequently, can only be used for
 the UDP commands defined in Section 4.3.

 4.2. SOCKS Replies

 Once "Enhanced UDP Mode" has been established, the format of all
 subsequent SOCKS Reply messages is as follows:

 +------------+--------+----------+--------+--------+-------+------+
 | PKT TYPE(1)| SIZE(2)| REPLY(1) |FLAGS(2)| RSVD(1)| TID(2)|AID(4)|
 +------------+--------+----------+--------+--------+-------+------+
 | LOCAL ADDR TYPE (1) | LOCAL ADDR (var) | LOCAL PORT (2) |
 +---------------------+-------------------+-----------------------+
 | REMOTE ADDR TYPE(1) | REMOTE ADDR (var) | REMOTE PORT (2) |
 +---------------------+-------------------+-----------------------+

 The fields in the Reply packet are as follows:

 * PKT TYPE: SOCKS-UDP-CONTROL-REPLY (X'02')
 * SIZE: Total size (in octets) of this message, in network
 order.
 * REPLY:
 Existing return codes (SOCKS V5):
 * X'00' succeeded
 * X'01' general SOCKS server failure
 * X'02' connection not allowed by ruleset
 * X'03' Network unreachable
 * X'04' Host unreachable
 * X'05' Connection refused
 * X'06' TTL expired
 * X'07' Command not supported
 * X'08' Address type not supported
 New return codes:
 * X'10' Bad Association ID
 * X'11' Multicast Receive not allowed by ruleset
 * X'12' Multicast Send not allowed by ruleset
 * X'13' Bad Association context
 * X'14' Bad multicast address
 * X'15' TTL value not allowed by ruleset
 * FLAGS: Command-dependent flag
 * RSVD: Reserved.
 * TID: A 2-byte opaque Transaction Identifier that is set by
 the client in the request and is returned by the server in a

 response to a particular request. The server does not use or
 interpret this value in any way; it merely returns it in the
 response to a particular request.
 * AID: A 4-byte opaque Association Identifier that identifies
 a particular association.

Chouinard [Page 7]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 * LOC ADDR TYPE/ADDR/PORT: Addressing information on the local
 side of the SOCKS server; that is, on the same side as the
 SOCKS client. The ADDR TYPEs and the format of the ADDR are
 the same as those in SOCKS V5.
 * REM ADDR TYPE/ADDR/PORT: Addressing information on the remote
 side of the SOCKS server. The ADDR TYPEs and the format of
 the ADDR are the same as those in SOCKS V5.

 4.3. UDP Control Channel

 Once "Enhanced UDP Mode" has been established, the format of all
 subsequent SOCKS UDP Control messages is as follows:

 +------------+--------+----------+--------+--------+-------+------+
 | PKT TYPE(1)| SIZE(2)| UDPCMD(1)|FLAGS(2)| RSVD(1)| TID(2)|AID(4)|
 +------------+--------+----------+--------+--------+-------+------+
 | LOCAL ADDR TYPE (1) | LOCAL ADDR (var) | LOCAL PORT (2) |
 +---------------------+-------------------+-----------------------+
 | REMOTE ADDR TYPE(1) | REMOTE ADDR (var) | REMOTE PORT (2) |
 +---------------------+-------------------+-----------------------+

 The fields in the CONTROL CHANNEL packet are as follows:

 * PKT TYPE: SOCKS-UDP-CONTROL-REQUEST (X'01')
 * SIZE: Total size (in octets) of this message, in network
 order.
 * UDP CMD: UDP command
 * UDP BIND: X'05' (new)
 * UDP RELEASE: X'06' (new)
 (Note: additional commands are defined in the Multicast
 extensions section of this document)
 * FLAGS: A command-dependent bit-mask. These values are bit-
 wise ORed to form the actual flag.
 Valid flags are:
 * RECEIVE-FROM: X'0001'
 * SEND-TO: X 0002
 * UDP-UNICAST: X 0004
 * TCP-ENCAPSULATED: X 0008 Indicates that datagrams will
 be encapsulated in TCP using the procedures in Section 4.4.
 (Note: additional commands are defined in the Multicast
 extensions section of this document)
 * RSVD: Reserved.
 * TID: 2-byte opaque Transaction Identifier - client sets in
 request, server returns in response. Enables client to
 couple replies to requests.
 * AID: 4-byte opaque Association Identifier
 * LOC ADDR TYPE/ADDR/PORT: Local (source) address information
 on the SOCKS client. The ADDR TYPEs and the format of the
 ADDR are the same as those in SOCKS V5.

 * REM ADDR TYPE/ADDR/PORT: Remote address information (for the
 ultimate destination). The ADDR TYPEs and the format of the
 ADDR are the same as those in SOCKS V5.

Chouinard [Page 8]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 The use of these fields is command dependent and is further
 described below.

 4.3.1. UDP BIND

 4.3.1.1. Request

 The SOCKS client sends the UDP BIND command each time a new binding
 (or association) is made between the SOCKS client and a UDP source
 or destination, enabling the SOCKS Server to establish a "UDP Relay"
 for the association.

 The client MUST populate the following fields:

 PKT TYPE: SOCKS-UDP-CONTROL-REQUEST (X'01')
 SIZE: Total size (in octets) of this message, in network order.
 UDP CMD: UDP BIND (X'05')
 FLAGS: A bit-wise OR of the various flags defined in Section

4.3.

 Examples:
 RECEIVE-FROM | SEND-TO | UDP-UNICAST - client wants to send
 and receive using the unicast UDP method.

 RECEIVE-FROM | UDP-UNICAST - client wants to only receive
 using the unicast UDP method.

 RECEIVE-FROM | SEND-TO | TCP-ENCAPSULATED-UDP - client wants
 to send and receive using the TCP-encapsulated method. The
 client must do a UDP BIND with the SEND and TCP-ENCAPSULATED-
 UDP flags set, and get a successful response before following
 the procedures in Section 4.4.

 Other combinations are also possible, however, UDP-UNICAST
 are TCP-ENCAPSULATED-UDP are mutually exclusive.

 RSVD: Unused (X 00).
 TID: Contains a unique value (chosen by the client) that enables
 the client to identify the reply to this particular
 request.
 AID: Contains an existing association ID if a send or receive
 association already exists on this same socket to the
 destination address or X'00000000'.
 LOCAL ADDR TYPE/ADDR/PORT: Contains the address and port that
 the client will use to send the UDP datagrams on for this
 association.
 REMOTE ADDR TYPE/ADDR/PORT: Contains the remote (destination)
 address and port that the client wishes to send to or
 receive from.

 It is permissible for a SOCKS client to establish a send or receive
 association to the same remote address in one UDP BIND operation, or
 by sending a another UDP BIND. Subsequent UDP BINDs SHOULD include
 the existing AID rather than establishing an entirely new AID for

Chouinard [Page 9]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 the reverse direction, though the addressing information MUST still
 be included.

 SOCKS client implementations are free to choose how many and which
 UDP sockets they control over a single TCP control connection. For
 example, a SOCKS client may control all UDP sockets for the entire
 client over a single control connection. Alternatively, it could
 group only those UDP sockets being used by a given process over a
 single control connection. It could even degenerate into the SOCKS
 V5 model of creating a control channel for each UDP socket, though
 this practice is not recommended.

 4.3.1.2. Reply Processing

 The reply to a UDP BIND will contain the following information:

 PKT TYPE: SOCKS-UDP-CONTROL-REPLY (X'02')
 SIZE: Total size (in octets) of this message, in network order.
 REPLY: succeeded (X'00') or specific failure. Note: if the
 SOCKS server cannot entirely satisfy the request, it MUST
 fail the request, and send back an appropriate failure
 code.
 FLAGS: Contains a bit-wise OR of the parts of the request that
 the SOCKS server could satisfy (even if the entire request
 is failed due to parts that could not be satisfied).
 RSVD: Unused (X 00).
 TID: Will contain the same value as that used in the
 corresponding request.

 If the REPLY is a failure, then the remaining fields are not
 populated and SHOULD be 0s. If REPLY is succeeded, then the
 remaining fields MUST be populated as follows:

 AID: The AID will contain a unique identifier (the SOCKS server
 determines the extent of the uniqueness) that the client
 must use in subsequent UDP commands referring to this
 association. The AID must also be used in the SOCKS header
 on the UDP datagrams (discussed below).
 LOCAL ADDR TYPE/ADDR/PORT: The Address on the SOCKS server that
 the SOCKS client must send to for UDP datagrams to be
 forwarded. This is also the address that the SOCKS server
 will send from when forwarding datagrams to the SOCKS
 client. Note: non-proxy-based SOCKS servers would fill
 this field in with the destination address specified by the
 client in the REMOTE ADDR fields in the UDP BIND.
 REMOTE ADDR TYPE/ADDR/PORT: The address information, specific to
 the interface, that the SOCKS server will send (or receive)
 on, on behalf of the SOCKS client for this particular
 association. On a multi-homed SOCKS server, this address

 is usually not reachable by the SOCKS client, but is
 reachable by the host on the remote side of the SOCKS
 server. Note: non-proxy-based SOCKS servers would fill this
 field in with the client s local address specified by the
 client in the LOCAL ADDR fields in the UDP BIND.

Chouinard [Page 10]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 If a UDP Control Channel is closed, the SOCKS Server MUST release
 all associations established on that control channel. Thus,
 implementations should not necessarily close the control connection
 if a UDP BIND fails (as was common practice in SOCKS V5 when a UDP
 ASSOCIATE failed), unless there are no other UDP associations active
 or the implementation desires this behavior.

 4.3.2. UDP RELEASE

 4.3.2.1. Request

 The SOCKS client sends the UDP RELEASE command when a previously
 established association is to be terminated. The UDP RELEASE must
 contain the AID for the particular UDP association to be terminated.
 It MUST also contain the appropriate flag(s) for which the
 association is to be released.

 PKT TYPE: SOCKS-UDP-CONTROL-REQUEST (X'01')
 SIZE: Total size (in octets) of this message, in network order.
 UDP CMD: UDP RELEASE (X'06')
 FLAGS: Contains a bit-wise OR of one or more of the following:
 RECEIVE-FROM (X 0001)
 SEND-TO (X 0002)
 Note: it is permissible for an implementation to send X 03
 (an OR of RECEIVE-FROM and SEND-TO) even if it had
 previously only established a send or receive association,
 but not both.
 RSVD: Unused (X 00).
 TID: contains a unique value (chosen by the client) that enables
 the client to identify the reply to this particular
 request.
 AID: Association Identifier that identifies the UDP association
 to be released.

 4.3.2.2. Reply Processing

 The SOCKS Server will send a REPLY to a UDP RELEASE with the
 following fields populated:

 PKT TYPE: SOCKS-UDP-CONTROL-REPLY (X'02')
 SIZE: Total size (in octets) of this message, in network order.
 REPLY: succeeded (X'00') or specific failure
 FLAGS: Same as those specified in the request.
 RSVD: Unused (X 00).
 TID: Will contain the same value as that used in the
 corresponding request.
 AID: Association Identifier contained in the UDP RELEASE

 4.4. Procedure for TCP-Encapsulation

 Once a client has established an association ID for TCP-encapsulated
 data transmission, then it must send the encapsulated data over the
 UDP control channel using the following packet structure:

Chouinard [Page 11]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 +-------------+----------+---------+-----------------+
 |PKT TYPE (1) | SIZE (2) | AID (4) | DATA (variable) |
 +-------------+----------+---------+-----------------+

 PKT TYPE: SOCKS-UDP-DATA-REQUEST (X'03')
 SIZE: Total size (in octets) of this message, in network order.
 AID: Association ID
 DATA: Application data. Note: The size of the application data
 is SIZE 7.

 There is no reply to a SOCKS-UDP-DATA-REQUEST. The SOCKS server
 either silently relays the request or discards the packet if it
 cannot or will not relay it.

 The programming interface MUST report an available buffer space for
 UDP datagrams that is no more than 65,529 decimal (2^16 7) since
 the two-byte size field in the header includes the 7-byte header
 itself.

 It is permissible for a client to establish and control multiple UDP
 associations (TCP-encapsulated or otherwise) over a single control
 channel. Thus, SOCKS clients and servers that support TCP-
 encapsulation MUST support receiving SOCKS-UDP-DATA-REQUEST and
 SOCKS-UDP-CONTROL-REQUEST packets on the same control connection.

 4.5. Procedure for UDP-based Clients

 In a manner similar to SOCKS V5, a UDP-based client operating in
 enhanced UDP mode MUST send its datagrams to the UDP relay server at
 the UDP port indicated by LOCAL ADDR and PORT in the reply to the
 UDP BIND request. If the selected authentication method provides
 encapsulation for the purposes of authenticity, integrity, and/or
 confidentiality, the datagram MUST be encapsulated using the
 appropriate encapsulation.

 Each UDP datagram carries a UDP request header with it (note this
 request header differs significantly from that used in SOCKS V5).

 +---------+----------+----------+---------+-----------------+
 | RSV (1) | FRAG (1) | DGID (2) | AID (4) | DATA (variable) |
 +---------+----------+----------+---------+-----------------+

 The fields in the UDP Data header are:

 RSV: Reserved X'00'
 FRAG: Current fragment number
 00 = standalone (not fragmented)
 1-127 = fragment # specific to this DGID
 MSB set (128-255) = End of fragment

 DGID: Datagram Identifier opaque Identifier that uniquely
 identifies the fragments of a specific datagram
 AID: Association Identifier
 DATA: user data

Chouinard [Page 12]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 As in SOCKS V5, when a UDP relay server decides to relay a UDP
 datagram, it does so silently, without any notification to the
 requesting client. Similarly, it will drop datagrams it cannot or
 will not relay.

 Furthermore, when a UDP relay server receives a reply datagram from
 a remote host, it MUST encapsulate that datagram using the above UDP
 request header and any authentication-method-dependent
 encapsulation.

 The SOCKS server must ensure that only datagrams originated from the
 expected remote host (i.e., the one designated in the REMOTE ADDR
 information in the UDP BIND) are relayed to the SOCKS client. Any
 datagrams arriving from a source IP address other than the one
 recorded for the particular association MUST be dropped.

 The programming interface on the SOCKS client MUST report an
 available buffer space for UDP datagrams that is 8-Bytes smaller
 that the actual space provided by the operating system. This allows
 for the SOCKS UDP data header.

 Fragmentation is optional and is handled the same as that documented
 in [RFC-1928], with the following exception:

 * When fragmentation is supported and a datagram is fragmented,
 the DGID field MUST be populated with a unique value that
 remains constant for all fragments of the particular datagram
 on the particular association. Note: DGID MUST be unique to
 the degree that no other SOCKS data header with the same AID
 uses the same value until the last fragment of a given
 datagram is transmitted. Implementations are encouraged to
 preserve the uniqueness longer by using a monotonically
 increasing counter for each datagram that is fragmented. The
 receiving end of the fragments can use the DGID to ensure
 that all fragments of the *same* datagram are received
 properly before passing the datagram up to the application
 layer.

5. Multicast Extensions

 If during feature discovery (described in Section 3), a SOCKS server
 advertises support for the Multicast UDP extensions, then the SOCKS
 client and server must follow the guidelines set forth in this
 section as well as support the base-level UDP extensions specified
 in Section 4 (for multicast usage). The procedure for the SOCKS
 client to indicate to the SOCKS server that it wants to use the
 multicast extensions is the same as that described in Section 4.1.1
 and is summarized below.

https://datatracker.ietf.org/doc/html/rfc1928

 1. SOCKS client does feature discovery to the SOCKS server and
 learns whether or not Multicast UDP extensions are supported
 2. If so, the SOCKS client may send ENHANCED_UDP_MODE command

Chouinard [Page 13]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 3. After a successful reply, the SOCKS client may use the
 multicast extensions.

 5.1. Assumptions and Requirements

 The following list provides some assumptions and requirements about
 the deployment and usage of SOCKS in a multicast environment. The
 actual protocol details in the next section are in large part
 derived from these assumptions.

 * A Multicast-capable SOCKS Server (MSS) is a SOCKS server that
 supports the multicast extensions defined below. It MAY also
 support all of the SOCKS V5 capabilities defined in [RFC-
 1928], including TCP services. However, a MSS could be
 dedicated for multicast usage only.
 * A Multicast-capable SOCKS Client (MSC) configuration will
 specify the MSS address, as well as the range of class D IP
 addresses and TTL for which it must use the MSS.
 * The MSS is not required to have the capabilities of a
 multicast router (mrouter) built into it. A MSS could
 coexist with a mrouter, collectively forming a barrier
 between an internal and external multicast network (e.g.,
 Mbone) through which all multicast traffic must pass in order
 to enter or leave the internal network. See Figure 1 below
 for an example of such an arrangement.

 _________ ______ ____________
 | | | | / Internal \
 ========| Mrouter |-------| MSS |------| Network |
 |_________| |______| ____________/
 tunnel to |
 external net __|___
 (mbone) | |
 | MSC |
 |______|

 Figure 1: Example Usage of a SOCKS Multicast Server

 Other possibilities exist where perhaps the MSC exists on the
 "external" network. However, for the purpose of the
 discussion in Section 5, the MSC is assumed to be on the
 "internal" network, and internal and external are relative to
 Figure 1.

 * The MSS SHOULD support two different modes of operation for
 multicast:

 * Multicast-to-Unicast Mode (MU-mode) - the MSS receives
 packets from an external multicast group and unicasts them

 to internal MSCs who have established a receive association
 to that group. Similarly, any packets received from an
 internal MSC are multicast externally, as well as unicast

Chouinard [Page 14]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 to the other MSCs that have a receive association to the
 particular multicast group address.

 * Multicast-to-Multicast Mode (MM-mode) - the MSS receives
 packets from an external multicast group and multicasts
 them to internal MSCs on the same multicast group address.
 Similarly, packets received by the MSS from an internal MSC
 on a particular multicast address are multicast externally
 on the same address.

 MM-mode provides less control than MU-mode in that non-SMCs
 could listen to a group address once it's allowed in.
 However, MM-mode significantly increases efficiency and
 scalability since it needs only to multicast a given
 datagram once rather than unicasting a copy to each SMC
 with an association to the multicast group.

 When operating in MM-mode, no UDP data headers will be used
 on datagrams since authentication-method-dependent
 encapsulation is not currently possible for a group; hence,
 handling fragmentation is not an issue. Note: in order to
 support encapsulation, an authentication-method-dependent
 procedure is needed to securely distribute shared security
 parameters to each of the members of a particular group.
 This mechanism is currently not defined, and is for further
 study.

 How the mode is configured on the MSS, and whether it applies
 globally, on a user basis, or a multicast group basis, is
 implementation dependent.

 * In both modes, the MSS MUST NOT forward packets from internal
 hosts that have not authenticated themselves to the MSS and
 received permission to receive from or send to a multicast
 group.

 * MSSs SHOULD support filtering/blocking of externally
 originated multicast datagrams based on a configurable list
 of source addresses. This allows an MSS to be aware of other
 MSSs that share the same border between the two networks
 (e.g., corporate network and the Internet), enabling it to
 filter potential duplicate packets that originated from one
 of the other MSSs.

 * The implementation of a MSS may or may not be based on a
 proxy architecture. Typically, SOCKS servers have been
 implemented as a proxy; in such case, the UDP streams are
 received by a process on the MSS and then retransmitted (in
 either MU-MODE or MM-MODE fashion). Alternatively, an MSS

 could be implemented in such a way that the UDP datagrams are
 not proxied at the application layer, but routed at the
 network layer. In this case, SOCKS acts as a control
 protocol to a mrouter-like device in order to dynamically
 modify the multicast UDP filter rules.

Chouinard [Page 15]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 5.2. UDP Control Commands and Flags

 In order to support multicast, the following functionality is needed
 between the MSC and MSS:

 * Start/stop receiving datagrams from a multicast group
 * Start/stop allowing the sending of datagrams to a multicast
 group
 * Change the multicast scope (TTL) that the MSS uses when
 sending (relaying) the datagrams to a multicast group

 To provide these capabilities, the following additions are made to
 the usage of the base-level UDP extensions:

 * Flags are added to the UDP BIND command and reply (UDP-
 MULTICAST, MM-MODE, MU-MODE), which allow the MSC to
 establish a multicast-receive or multicast-send association
 (or both) using a single association ID (AID), as well as to
 request and learn the multicast mode from the MSS.
 * A new UDP command (SET-MCAST-TTL) has been added to control
 the changing of the multicast scope.

 The values for the new command and the command flags are defined as
 follows:

 UDP Command:
 * UDP BIND:
 * command flags
 * UDP-MULTICAST: X 0010 (16 Decimal) - acts as a modifier
 to the other flags defined in defined in Section 4.3.
 * Multicast-to-Unicast Mode (MU-MODE): X'0020' (32
 Decimal)
 * Multicast-to-multicast Mode (MM-MODE): X'0040' (64
 Decimal)
 * SET TTL: X'07'

 The details of the new multicast commands/flags follow below.

 5.2.1. Receiving From a Multicast Group

 5.2.1.1. Request

 A UDP BIND command containing both the RECEIVE-FROM and UDP-
 MULTICAST FLAGs set, indicates the MSC's desire to receive packets
 from a particular multicast group. If the MSC has already
 established an association to this multicast group on the same
 socket (via the SEND-TO/UDP-MULTICAST flags), then the MSC SHOULD
 include the existing AID. Note: while it is possible for the SMC to

 create an entirely new AID, it is potentially more wasteful on the
 MSS, and is not recommended.

Chouinard [Page 16]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 As in the base-level UDP extensions, a client implementation MAY
 establish both a send and receive association in one or two UDP BIND
 operations. If the MSC groups the send and receive request together
 and the MSS can not satisfy the entire request, the reply to the UDP
 BIND will fail with an appropriate failure and the FLAGS SHOULD be
 set with what the MSC is permitted to do (relative to what was
 requested).

 The MSC MUST populate the following fields:

 PKT TYPE: SOCKS-UDP-CONTROL-REQUEST (X'01')
 SIZE: Total size (in octets) of this message, in network order.
 UDP CMD: UDP BIND (X'05')
 FLAGS: Bitwise OR of RECEIVE-FROM and UDP-MULTICAST. May
 optionally include MM-MODE and/or MU-MODE to indicate the
 MSC s preference of the mode. If both flags are included
 or excluded, the client has no preference. The MSS is not
 obligated to honor the MSC s preference, but SHOULD if
 possible (i.e., it doesn t violate security policy).
 Additionally, the use of TCP-ENCAPSULATED-UDP is allowed
 with RECEIVE-FROM and UDP-MULTICAST, and is mutually
 exclusive with the MM-MODE flag.
 RSVD: Unused (X 00).
 TID: Unique Transaction ID generated by the MSC.
 AID: Contains an existing association ID if a send-association
 already exists on this same socket to the same multicast
 group or X'00000000'.
 LOCAL ADDR TYPE/ADDR/PORT: contains the unicast address and port
 (on the MSC) that the MSS will use if MU-mode is employed.
 REMOTE ADDR TYPE/ADDR/PORT: contains the multicast group address
 that the MSC desires to join.

 5.2.1.2. Reply Processing

 The successful response to this command will contain the following
 fields populated by the MSS:

 PKT TYPE: SOCKS-UDP-CONTROL-REPLY (X'02')
 SIZE: Total size (in octets) of this message, in network order.
 REPLY: one of:
 * X 00 Succeeded
 * X'10' Bad Association ID
 * X'11' Multicast Receive not allowed by ruleset
 * X'12' Multicast Send not allowed by ruleset
 * X'14' Bad multicast address
 Note: if the SOCKS server cannot entirely satisfy the
 request, it MUST fail the request, and send back an
 appropriate failure code.
 FLAGS: Contains a bit-wise OR of the parts of the request that

 the SOCKS server could satisfy (even if the entire request
 is failed due to parts that could not be satisfied)
 including selection of the multicast mode.
 RSVD: Unused (X 00).

Chouinard [Page 17]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 TID: Contains the MSC-generated transaction ID in the
 corresponding request.
 AID: Unique Identifier for this association.
 LOCAL ADDR TYPE/ADDR/PORT: If MU-Mode is used, these fields
 contain the unicast address and port on the MSS that the
 MSC will receive datagrams from.
 REMOTE ADDR TYPE/ADDR/PORT: Contains the multicast group address
 that the MSC requested to join.

 Upon receiving a successful reply, a multicast receive association
 has been established between the MSC and MSS, and the MSC may begin
 receiving any traffic generated to the group address. However,
 before the MSC can send to the group, it must establish a "send
 association" by following the procedure in Section 5.2.2.

 5.2.2. Sending to a Multicast Group

 5.2.2.1. Request

 A UDP BIND command containing both the SEND-TO and UDP-MULTICAST
 FLAGs set indicates the MSC's desire to send to a particular
 multicast group. This command must be issued by the MSC regardless
 if the MSC has already established a receive-association (by using
 UDP BIND with the RECEIVE-FROM/UDP-MULTICAST flags). If the MSC has
 already established a receive association to this multicast group on
 the same socket, then the MSC SHOULD include the existing AID.
 Note: while it is possible for the SMC to create an entirely new
 AID, it is potentially more wasteful on the MSS, and is not
 recommended.

 The MSC MUST populate the following fields:

 PKT TYPE: SOCKS-UDP-CONTROL-REQUEST (X'01')
 SIZE: Total size (in octets) of this message, in network order.
 UDP CMD: UDP BIND (X'05')
 FLAGS: Bitwise OR of SEND-TO and UDP-MULTICAST. May optionally
 include MM-MODE and/or MU-MODE to indicate the MSC s
 preference of the mode. If both flags are included or
 excluded, the client has no preference. The MSS is not
 obligated to honor the MSC s preference, but SHOULD if
 possible (i.e., it doesn t violate security policy).
 Additionally, the use of TCP-ENCAPSULATED-UDP is allowed
 with SEND-TO and UDP-MULTICAST, and is mutually exclusive
 with the MM-MODE flag.
 RSVD: Contains the TTL value (1-255) the MSS should use during
 transmission to the multicast group.
 TID: Unique Transaction ID generated by the MSC.
 AID: Contains an existing association ID if a receive-
 association already exists on this same socket to the same

 multicast group or X'00000000'.
 LOCAL ADDR TYPE/ADDR/PORT: Contains the unicast address and port
 (on the MSC) that the MSS will receive from if MU-mode is
 employed.

Chouinard [Page 18]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 REMOTE ADDR TYPE/ADDR/PORT: Contains the multicast group address
 that the MSC desires to send to.

 Upon receiving a successful reply, a multicast send-association has
 been established between the MSC and MSS.

 5.2.2.2. Reply Processing

 The response to this command will contain the following fields
 populated:

 PKT TYPE: SOCKS-UDP-CONTROL-REPLY (X'02')
 SIZE: Total size (in octets) of this message, in network order.
 REPLY: one of:
 * X'10' Bad Association ID
 * X'11' Multicast Receive not allowed by ruleset
 * X'12' Multicast Send not allowed by ruleset
 * X'14' Bad multicast address
 FLAGS: if REPLY is succeeded, then contains a bit mask
 containing the mode selected by the MSS
 Multicast-to-Unicast Mode (MU-MODE): X'0020'
 or
 Multicast-to-multicast Mode (MM-MODE): X'0040'
 RSVD: Unused (X 00).
 TID: Contains the MSC-generated transaction ID in the
 corresponding request.
 AID: Unique Identifier for this association.
 LOCAL ADDR TYPE/ADDR/PORT: If REPLY is succeeded and FLAGS is
 MU-Mode, these fields contain the unicast address and port
 on the MSS that the MSC MUST send datagrams to for them to
 be relayed to the multicast group.
 REMOTE ADDR TYPE/ADDR/PORT: If REPLY is succeeded and FLAGS is
 MM-Mode, these fields contain the multicast address and
 port that the MSC MUST send datagrams to for them to be
 relayed to the multicast group specified in the request.
 Typically this would be the same as that specified in the
 request.

 5.2.3. Releasing a Multicast Association

 Releasing a multicast send or receive association (or both) is
 identical to the procedure described for the base-level UDP
 extensions in Section 4.3.2.

 5.2.4. Setting the TTL

 5.2.4.1. Request

 The SOCKS MSC uses the SET TTL command to instruct the MSS of the
 TTL (Time-to-Live) value that it SHOULD use when sending datagrams

 to a particular multicast group. This command is only valid for an
 established multicast send association.

 PKT TYPE: SOCKS-UDP-CONTROL-REQUEST (X'01')

Chouinard [Page 19]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 SIZE: Total size (in octets) of this message, in network order.
 UDP CMD: SET TTL (X'07')
 FLAGS: unused (X'0000')
 RSVD: Contains the TTL value (1-255) the MSS should use during
 transmission to the multicast group.
 TID: Unique Transaction ID generated by the MSC.
 AID: Contains an existing association ID.

 5.2.4.2. Reply Processing

 The reply to a SET TTL will be populated as follows:

 PKT TYPE: SOCKS-UDP-CONTROL-REPLY (X'02')
 SIZE: Total size (in octets) of this message, in network order.
 REPLY: one of:
 succeeded (X'00')
 Bad Association ID (X'10')
 Bad Association context (X'13') - No send association is
 established
 TTL value not allowed by ruleset (X'15') TTL value is too
 high
 TID: Contains the MSC-generated transaction ID in the
 corresponding request.
 FLAGS: Unused (X'0000')
 AID: Unique Identifier for this association.

6. Security Considerations

 This document describes extensions to [RFC-1928] which itself is a
 security protocol for the session-layer traversal of IP network
 firewalls. As in [RFC-1928], the security of firewall traversal is
 highly dependent on the authentication and encapsulation methods
 provided by a particular implementation, and selected during the
 negotiation between the SOCKS client and SOCKS server.

 Multicast-specific considerations include:

 * MM-Mode vs. MU-Mode: MU-Mode is more secure than MM-Mode for
 two reasons:
 1.) Packets are specifically unicast from the SOCKS server to
 the SOCKS client, and vice-versa, making them harder
 (than MM-Mode) to intercept for eavesdroppers;
 2.) Authentication-method-dependent encapsulation is
 supported in MU-Mode, but not MM-Mode. Thus, in MU-
 Mode, it is possible for the SOCKS server to use packet-
 level authentication in determining whether to forward a
 packet, whereas in MM-Mode, it must resort to inspecting
 the source IP address.
 For many environments, the added performance and scalability

https://datatracker.ietf.org/doc/html/rfc1928
https://datatracker.ietf.org/doc/html/rfc1928

 offered by MM-Mode may outweigh the additional security
 offered by MU-Mode. Administrators should carefully
 understand the tradeoffs.
 * SOCKS client implementations SHOULD optionally support
 getting user confirmation upon attempting to send multicast

Chouinard [Page 20]

Internet Draft SOCKS V5 UDP and Multicast Extensions Nov 17, 1997

 traffic through a SOCKS server. This helps prevent the
 unintentional multicasting of data beyond an organizational
 boundary.
 * SOCKS Server implementations MAY perform content filtering in
 cases where, based on addressing or other means, the server
 knows what the content should be. For example, since the
 class D addresses in the range of 224.2.*.* are reserved for
 conferencing, a SOCKS server could ensure the UDP traffic is
 encapsulated in RTP/RTCP headers.

7. Acknowledgments

 This document benefited from the thoughtful insights and comments
 from Marc Vanheyningen, Wei Lu, Jamie Jason, and Kira Attwood.

8. References

 [RFC-2119] Bradner, S, "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, Harvard University, March
 1997.
 [RFC-1928] Leech, M., et. al., "SOCKS Protocol Version 5", RFC

1928, March 1996.
 [SOCKS5] Leech, M., et. al., "SOCKS Protocol Version 5", March
 1997, work in progress.
 [Van97] VanHeyningen, M., "Feature Discovery: A Generic
 Mechanism for SOCKS Version 5", July 1997, work in
 progress.
9. Disclaimer

 The views and specification herein are those of the author and are
 not necessarily those of his employer. The author and his employer
 specifically disclaim responsibility for any problems arising from
 correct or incorrect implementation or use of this specification.

10. Authors' Address

 Dave Chouinard
 Intel Corporation
 MS JF3-206
 2111 NE 25th Ave.
 Hillsboro, OR, USA 97124
 +1(503)264-7481
 dave_chouinard@mail.intel.com

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1928
https://datatracker.ietf.org/doc/html/rfc1928
https://datatracker.ietf.org/doc/html/rfc1928

Chouinard [Page 21]

