
Internet-Draft D. Miller
Updates: RFC 1961 CyberSafe, Inc.
<draft-ietf-aft-socks-gssapi-revisions-01.txt> 24 June 1999
Expires 24 December 1999

GSS-API Authentication Method for SOCKS Version 5

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC 2026.

 Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that other
groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Comments on this document should be sent to "aft@socks.nec.com",
the IETF Authenticated Firewall Traversal WG discussion list.
Distribution of this document is unlimited.

1. Abstract

 The protocol specification for SOCKS Version 5 specifies a
generalized framework for the use of arbitrary authentication
protocols in the initial SOCKS connection setup. This document
provides the specification for the SOCKS V5 GSS-API authentication
protocol, and in particular, the use of the Simple and Protected GSS
API Negotiation (SPNEGO) mechanism. Use of the SPNEGO pseudo-
mechanism is intended to maximize the chance of agreement of a
security mechanism, and hence maximize interoperability. A message
protection subnegotiation protocol is also specified, allowing peers
to agree on which message protection services GSS-API encapsulated
messages will be protected with: integrity, or integrity and
confidentiality. Other GSS-API security services, normally optional
with GSS-API, are specified for use with SOCKS 5.

2. Introduction

 Version 2 of the GSS-API, defined in [RFC 2078] and [draft-ietf-
cat-gssv2-cbind-09.txt] provides an abstract interface which provides
security services for use in distributed applications, but isolates

https://datatracker.ietf.org/doc/html/rfc1961
https://datatracker.ietf.org/doc/html/draft-ietf-aft-socks-gssapi-revisions-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/draft-ietf

callers from specific security mechanisms and implementations.

Miller Internet Draft [Page 1]

Internet Draft GSS-API for SOCKS 5 24 June 1999

 The approach for use of GSS-API and SPNEGO in SOCKS V5 is to
authenticate the client and server by successfully negotiating a
common GSS-API mechanism and establishing a GSS-API security context -
such that the GSS-API encapsulates any negotiation protocol for
mechanism selection, and the agreement of security service options.

 The SPNEGO mechanism defined in [RFC 2478] is a pseudo-security
mechanism which enables GSS-API peers to determine in-band whether
their credentials share common GSS-API security mechanism(s), and if
so, to invoke normal security context establishment for a common
security mechanism. The SPNEGO mechanism also allows the client to
select a preferred mechanism, in a process referred to as optimistic
negotiation, which eliminates extra negotiation round-trips in cases
where the initiator and acceptor have the same preferred mechanism.
This specification requires implementations to support the SPNEGO
mechanism.

 The GSS-API enables the context initiator to know what security
services the target supports for the chosen mechanism. GSS-API
mechanisms support message integrity. In addition to this, other
optional services may be offered. These include message
confidentiality, credential delegation, mutual authentication, replay
detection, out-of-sequence detection, anonymous authentication,
context transfer, and the use of incomplete contexts. As outlined
later in this document, for successful context establishment, the
following optional services are to be requested, with receipt of each
service confirmed: credential delegation, mutual authentication,
replay detection, and out-of-sequence detection. Those services are
established as part of the security context establishment process
proper. After context establishment, messages may either be protected
for confidentiality or not, depending upon the input to the gss_wrap
call. Message protection subnegotiation is the process whereby it is
determined if message confidentiality is to be provided for the SOCKS
session.

 The GSS-API per-message protection calls gss_wrap and gss_unwrap
are subsequently used to encapsulate any further TCP and UDP traffic
between client and server.

3. Framing

 The caller-opaque context establishment and per-message tokens
produced by calls to the GSS-API are exchanged between client and
server in the following format:

 +---------+---------+---------+.......................+
 + ver | mtyp | len | token |
 +---------+---------+---------+.......................+

https://datatracker.ietf.org/doc/html/rfc2478

 Where:

 - "ver" is a single octet field representing the protocol version
number, here 2 to represent the second version of the SOCKS/GSS-API

Miller Internet Draft [Page 2]

Internet Draft GSS-API for SOCKS 5 24 June 1999

Protocol.

 - "mtyp" is a single octet field representing the message type,
which may contain the following values:
 0x01 - authentication message
 0x02 - message protection subnegotiation message
 0x03 - encapsulated user data

 - "len" is a two octet field representing the length of the "token"
field in octets.

 - "token" is the opaque context establishment or per-message token
emitted by the GSS-API, up to 2^16-1 octets in length.

4. SPNEGO Security Mechanism Negotiation

 In order to effect SPNEGO, the client must specify SPNEGO as the
mech_type parameter in its call to gss_init_sec_context. The OID for
SPNEGO is iso.org.dod.internet.security.mechanism.snego
(1.3.6.1.5.5.2).

 The SPNEGO mechanism allows the client to optionally include a
context establishment token for the preferred mechanism within the
negotiation token, a process referred to as optimistic negotiation.
If the client and server both support the same preferred mechanism,
the negotiation and context establishment exchanges can occur
simultaneously as described in [RFC 2479]. The SOCKS client side
should use optimistic negotiation in order to maximize the efficiency
of the connection to the SOCKS server.

 Assuming optimistic negotiation is attempted, the client must
specify use of the following security context options via the
req_flags parameter in gss_init_sec_context: mutual authentication,
credential delegation, replay detection, and out-of-sequence
detection. The flags to include in the req_flags parameter that will
request these service options are GSS_C_MUTUAL_FLAG, GSS_C_DELEG_FLAG,
GSS_C_REPLAY_FLAG, and GSS_C_SEQUENCE_FLAG. GSS_C_SEQUENCE_FLAG should
only be passed in for TCP-based clients, not for UDP-based clients.
The client may optionally include GSS_C_CONF_FLAG or GSS_C_INTEG_FLAG
into req_flags to request confidentiality and integrity services.

 The negotiation tokens emitted by the GSS-API are exchanged between
the client and server framed as described in section 3 with mtyp equal
to 0x01.

 Following the exchange of negotiation tokens and encapsulated
mechanism tokens, and the successful establishment of a security
context for the preferred mechanism as described in [RFC 2479], the
client and server may proceed to the message protection subnegotation
stage provided that confidentiality and integrity services are

https://datatracker.ietf.org/doc/html/rfc2479
https://datatracker.ietf.org/doc/html/rfc2479

available for the context (i.e. that GSS_C_CONF_FLAG and
GSS_C_INTEG_FLAG were returned in the ret_flags parameter of
gss_init_sec_context and gss_accept_sec_context)

Miller Internet Draft [Page 3]

Internet Draft GSS-API for SOCKS 5 24 June 1999

 If the client implementation does not have a preferred mechanism,
or if the client and server do not support the same preferred
mechanism, then the negotiation of a common security mechanism
proceeds as defined in [RFC 2479].

 If the client and server fail to agree on a common security
mechanism, then the client must close the connection.

5. GSS-API Security Context Establishment

Clients which do not support a preferred mechanism, or clients whose
preferred mechanisms were different than that of their peers, and
which therefore were unable to perform optimistic negotiation
(simultaneous negotiation and context establishment) must proceed to
establish a security context with the negotiated mechanism. The
client should proceed with security context establishment as defined
in [RFC 2078]. In this case the negotiated mechanisms OID is used as
the mech_type parameter in gss_init_sec_context. The same security
context options used in section 4 should continue to be used.

6. GSS-API Protection-level Options

6.1 Message protection

 Establishment of a GSS-API security context enables communicating
peers to determine which per-message protection services are available
to them. This is accomplished by inspecting the
gss_init_sec_context and gss_accept_sec_context ret_flags
parameters for the presence of the GSS_C_INTEG_FLAG and
GSS_C_CONF_FLAG, which respectively indicate message integrity and
confidentiality services are available. Note that while the indicated
services are available, confidentiality, which is an optional service,
is only applied if the appropriate flag is passed in to gss_wrap.

 It is necessary to ensure that the message protection applied to
the traffic is appropriate to the sensitivity of the data, and the
severity of the threats. Not all message traffic needs to be
protected for confidentiality, and avoiding this will make
communications more efficient.

6.2 Message Protection Subnegotiation

 For TCP and UDP clients and servers, different levels of protection
are possible in the SOCKS V5 protocol, so an additional subnegotiation
stage is needed to agree the message protection level. While this
negotiation is part of neither SPNEGO nor GSS-API, its presence serves
to increase interoperability between clients and servers that have

https://datatracker.ietf.org/doc/html/rfc2479
https://datatracker.ietf.org/doc/html/rfc2078

differing but flexible message protection policies.

 After successful completion of this subnegotiation, TCP and UDP
clients and servers use GSS-API encapsulation as defined in section 7.

Miller Internet Draft [Page 4]

Internet Draft GSS-API for SOCKS 5 24 June 1999

 After successful establishment of a GSS-API security context, the
client's GSS-API implementation sends its required security context
protection level to the server. The server then returns the security
context protection level which it agrees to - which may or may not
take the client's request into account. The security context
protection level sent by client and server must be one of the
following single-octet values:

 0x01 - integrity-protected user data
 0x02 - integrity-confidentiality-protected user data

 The security context protection level is sent from client to server
and vice versa framed as described in section 3 with an mtyp of 0x02.

6.3 Message Protection Subnegotiation Message Generation

 The message protection subnegotiation message is a standard GSS-API
message, and hence its processing results in a GSS-API token. The
token is produced by encapsulating an octet containing the required
protection level using gss_wrap with conf_req set to FALSE. The token
is verified using gss_unwrap. If the server's choice of protection
level is unacceptable to the client, then the client must close its
connection to the server.

7. GSS-API Per-message Protection

 For TCP and UDP clients and servers, the GSS-API functions for
encapsulation and de-encapsulation shall be used by implementations,
which are gss_wrap and gss_unwrap. (Note that the other GSS-API
message protection functions, gss_get_mic and gss_verify_mic, do not
encapsulate their messages, nor can they provide message
confidentiality.)

 When invoking gss_wrap and gss_unwrap, the default value of quality
of protection shall be specified, and the use of conf_req_flag shall
be as determined by the previous subnegotiation step. If protection
level 1 is agreed then conf_req_flag MUST always be FALSE; if
protection level 2 is agreed then conf_req_flag MUST always be TRUE.

 All encapsulated messages are prefixed by the framing defined in
section 3 with mtyp equal to 0x03.

8. GSS-API Security Context Termination

 The GSS-API context termination message (emitted by
gss_delete_sec_context) is not used by this protocol. When the
connection is closed, each peer invokes gss_delete_sec_context passing
GSS_C_NO_BUFFER as the value of the output_token argument. This
suppresses production of the context termination message.

9. Open Issues

 The viability of GSS-API authentication for the SOCKS protocol

Miller Internet Draft [Page 5]

Internet Draft GSS-API for SOCKS 5 24 June 1999

needs to be reconciled with the current SOCKS mechanism negotiation
scheme. That negotiation mechanism is unprotected.

 The framing of socks protocol messages within the framing format
described in this specification should be defined further.

 Message protection subnegotiation might be unnecessary. Messages
could be wrapped with the sender's choice of QOP and conf_req_flag
values, as they are with other applications using GSS-API. Any such
messages unacceptable to the recipient may be rejected, or the session
may be terminated. The protection level evident by inspecting the
context structures after security context establishment may
effectively provide the subnegotiation discussed in this draft.

10. References

 [RFC 1961] McMahon, P., "GSS-API Authentication Method for SOCKS
Version 5", June 1996.

 [SOCKS V5] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D.,
and L. Jones, "SOCKS Protocol V5", RFC 1928, April 1996.

 [RFC 2078] Linn, J., "Generic Security Service API, Version 2",
January 1997.

 [RFC 2478] Baize, E., Pinkas, D., "The Simple and Protected GSS-API
Negotiation Mechanism," December, 1998

 [draft-ietf-cat-gssv2-cbind-09.txt] Wray, J., "Generic Security
Service API Version 2 : C-bindings", November 10, 1998.

11. Acknowledgment

 The original document from which this document is derived is RFC
1961, written by P. McMahon, ICL. The first revisions document was
written by David Margrave, CyberSafe Corporation. The revisions
documents reflect input from the AFT WG.

12. Security Considerations

 The protection features of SPNEGO require that all mechanisms
proposed during the negotiation exchange support integrity services.
If a single mechanism in the list does not support integrity, then the
negotiation is subject to a downgrade attack.

 The security services provided through the GSS-API are entirely
dependent on the effectiveness of the underlying security mechanisms,
and the correctness of the implementation of the underlying algorithms
and protocols.

https://datatracker.ietf.org/doc/html/rfc1928
https://datatracker.ietf.org/doc/html/draft-ietf-cat-gssv2-cbind-09.txt

 The user of a GSS-API service must ensure that the quality of
protection provided by the mechanism implementation is consistent with
their security policy.

Miller Internet Draft [Page 6]

Internet Draft GSS-API for SOCKS 5 24 June 1999

 In addition, where negotiation is supported under the GSS-API,
constraints on acceptable mechanisms may be imposed to ensure
suitability for application to authenticated firewall traversal.

13. Author's Address

 David Miller
 CyberSafe Corporation
 1605 NW Sammamish Road, Suite 310
 Issaquah, Washington 98027 USA

 Email: david.miller@cybersafe.com
 Phone: (425) 391-6000
 Fax: (425) 391-0508

Document expires 24 December 1999

Miller Internet Draft [Page 7]

