
AFT Working Group Marc VanHeyningen
draft-ietf-aft-socks-pro-v5-02 Aventail Corp.
Expire in six months 3 March 1998

SOCKS Protocol Version 5

Status of this Memo
 This document is a submission to the IETF Authenticated Firewall
 Traversal (AFT) Working Group. Comments are solicited and should be
 addressed to the working group mailing list (aft@socks.nec.com) or to
 the editor.

 This document is an Internet-Draft. Internet Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working Groups. Note that other groups may also distribute
 working documents as Internet Drafts.

 Internet-Drafts draft documents are valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 Distribution of this memo is unlimited

Acknowledgments

 This memo describes a protocol that is an evolution of the previous
 version of the protocol, version 4[SOCKS]. This new protocol stems
 from active discussions and prototype implementations. The key
 contributors are:

 o Marcus Leech: Bell-Northern Research
 o David Koblas: Independent Consultant
 o Ying-Da Lee: NEC Systems Laboratory
 o LaMont Jones: Hewlett-Packard Company
 o Ron Kuris: Unify Corporation
 o Matt Ganis: International Business Machines
 o David Blob: NEC USA
 o Wei Lu: NEC USA.
 o William Perry: Aventail
 o Dave Chouinard: Intel

VanHeyningen Expires September 1998 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-aft-socks-pro-v5-02

INTERNET-DRAFT SOCKS Protocol Version 5 3 March 1998

1. Introduction

 The use of network firewalls, systems that effectively isolate an
 organizations internal network structure from an exterior network,
 such as the INTERNET is becoming increasingly popular. These
 firewall systems typically act as application-layer gateways between
 networks, usually offering controlled TELNET, FTP, and SMTP access.
 With the emergence of more sophisticated application layer protocols
 designed to facilitate global information discovery, there exists a
 need to provide a general framework for these protocols to
 transparently and securely traverse a firewall.

 There exists, also, a need for strong authentication of such
 traversal in as fine-grained a manner as is practical. This
 requirement stems from the realization that client-server
 relationships emerge between the networks of various organizations,
 and that such relationships need to be controlled and often strongly
 authenticated.

 The protocol described here is designed to provide a framework for
 client-server applications in both the TCP and UDP domains to
 conveniently and securely use the services of a network firewall.
 The protocol is conceptually a "shim-layer" between the application
 layer and the transport layer, and as such does not provide network-
 layer gateway services, such as forwarding of ICMP messages.

2. Existing practice

 There currently exists a protocol, SOCKS Version 4, that provides for
 unsecured firewall traversal for TCP-based client-server
 applications, including TELNET, FTP and the popular information-
 discovery protocols such as HTTP, WAIS and GOPHER.

 This new protocol extends the SOCKS Version 4 model to include UDP,
 and extends the framework to include provisions for generalized
 strong authentication schemes, and extends the addressing scheme to
 encompass domain-name and V6 IP addresses.

 The implementation of the SOCKS protocol typically involves the
 recompilation or relinking of TCP-based client applications to use
 the appropriate encapsulation routines in the SOCKS library.

 Note:

 Unless otherwise noted, the decimal numbers appearing in packet-
 format diagrams represent the length of the corresponding field, in
 octets. Where a given octet must take on a specific value, the
 syntax X'hh' is used to denote the value of the single octet in that

VanHeyningen Expires September 1998 [Page 2]

INTERNET-DRAFT SOCKS Protocol Version 5 3 March 1998

 field. When the word 'Variable' is used, it indicates that the
 corresponding field has a variable length defined either by an
 associated (one or two octet) length field, or by a data type field.

3. Procedure for TCP-based clients

 When a TCP-based client wishes to establish a connection to an object
 that is reachable only via a firewall (such determination is left up
 to the implementation), it must open a TCP connection to the
 appropriate SOCKS port on the SOCKS server system. The SOCKS service
 is conventionally located on TCP port 1080. If the connection
 request succeeds, the client enters a negotiation for the
 authentication method to be used, authenticates with the chosen
 method, then sends a relay request. The SOCKS server evaluates the
 request, and either establishes the appropriate connection or denies
 it.

 The client connects to the server, and sends a version
 identifier/method selection message:

 +----+----------+----------+
 |VER | NMETHODS | METHODS |
 +----+----------+----------+
 | 1 | 1 | 1 to 255 |
 +----+----------+----------+

 The VER field is set to X'05' for this version of the protocol. The
 NMETHODS field contains the number of method identifier octets that
 appear in the METHODS field.

 The server selects from one of the methods given in METHODS, and
 sends a METHOD selection message:

 +----+--------+
 |VER | METHOD |
 +----+--------+
 | 1 | 1 |
 +----+--------+

 If the selected METHOD is X'FF', none of the methods listed by the
 client are acceptable, and the client MUST close the connection.

 The values currently defined for METHOD are:

 o X'00' NO AUTHENTICATION REQUIRED
 o X'01' GSSAPI
 o X'02' USERNAME/PASSWORD
 o X'03' CHAP

VanHeyningen Expires September 1998 [Page 3]

INTERNET-DRAFT SOCKS Protocol Version 5 3 March 1998

 o X'04' to X'7F' IANA ASSIGNED
 o X'80' to X'FE' RESERVED FOR PRIVATE METHODS
 o X'FF' NO ACCEPTABLE METHODS

 The client and server then enter a method-specific sub-negotiation.

 Descriptions of the method-dependent sub-negotiations appear in
 separate memos.

 Developers of new METHOD support for this protocol should contact
 IANA for a METHOD number. The ASSIGNED NUMBERS document should be
 referred to for a current list of METHOD numbers and their
 corresponding protocols.

 Compliant implementations MUST support CHAP, SHOULD support
 USERNAME/PASSWORD and MAY support GSSAPI authentication methods.

 As with other TCP application data, out of band data is normally
 proxied to the SOCKS server as out of band data; note that
 implementations may be limited to handling a single byte of such data
 at a time. Authentication methods which define some content
 encapsulation SHOULD define a method-specific mechanism for proxying
 out of band data.

4. Requests

 Once the method-dependent subnegotiation has completed, the client
 sends the request details. If the negotiated method includes
 encapsulation for purposes of integrity checking and/or
 confidentiality, these requests MUST be encapsulated in the method-
 dependent encapsulation.

 The SOCKS request is formed as follows:

 +----+-----+------+------+----------+----------+
 |VER | CMD | FLAG | ATYP | DST.ADDR | DST.PORT |
 +----+-----+------+------+----------+----------+
 | 1 | 1 | 1 | 1 | Variable | 2 |
 +----+-----+------+------+----------+----------+

 Where:

 o VER protocol version: X'05'
 o CMD
 o CONNECT X'01'
 o BIND X'02'
 o UDP ASSOCIATE X'03'
 o X'04' to X'7F' IANA ASSIGNED

VanHeyningen Expires September 1998 [Page 4]

INTERNET-DRAFT SOCKS Protocol Version 5 3 March 1998

 o X'80' to X'FF' RESERVED FOR PRIVATE METHODS
 o FLAG command dependent flag (defaults to X'00')
 o ATYP address type of following address
 o IP V4 address: X'01'
 o DOMAINNAME: X'03'
 o IP V6 address: X'04'
 o DST.ADDR desired destination address
 o DST.PORT desired destination port in network octet
 order

 The SOCKS server will typically evaluate the request based on
 source and destination addresses, and return one or more reply
 messages, as appropriate for the request type.

5. Addressing

 In an address field (DST.ADDR, BND.ADDR), the ATYP field specifies
 the type of address contained within the field:

 o X'01'

 The address is a version-4 IP address, with a length of 4 octets.

 o X'03'

 The address field contains a fully-qualified domain name. The first
 octet of the address field contains the number of octets of name that
 follow, there is no terminating NUL octet.

 o X'04'

 The address is a version-6 IP address, with a length of 16 octets.

6. Replies

 The SOCKS request information is sent by the client as soon as it has
 established a connection to the SOCKS server, and completed the
 authentication negotiations. The server evaluates the request, and
 returns a reply formed as follows:

 +----+-----+------+------+----------+----------+
 |VER | REP | FLAG | ATYP | BND.ADDR | BND.PORT |
 +----+-----+------+------+----------+----------+
 | 1 | 1 | 1 | 1 | Variable | 2 |
 +----+-----+------+------+----------+----------+

 Where:

VanHeyningen Expires September 1998 [Page 5]

INTERNET-DRAFT SOCKS Protocol Version 5 3 March 1998

 o VER protocol version: X'05'
 o REP Reply field:
 o X'00' succeeded
 o X'01' general SOCKS server failure
 o X'02' connection not allowed by ruleset
 o X'03' Network unreachable
 o X'04' Host unreachable
 o X'05' Connection refused
 o X'06' TTL expired
 o X'07' Command not supported
 o X'08' Address type not supported
 o X'09' Invalid address
 o X'0A' to X'FF' unassigned
 o FLAG command dependent flag
 o ATYP address type of following address
 o IP V4 address: X'01'
 o DOMAINNAME: X'03'
 o IP V6 address: X'04'
 o BND.ADDR server bound address
 o BND.PORT server bound port in network octet order

 If the chosen method includes encapsulation for purposes of
 authentication, integrity and/or confidentiality, the replies are
 encapsulated in the method-dependent encapsulation.

 CONNECT

 In the reply to a CONNECT, BND.PORT contains the port number that the
 server assigned to connect to the target host, while BND.ADDR
 contains the associated IP address. The supplied BND.ADDR is often
 different from the IP address that the client uses to reach the SOCKS
 server, since such servers are often multi-homed. It is expected
 that the SOCKS server will use DST.ADDR and DST.PORT, and the client-
 side source address and port in evaluating the CONNECT request.

 BIND

 The BIND request is used in protocols which require the client to
 accept connections from the server. FTP is a well-known example,
 which uses the primary client-to-server connection for commands and
 status reports, but may use a server-to-client connection for
 transferring data on demand (e.g. LS, GET, PUT).

 It is expected that the client side of an application protocol will
 use the BIND request only to establish secondary connections after a
 primary connection is established using CONNECT. DST.ADDR must be
 the address of the primary connection's destination. DST.PORT should
 be the requested port (or 0 for a random, unused port). It is

VanHeyningen Expires September 1998 [Page 6]

INTERNET-DRAFT SOCKS Protocol Version 5 3 March 1998

 expected that a SOCKS server will use DST.ADDR and DST.PORT in
 evaluating the BIND request.

 Two replies are sent from the SOCKS server to the client during a
 BIND operation. The first is sent after the server creates and binds
 a new socket. The BND.PORT field contains the port number that the
 SOCKS server assigned to listen for an incoming connection. The
 BND.ADDR field contains the associated IP address. The client will
 typically use these pieces of information to notify (via the primary
 or control connection) the application server of the rendezvous
 address. The second reply occurs only after the anticipated incoming
 connection succeeds or fails.

 In the second reply, the BND.PORT and BND.ADDR fields contain the
 address and port number of the connecting host.

7. UDP procedure

 UDP ASSOCIATE requests

 The UDP ASSOCIATE request is used to establish an association within
 the UDP relay process to handle UDP datagrams. The DST.ADDR and
 DST.PORT fields contain the address and port that the client expects
 to use to send UDP datagrams on for the association. The server MAY
 use this information to limit access to the association. If the
 client is not in possesion of the information at the time of the UDP
 ASSOCIATE, the client MUST use address type X'01' with a port number
 and address of all zeros.

 A UDP association terminates when the TCP connection that the UDP
 ASSOCIATE request arrived on terminates.

 Flag bits in the request and reply are defined as follows:

 INTERFACE REQUEST X'01'
 USECLIENTSPORT X'04'

 If the USECLIENTSPORT bit is set in the flag field of the request, the
 server SHOULD use interact with the application server using the same
 port the client used in the request, and set the USECLIENTSPORT bit in
 the flag field of the reply to acknowledge having done so.

 If the INTERFACE REQUEST bit is set in the flag field of the request,
 the server may indicate its support for this extension by setting this
 bit in the reply. If both client and server support this feature, the
 client MAY send interface-request subcommands, described below, during
 the UDP association.

VanHeyningen Expires September 1998 [Page 7]

INTERNET-DRAFT SOCKS Protocol Version 5 3 March 1998

 In the reply to a UDP ASSOCIATE request, the BND.PORT and BND.ADDR
 fields indicate the port number/address where the client MUST send UDP
 request messages to be relayed.

 Reply Processing

 When a reply (REP value other than X'00') indicates a failure, the
 SOCKS server MUST terminate the TCP connection shortly after sending
 the reply. This must be no more than 10 seconds after detecting the
 condition that caused a failure.

 If the reply code (REP value of X'00') indicates a success, and the
 request was either a BIND or a CONNECT, the client may now start
 passing data. If the selected authentication method supports
 encapsulation for the purposes of integrity, authentication and/or
 confidentiality, the data are encapsulated using the method-dependent
 encapsulation. Similarly, when data arrives at the SOCKS server for
 the client, the server MUST encapsulate the data as appropriate for
 the authentication method in use.

 UDP Control Channel

 A UDP association terminates when the TCP connection that the UDP
 ASSOCIATE request arrived on terminates. If the flag negotiation
 indicated mutual support for it, the client may send INTERFACE-REQUEST
 commands to learn the external address information for the UDP
 assocaiation with respect to a particular destination.

 Such requests are formatted as follows:

 +----+-----+------+------+----------+------+------+----------+
 |RSV | SUB | FLAG | ATYP | ADDR | PORT | SIZE | DATA |
 +----+-----+------+------+----------+------+------+----------+
 | 1 | 1 | 1 | 1 | Variable | 2 | 4 | Variable |
 +----+-----+------+------+----------+------+------+----------+

 The fields in the CONTROL CHANNEL packet are:

 o RSV Reserved X'00'
 o SUB Subcommand
 o INTERFACE DATA: X'01'
 o FLAG A subcommand dependent flag (normally X'00')
 o ATYP address type of following addresses:
 o IP V4 address: X'01'
 o DOMAINNAME: X'03'
 o IP V6 address: X'04'
 o ADDR any address information
 o PORT any port information

VanHeyningen Expires September 1998 [Page 8]

INTERNET-DRAFT SOCKS Protocol Version 5 3 March 1998

 o SIZE the size (in octets) of data in network order
 o DATA user data

 Replies to INTERFACE DATA commands are structured the same way as
 ordinary SOCKS replies, as per section 6.

 UDP packet structure

 A UDP-based client MUST send its datagrams to the UDP relay server at
 the UDP port indicated by BND.PORT in the reply to the UDP ASSOCIATE
 request. If the selected authentication method provides
 encapsulation for the purposes of authenticity, integrity, and/or
 confidentiality, the datagram MUST be encapsulated using the
 appropriate encapsulation. Each UDP datagram carries a UDP request
 header with it:

 +------+------+------+----------+----------+----------+
 | FLAG | FRAG | ATYP | DST.ADDR | DST.PORT | DATA |
 +------+------+------+----------+----------+----------+
 | 2 | 1 | 1 | Variable | 2 | Variable |
 +------+------+------+----------+----------+----------+

 The fields in the UDP request header are:

 o FLAG Reserved X'0000'
 o FRAG Current fragment number
 o ATYP address type of following addresses:
 o IP V4 address: X'01'
 o DOMAINNAME: X'03'
 o IP V6 address: X'04'
 o DST.ADDR desired destination address
 o DST.PORT desired destination port
 o DATA user data

 FRAG is currently unused, and reserved for future work to deal with
 fragmentation.

 When a UDP relay server decides to relay a UDP datagram, it does so
 silently, without any notification to the requesting client.
 Similarly, it will drop datagrams it cannot or will not relay. When
 a UDP relay server receives a reply datagram from a remote host, it
 MUST encapsulate that datagram using the above UDP request header,
 and any authentication-method-dependent encapsulation.

 The UDP relay server MUST acquire from the SOCKS server the expected
 IP address of the client that will send datagrams to the BND.PORT
 given in the reply to UDP ASSOCIATE. It MUST drop any datagrams
 arriving from any source IP address other than the one recorded for

VanHeyningen Expires September 1998 [Page 9]

INTERNET-DRAFT SOCKS Protocol Version 5 3 March 1998

 the particular association.

 The programming interface for a SOCKS-aware UDP MUST report an
 available buffer space for UDP datagrams that is smaller than the
 actual space provided by the operating system:

 o if ATYP is X'01' - 10+method_dependent octets smaller
 o if ATYP is X'03' - 262+method_dependent octets smaller
 o if ATYP is X'04' - 20+method_dependent octets smaller

8. Security Considerations

 This document describes a protocol for the application-layer
 traversal of IP network firewalls. The security of such traversal is
 highly dependent on the particular authentication and encapsulation
 methods provided in a particular implementation, and selected during
 negotiation between SOCKS client and SOCKS server.

 Careful consideration should be given by the administrator to the
 selection of authentication methods.

9. References

 [CHAP] VanHeyningen, M., "Challenge-Handshake Authentication
 Protocol for SOCKS V5," work in progress.

 [RFC 1928] Leech, M., Ganis, M., Lee, Y., Kuris, R. Koblas, D., &
 Jones, L., "SOCKS Protocol V5," April 1996.

 [RFC 1929] Leech, M., "Username/Password Authentication for SOCKS V5,"
 March 1996.

 [RFC 1961] McMahon, P., "GSS-API Authentication Method for SOCKS
 Version 5," June 1996.

 [SOCKS] Koblas, D., "SOCKS", Proceedings: 1992 Usenix Security
 Symposium.

Author's Address

 Marc VanHeyningen
 Aventail Corporation
 117 South Main Street, Suite 400
 Seattle, WA 98104

 Phone: +1 (206) 215-1111
 Email: marcvh@aventail.com

VanHeyningen Expires September 1998 [Page 10]

INTERNET-DRAFT SOCKS Protocol Version 5 3 March 1998

VanHeyningen Expires September 1998 [Page 11]

