
Socks Protocol Version 5
INTERNET-DRAFT
Expires: April 24, 1995 M. Leech
<draft-ietf-aft-socks-protocol-v5-00.txt> M. Ganis
 Y. Lee
 R. Kuris
 D.
Koblas
 SOCKS Protocol Version 5

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft document valid for a maximum of six months
 and may be updated, replaced or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress".

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net (US East Coast), nic.nordu.net
 (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
 Rim).

Acknowledgments

 This memo describes a protocol that is an evolution of the previous
 version of the protocol, version 4. This new protocol stems from
 active discussions and prototype implementations. The key
 contributors are: Marcus Leech: Bell-Northern Research, David Koblas:
 Independent Consultant, Ying-Da Lee: NEC Systems Laboratory, Lamont
 Jones: Hewlett-Packard, Ron Kuris: Unify Corporation, Matt Ganis:
 International Business Machines.

1. Introduction

 The use of network firewalls, systems that effectively isolate an
 organizations internal network structure from an exterior network,
 such as the INTERNET is becoming increasingly popular. These firewall
 systems typically act as application-layer gateways between networks,
 usually offering controlled TELNET, FTP, and SMTP access. With the
 emergence of more sophisticated application layer protocols designed
 to facilitate global information discovery, there exists a need to
 provide a general framework for these protocols to transparently and
 securely traverse a firewall.

https://datatracker.ietf.org/doc/html/draft-ietf-aft-socks-protocol-v5-00.txt

Leech [Page 1]

INTERNET-DRAFT SOCKS Protocol Version 5 October 1994

 There exists, also, a need for strong authentication of such
 traversal in as fine-grained a mannner as is practical. This
 requirement stems from the realization that client-server
 relationships emerge between the networks of various organizations,
 and that such relationships need to be controlled and often strongly
 authenticated.

 The protocol described here is designed to provide a framework for
 client-server applications in both the TCP and UDP domains to
 conveniently and securely use the services of a network firewall.

2. Existing practice

 There currently exists a protocol, SOCKS Version 4, that provides for
 unsecured firewall traversal for TCP-based client-server
 applications, including TELNET, FTP and the popular information-
 discovery protocols such as HTTP, WAIS and GOPHER.

 This protocol extends the SOCKS Version 4 model to include UDP, and
 extends the protocol header to include provisions for generalized
 strong authentication schemes, and extends the addressing scheme to
 encompass domain-name and extended IP addresses. The implementation
 of the SOCKS protocol typically involves the recompilation or
 relinking of TCP-based client applications to use the appropriate
 encapsulation routines in the SOCKS library.

3. Procedure for TCP-based clients

 When a TCP-based client wishes to establish a connection to an object
 that is reachable only via a firewall (such determination is left up
 to the implementation), it must open a TCP connection to the
 appropriate SOCKS port on the SOCKS server system. The SOCKS service
 is conventionally located on TCP port 1080. If the connection request
 succeeds, the client sends a request to the server with its desired
 destination address, destination port, and authentication
 information. The SOCKS server evaluates the information, and either
 establishes the appropriate connection or denies it.

 The SOCKS request is formed as follows:

 +-----+------+-----+----------+----------+-----+-----+------/
 | 8 | 8 | 8 | 16 | var | 4 | 4 | 8 /
 | VER | ATYP | CMD | DST.PORT | DST.ADDR | ULN | ILN | ALEN /
 | | | | | | | | /
 +-----+------+-----+----------+----------+-----+-----+------/

Leech [Page 2]

INTERNET-DRAFT SOCKS Protocol Version 5 October 1994

 /---------+-----------+----------+
 / var | var | var |
 / SRC.USR | SRC.IDENT | SRC.AUTH |
 / | | |
 /---------+-----------+----------+

 Where:

 o VER protocol version: X'05'

 o ATYP address type of following address

 IP V4 address: X'01'
 IP V5 address: X'02'
 DOMAINNAME: X'03'
 IPNG address: X'04'

 o DST.ADDR desired destination address

 o DST.PORT desired destination port in network byte order

 o CMD command: CONNECT X'01' BIND X'02'

 o ULN length of SRC.USR field in bytes: 4 bits

 o ILN length of SRC.IDENT field in bytes: 4 bits

 o ALEN length of SRC.AUTH field in bytes: 8 bits

 o SRC.USR username as known to the client-side operating system

 o SRC.IDENT identifier as known to the authentication system

 o SRC.AUTH authenticator as known to the authentication system

4. Addressing

 In an address field (DST.ADDR, BND.ADDR), the ATYP field specifies
 the type of address contained within the field. If ATYP is X'01', the
 address is version-4 IP address, if it is X'02', then the field
 specifies a version-5 IP address (that is, IP protocol version 4/5,
 not SOCKS protocol version 4/5). If the ATYP field is X'03', then the
 address field contains a DNS-style domain name, if it is X'04' then
 the field specifies an IPNG address.

 If the ATYP field is X'01', the length of BND.ADDR is 4 bytes, if

Leech [Page 3]

INTERNET-DRAFT SOCKS Protocol Version 5 October 1994

 X'02' the length is 8 bytes. If the ATYP field is X'03', then the
 first byte of the BND.ADDR specifies the length, in bytes, of the
 rest of the field.

5. Replies

 The SOCKS request information is sent by the client as soon as it has
 established a connection to the SOCKS server. The server evaluates
 the request, and returns a reply formed as follows:

 +-----+------+-----+----------+----------+
8	8	8	16	var
VER	ATYP	REP	BND.PORT	BND.ADDR
 +-----+------+-----+----------+----------+
 ||
 \/
 +---------------+
 | 3 | 1 | 4 |
 | ET | R | CODE |
 | | | |
 +----+---+------+

 o VER protocol version: X'05'

 o ATYP address type of following address

 IP V4 address: X'01'
 IP V5 address: X'02'
 DOMAINNAME: X'03'
 IPNG address: X'04'

 o BND.ADDR server bound address

 o BND.PORT server bound port in network byte order

 o REP Reply field:

 The reply field is broken up into a 3 subfields:

 ET encryption type: 3 bits

 X'0' unencrypted
 X'1' DES
 X'2' IDEA
 X'3' PRIVATE_1
 X'4' PRIVATE_2
 X'5' PRIVATE_3

Leech [Page 4]

INTERNET-DRAFT SOCKS Protocol Version 5 October 1994

 R reply bit: always set for replies

 CODE reason code 4 bits:

 X'0' succeeded
 X'1' general failure
 X'2' bad/unknown identifier
 X'3' connection not allowed by ruleset
 X'4' authentication failure
 X'5' identifier explicitly blocked

 In a reply, the BND.ADDR and BND.PORT fields are the SOCKS server
 address and port number of the outbound connection for a CONNECT
 request, and contain the SOCKS server bind() address for a BIND
 request. If a reply contains a non-zero ET subfield, the server
 expects that there will be a bi-directional encryption of user-data
 on this connection using the encryption type specified in the ET
 subfield. It is expected that the server and client have already
 negotiated the appropriate key in an `out-of-band' process. It is
 typically the case that the same key that is used for authentication
 is used for encryption.

 The BIND request is used in protocols which require the client to
 accept connections from the server. FTP is a well-known example,
 which uses the primary client-to-server connection for commands and
 status reports, but may use a server-to-client connection for
 transferring data on demand (e.g. LS, GET, PUT).

 It is expected that the client side of an application protocol will
 use the BIND request only to establish secondary connections after a
 primary connection is established using CONNECT. Usually, then,
 DST.PORT and DST.ADDR in a BIND request header would be the same as
 those used in the primary connection, though this is not required.

 In a similar fashion to CONNECT, the SOCKS server may use DST.PORT
 and DST.ADDR in evaluating the BIND request.

 Two replies are sent from the SOCKS server to the client during a
 BIND operation. The first is sent after the server creates and binds
 a new socket. The BND.PORT field contains the port number assigned in
 the bind() call. The BND.ADDR field contains the associated IP
 address. The client will typicallly use these pieces of information
 to notify (via the primary or control connection) the application
 server of the `rendezvous point'. The second reply occurs only after
 the anticipated incoming connection succeeds or fails. In the second
 reply, only the REP field is meaningful.

 When a reply (CODE value other than X'0') indicates a failure, the

Leech [Page 5]

INTERNET-DRAFT SOCKS Protocol Version 5 October 1994

 SOCKS server will terminate the TCP connection shortly after sending
 the reply.

 6. Procedure for UDP-based clients

 With UDP-based clients, there is no notion of a connection, so each
 datagram that is to be carried by a SOCKS-UDP server must carry
 destination and authentication information with it. A UDP-based
 client must send its datagrams to the SOCKS-UDP server at UDP port
 1080. Each UDP datagram carries a SOCKS request header with it:

 +-----+------+-----+----------+----------+-----+-----+------/
 | 8 | 8 | 8 | 16 | var | 4 | 4 | 8 /
 | VER | ATYP | CMD | DST.PORT | DST.ADDR | ULN | ILN | ALEN /
 | | | | | | | | /
 +-----+------+-----+----------+----------+-----+-----+------/

 /---------+-----------+----------+
 / var | var | var |
 / SRC.USR | SRC.IDENT | SRC.AUTH |
 / | | |
 /---------+-----------+----------+

 Where:

 o VER protocol version: X'05'

 o ATYP address type of following address

 IP V4 address: X'01'
 IP V5 address: X'02'
 DOMAINNAME: X'03'
 IPNG address: X'04'

 o DST.ADDR desired destination address

 o DST.PORT desired destination port in network byte order

 o CMD command: RELAY X'03'

 o ULN length of SRC.USR field in bytes: 4 bits

 o ILN length of SRC.IDENT field in bytes: 4 bits

 o ALEN length of SRC.AUTH field in bytes: 8 bits

 o SRC.USR username as known to the client-side operating system

Leech [Page 6]

INTERNET-DRAFT SOCKS Protocol Version 5 October 1994

 o SRC.IDENT identifier as known to the authentication system

 o SRC.AUTH authenticator as known to the authentication system

 When a SOCKS-UDP server decides to RELAY a UDP datagram, it does so
 silently, without any notification to the requesting client.
 Similarly, it will drop datagrams it cannot or will not RELAY. When a
 SOCKS-UDP server receives a reply datagram from a remote host, it
 will encapsulate that datagram using the standard SOCKS request
 header, and use the DST.ADDR and DST.PORT fields to give the
 originating host address and port number. When a SOCKS-UDP server
 receives a RELAY request from a client, it establishes a temporary
 association between the client address/port and a port on the SOCKS-
 UDP server. This temporary association is used to allow UDP reply
 datagrams to be correctly relayed back to the requesting UDP client.
 The timer related to this association is implementation dependant,
 but must be at least five minutes.

7. Authentication and identification information

 The standard SOCKS request header includes information intended to
 identify the originating entity of the corresponding connection
 request or datagram relay request. The SRC.USR field is intended as a
 low-to-medium confidence mechanism for a SOCKS relay agent to provide
 usage auditing information only, and not as an authentication
 mechanism. The SRC.IDENT and SRC.AUTH fields are used to carry
 information that a SOCKS relay agent (server) may use to control and
 authenticate access to its relay services.The fundamental notion
 being that SRC.IDENT carries a unique identity associated with a
 requesting entity (typically a person) and SRC.AUTH carries some type
 of strong proof of that identity. In this way, the SOCKS relay agent
 may make decisions about access controls based on a strong notion of
 the identity of the entity requesting access.

 In one implementation, the SRC.IDENT field carries a unique
 identifier that has associated with it a secret key that is shared
 between the relay agent and the requesting entity. The corresponding
 SRC.AUTH field contains time-varying information that is computed
 based on the shared secret key and a strong one-way hash of the
 time-varying data. In this implementation the shared secret key has a
 specific and relatively short lifetime; `out-of-band' techniques are
 used from time to time to assign a new secret key. In this way, the
 secret key acts much like a session key in Kerberos.

 Another implementation may choose to use the SRC.IDENT and SRC.AUTH
 fields to carry information produced by so-called smart card
 technology to authenticate access.

Leech [Page 7]

INTERNET-DRAFT SOCKS Protocol Version 5 October 1994

 Another implementation may choose to carry the operating system
 username in SRC.IDENT and the corresponding access password in
 SRC.AUTH. In this way, the authentication provided is no weaker than
 that provided by the FTP protocol.

8. Encrypted connections

 The TCP SOCKS server may return a connection-success reply with the
 encryption-type (ET) field set non-zero. If this is the case, then
 the SOCKS server expects that all data transferred on the connection
 after the initial SOCKS connect request will be encrypted in a
 mutually agreed upon key using the algorithm specified by the SOCKS
 server. In order to make this work, the server expects the data
 stream to be encapsulated into a series of encrypted payloads as
 follows:

 +------+-------+-----+---+
8	128	16	var	
PLEN	AUTHN	SSN	DATA	PAD
 +------+-------+-----+---+

 The AUTHN field is 16-bytes long, and is expected to contain the
 cryptographic checksum (message digest) of the AUTHN, SSN and DATA
 fields prepended with the key associated with this connection. When
 computing this checksum, the AUTHN field is set to all X'00'. The SSN
 field is a unique sequence number for each encrypted payload, this is
 an unsigned 16-bit value transmitted in network byte order.

 The receiver of an encrypted payload shall use the PLEN field,
 appropriately rounded for the blocksize of the encryption algorithm
 in use, to determine the number of bytes of encrypted data that
 follow. This is necessary, since the transport in use (TCP) is a
 stream protocol, and does not preserve I/O boundaries across a
 connection.

 The receiver of an encrypted payload for which the received AUTHN
 field fails to match the computed value of AUTHN must immediately
 terminate the connection, and log an error to the system log.
 Similarly, if a received SSN doesn't increment the current received
 SSN, the payload is a replay, and must terminate the connection.

 Since the encryption is bidirectional, the SOCKS server uses the same
 encapsulation technique when sending encrypted data towards the
 client.

9. References

Leech [Page 8]

INTERNET-DRAFT SOCKS Protocol Version 5 October 1994

 [1] Koblas, D., "SOCKS", Proceedings: 1992 Usenix Security Symposium

 [2] Leech, M., et al, "Socks Protocol Version 4" RFCXXXX

Authors Address

 Marcus Leech, Bell-Northern Research
 P.O. Box 3511, Stn. C,
 Ottawa, ON
 CANADA K1Y 4H7

 Email: mleech@bnr.ca

 Phone: (613) 763-9145

Leech [Page 9]

