Agent Extensibility (AgentX) Protocol
Version 1

<draft-ietf-agentx-ext-pro-03.txt>

Mike Daniele
Digital Equipment Corporation
daniele@zk3.dec.com

Bert Wijnen
T.J. Watson Research Center, IBM Corp.
wijnen@vnet.ibm.com

Dale Francisco (editor)
Cisco Systems, Inc.
dfrancis@cisco.com

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups may also distribute
working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as
reference material or to cite them other than as "work in progress".

To learn the current status of any Internet-Draft, please check the
"lid-abstracts.txt" listing contained in the Internet-Drafts

Shadow Directories on ds.internic.net (US East Coast), nic.nordu.net
(Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
Rim).

Daniele/Wijnen Expires November 1997 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-agentx-ext-pro-03.txt

Draft

Agent Extensibility (AgentX) Protocol

April 1997

1 INtrodUCEION . it e 5
2 The SNMP FrameWOr K. v v v it ie ittt st e s s st a s n sy 5
2.1 A Note on Terminology ittt it e s ettt 5
3 EXtending the MIB.ttt sttt sttt e s 6
3.1 Motivation for AgentX.ttt et e i e 6
4 AgentX FrameworK. ...ttt i s e e 7
4.1 AgentX ROLES . . ittt i i i e e 8
4.2 Applicabilaty. . ..uii i e e e e e e 9
4.3 Design Features of AgentX. i i 10
2 \\ Lo o T €0 = B I 11
5 AgeNntX ENCOOINGS. .t ittt it e e ettt et ettt e e e 12
5.1 Object Identifier......c.iiiiii ittt e et 12
5.2 SearChRANGE . . vttt it it i e e 14
5.3 OCtet Strang. e e 16
5.4 Value Representation.ttty 17
6 Protocol Definitions.iiiiiiini ittt i s 19
6.1 AgentX PDU Header . ..ottt it sttt s s e n e s 19
B.0.0 ConteXt. . vt e e e e 22
6.2 AgENEX PDUS. ottt ittt it it s e e e e 23
6.2.1 The agentXx-0pen-PDU.ttt ittt it e et e s 23
6.2.2 The agentX-CloSe-PDU. i ittt ittt ittt s e e 24
6.2.3 The agentx-Register-PDU.ttt et en e 26
6.2.4 The agentx-Unregister-PDU.cuiiiiiinnrnnrn i nnsnnas 29
6.2.5 The agentxX-Get-PDU. i ittt it it it s st e e e n s 31
6.2.6 The agentx-GetNeXt-PDU. ittt it et e e e e e 32
6.2.7 The agentx-GetBULK-PDU.ttt it it e s en e en s 34
6.2.8 The agentx-TestSet-PDU.t i ittt ittt it et s e n i enn s 35
6.2.9 The agentx-CommitSet, -UndoSet, -CleanupSet
PDUS . ot i e e e e e 36
6.2.10 The agentX-Notify-PDU.\ttt it en i i 37
6.2.11 The agentX-Ping-PDU.ttt 38
6.2.12 The agentx-IndexAllocate-PDU...........uiiiinrinrnnnnnns 39
6.2.13 The agentx-IndexDeallocate-PDU...........cuiiiiinnnnnnnns 40
6.2.14 The agentx-AddAgentCaps-PDU.t iiiiii i inrnnnnns 41
6.2.15 The agentx-RemoveAgentCaps-PDU.coviiirinnnennn . 43
6.2.16 The agentX-Response-PDU.t 44
7 Elements Of ProcCedure.ttt 46
7.1 Processing AgentX Administrative MessagesS............. v 46
7.1.1 Processing the agentx-0pen-PDU......... . iinirnrnnnnnns 47
7.1.2 Processing the agentx-IndexAllocate-PDU.................. 48
7.1.3 Using the agentx-IndexAllocate-PDU..........ouiviuivinnnnns 49
7.1.4 Processing the agentx-IndexDeallocate-PDU................ 51

Daniele/Wijnen

7.1.5 Processing the agentx-Register-PDU............vvuunienn.. 52
7.1.5.1 Handling Duplicate OID RaNgeS.......vuurirrnrenrnnnnn 54
7.1.6 Processing the agentx-Unregister-PDU...........civuuvunnn 54
Expires November 1997 [Page 2]

Agent Extensibility (AgentX) Protocol April 1997

Draft

7.1.7
7.1.8
7.1.9

7.1.10
7.1.11
7.1.12

7.2

~
N

H H H

Processing the agentx-AddAgentCaps-PDU...........cvuvunnn
Processing the agentx-RemoveAgentCaps-PDU................
Processing the agentx-Close-PDU..........cuiiiiiinnnnnnns

.10 Detecting CoNNECtion LOSS. ...ty
.11 Processing the agentx-Notify-PDU........... ...,
.12 Processing the agentx-Ping-PDU........... ... i,
Processing Received SNMP Protocol MesSsagesS...........cvuuunns

!

NN NN NN

~

~
N

NINININININ

N

Dispatching AgentX PDUS.t iii ittt it et i e ennnnns
.1 agentx-Get-PDU.v ittt i i e e
.2 agentx-GetNeXt-PDU.ottt it

.4 agentx-TestSet-PDU. . ..ottt it it i s
LSoDAspatCh. . e
Subagent Processing of agentx-Get, GetNext,

1
1
.2.1.3 agentX-GetBULK-PDU.ottt it e e e e
1
1

GEEBULK-PDUS . . vttt it sttt ts it sttt et sttt e 64

.2.2.1 Subagent Processing of the agentx-Get-PDU............ 64
.2.2 Subagent Processing of the

agentx-GetNexXt-PDU.o ittt it i it 65

.2.3 Subagent Processing of the

agentx-GetBULK-PDU. vttt i i et s e 65

Subagent Processing of agentx-TestSet,
-CommitSet, -UndoSet, -CleanupSet-PDUS...........covvu...

.3.1 Subagent Processing of the

agentx-TestSet-PDU.o ittt i i 67

.3.2 Subagent Processing of the

agentx-CommitSet-PDU.ottt i et

.3.3 Subagent Processing of the

agentx-UndoSet-PDU. vttt it s e e 68

.3.4 Subagent Processing of the

agentx-CleanupSet-PDU.coviiiiirin it i e ennnns
Master Agent Processing of AgentX Responses..............

.4.1 Common Processing of All AgentX Response

.2.4.2 Processing of Responses to agentx-Get-PDUs...........
.4.3 Processing of Responses to

agentx-GetNext-PDU and agentx-GetBulk-PDU............

.4.4 Processing of Responses to

agentx-TestSet-PDUS. . ..o ittt i it e e

.4.5 Processing of Responses to

agentx-CommitSet-PDUS. i iii ittt i e 71

7.2.4.6 Processing of Responses to

agentXx-UndoSet-PDUS. . .. vttt ittt et et e 72

7.2.5 Sending the SNMP ResSpoONnsSe-PDU.o rnnrnnnnnns 72

T.2.6 MIB VaiBWS . ittt ittt ettt ettt st s et et e e s 72

7.3 State Transitions. ...ttt e e e e 73
7.3.1 Set Transaction States......... ..., 73

7.3.2 Transport Connection States......... .o iiiiiiiiinnnnas 75

7.3.3 SesSion StatesS. . ittt e e e e 76

8 Transport MapPingS . .o vttt e e e e 77
8.1 AgentX OVer TCP. ..t it e s e 77
Daniele/Wijnen Expires November 1997 [Page 3]
Draft Agent Extensibility (AgentX) Protocol April 1997
8.1.1 Well-Known ValuesS. .. vttt ittt et et e s 77

8.1.2 Operation. ... e e 77

8.2 AgentX over UNIX-domain SocCKetsS..........iiiiiiiinnnnnnnns 77
8.2.1 Well-known Values.ttt 78

8.2.2 Operation. v i e e e e 78

9 Security Considerations.........iiiiiiiiii ittt 78
10 Acknowledgement s . vt i e e e e e 79
11 Authors' and Editor's AddressSes., 80

2 =T =Y =Y Vo 80

Daniele/Wijnen Expires November 1997 [Page 4]

Draft Agent Extensibility (AgentX) Protocol April 1997

1.

IN

Introduction

This memo defines a standardized framework for extensible SNMP
agents. It defines processing entities called master agents

and subagents, a protocol (AgentX) used to communicate between
them, and the elements of procedure by which the extensible agent
processes SNMP protocol messages.

The SNMP Framework

A management system contains: several (potentially many) nodes,
each with a processing entity, termed an agent, which has access to
management instrumentation; at least one management station; and, a
management protocol, used to convey management information between
the agents and management stations. Operations of the protocol are
carried out under an administrative framework which defines
authentication, authorization, access control, and privacy
policies.

Management stations execute management applications which monitor
and control managed elements. Managed elements are devices such as
hosts, routers, terminal servers, etc., which are monitored and
controlled via access to their management information.

Management information is viewed as a collection of managed objects,
residing in a virtual information store, termed the Management
Information Base (MIB). Collections of related objects are defined
in MIB modules. These modules are written using a subset of 0SI's

2.

Abstract Syntax Notation One (ASN.1) [1], termed the Structure of
Management Information (SMI) (see RFC 1902 [2]).

A Note on Terminology

The term "variable" refers to an instance of a non-aggregate
object type defined according to the conventions set forth in the
SMI (REC 1902, [2]) or the textual conventions based on the SMI
(REC 1903 [3]). The term "variable binding" normally refers to
the pairing of the name of a variable and its associated value.
However, if certain kinds of exceptional conditions occur during
processing of a retrieval request, a variable binding will pair a
name and an indication of that exception.

A variable-binding list is a simple list of variable bindings.

The name of a variable is an OBJECT IDENTIFIER, which is the
concatenation of the OBJECT IDENTIFIER of the corresponding object
type together with an OBJECT IDENTIFIER fragment identifying the
instance. The OBJECT IDENTIFIER of the corresponding object-type is
called the OBJECT IDENTIFIER prefix of the variable.

For the purpose of exposition, the original Internet-standard

Daniele/Wijnen Expires November 1997 [Page 5]

Draft Agent Extensibility (AgentX) Protocol April 1997

[eN]

Network Management Framework, as described in RFCs 1155 (STD 16),
1157 (STD 15), and 1212 (STD 16), is termed the SNMP version 1
framework (SNMPv1l). The current framework, as described in RFCs
1902-1908, is termed the SNMP version 2 framework (SNMPv2).

Extending the MIB

New MIB modules that extend the Internet-standard MIB are
continuously being defined by various IETF working groups. It is
also common for enterprises or individuals to create or extend
enterprise-specific or experimental MIBs.

As a result, managed devices are frequently complex collections of
manageable components that have been independently installed on a
managed node. Each component provides instrumentation for the
managed objects defined in the MIB module(s) it implements.

Neither the SNMP version 1 or version 2 framework addresses how
managed objects may be dynamically added to or removed from the
agent view within a particular managed node.

https://datatracker.ietf.org/doc/html/rfc1902
https://datatracker.ietf.org/doc/html/rfc1902
https://datatracker.ietf.org/doc/html/rfc1903

.1. Motivation for AgentX

This very real need to dynamically extend the management objects
within a node has given rise to a variety of "extensible agents",
which typically comprise

- a "master" agent that is available on the standard transport
address and that accepts SNMP protocol messages

- a set of "subagents" that each contain management
instrumentation

- a protocol that operates between the master agent and subagents,
permitting subagents to '"connect" to the master agent, and the
master agent to multiplex received SNMP protocol messages
amongst the subagents.

- a set of tools to aid subagent development, and a runtime (API)
environment that hides much of the protocol operation between a
subagent and the master agent.

The wide deployment of extensible SNMP agents, coupled with the

lack of Internet standards in this area, makes it difficult to field
SNMP-manageable applications. A vendor may have to support several
different subagent environments (APIs) in order to support different
target platforms.

It can also become quite cumbersome to configure subagents and
(possibly multiple) master agents on a particular managed node.

Daniele/Wijnen Expires November 1997 [Page 6]

Draft Agent Extensibility (AgentX) Protocol April 1997

[

Specifying a standard protocol for agent extensibility (AgentX)
provides the technical foundation required to solve both of

these problems. Independently developed AgentX-capable master
agents and subagents will be able to interoperate at the protocol
level. Vendors can continue to differentiate their products

in all other respects.

AgentX Framework
wWithin the SNMP framework, a managed node contains a processing
entity, called an agent, which has access to management

information.

wWithin the AgentX framework, an agent is further defined to

consist of

- a single processing entity called the master agent, which sends
and receives SNMP protocol messages in an agent role (as
specified by the SNMP version 1 and version 2 framework
documents) but typically has little or no direct access to
management information.

- 0 or more processing entities called subagents, which are
"shielded" from the SNMP protocol messages processed by the
master agent, but which have access to management information.

The master and subagent entities communicate via AgentX protocol
messages, as specified in this memo. Other interfaces (if any) on
these entities, and their associated protocols, are outside the
scope of this document. While some of the AgentX protocol messages
appear similar in syntax and semantics to the SNMP, bear in mind
that AgentX is not SNMP.

The internal operations of AgentX are invisible to an SNMP entity
operating in a manager role. From a manager's point of view, an
extensible agent behaves exactly as would a non-extensible
(monolithic) agent that has access to the same management
instrumentation.

This transparency to managers is a fundamental requirement of
AgentX, and is what differentiates AgentX subagents from SNMP proxy

agents.
Daniele/Wijnen Expires November 1997 [Page 7]
Draft Agent Extensibility (AgentX) Protocol April 1997

4.1. AgentX Roles

An entity acting in a master agent role performs the following
functions:

- Accepts AgentX session establishment requests from subagents.

- Accepts registration of MIB regions by subagents.

- Sends and accepts SNMP protocol messages on the agent's
specified transport addresses.

- Implements the agent role Elements of Procedure specified
for the administrative framework applicable to the SNMP
protocol message, except where they specify performing
management operations. (The application of MIB views, and
the access control policy for the managed node, are
implemented by the master agent.)

- Provides instrumentation for the MIB objects defined in REC
1907 [5], and for any MIB objects relevant to any
administrative framework it supports.

- Sends and receives AgentX protocol messages to access
management information, based on the current registry of MIB
regions.

- Forwards notifications on behalf of subagents.

An entity acting in a subagent role performs the following functions:

- Initiates an AgentX session with the master agent.

- Registers MIB regions with the master agent.

- Instantiates managed objects.

- Binds OIDs within its registered MIB regions to actual
variables.

- Performs management operations on variables.

- Initiates notifications.

Daniele/Wijnen Expires November 1997 [Page 8]

Draft Agent Extensibility (AgentX) Protocol April 1997

4.2 Applicability

It is intended that this draft specify the smallest amount of

https://datatracker.ietf.org/doc/html/rfc1907
https://datatracker.ietf.org/doc/html/rfc1907

required behavior necessary to achieve the largest benefit,

that is, to cover a very large number of possible MIB
implementations and configurations with minimum complexity and low
"cost of entry".

This section discusses several typical usage scenarios.

1) Subagents implement separate MIB modules--for example,
subagent A implements "mib-2", subagent b implements
"host-resources".

It is anticipated that this will be the most common subagent
configuration.

2) Subagents implement rows in a "simple table". A simple table
is one in which row creation is not specified, and for which
the MIB does not define an object that counts entries in the
table. Examples of simple tables are rdbmsDbTable, udpTable,
and hrSWRunTable.

This is the most commonly defined type of MIB table, and
probably represents the next most typical configuration
that AgentX would support.

3) Subagents share MIBs along non-row partitions. Subagents
register '"chunks" of the MIB that represent multiple rows,
due to the nature of the MIB's index structure. Examples
include registering ipNetToMediaEntry.n, where n represents
the ifIndex value for an interface implemented by the subagent,
and tcpConnkEntry.a.b.c.d, where a.b.c.d represents an IP
address on an interface implemented by the subagent.

AgentX supports these three common configurations, and all
permutations of them, completely. The consensus is that they
comprise a very large majority of current and likely future uses
of multi-vendor extensible agent configurations.

4) Subagents implement rows in "complex tables". Complex tables
here are defined as tables permitting row creation, or whose
MIB also defines an object that counts entries in the table.
Examples include the MIB-2 ifTable (due to ifNumber), and the
RMON historyControlTable.

The subagent that implements such a counter object (like
ifNumber) must go beyond AgentX to correctly implement it.
This is an implementation issue (and most new MIB designs
no longer include such objects).

Daniele/Wijnen Expires November 1997 [Page

9]

Draft Agent Extensibility (AgentX) Protocol April 1997

To implement row creation in such tables, at least one AgentX
subagent must register at a point "higher" in the OID tree
than an individual row (per AgentX's dispatching procedure).
Again, this is an implementation issue.

Scenarios in this category were thought to occur somewhat
rarely in configurations where subagents are independently
implemented by different vendors. The focus of a standard
protocol, however, must be in just those areas where multi-
vendor interoperability must be assured.

Note that it would be inefficient (due to AgentX registration
overhead) to share a table among AgentX subagents if the table

contains very dynamic instances, and each subagent registers fully

qualified instances. ipRouteTable could be an example of such a
table in some environments.

4.3. Design Features of AgentX
The primary features of the design described in this memo are

1) A general architectural division of labor between master
agent and subagent: The master agent is MIB ignorant and
SNMP omniscient, while the subagent is SNMP ignorant and
MIB omniscient. That is, master agents, exclusively, are
concerned with SNMP protocol operations and the translations
to and from AgentX protocol operations needed to carry them
out; subagents are exclusively concerned with management
instrumentation; and neither should intrude on the other's
territory.

2) A standard protocol and "rules of engagement" to enable
interoperability between management instrumentation and
extensible agents.

3) Mechanisms for independently developed subagents to
integrate into the extensible agent on a particular
managed node in such a way that they need not be aware
of any other existing subagents.

4) A simple, deterministic registry and dispatching algorithm.
For a given extensible agent configuration, there is a single
subagent who is "authoritative" for any particular region of
the MIB (where "region" may extend from an entire MIB down
to a single object-instance).

5) Performance considerations. It is likely that the master
agent and all subagents will reside on the same host, and
in such cases AgentX is more a form of inter-process

Daniele/Wijnen Expires November 1997 [Page 10]

Draft Agent Extensibility (AgentX) Protocol April 1997

communication than a traditional communications protocol.
Some of the design decisions made with this in mind include:

- 32-bit alignment of data within PDUs
- Native byte-order encoding by subagents

- Large AgentX PDU payload sizes.
4.4 Non-Goals

1) Subagent-to-subagent communication. This is out of scope,
due to the security ramifications and complexity involved.

2) Subagent access (via the master agent) to MIB variables.
This is not addressed, since various other mechanisms
are available and it was not a fundamental requirement.

3) The ability to accommodate every conceivable extensible
agent configuration option. This was the most contentious
aspect in the drafting of this protocol. 1In essence,
certain features currently available in some commercial
extensible agent products are not included in AgentX.
Although useful or even vital in some implementation
strategies, the rough consensus was that these features
were not appropriate for an Internet Standard, or not
typically required for independently developed subagents
to coexist. The set of supported extensible agent
configurations is described above, in Section 4.2.

Some possible future version of the AgentX protocol may provide
coverage for one or more of these "non-goals" or for new goals
that might be identified after greater deployment experience.

Daniele/Wijnen Expires November 1997 [Page 11]

Draft Agent Extensibility (AgentX) Protocol April 1997

5. AgentX Encodings

AgentX PDUs consist of a common header, followed by PDU-specific
data of variable length. Unlike SNMP PDUs, AgentX PDUs are not
encoded using the BER (as specified in ISO 8824 [1]), but are
transmitted as a contiguous byte stream. The data within this
stream is organized to provide natural alignment with respect to
the start of the PDU, permitting direct (integer) access by the
processing entities.

The first four fields in the header are single-byte values.

A bit (NETWORK_BYTE_ORDER) in the third field (h.flags) is
used to indicate the byte ordering of all multi-byte integer
values in the PDU, including those which follow in the header
itself. This is described in more detail in Section 6.1,
"AgentX PDU Header'", below.

PDUs are depicted in this memo using the following convention
(where byte 1 is the first transmitted byte):

B R S s T S S s ST L S S

| byte 1 | byte 2 | byte 3 | byte 4 |
ottt tototototototototot ottt ottt otototot ottt -t-+-+
| byte 5 | byte 6 | byte 7 | byte 8 |

Fodbototototototodb oottt ototod oottt ottt ottt ob oottt

Fields marked "<reserved>" are reserved for future use and must be
zero-filled.

5.1. Object Identifier

An object identifier is encoded as a 4-byte header, followed by a
variable number of contiguous 4-byte fields representing
sub-identifiers. This representation (termed Object Identifier) is
as follows:

Object Identifier

B T e n b e e T e el e T P P Sy S S S
| n_subid | prefix | include | <reserved> |
tot-t-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-+-+-+
| sub-identifier #1 |
BT T b b e ek T S R e e e e ek S S S S S S

+-t-t-t-t-F-t-t-F-F-t-F-F-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
sub-identifier #n_subid
+-t-F-F-t-F-+-+-+

Daniele/Wijnen Expires November 1997 [Page 12]

Draft Agent Extensibility (AgentX) Protocol April 1997

Object Identifier header fields:

n_subid

The number (0-128) of sub-identifiers in the object
identifier. An ordered list of "n_subid" 4-byte
sub-identifiers follows the 4-byte header.

prefix

An unsigned value used to reduce the length of object
identifier encodings. A non-zero value "x" is interpreted as
the first sub-identifier after "internet" (1.3.6.1), and
indicates an implicit prefix "internet.x" to the actual
sub-identifiers encoded in the Object Identifier. For
example, a prefix field value 2 indicates an implicit prefix

"1.3.6.1.2". A value of 0 in the prefix field indicates there
is no prefix to the sub-identifiers.

include

Used only when the Object Identifier is the start of a
SearchRange, as described in section 5.2.

A null Object Identifier consists of the 4-byte header with all
bytes set to 0.

Daniele/Wijnen Expires November 1997 [Page 13]

Draft Agent Extensibility (AgentX) Protocol April 1997

Examples:
sysDescr.0® (1.3.6.1.2.1.1.1.0)

B ST e T ST S e e S S S T St T S

| 4 | 2 | © | © |
s s T S e e T S T ok o S
| 1 |
B S e e ST S s T S e R stSt SPEP S S
| 1 |
B T T T S e e ST P Sy S et e o s
| 1 |
B s T e S S s ot S U S S s o S
| © |

S

1.2.3.4

B S T S ST S T L s st P S RS

| 4 | © | © | © |
B s st T e SPE U S Sy S S s o S S
| 1 |
B s T S ST ST S s ol S U S Sy S Sy S
| 2 |
FodotototototototototototototoF-totot-tototoF-totot-b-tot-F-t-t+-+
| 3 |
B ST e T ST S e e S S S T St T S
| 4 |

Fot-tott-t-t-t-t-t-F -ttt -ttt -ttt -ttt -F-F-F-F+-+-+

5.2. SearchRange

A SearchRange consists of two Object Identifiers. 1In its
communication with a subagent, the master agent uses a SearchRange
to identify a requested variable binding, and, in GetNext and
GetBulk operations, to set an upper bound on the names of managed
object instances the subagent may send in reply.

The first Object Identifier in a SearchRange (called the starting
OID) indicates the beginning of the range. It is frequently (but
not necessarily) the name of a requested variable binding.

The "include" field in this OID's header is a boolean value
(0 or 1) indicating whether or not the starting OID is included in
the range.

The second object identifier indicates the non-inclusive end of

the range, and its "include" field is always 0.

Daniele/Wijnen Expires November 1997 [Page 14]

Draft Agent Extensibility (AgentX) Protocol April 1997

Example: To indicate a search range from 1.3.6.1.2.1.25.2
(inclusive) to 1.3.6.1.2.1.25.2.1 (exclusive), the SearchRange would
be

(start)

BT R b E b e e ok T e S T TP SN S S Sy S o
| 3 | 2 | 1 0] |
+ot-t-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| 1 I
Bk e e e R e ik o R e e e e R e e R e b ik ioE L S P S
| 25 I
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
| 2 I

B S s st T o e S T ot o S S

(end)

B T S I e o o ot S S S S S S S T S S S S
| 4 | 2 | © 0 I
tot-t-t-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
| 1 I
B T e n b e e T e el e T P P Sy S S S
| 25 I
tot-t-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-+-+-+
| 2 I
B T n s o T e e T e e E ek Sk S S S S A
| 1 I
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+

A SearchRangelList is a contiguous list of SearchRanges.

Daniele/Wijnen Expires November 1997 [Page 15]

Draft Agent Extensibility (AgentX) Protocol April 1997

5.3. Octet String

An octet string is represented by a contiguous series of bytes,
beginning with a 4-byte integer whose value is the number of octets
in the octet string, followed by the octets themselves. This
representation is termed an Octet String. If the last octet does
not end on a 4-byte offset from the start of the Octet String,
padding bytes are appended to achieve alignment of following data.
This padding must be added even if the Octet String is the last item
in the PDU. Padding bytes must be zero filled.

+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| Octet String Length (L) |
Bk T e S R e s o R e S e e e e R Ik EE T L S P S
| Octet 1 | Octet 2 | Octet 3 | Octet 4 |
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+

ottt -t-tot-t-t-t-t-t-t-d-F-t-t-F-t-t-t-F-t-t-t-F-F-t-F-F-+-+-+
| Octet L -1 | Octet L Padding (as required) |

B ST e T ST S e e S S S T St T S

A null Octet String consists of a 4-byte length field set to 0.

Daniele/Wijnen Expires November 1997 [Page 16]

Draft Agent Extensibility (AgentX) Protocol April 1997

5.4. Value Representation

Variable bindings may be encoded within the variable-length portion
of some PDUs. The representation of a variable binding (termed a
VarBind) consists of a 2-byte type field, a name (Object
Identifier), and the actual value data.

VarBind
BT R b E b e e ok T e S T TP SN S S Sy S o

v.type <reserved>
+-t-t-t-t-t-t-t-F-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+

(v.name)
+ot-t-t-t-F-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-Ft-F-F-F-F-F+-+-+-+-+
| n_subid | prefix | 0] 0 |

ottt -ttt -ttt -F-F-+-+-+
| sub-identifier #1 |
tot-t-t-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-F-F-F-F-F-+-+-+

+-+-F-+-+-F-F-F-+-F-F-+-+-F-F-+-F-F-F-+-F-F-F-+-F-F-F+-F-F-+-+-+-+
sub-identifier #n_subid
ottt -ttt -ttt -ttt -F-F-F-F+-+-+-+

(v.data)
tot-t-t-t-F-t-t-F-F-t-t-F-F-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+

| data
+ot-t-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+

tot-t-t-t-t-F-F-t-t-t-t-t-t-t-F-F-F-F-F-F-F-t-t-t-F-t-F-F-F-+-+-+
data
ottt -t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+

Daniele/Wijnen Expires November 1997 [Page 17]

Draft Agent Extensibility (AgentX) Protocol April 1997

VarBind fields:
v.type

Indicates the variable binding's syntax, and must be one of
the following values:

Integer (2),
Octet String (4),
Null (5),
Object Identifier (6),
IpAddress (64),
Counter32 (65),
Gauge32 (66),
TimeTicks (67),
Opaque (68),
Counter64 (70),
noSuchObject (128),
noSuchInstance (129),
endOfMibView (130)

V.name
The Object Identifier which names the variable.
v.data
The actual value, encoded as follows:

- Integer, Counter32, Gauge32, and TimeTicks are encoded as
4 contiguous bytes. If the NETWORK_BYTE_ORDER bit is set
in h.flags, the bytes are ordered most significant to least
significant, otherwise they are ordered least significant
to most significant.

- Counter64 is encoded as 8 contiguous bytes. If the
NETWORK_BYTE_ORDER bit is set in h.flags, the bytes are
ordered most significant to least significant, otherwise
they are ordered least significant to most significant.

- Object Identifiers are encoded as described in section
5.1, Object Identifier.

- IpAddress, Opaque, and Octet String are all octet strings
and are encoded as described in section 5.3, Octet String.

Value data always follows v.name whenever v.type is one
of the above types. These data bytes are present even if
they will not be used (as, for example, in certain types

of index allocation).

Daniele/Wijnen Expires November 1997 [Page 18]

Draft Agent Extensibility (AgentX) Protocol April 1997

- Null, noSuchObject, noSuchInstance, and endOfMibView do not
contain any encoded value. Value data never follows
v.name in these cases.

Note that the VvarBind itself does not contain the value size.
That information is implied for the fixed-length types, and
explicitly contained in the encodings of variable-length types
(Object Identifier and Octet String).

A VarBindList is a contiguous list of VarBinds. Within a
VarBindList, a particular VarBind is identified by an index value.
The first VarBind in a VarBindList has index value 1, the second
has index value 2, and so on.

6. Protocol Definitions
6.1. AgentX PDU Header
The AgentX PDU header is a fixed-format, 20-octet structure:

BT R b E b e e ok T e S T TP SN S S Sy S o
| h.version | h.type | h.flags | <reserved> |
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| h.sessionID

B T n s T e e e e e ek sk s P TP TR S S S S S
| h.transactionID |
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
| h.packetID |
ottt -t-tot-t-t-t-Ft-t-t-t-F-t-t-F-t-t-t-F-t-t-t-F-F-t-F-F-+-+-+
| h.payload_length |
+ot-t-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+

An AgentX PDU header contains the following fields:
h.version
The version of the AgentX protocol (1 for this draft).
h.type

The PDU type; one of the following values:

agentx-0Open-PDU (1),
agentx-Close-PDU (2),
agentx-Register-PDU (3),
agentx-Unregister-PDU (4),
agentx-Get-PDU (5),

agentx-GetNext-PDU (6),

agentx-GetBulk-PDU (7),
agentx-TestSet-PDU (8),

Daniele/Wijnen Expires November 1997 [Page 19]

Draft Agent Extensibility (AgentX) Protocol April 1997

agentx-CommitSet-PDU (9),
agentx-UndoSet-PDU (10),
agentx-CleanupSet-PDU (11),
agentx-Notify-PDU (12),
agentx-Ping-PDU (13),

agentx-IndexAllocate-PDU (14),
agentx-IndexDeallocate-PDU (15),
agentx-AddAgentCaps-PDU (16),
agentx-RemoveAgentCaps-PDU (17),
agentx-Response-PDU (18)

h.flags

A bitmask, with bit 0 the least significant bit. The bit
definitions are as follows:

Bit Definition

INSTANCE_REGISTRATION
NEW_INDEX
ANY_INDEX
NON_DEFAULT_CONTEXT
NETWORK_BYTE_ORDER

-7 (reserved)

a b~ wWwDNREL O

The NETWORK_BYTE_ORDER bit applies to all multi-byte
integer values in the entire AgentX packet, including
the remaining header fields. If set, then network byte
order (most significant byte first; "big endian") is
used. If not set, then least significant byte first
("little endian") is used.

The NETWORK_BYTE_ORDER bit applies to all AgentX PDUs.

The NON_DEFAULT_CONTEXT bit is used only in the AgentX PDUs
described in section 6.1.1.

The NEW_INDEX and ANY_INDEX bits are used only within the
agentx-IndexAllocate-, and -IndexDeallocate-PDUs.

The INSTANCE_REGISTRATION bit is used only within the
agentx-Register-PDU.

h.sessionID

The session ID uniquely identifies a session over
which AgentX PDUs are exchanged between a subagent and

the master agent. The session ID has no significance
and no defined value in the agentx-Open-PDU sent by a

Daniele/Wijnen Expires November 1997 [Page 20]

Draft Agent Extensibility (AgentX) Protocol April 1997

subagent to open a session with the master agent; in
this case, the master agent will assign a unique
sessionID that it will pass back in the corresponding
agentx-Response-PDU. From that point on, that same
sessionID will appear in every AgentX PDU exchanged
over that session between the master and the subagent.
A subagent may establish multiple AgentX sessions by
sending multiple agentx-Open-PDUs to the master agent.

In master agents that support multiple transport
protocols, the sessionID should be globally unique
rather than unique just to a particular transport.

h.transactionID

The transaction ID uniquely identifies, for a given
session, the single SNMP management request (and single
SNMP PDU) with which an AgentX PDU is associated. If

a single SNMP management request results in multiple
AgentX PDUs being sent by the master agent with the same
sessionID, each of these AgentX PDUs must contain the
same transaction ID; conversely, AgentX PDUs sent during
a particular session, that result from distinct SNMP
management requests, must have distinct transaction IDs
(within the limits of the 32-bit field).

Note that the transaction ID is not the same as the SNMP
PDU's request-id (as described in section 4.1 of RFC
1905 [4]), nor can it be, since a master agent might
receive SNMP requests with the same request-ids from
different managers.

The transaction ID has no significance and no defined
value in AgentX administrative PDUs, i.e., AgentX
PDUs that are not associated with an SNMP management
request.

h.packetID

A packet ID generated by the sender for all AgentX PDUs
except the agentx-Response-PDU. In an agentx-Response-PDU,
the packet ID must be the same as that in the received
AgentX PDU to which it is a response. A master agent
might use this field to associate subagent response PDUs
with their corresponding request PDUs. A subagent might
use this field to correlate responses to multiple
(batched) registrations.

https://datatracker.ietf.org/doc/html/rfc1905
https://datatracker.ietf.org/doc/html/rfc1905

Daniele/Wijnen Expires November 1997 [Page 21]

Draft Agent Extensibility (AgentX) Protocol April 1997

h.payload_length

The size in octets of the PDU contents, excluding the
20-byte header. As a result of the encoding schemes
and PDU layouts, this value will always be either 0,
or a multiple of 4.

6.1.1. Context

In the SNMPv1l or v2c frameworks, the community string may be used as
an index into a local repository of configuration information that
may include community profiles or more complex context information.
Future versions of the SNMP will likely formalize this notion of
"context".

AgentX provides a mechanism for transmitting a context specification
within relevant PDUs, but does not place any constraints on the
content of that specification.

An optional context field may be present in the agentx-Register-,
UnRegister-, AddAgentCaps-, RemoveAgentCaps-, Get-, GetNext-,
GetBulk-, IndexAllocate-, IndexDeallocate-, Notify-, TestSet-,
and Ping- PDUs.

If the NON_DEFAULT_CONTEXT bit in the AgentX header field h.flags is
clear, then there is no context field in the PDU, and the operation
refers to the default context.

If the NON_DEFAULT_CONTEXT bit is set, then a context field
immediately follows the AgentX header, and the operation refers
to that specific context. The context is represented as an Octet
String. There are no constraints on its length or contents.

Thus, all of these AgentX PDUs (that is, those listed immediately
above) refer to, or "indicate" a context, which is either the
default context, or a non-default context explicitly named in the
PDU.

Daniele/Wijnen Expires November 1997 [Page 22]

Draft Agent Extensibility (AgentX) Protocol April 1997

6.2. AgentX PDUs
6.2.1. The agentx-Open-PDU

An agentx-Open-PDU is generated by a subagent to request
establishment of an AgentX session with the master agent.

(AgentX header)

B T e n b e e T e el e T P P Sy S S S
| h.version (1) | h.type (1) | h.flags | <reserved> |
B s e sl T S S S s SEE SR S e R e b =
| h.sessionID

-+ttt -ttt -ttt -+ -+-+-+
| h.transactionID |
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| h.packetID |
B T n s T e e e e e ek sk s P TP TR S S S S S
| h.payload_length |
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+

Bk T e S R e s o R e S e e e e R Ik EE T L S P S
| o.timeout | <reserved>
+ot-t-t-t-F-F-F-F-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+

(o0.1id)
B s a s e ol e S S e S R e E e
| n_subid | prefix | 0 | <reserved> |
B T e n b e e T e el e T P P Sy S S S
| subidentifier #1 |
ottt tototototototototot ottt ottt otototot ottt -t-+-+
I
BT R b E b e e ok T e S T TP SN S S Sy S o
subidentifier #n_subid |
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+

(o.descr)

B e T S S b a s s o s e e S
| Octet String Length (L) |
ottt -ttt -ttt -F-F-+-+-+
| Octet 1 | Octet 2 | Octet 3 | Octet 4 |
B s ST S s s o S S e b ot ok Sk s

o+ttt -ttt -ttt -ttt -F-F-+-+-+
| Octet L -1 | Octet L Padding (as required) |
ottt tototototototototot ottt ottt otototot ottt -t-+-+

Daniele/Wijnen Expires November 1997 [Page 23]

Draft Agent Extensibility (AgentX) Protocol April 1997

An agentx-0Open-PDU contains the following fields:
o.timeout

The length of time, in seconds, that a master agent should
allow to elapse after dispatching a message to a subagent
before it regards the subagent as not responding. This is a
subagent-wide default value that may be overridden by values
associated with specific registered MIB regions. The default
value of 0@ indicates that no subagent-wide value is
requested.

0.id

An Object Identifier that identifies the subagent. Subagents
that do not support such an notion may send a null Object
Identifier.

o.descr

An Octet String containing a DisplayString describing the
subagent.

6.2.2. The agentx-Close-PDU

An agentx-Close-PDU issued by either a subagent or the master
agent terminates an AgentX session.

(AgentX header)
tot-t-t-t-t-F-F-t-t-t-t-t-t-t-F-F-F-F-F-F-F-t-t-t-F-t-F-F-F-+-+-+
| h.version (1) | h.type (2) | h.flags | <reserved> |
ottt -ttt -ttt -F-F-+-+-+
| h.sessionID
tot-t-t-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-F-F-F-F-F-+-+-+
| h.transactionID |
B T S I e o o ot S S S S S S S T S S S S
| h.packetID |
tot-t-t-t-t-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-+-+-+-+
| h.payload_length |
B T e n b e e T e el e T P P Sy S S S

tot-t-t-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
| c.reason <reserved>
B T e n b e e T e el e T P P Sy S S S

Daniele/Wijnen Expires November 1997 [Page 24]

Draft Agent Extensibility (AgentX) Protocol April 1997

An agentx-Close-PDU contains the following field:
c.reason

An enumerated value that gives the reason that the master
agent or subagent closed the AgentX session. This field may
take one of the following values:

reasonOther (1)
None of the following reasons

reasonParseError(2)
Too many AgentX parse errors from peer

reasonProtocolError(3)
Too many AgentX protocol errors from peer

reasonTimeouts(4)
Too many timeouts waiting for peer

reasonShutdown(5)
Sending entity is shutting down

reasonByManager (6)
Due to Set operation; this reason code can
be used only by the master agent, in response
to an SNMP management request.

Daniele/Wijnen Expires November 1997 [Page 25]

Draft Agent Extensibility (AgentX) Protocol April 1997

6.2.3. The agentx-Register-PDU

An agentx-Register-PDU is generated by a subagent for each region of
the MIB variable naming tree (within one or more contexts) that it
wishes to support.

(AgentX header)
tot-t-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-+-+-+
| h.version (1) | h.type (3) | h.flags | <reserved> |
B T n s o T e e T e e E ek Sk S S S S A
| h.sessionID
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| h.transactionID |
Bk T e S R e s o R e S e e e e R Ik EE T L S P S
| h.packetID |
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
| h.payload_length |
tot-t-t-t-totototototot-t-t-t-t-t-F-F-FoF-F-t-t-t-F-t-F-F-F-+-+-+

(r.context) (OPTIONAL)

Rk T R e R ke s T T e e e ko T R R S e S e e ke
| Octet String Length (L) |
Fototototototototototot-totototototototototot-tototot-t-t-Ft-F-+-+
| Octet 1 | Octet 2 | Octet 3 | Octet 4 |
kR e R R et s T T e R ik ek T S P S P R o e e et S P

+-t-F-t-F-F-F-t-t-F-F-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-F-F+-+-+-+
| Octet L -1 | Octet L Padding (as required) |
i e R R R e e R S e e e T e R ek T S R S S S S e e

+-t-F-t-t-t-F-t-t-F-F-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-F-F+-+-+-+
| r.timeout | r.priority | r.range_subid | <reserved> |
i e R R R e e R S e e e T e R ek T S R S S S S e e

(r.region)

B s s E T S S S ahl ah s o S S S S S
| n_subid | prefix | 0 | <reserved> |
+ot-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-F+-+-+-+
| sub-identifier #1

B b s e b ke b e ST S e S S S S S o h =

Fototototototototototot-totototototototototot-tototot-t-t-Ft-F-+-+
sub-identifier #n_subid
kR e R R et s T T e R ik ek T S P S P R o e e et S P

(r.upper_bound)
+-+-F-F-+-+-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-+-F-F-F-+-F-F+-+-+-+
| optional upper-bound sub-identifier

Fototototot-todtototototototototot-totototot-Fot-tot-toF-t-F-t-+-+

Daniele/Wijnen Expires November 1997 [Page 26]

Draft

Agent Extensibility (AgentX) Protocol April 1997

An agentx-Register-PDU contains the following fields:

r.context

An optional non-default context.

r.timeout

The length of time, in seconds, that a master agent should
allow to elapse after dispatching a message to a subagent
before it regards the subagent as not responding. r.timeout
applies only to messages that concern MIB objects within
r.region. It overrides both the subagent-wide value (if any)
indicated when the AgentX session with the master agent was
established, and the master agent's default timeout. The
default value for r.timeout is @ (no override).

r.priority

A value between 1 and 255, used to achieve a desired
configuration when different subagents register identical or
overlapping regions. Subagents with no particular knowledge
of priority should register with the default value of 255
(lowest priority).

In the master agent's dispatching algorithm, smaller
values of r.priority take precedence over larger values,
as described in section 7.1.5.1.

r.region

An Object Identifier that, in conjunction with r.range_subid,
indicates a region of the MIB that a subagent wishes to
support. It may be a fully-qualified instance name, a partial
instance name, a MIB table, an entire MIB, or ranges of any of
these.

The choice of what to register is implementation-specific;
this memo does not specify permissible values. Standard
practice however is for a subagent to register at the
highest level of the naming tree that makes sense.
Registration of fully-qualified instances is typically done
only when a subagent can perform management operations only
on particular rows of a conceptual table.

If r.region is in fact a fully qualified instance name, the
INSTANCE_REGISTRATION bit in h.flags must be set, otherwise it
must be cleared. The master agent may save this information
to optimize subsequent operational dispatching.

Daniele/Wijnen Expires November 1997 [Page 27]

Draft Agent Extensibility (AgentX) Protocol April 1997

r.range_subid

Permits specifying a range in place of one of r.region's
sub-identifiers. 1If this value is 0, no range is specified.
Otherwise the "r.range_subid"-th sub-identifier in

r.region is a range lower bound, and the range upper

bound sub-identifier (r.upper_bound) immediately follows
r.region.

This permits registering a conceptual row with a single
PDU. For example, the following PDU would register row
7 of the RFC 1573 ifTable (1.3.6.1.2.1.2.2.1.1-22.7):

(AgentX header)
tot-t-t-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-F-F-F-F-F-+-+-+
| h.version (1) | h.type (3) | h.flags | <reserved> |
ottt -ttt -ttt -F-F-+-+-+
| h.sessionID
+ot-t-t-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-+-+-+-+
| h.transactionID |
B b b e e T e b e =
| h.packetID |
tot-t-t-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
| h.payload_length |
BT R b E b e e ok T e S T TP SN S S Sy S o

ottt tototototototototot ottt ottt otototot ottt -t-+-+
r.timeout | r.priority | 5 | <reserved> |
BT R b E b e e ok T e S T TP SN S S Sy S o

(r.region)

+-t-Ft-F-+-F-F-F-+-F-F-F-F-F-F-+-F-F-F-F-F-F-F-+-F-F-F-F-F-F+-+-+-+
| 6 | 2 | © | <reserved> |
ottt -t-F-t-t-F-F-t-t-F-F-t-t-F-F-t-F-F-F-F-F-F-F-F-F-F-F-+-+-+
| 1 I
+-+-F-+-+-F-F-F-+-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-+-F-F-F+-+-+-+
| 2 I
ottt -t-t-F-t-t-F-F-t-t-F-F-t-t-F-F-F-F-F-t-F-F-F-F-+-+-+
| 2 I
+-+-F-+-+-F-F-F-+-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-+-+-F-F+-+-+-+
| 1 I
ottt -ttt -ttt -ttt -F-F-F-F+-+-+-+
| 1 I
+-t-F-F-+-F-F-F-+-F-F-F-F-F-F-+-F-F-F-F+-F-F-F-+-F-F-F-F+-F-F+-+-+-+
| 7 I
BT L b et ik T e e e e e e e e R h h F T ST SR P S S S

(r.upper_bound)

https://datatracker.ietf.org/doc/html/rfc1573

B S S e e T e ST S T ot o S
| 22
B S T S ST S T L s st P S RS

Daniele/Wijnen Expires November 1997 [Page 28]

Draft Agent Extensibility (AgentX) Protocol April 1997

6.2.4. The agentx-Unregister-PDU

The agentx-Unregister-PDU is sent by a subagent to remove a
previously registered MIB region from the master agent's OID space.

(AgentX header)
tot-t-t-t-t-F-F-t-t-t-t-t-t-t-F-F-F-F-F-F-F-t-t-t-F-t-F-F-F-+-+-+
| h.version (1) | h.type (4) | h.flags | <reserved> |
ottt -t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
| h.sessionID
tot-t-t-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-F-F-F-F-F-+-+-+
| h.transactionID |
ottt -ttt -ttt -F-F-+-+-+
| h.packetID |
+ot-t-t-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-+-+-+-+
| h.payload_length |
B b b e e T e b e =

(u.context) OPTIONAL

+ot-t-t-t-F-F-F-F-F-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
| Octet String Length (L) |
ottt -t-tot-t-t-t-t-t-t-d-F-t-t-F-t-t-t-F-t-t-t-F-F-t-F-F-+-+-+
| Octet 1 | Octet 2 | Octet 3 | Octet 4 |
+ot-t-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+

ottt totot-totototot-totot-t-toF-t-t-t-t-t-t-t-t-t-t-F-F-+-+-+
| Octet L -1 | Octet L Padding (as required) |
ottt -ttt -ttt -F-F-+-+-+

ottt tototototototot-tototototototototot -ttt -t-toF-t-F-+-+
<reserved> | u.range_subid | <reserved> |
ottt -ttt -ttt -F-F-+-+-+

(u.region)
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| n_subid | prefix | 0] | <reserved> |
Bk T e S R e s o R e S e e e e R Ik EE T L S P S
| sub-identifier #1
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+

ottt -t-tot-t-t-t-t-t-t-d-F-t-t-F-t-t-t-F-t-t-t-F-F-t-F-F-+-+-+
sub-identifier #n_subid
+ot-t-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+

(u.upper_bound)
tot-t-t-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
| optional upper-bound sub-identifier

BT R b E b e e ok T e S T TP SN S S Sy S o

Daniele/Wijnen Expires November 1997 [Page 29]

Draft Agent Extensibility (AgentX) Protocol April 1997

An agentx-Unregister-PDU contains the following fields:
u.context
An optional non-default context.
u.region

Indicates a previously-registered region of the MIB that a
subagent no longer wishes to support.

Daniele/Wijnen Expires November 1997 [Page 30]

Draft Agent Extensibility (AgentX) Protocol April 1997

6.2.5. The agentx-Get-PDU

(AgentX header)

+-t-t-Ft-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| h.version (1) | h.type (5) | h.flags | <reserved> |
kR e R R et s T T e R ik ek T S P S P R o e e et S P
| h.sessionID |
+-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+-+
| h.transactionID |
Rk R e R R ek e e S e e R T e R bt T T T e S S
| h.packetID |
+-t-t-F-F-F-t-t-t-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| h.payload_length |
tot-t-t-t-F-tot-t-t-t-F-F-t-t-FotoFoFotot-t-t-t-t-F-F-F-F-F+-F+-+-+

(g.context) OPTIONAL

B b s e b ke b e ST S e S S S S S o h =
| Octet String Length (L) |
tot-t-t-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| Octet 1 | Octet 2 | Octet 3 | Octet 4 |
kR e R R et s T T e R ik ek T S P S P R o e e et S P

+-t-t-t-F-t-t-F-+-+-+
| Octet L -1 | Octet L Padding (as required) |
+-+-F+-+-+-+

(g.sr)

(start 1)
Fot-totototototot-toFot-t-toF-t-t-totot-totot-t-toF-F-t-t-F-F+-+-+
| n_subid | prefix | include | <reserved> |

B s s E T S S S ahl ah s o S S S S S
| sub-identifier #1
+ot-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-F+-+-+-+

+-+-+-F+-+-+-F-F-+-+-F-F-+-+-F-F-+-F-F-F-+-F-F-+-F-F-F-+-F-F+-+-+-+
sub-identifier #n_subid
+-t-t-t-t-t-F-t-t-F-F-F-t-F-F-F-t-F-F-F-F-F-t-F-F-F-F-+-F-F-+-+-+

(end 1)
ottt -t-F-F-t-t-F-F-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
| 0 | © | © 0

e e T S S T A st P A S S S S s S S

(start n)

+-t-t-t-F-t-t-F-+-+-+
| n_subid | prefix | include | <reserved> |

Fot-tototototodtotodtototototototoF-totototot-tototot -ttt

sub-identifier #1
+-t+-F-F-F-t-F-+-+-+

Daniele/Wijnen Expires November 1997 [Page 31]

Draft Agent Extensibility (AgentX) Protocol April 1997

+-+-F-F-F-+-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-+-F-F+-+-+-+
sub-identifier #n_subid
+-t-F-F-F-t-F-+-+-+

(end n)
kR e R R et s T T e R ik ek T S P S P R o e e et S P
| © | © | © 0

e e e T ST S e T S S S S S R T2

An agentx-Get-PDU contains the following fields:
g.context
An optional non-default context.
g.sr

A SearchRangelList containing the requested variables for this
subagent.

6.2.6. The agentx-GetNext-PDU

(AgentX header)

Rk T R e R ke s T T e e e ko T R R S e S e e ke
| h.version (1) | h.type (6) | h.flags | <reserved> |
tot-t-t-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| h.sessionID |
kR e R R et s T T e R ik ek T S P S P R o e e et S P
| h.transactionID |
tot-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| h.packetID |
Rk R e R R ek e e S e e R T e R bt T T T e S S
| h.payload_length |
+-t-t-F-F-F-t-t-t-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+

(g.context) OPTIONAL

Fototototototototototot-totototototototototot-t-totot-t-t-F-F-+-+
| Octet String Length (L) |
B s T T S S S S S T S S S S S
| Octet 1 | Octet 2 | Octet 3 | Octet 4 |
Fototototototototototot-totototototototototot-tototot-t-t-Ft-F-+-+
Rk T R e R ke s T T e e e ko T R R S e S e e ke
| Octet L -1 | Octet L Padding (as required) |
tototototototototototototototototototot-totot -ttt -t-t-Ft-F-+-+

(g.sr)

Daniele/Wijnen Expires November 1997 [Page 32]

Draft Agent Extensibility (AgentX) Protocol April 1997

(start 1)
kR e R R et s T T e R ik ek T S P S P R o e e et S P
| n_subid | prefix | include | <reserved> |

+-t-t-Ft-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| sub-identifier #1
Rk R e R R ek e e S e e R T e R bt T T T e S S

+-t-F-t-t-t-F-t-t-F-F-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-F-F+-+-+-+
sub-identifier #n_subid
+-t-F+-+-+-+

(end 1)
+-+-+-F+-+-+-F-F-+-+-F-F-+-+-F-F-+-F-F-F-+-F-F-+-F-F-F-+-F-F+-+-+-+
| n_subid | prefix | 0 | <reserved> |

tot-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-F+-+-+-+
| sub-identifier #1
Rk T R e R ke s T T e e e ko T R R S e S e e ke

tototototototototototototototototototot-totot -ttt -t-t-Ft-F-+-+
sub-identifier #n_subid
B b n e T e e e e b e s o T S SN S Sy S S S S

(start n)
Rk R e R R ek ke e S e e R ik ah TR L TR P T P T S T
| n_subid | prefix | include | <reserved> |

+-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+-+
| sub-identifier #1
Dk R e e R e e e S e e R sl e S e e e R It

+-t-F-t-t-t-F-t-t-t-F-F-t-F-F-F-t-F-F-F-F-F-F-F-F-F-F-+-F-F+-+-+-+
sub-identifier #n_subid
+ot-t-t-F-t-t-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+

(end n)
Rk T R e R ke s T T e e e ko T R R S e S e e ke
| n_subid | prefix | 0 | <reserved> |

tot-t-t-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| sub-identifier #1
kR e R R et s T T e R ik ek T S P S P R o e e et S P

+-t-F-t-t-F-F-t-t-F-F-F-+-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-F-F+-+-+-+
sub-identifier #n_subid
+-+-F+-+-+-+

Daniele/Wijnen Expires November 1997 [Page 33]

Draft Agent Extensibility (AgentX) Protocol April 1997

6.2.7. The agentx-GetBulk-PDU

(AgentX header)

+-t-t-Ft-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| h.version (1) | h.type (7) | h.flags | <reserved> |
kR e R R et s T T e R ik ek T S P S P R o e e et S P
| h.sessionID |
+-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+-+
| h.transactionID |
Rk R e R R ek e e S e e R T e R bt T T T e S S
| h.packetID |
+-t-t-F-F-F-t-t-t-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| h.payload_length |
tot-t-t-t-F-tot-t-t-t-F-F-t-t-FotoFoFotot-t-t-t-t-F-F-F-F-F+-F+-+-+

(g.context) OPTIONAL

B b s e b ke b e ST S e S S S S S o h =
| Octet String Length (L) |
tot-t-t-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| Octet 1 | Octet 2 | Octet 3 | Octet 4 |
kR e R R et s T T e R ik ek T S P S P R o e e et S P

+-t-t-t-F-t-t-F-+-+-+
| Octet L -1 | Octet L Padding (as required) |
+-+-F+-+-+-+

+-t-F-t-F-F-F-t-t-F-F-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-F-F+-+-+-+
g.non_repeaters | g.max_repetitions

Fot-tototototodtotodtototototototoF-totototot-tototot -ttt

(g.sr)

Daniele/Wijnen Expires November 1997 [Page 34]

Draft Agent Extensibility (AgentX) Protocol April 1997

6.2.8. The agentx-TestSet-PDU

(AgentX header)

+-t-t-Ft-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| h.version (1) | h.type (8) | h.flags | <reserved> |
kR e R R et s T T e R ik ek T S P S P R o e e et S P
| h.sessionID |
+-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+-+
| h.transactionID |
Rk R e R R ek e e S e e R T e R bt T T T e S S
| h.packetID |
+-t-t-F-F-F-t-t-t-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| h.payload_length |
tot-t-t-t-F-tot-t-t-t-F-F-t-t-FotoFoFotot-t-t-t-t-F-F-F-F-F+-F+-+-+

(t.context) OPTIONAL

B b s e b ke b e ST S e S S S S S o h =
| Octet String Length (L) |
tot-t-t-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| Octet 1 | Octet 2 | Octet 3 | Octet 4 |
kR e R R et s T T e R ik ek T S P S P R o e e et S P

+-t-t-t-F-t-t-F-+-+-+
| Octet L -1 | Octet L Padding (as required) |
+-+-F+-+-+-+

(t.vb)

(varBind 1)

+ot-t-t-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-t-F-t-F-F-F-F-F-F+-+-+-+
| v.type | <reserved> |
B s s E T S S S ahl ah s o S S S S S
| n_subid | prefix | 0 | <reserved> |
+ot-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-F+-+-+-+
| sub-identifier #1 |
B s T T S S S S S T S S S S S

Fototototototototototot-totototototototototot-tototot-t-t-Ft-F-+-+
| sub-identifier #n_subid |
Rk T R e R ke s T T e e e ko T R R S e S e e ke
| data |
tototototototototototototototototototot-totot -ttt -t-t-Ft-F-+-+

Rk R e e R ik e e e e ana e T P e S S e e ats o
data
+-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+-+

Daniele/Wijnen Expires November 1997 [Page 35]

Draft Agent Extensibility (AgentX) Protocol April 1997

(varBind n)

kR e R R et s T T e R ik ek T S P S P R o e e et S P
| v.type | <reserved> |
+-t-t-Ft-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| n_subid | prefix | 0 | <reserved> |
Rk R e R R ek e e S e e R T e R bt T T T e S S
| sub-identifier #1 |
+-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+-+

+-t-F+-+-+-+
| sub-identifier #n_subid |
+-+-F-F-F-+-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-F-F-F-F-+-F-F+-+-+-+
| data |
+ot-t-t-F-t-t-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
+-+-F-F-F-+-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-+-F-F+-+-+-+
data
+-t-F-F-F-t-F-+-+-+
An agentx-TestSet-PDU contains the following fields:
t.context
An optional non-default context.
t.vb
A VarBindList containing the requested VarBinds for
this subagent.
6.2.9. The agentx-CommitSet, -UndoSet, -CleanupSet PDUs

These PDUs consist of the AgentX header only.

The agentx-CommitSet-, -UndoSet-, and -Cleanup-PDUs are
used in processing an SNMP SetRequest operation.

Daniele/Wijnen Expires November 1997 [Page 36]

Draft Agent Extensibility (AgentX) Protocol April 1997

6.2.10. The agentx-Notify-PDU

An agentx-Notify-PDU is sent by a subagent to cause the master agent
to forward a notification.

(AgentX header)

tot-t-t-F-F-t-t-t-t-t-t-t-t-t-F-F-F-F-F-t-t-F-t-t-F-F-F-F-F+-+-+-+
| h.version (1) | h.type (12) | h.flags | <reserved> |
tot-t-t -ttt -ttt -ttt -F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| h.sessionID |
tot-t-t-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-t-tF-F-F-F-F-F+-+-+-+
| h.transactionID |
B s s E T S S S ahl ah s o S S S S S
| h.packetID |
+ot-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-F+-+-+-+
| h.payload_length |
B b s e b ke b e ST S e S S S S S o h =

(n.context) OPTIONAL

+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| Octet String Length (L) |
tot-t-t-t-t-tot-tot-t-t-t-t-t-FoFoFtoF-tot-t-t-t-t-F-F-F-F-F-F+-+-+
| Octet 1 | Octet 2 | Octet 3 | Octet 4 |
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
tot-t-t-F-F-t-t-t-t-t-t-t-t-t-F-F-F-F-F-t-t-F-t-t-F-F-F-F-F+-+-+-+
| Octet L -1 | Octet L Padding (as required) |

e ST S S s S S S e e P S S e st 3

(n.vb)

An agentx-Notify-PDU contains the following fields:
n.context
An optional non-default context.
n.vb
A VarBindList whose contents define the actual PDU to be
sent. This memo places the following restrictions on its

contents:

- If the subagent supplies sysUpTime.0@, it must be
present as the first varbind.

- snmpTrap0ID.@ must be present, as the second

varbind if sysUpTime.0 was supplied, as the
first if it was not.

Daniele/Wijnen Expires November 1997 [Page 37]

Draft Agent Extensibility (AgentX) Protocol April 1997

6.2.11 The agentx-Ping-PDU

The agentx-Ping-PDU is sent by a subagent to the master agent to
monitor the master agent's ability to receive and send AgentX
PDUs over their AgentX session.

(AgentX header)

+-t-t-Ft-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| h.version (1) | h.type (13) | h.flags | <reserved> |
Rk R e R R ek ke e S e e R ik ah TR L TR P T P T S T
| h.sessionID |
+-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+-+
| h.transactionID |
Dk R e e R e e e S e e R sl e S e e e R It
| h.packetID |
+-t-t-F-F-F-t-t-t-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| h.payload_length |
tot-t-t-t-t-tot-tot-t-t-t-t-t-FoFoFtoF-tot-t-t-t-t-F-F-F-F-F-F+-+-+

(p.context) OPTIONAL
Rk T R e R ke s T T e e e ko T R R S e S e e ke
| Octet String Length (L) |
Fototototototototototot-totototototototototot-tototot-t-t-Ft-F-+-+
| Octet 1 | Octet 2 | Octet 3 | Octet 4 |
kR e R R et s T T e R ik ek T S P S P R o e e et S P

tot-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| Octet L -1 | Octet L Padding (as required) |
BT T ek e ok o e e e e o o T S S S S S S S
An agentx-Ping-PDU may contain the following field:
p.context

An optional non-default context.

Using p.context a subagent can retrieve the sysUpTime value
for a specific context, if required.

Daniele/Wijnen Expires November 1997 [Page 38]

Draft Agent Extensibility (AgentX) Protocol April 1997

6.2.12. The agentx-IndexAllocate-PDU

An agentx-IndexAllocate-PDU is sent by a subagent to request
allocation of a value for specific index objects. Refer to section
7.1.3 (Using the agentx-IndexAllocate-PDU) for suggested usage.

(AgentX header)

+-t-t-Ft-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| h.version (1) | h.type (14) | h.flags | <reserved> |
Rk R e R R ek ke e S e e R ik ah TR L TR P T P T S T
| h.sessionID |
+-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+-+
| h.transactionID |
Dk R e e R e e e S e e R sl e S e e e R It
| h.packetID |
+-t-t-F-F-F-t-t-t-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| h.payload_length |
tot-t-t-t-t-tot-tot-t-t-t-t-t-FoFoFtoF-tot-t-t-t-t-F-F-F-F-F-F+-+-+

(i.context) OPTIONAL

Rk T R e R ke s T T e e e ko T R R S e S e e ke
| Octet String Length (L) |
Fototototototototototot-totototototototototot-tototot-t-t-Ft-F-+-+
| Octet 1 | Octet 2 | Octet 3 | Octet 4 |
kR e R R et s T T e R ik ek T S P S P R o e e et S P
tot-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| Octet L -1 | Octet L Padding (as required) |

FototototototototototobototototototoF oottt ottt ottt

(i.vb)

An agentx-IndexAllocate-PDU contains the following fields:
i.context
An optional non-default context.
i.vb

A VarBindList containing the index names and values requested
for allocation.

Daniele/Wijnen Expires November 1997 [Page 39]

Draft Agent Extensibility (AgentX) Protocol April 1997

6.2.13. The agentx-IndexDeallocate-PDU

An agentx-IndexDeallocate-PDU is sent by a subagent to release
previously allocated index values.

(AgentX header)

tot-t-t-F-F-t-t-t-t-t-t-t-t-t-F-F-F-F-F-t-t-F-t-t-F-F-F-F-F+-+-+-+
| h.version (1) | h.type (15) | h.flags | <reserved> |
tot-t-t -ttt -ttt -ttt -F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| h.sessionID |
tot-t-t-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-t-tF-F-F-F-F-F+-+-+-+
| h.transactionID |
B s s E T S S S ahl ah s o S S S S S
| h.packetID |
+ot-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-F+-+-+-+
| h.payload_length |
B b s e b ke b e ST S e S S S S S o h =

(i.context) OPTIONAL
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+

| Octet String Length (L) |
ottt -t-t-t-t-t-t-F-t-t-t-F-t-t-t-F-t-t-t-F-F-t-F-F-F-t-F-+-+-+

| Octet 1 | Octet 2 | Octet 3 | Octet 4 |
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
Fotototototototot-totot-t-t-t-t-t-t-t-t-t-t-Ft-t-t-t-F-t-t-F-F+-+-+
| Octet L -1 | Octet L Padding (as required) |

e ST S S s S S S e e P S S e st 3

(i.vb)

An agentx-IndexDeallocate-PDU contains the following fields:
i.context
An optional non-default context.
i.vb

A VarBindList containing the index names and values to be
released.

Daniele/Wijnen Expires November 1997 [Page 40]

Draft Agent Extensibility (AgentX) Protocol April 1997

6.2.14. The agentx-AddAgentCaps-PDU

An agentx-AddAgentCaps-PDU is generated by a subagent to inform the
master agent of its agent capabilities.

(AgentX header)

tot-t-t-F-F-t-t-t-t-t-t-t-t-t-F-F-F-F-F-t-t-F-t-t-F-F-F-F-F+-+-+-+
| h.version (1) | h.type (16) | h.flags | <reserved> |
tot-t-t -ttt -ttt -ttt -F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| h.sessionID |
tot-t-t-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-t-tF-F-F-F-F-F+-+-+-+
| h.transactionID |
B s s E T S S S ahl ah s o S S S S S
| h.packetID |
+ot-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-F+-+-+-+
| h.payload_length |
B b s e b ke b e ST S e S S S S S o h =

(a.context) (OPTIONAL)

+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| Octet String Length (L) |
tot-t-t-t-t-tot-tot-t-t-t-t-t-FoFoFtoF-tot-t-t-t-t-F-F-F-F-F-F+-+-+
| Octet 1 | Octet 2 | Octet 3 | Octet 4 |
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+

tot-t-t-F-F-t-t-t-t-t-t-t-t-t-F-F-F-F-F-t-t-F-t-t-F-F-F-F-F+-+-+-+
| Octet L -1 | Octet L Optional Padding
B s s E T S S S ahl ah s o S S S S S

(a.id)
+-t-F-t-t-t-F-t-t-F-F-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-F-F+-+-+-+
| n_subid | prefix | 0 | <reserved> |
i e R R R e e R S e e e T e R ek T S R S S S S e e
| sub-identifier #1
+-t-F-t-t-t-F-t-t-t-F-F-t-F-F-F-t-F-F-F-F-F-F-F-F-F-F-+-F-F+-+-+-+

tot-t-t-t-F-tot-t-t-t-F-F-t-t-FotoFoFotot-t-t-t-t-F-F-F-F-F+-F+-+-+
sub-identifier #n_subid
+ot-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+

(a.descr)

Fototototototototototot-totototototototototot-tototot-t-t-Ft-F-+-+
| Octet String Length (L) |
kR e R R et s T T e R ik ek T S P S P R o e e et S P
| Octet 1 | Octet 2 | Octet 3 | Octet 4 |
tototototototototototototototototototot-totot -ttt -t-t-Ft-F-+-+

Fot-tototototodtotodtototototototoF-totototot-tototot -ttt

| Octet L -1 | Octet L Optional Padding
+-t+-F-F-F-t-F-+-+-+

Daniele/Wijnen Expires November 1997 [Page 41]

Draft Agent Extensibility (AgentX) Protocol April 1997

An agentx-AddAgentCaps-PDU contains the following fields:
a.context
An optional non-default context.
a.id

An Object Identifier containing the value of an invocation of
the AGENT-CAPABILITIES macro, which the master agent exports
as a value of sysORID for the indicated context. (Recall that
the value of an invocation of an AGENT-CAPABILITIES macro is
an object identifier that describes a precise level of support
with respect to implemented MIB modules. A more complete
discussion of the AGENT-CAPABILITIES macro and related sysORID
values can be found in section 6 of RFC 1904 [10].)

a.descr

An Octet String containing a DisplayString to be used as the
value of sysORDescr corresponding to the sysORID value above.

https://datatracker.ietf.org/doc/html/rfc1904#section-6

Daniele/Wijnen Expires November 1997 [Page 42]

Draft Agent Extensibility (AgentX) Protocol April 1997

6.2.15. The agentx-RemoveAgentCaps-PDU

An agentx-RemoveAgentCaps-PDU is generated by a subagent to request
that the master agent stop exporting a particular value of sysORID.
This value must have previously been advertised by the subagent in
an agentx-AddAgentCaps-PDU.

(AgentX header)

ottt -t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
| h.version (1) | h.type (17) | h.flags | <reserved> |
tot-t-t-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-F-F-F-F-F-+-+-+
| h.sessionID
ottt -ttt -ttt -F-F-+-+-+
| h.transactionID |
+ot-t-t-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-+-+-+-+
| h.packetID |
B b b e e T e b e =
| h.payload_length |
tot-t-t-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+

(a.context) (OPTIONAL)

+ot-t-t-F-t-F-+-+-+
| Octet String Length (L) |
+-t-Ft-F-+-F-F-F-+-F-F-F-F-F-F-+-F-F-F-F-F-F-F-+-F-F-F-F-F-F+-+-+-+
| Octet 1 | Octet 2 | Octet 3 | Octet 4 |
+ot-t-t-F+-+-+-+-+

ottt -ttt -ttt -F-F-+-+-+
| Octet L -1 | Octet L Optional Padding
B e T S S b a s s o s e e S

(a.id)

Bk e e e R e ik o R e e e e R e e R e b ik ioE L S P S
| n_subid | prefix | 0 | <reserved> |
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
| sub-identifier #1
tot-t-t-totototototototott-t-tot ottt Fotot-t-t-t-F-F-F-+-+-+

+-t-t-F-t-F-F-F-F-F-F-F-F-F-F-+-F-F-F-F-F-F-F-+-F-F-F-F-F-F+-+-+-+
sub-identifier #n_subid
+ot-t-t-F+-+-+-+-+

Daniele/Wijnen Expires November 1997 [Page 43]

Draft Agent Extensibility (AgentX) Protocol April 1997

An agentx-RemoveAgentCaps-PDU contains the following fields:
a.context
An optional non-default context.
a.id

An ObjectIdentifier containing the value of sysORID that
should no longer be exported.

6.2.16. The agentx-Response-PDU

Bk T e S R e s o R e S e e e e R Ik EE T L S P S
| h.version (1) | h.type (18) | h.flags | <reserved> |
+ot-t-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| h.sessionID

tot-t-t-t-totototototot-t-t-t-t-t-F-F-FoF-F-t-t-t-F-t-F-F-F-+-+-+
| h.transactionID |
+ot-t-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| h.packetID |
tot-t-t-t-t-F-F-t-t-t-t-t-t-t-F-F-F-F-F-F-F-t-t-t-F-t-F-F-+-+-+-+
| h.payload_length |
ottt -ttt -ttt -F-F-+-+-+

ottt -t-F-t-t-F-F-t-t-F-F-t-t-F-F-t-F-F-F-F-F-F-F-F-F-F-F-+-+-+
| res.sysUpTime

+-+-F-+-+-F-F-F-+-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-+-F-F-F+-+-+-+
| res.error | res.index |
ottt -t-t-F-t-t-F-F-t-t-F-F-t-t-F-F-F-F-F-t-F-F-F-F-+-+-+

An agentx-Response-PDU contains the following fields:
h.sessionID
If this is a response to a agentx-Open-PDU, then it
contains the new and unique sessionID (as assigned by

the master agent) for this session.

Otherwise it must be identical to the h.sessionID
value in the PDU to which this PDU is a response.

h.transactionID

Must be identical to the h.transactionID value in the PDU to
which this PDU is a response.

In an agentx response PDU from the master agent to the

Daniele/Wijnen Expires November 1997 [Page 44]

Draft

subagent,

Agent Extensibility (AgentX) Protocol

and can be ignored by the subagent.

h.packetID

April 1997

the value of h.transactionID has no significance

Must be identical to the h.packetID value in the PDU to

which this PDU is a response.

res.sysUpTime

This field contains the current value of sysUpTime for

the indicated context.

It is relevant only in agentx

response PDUs sent from the master agent to a subagent in
response to the following agentx PDUs:

agentx-0pen-PDU
agentx-Close-PDU
agentx-Register-PDU
agentx-Unregister-PDU
agentx-Ping-PDU

agentx-IndexAllocate-PDU
agentx-IndexDeallocate-PDU
agentx-AddAgentCaps-PDU
agentx-RemoveAgentCaps-PDU

(1),
(2),
(3),
(4),
(13),
(14),
(15),
(16),
(17)

In an agentx response PDU from the subagent to the master
the value of res.sysUpTime has no significance and

agent,

is ignored by the master agent.

res.error

Indicates error status (including "noError').

Values are

limited to those defined for errors in the SNMPv2 SMI (RFC
1905 [4]), and the following AgentX-specific values:

res.index

openFailed

notOpen
indexWrongType
indexAlreadyAllocated
indexNoneAvailable
indexNotAllocated
unsupportedContext
duplicateRegistration
unknownRegistration
unknownAgentCaps

(256),
(257),
(258),
(259),
(260),
(261),
(262),
(263),
(264),
(265)

https://datatracker.ietf.org/doc/html/rfc1905
https://datatracker.ietf.org/doc/html/rfc1905

In error cases, this is the index of the failed variable
binding within a received request PDU. (Note: As explained in

Daniele/Wijnen Expires November 1997 [Page 45]

Draft Agent Extensibility (AgentX) Protocol April 1997

I~

~J

section 5.4, Value Representation, the index values of
variable bindings within a variable binding list are 1-based.)
Other data may follow these latter two fields, depending on
which AgentX PDU is being responded to. These data are
specified in the subsequent elements of procedure.

Elements of Procedure

This section describes the actions of protocol entities (master
agents and subagents) implementing the AgentX protocol. Note,
however, that it is not intended to constrain the internal
architecture of any conformant implementation.

Specific error conditions and associated actions are described in
various places. Other error conditions not specifically mentioned
fall into one of two categories, "parse" errors and "protocol"
errors.

A parse error occurs when a receiving entity cannot decode the PDU.
For instance, a VarBind contains an unknown type, or a PDU contains
a malformed Object Identifier.

A protocol error occurs when a receiving entity can parse a PDU, but
the resulting data is unspecified. For instance, an
agentx-Response-PDU is successfully parsed, but contains an unknown
res.error value.

An implementation may choose either to ignore such messages, or to
close the session on which they are received, using the appropriate
reason code as defined in the agentx-Close-PDU.

The actions of AgentX protocol entities can be broadly categorized
under two headings, each of which is described separately:

(1) processing AgentX administrative messages (e.g., connection
requests from a subagent to a master agent); and

(2) processing SNMP messages (e.g., the coordinated actions of a
master agent and one or more subagents in processing a
received SNMP Get-PDU).

.1. Processing AgentX Administrative Messages

This subsection describes the actions of AgentX protocol entities
in processing AgentX administrative messages. Such messages
include those involved in establishing and terminating an AgentX
session between a subagent and a master agent, those by which a
subagent requests allocation of instance index values, and those

by which a subagent communicates to a master agent which MIB
regions it supports.

Daniele/Wijnen Expires November 1997 [Page 46]

Draft Agent Extensibility (AgentX) Protocol April 1997

7.1.1. Processing the agentx-Open-PDU

When the master agent receives an agentx-Open-PDU, it processes
it as follows:

1) An agentx-Response-PDU is created and res.sysUpTime is set to
the value of sysUpTime.® for the indicated context.

2) If the master agent is unable to open an AgentX session for
any reason, it may refuse the session establishment request,
sending in reply the agentx-Response-PDU, with res.error
field set to "openFailed'.

3) Otherwise: The master agent assigns a sessionID to the new
session and puts the value in the h.sessionID field of the
agentx-Response-PDU. This value must be unique among all
existing open sessions.

4) The master agent retains session-specific information
from the PDU for this subagent:

- The NETWORK_BYTE_ORDER value in h.flags is retained.
All subsequent AgentX protocol operations initiated by
the master agent for this session must use this byte
ordering and set this bit accordingly.

The subagent typically sets this bit to correspond to
its native byte ordering, and typically does not vary
byte ordering for an initiated session. The master
agent must be able to decode each PDU according to its
h.flag NETWORK_BYTE_ORDER bit, but does not need to
toggle its retained value for the session if the
subagent varies its byte ordering.

- The o.timeout value is used in calculating timeout
conditions for this subagent.

- The o0.id and o.descr fields are used for informational
purposes. (Such purposes are implementation-specific
for now, and may be used in a possible future standard
AgentX MIB.)

5) The agentx-Response-PDU is sent with the res.error field
set to "noError'.

At this point, an AgentX session is considered established between
the master agent and the subagent. An AgentX session is a distinct
channel for the exchange of AgentX protocol messages between a

master agent and one subagent, qualified by the session-specific
attributes listed in 4) above. AgentX session establishment is

Daniele/Wijnen Expires November 1997 [Page 47]

Draft Agent Extensibility (AgentX) Protocol April 1997

initiated by the subagent. An AgentX session can be terminated
by either the master agent or the subagent.

7.1.2. Processing the agentx-IndexAllocate-PDU

When the master agent receives an agentx-IndexAllocate-PDU, it
processes it as follows:

1) An agentx-Response-PDU is created and res.sysUpTime is set to
the value of sysUpTime.@ for the default context.

2) If h.sessionID does not correspond to a currently established
session with this subagent, the agentx-Response-PDU is sent
in reply with res.error set to "notOpen'.

3) If the NON_DEFAULT_CONTEXT bit is set, and the master agent
supports only a default context, the agentx-Response-PDU is
returned with res.error set to “unsupportedContext', and the
requested allocation fails. Otherwise: The value of
res.sysUpTime is set to the value of sysUpTime.® for the
indicated context.

4) Each VvarBind in the VarBindList is processed until either all
are successful, or one fails. If any VarBind fails, the
agentx-Response-PDU is sent in reply containing the original
VarBindList, with res.index set to indicate the failed VarBind,
and with res.error set as described subsequently. All other
VarBinds are ignored; no index values are allocated.

VarBinds are processed as follows:

- v.name is the name of the index for which a value is to be
allocated.

- v.type is the syntax of the index object.

- v.data indicates the specific index value requested.
If the NEW_INDEX or the ANY_INDEX bit is set, the actual
value in v.data is ignored and an appropriate index value
is generated.

a) If there are no currently allocated index values for v.name
in the indicated context, and v.type does not correspond to
a valid index type value, the VvVarBind fails and res.error
is set to “indexWrongType'.

b) If there are currently allocated index values for v.name
in the indicated context, but the syntax of those values
does not match v.type, the VvarBind fails and res.error 1is

set to “indexWrongType'.

Daniele/Wijnen Expires November 1997 [Page 48]

Draft Agent Extensibility (AgentX) Protocol April 1997

c) Otherwise, if both the NEW_INDEX and ANY_INDEX bits are
clear, allocation of a specific index value 1is being
requested. If the requested index is already allocated
for v.name in the indicated context, the VarBind fails
and res.error is set to “indexAlreadyAllocated'.

d) Otherwise, if the NEW_INDEX bit is set, the master agent
should generate the next available index value for v.name
in the indicated context, with the constraint that this
value must not have been allocated (even if subsequently
released) to any subagent since the last re-initialization
of the master agent. If no such value can be generated,
the VarBind fails and res.error is set to “indexNoneAvailable'.

e) Otherwise, if the ANY_INDEX bit is set, the master agent
should generate an index value for v.name in the
indicated context, with the constraint that this value is
not currently allocated to any subagent. If no such value
can be generated, then the varBind fails and res.error 1is
set to “indexNoneAvailable'.

5) If all VarBinds are processed successfully, the
agentx-Response-PDU is sent in reply with res.error set to
"noError'. A VarBindList is included that is identical to the
one sent in the agentx-IndexAllocate-PDU, except that VarBinds
requesting a NEW_INDEX or ANY_INDEX value are generated with an
appropriate value.

7.1.3. Using the agentx-IndexAllocate-PDU

Index allocation is a service provided by an AgentX master agent.
It provides generic support for sharing MIB conceptual tables among
subagents who are assumed to have no knowledge of each other.

Each subagent sharing a table should first request allocation of
index values, then use those index values to qualify MIB regions in
its subsequent registrations.

The master agent maintains a database of index objects (0IDs), and,
for each index, the values that have been allocated for it. It is
unaware of what MIB variables (if any) the index objects represent.

By convention, subagents use the MIB variable listed in the INDEX
clause as the index object for which values must be allocated. For
tables indexed by multiple variables, values may be allocated for
each index (although this is frequently unnecessary; see example 2
below). The subagent may request allocation of

- a specific index value

- an index value that is not currently allocated
- an index value that has never been allocated

Daniele/Wijnen Expires November 1997 [Page 49]

Draft Agent Extensibility (AgentX) Protocol April 1997

The last two alternatives reflect the uniqueness and constancy
requirements present in many MIB specifications for arbitrary
integer indexes (e.g., ifIndex in the IF MIB (REC 1573 [11]),
snmpFddiSMTIndex in the FDDI MIB (RFC 1285 [12]), or
sysApplInstallPkgIndex in the Application MIB [13]). The need for
subagents to share tables using such indexes is the main motivation
for index allocation in AgentX.

Example 1:

A subagent implements an interface, and wishes to register a
single row of the RFC 1573 ifTable. It requests an allocation

for the index object "ifIndex", for a value that has never been
allocated (since ifIndex values must be unique). The master agent
returns the value "7".

The subagent now attempts to register row 7 of ifTable, by
specifying a MIB region in the agentx-Register-PDU of
1.3.6.1.2.1.2.2.1.[1-22].7. If the registration succeeds, no
further processing is required. The master agent will dispatch
to this subagent correctly.

But the registration may fail. Index allocation and MIB region
registration are not coupled in the master agent. Some other
subagent may have already registered ifTable row 7 without first
having requested allocation of the index. The current state of
index allocations is not considered when processing registration
requests, and the current registry is not considered when
processing index allocation requests. If subagents follow the
model of "first request allocation of an index, then register the
corresponding region", then a successful index allocation request
gives a subagent a good hint (but no guarantee) of what it should
be able to register.

If the registration failed, the subagent should request allocation
of a new index i, and attempt to register ifTable.[1-22].i, until
successful.

Example 2:

This same subagent wishes to register ipNetToMediaTable rows
corresponding to its interface (ifIndex i). Due to structure of
this table, no further index allocation need be done. The
subagent can register the MIB region ipNetToMediaTable.[1-4].1,
It is claiming responsibility for all rows of the table whose
value of ipNetToMediaIfIndex is 1i.

Example 3:

https://datatracker.ietf.org/doc/html/rfc1573
https://datatracker.ietf.org/doc/html/rfc1285
https://datatracker.ietf.org/doc/html/rfc1573

A network device consists of a set of processors, each of which
accepts network connections for a unique set of IP addresses.

Daniele/Wijnen Expires November 1997 [Page 50]

Draft Agent Extensibility (AgentX) Protocol April 1997

Further, each processor contains a subagent that implements
tcpConnTable. 1In order to represent tcpConnTable for the entire
managed device, the subagents need to share tcpConnTable.

In this case, no index allocation need be done at all. Each
subagent can register a MIB region of tcpConnTable.[1-5].a.b.c.d,
where a.b.c.d represents an unique IP address of the individual
processor.

Each subagent is claiming responsibility for the region of
tcpConnTable where the value of tcpConnLocalAddress is a.b.c.d.

7.1.4 Processing the agentx-IndexDeallocate-PDU

When the master agent receives an agentx-IndexDeallocate-PDU, it
processes it as follows:

1) An agentx-Response-PDU is created and res.sysUpTime is set to
the value of sysUpTime.® for the default context.

2) If h.sessionID does not correspond to a currently
established session with this subagent, the
agentx-Response-PDU is sent in reply with res.error set
to “notOpen'.

3) If the NON_DEFAULT_CONTEXT bit is set, and the master agent
supports only a default context, the agentx-Response-PDU is
returned with res.error set to “unsupportedContext', and the
requested allocation fails. Otherwise: The value of
res.sysUpTime is set to the value of sysUpTime.@ for the
indicated context.

4) Each VarBind in the VarBindList is processed until either all
are successful, or one fails. If any VarBind fails, the
agentx-Response-PDU is sent in reply, containing the original
VarBindList, with res.index set to indicate the failed VarBind,
and with res.error set as described subsequently. All other
VarBinds are ignored; no index values are released.

VarBinds are processed as follows:

- v.name is the name of the index for which a value is to be
released

- v.type is the syntax of the index object

- v.data indicates the specific index value to be released.
The NEW_INDEX and ANY_INDEX bits are ignored.

a) If the index value for the named index is not currently
allocated to this subagent, the VarBind fails and res.error

Daniele/Wijnen Expires November 1997 [Page 51]

Draft Agent Extensibility (AgentX) Protocol April 1997

7.1.

is set to “indexNotAllocated'.

5) If all VarBinds are processed successfully, res.error 1is
set to "noError' and the agentx-Response-PDU is sent.
A VarBindList is included which is identical to the one
sent in the agentx-IndexDeallocate-PDU.

All released index values are now available, and may be
used in response to subsequent allocation requests for
ANY_INDEX values for the particular index.

5. Processing the agentx-Register-PDU

When the master agent receives an agentx-Register-PDU, it processes
it as follows:

1) An agentx-Response-PDU is created and res.sysUpTime is set to
the value of sysUpTime.® for the default context.

2) If h.sessionID does not correspond to a currently
established session with this subagent, the
agentx-Response-PDU is sent in reply with res.error set
to "notOpen'.

3) If the NON_DEFAULT_CONTEXT bit is set, and the master agent
supports only a default context, the agentx-Response-PDU is
returned with res.error set to “unsupportedContext', and the
requested allocation fails. Otherwise: The value of
res.sysUpTime is set to the value of sysUpTime.@ for the
indicated context.

Note: Non-default contexts might be added on the fly by
the master agent, or the master agent might require
such non-default contexts to be pre-configured.

The choice is implementation-specific.

4) Characterize the request.

If r.region (or any of its set of Object Identifiers, if r.range
is non-zero) is exactly the same as any currently registered
value of r.region (or any of its set of Object Identifiers),
this registration is termed a duplicate region.

If r.region (or any of its set of Object Identifiers, if r.range
is non-zero) is a subtree of, or contains, any currently
registered value of r.region (or any of its set of

Object Identifiers), this registration is termed an overlapping
region.

If the NON_DEFAULT_CONTEXT bit is set, this region is to be
logically registered within the context indicated by r.context.

Daniele/Wijnen Expires November 1997 [Page 52]

Draft

5)

6)

PR R R
W W w w

Agent Extensibility (AgentX) Protocol April 1997

Otherwise this region is to be logically registered within the
default context.

A registration that would result in a duplicate region with the
same priority and within the same context as that of a current
registration is termed a duplicate registration.

Otherwise, if this is a duplicate registration, the
agentx-Response-PDU is returned with res.error set to
“duplicateRegistration', and the requested registration fails.

Otherwise, the agentx-Response-PDU is returned with res.error
set to "noError'.

The master agent adds this region to its registered 0ID space for
the indicated context, to be considered during the dispatching
phase for subsequently received SNMP protocol messages.

Note: The following algorithm describes maintaining a set of

OID ranges derived from "splitting" registered regions. The
algorithm for operational dispatching is also stated in terms of
these 0ID ranges.

These 0ID ranges are a useful explanatory device, but are not
required for a correct implementation.

- If r.region (R1) is a subtree of a currently registered
region (R2), split R2 into 3 new regions (R2a, R2b, and R2c)
such that R2b is an exact duplicate of R1. Now remove R2 and
add R1, R2a, R2b, and R2c to the master agent's
lexicographically ordered set of ranges (the registered 0OID
space). Note: Though newly-added ranges R1 and R2b are
identical in terms of the MIB objects they contain, they are
registered by different subagents, possibly at different
priorities.

For instance, if subagent S2 registered "ip" (R2 is
1.3.6.1.2.1.4) and subagent S1 subsequently registered
"ipNetToMediaTable" (R1 is 1.3.6.1.2.1.4.22), the resulting
set of registered regions would be:

6.1.2.1.4 up to but not including 1.3.6.1.2.1.4.22 (by S2)
6.1.2.1.4.22 up to but not including 1.3.6.1.2.1.4.23 (by S2)
6.1.2.1.4.22 up to but not including 1.3.6.1.2.1.4.23 (by S1)
6.1.2.1.4.23 up to but not including 1.3.6.1.2.1.5 (by S2)

- If r.region (R1) overlaps one or more currently registered
regions, then for each overlapped region (R2) split R1 into 3
new ranges (Rla, R1b, Ri1c) such that Rlb is an exact

duplicate of R2. Add Rlb and R2 into the lexicographically
ordered set of regions. Apply (5) above iteratively to Rla and

Daniele/Wijnen Expires November 1997 [Page 53]

Draft Agent Extensibility (AgentX) Protocol April 1997

Ric (since they may overlap, or be subtrees of, other regions).

For instance, given the currently registered regions in the
example above, if subagent S3 now registers mib-2 (R1 is
1.3.6.1.2.1) the resulting set of regions would be:

1.3.6.1.2.1 up to but not including 1.3.6.1.2.1.4 (by S3)
1.3.6.1.2.1.4 up to but not including 1.3.6.1.2.1.4.22 (by S2)
1.3.6.1.2.1.4 up to but not including 1.3.6.1.2.1.4.22 (by S3)
1.3.6.1.2.1.4.22 up to but not including 1.3.6.1.2.1.4.23 (by S2)
1.3.6.1.2.1.4.22 up to but not including 1.3.6.1.2.1.4.23 (by S1)
1.3.6.1.2.1.4.22 up to but not including 1.3.6.1.2.1.4.23 (by S3)
1.3.6.1.2.1.4.23 up to but not including 1.3.6.1.2.1.5 (by S2)
1.3.6.1.2.1.4.23 up to but not including 1.3.6.1.2.1.5 (by S3)
1.3.6.1.2.1.5 up to but not including 1.3.6.1.2.2 (by S3)

Note that at registration time a region may be split into multiple
0ID ranges due to pre-existing registrations, or as a result of any
subsequent registration. This region splitting is transparent to
subagents. Hence the master agent must always be able to associate
any OID range with the information contained in its original
agentx-Register-PDU.

7.1.5.1. Handling Duplicate OID Ranges

As a result of this registration algorithm there are likely to be
duplicate OID ranges (regions of identical MIB objects registered to
different subagents) in the master agent's registered OID space.
Whenever the master agent's dispatching algorithm (see 7.2.1,
Dispatching AgentX PDUs) selects a duplicate OID range, the
determination of which one to use proceeds as follows:

1) Choose the one whose original agentx-Register-PDU
r.region contained the most subids, i.e., the most specific
r.region. Note: The presence or absence of a range subid
has no bearing on how "specific" one object identifier is
compared to another.

2) If still ambiguous, there were duplicate regions. Choose the
one whose original agentx-Register-PDU specified the smaller
value of r.priority.

7.1.6. Processing the agentx-Unregister-PDU

1) An agentx-Response-PDU is created and res.sysUpTime is set to
the value of sysUpTime.® for the default context.

2) If h.sessionID does not correspond to a currently

established session with this subagent, the
agentx-Response-PDU is sent in reply with res.error set

Daniele/Wijnen Expires November 1997 [Page 54]

Draft Agent Extensibility (AgentX) Protocol April 1997

to "notOpen'.

3) If the NON_DEFAULT_CONTEXT bit is set, and the master agent
supports only a default context, the agentx-Response-PDU is
returned with res.error set to “unsupportedContext', and the
requested allocation fails. Otherwise: The value of
res.sysUpTime is set to the value of sysUpTime.® for the
indicated context.

4) If u.region and the indicated context do not match an existing
registration made during this session, the agentx-Response-PDU
is returned with res.error set to “unknownRegistration'.

5) Otherwise, the agentx-Response-PDU is sent in reply with res.error
set to "noError', and the previous registration is removed:

- The master agent removes u.region from its registered OID space
within the indicated context. If the original region had been
split, all such related regions are removed.

For instance, given the example registry above, if subagent S2
unregisters "ip", the resulting registry would be:

1.3.6.1.2.1 up to but not including 1.3.6.1.2.1.4 (by S3)
1.3.6.1.2.1.4 up to but not including 1.3.6.1.2.1.4.22 (by S3)
1.3.6.1.2.1.4.22 up to but not including 1.3.6.1.2.1.4.23 (by S1)
1.3.6.1.2.1.4.22 up to but not including 1.3.6.1.2.1.4.23 (by S3)
1.3.6.1.2.1.4.23 up to but not including 1.3.6.1.2.1.5 (by S3)
1.3.6.1.2.1.5 up to but not including 1.3.6.1.2.2 (by S3)

7.1.7. Processing the agentx-AddAgentCaps-PDU

When the master agent receives an agentx-AddAgentCaps-PDU,
it processes it as follows:

1) An agentx-Response-PDU is created and res.sysUpTime is set to
the value of sysUpTime.® for the default context.

2) If h.sessionID does not correspond to a currently
established session with this subagent, the
agentx-Response-PDU is sent in reply with res.error set
to "notOpen'.

3) If the NON_DEFAULT_CONTEXT bit is set, and the master agent

supports only a default context, the agentx-Response-PDU is
returned with res.error set to “unsupportedContext', and the

Daniele/Wijnen Expires November 1997 [Page 55]

Draft Agent Extensibility (AgentX) Protocol April 1997

7.1.

requested allocation fails. Otherwise: The value of
res.sysUpTime is set to the value of sysUpTime.@ for the
indicated context.

4) Otherwise, the master agent adds the subagent's capabilities
information to the sysORTable for the indicated context. An
agentx-Response-PDU is sent in reply with res.error set to
"noError'.

.8. Processing the agentx-RemoveAgentCaps-PDU

1) An agentx-Response-PDU is created and res.sysUpTime is set to
the value of sysUpTime.® for the default context.

2) If h.sessionID does not correspond to a currently
established session with this subagent, the
agentx-Response-PDU is sent in reply with res.error set
to "notOpen'.

3) If the NON_DEFAULT_CONTEXT bit is set, and the master agent
supports only a default context, the agentx-Response-PDU is
returned with res.error set to “unsupportedContext', and the
requested allocation fails. Otherwise: The value of
res.sysUpTime is set to the value of sysUpTime.@ for the
indicated context.

4) If the combination of a.id and the optional a.context does not
represent a sysORTable entry that was added by this subagent,
during this session, the agentx-Response-PDU is returned with
res.error set to “unknownAgentCaps'.

5) Otherwise the master agent deletes the corresponding sysORTable
entry and sends in reply the agentx-Response-PDU, with res.error
set to “noError'.

9. Processing the agentx-Close-PDU

When the master agent receives an agentx-Close-PDU, it processes it
as follows:

1) An agentx-Response-PDU is created and res.sysUpTime is set to
the value of sysUpTime.@ for the default context.

2) If h.sessionID does not correspond to a currently
established session with this subagent, the
agentx-Response-PDU is sent in reply with res.error set
to “notOpen'.

3) Otherwise, the master agent closes the AgentX session

as described below. No agentx-Response-PDU is sent.

Daniele/Wijnen Expires November 1997 [Page 56]

Draft Agent Extensibility (AgentX) Protocol April 1997
- All MIB regions that have been registered during this session
are unregistered, as described in 7.1.6.

- All index values allocated during this session are freed, as
described in section 7.1.4.

- All sysORID values that were registered during this session
are removed, as described in section 7.1.8.

The master agent does not maintain state for closed sessions.
If a subagent wishes to re-establish a session after receiving
an agentx-Close-PDU, it needs to re-register MIB regions, agent
capabilities, etc.

7.1.10. Detecting Connection Loss

If a master agent is able to detect (from the underlying transport)
that a subagent cannot receive AgentX PDUs, it should close all
affected AgentX sessions as described in 7.1.9, step 3).

7.1.11. Processing the agentx-Notify-PDU

A subagent sending SNMPv1l trap information must map this into
(minimally) a value of snmpTrapOID.0®, as described in 3.1.2 of
RFC 1908 [8].

The master agent processes the agentx-Notify-PDU as follows:

1) If h.sessionID does not correspond to a currently
established session with this subagent, an
agentx-Response-PDU is sent in reply with res.error set
to "notOpen', and res.sysUpTime set to the value of
sysUpTime.0® for the indicated context.

2) The VarBindList is parsed. If it does not contain a value for
sysUpTime.0, the master agent supplies the current value of
sysUpTime.0@ for the indicated context. If the next VarBind
(either the first or second VarBind; see section 6.2.10.1)
is not snmpTrapOID.®, the master agent ceases further processing
of the notification.

3) Notifications are sent according to the implementation-specific
configuration of the master agent.

If SNMPvl Trap PDUs are generated, the recommended mapping is as
described in REC 2089 [9].

Except in the case of a "notOpen' error as described in
(1) above, no agentx-Response-PDU is sent to the subagent

https://datatracker.ietf.org/doc/html/rfc1908
https://datatracker.ietf.org/doc/html/rfc2089

when the master agent finishes processing the notification.

Daniele/Wijnen Expires November 1997 [Page 57]

Draft Agent Extensibility (AgentX) Protocol April 1997

7.1.12. Processing the agentx-Ping-PDU

When the master agent receives an agentx-Ping-PDU, it processes it
as follows:

1) An agentx-Response-PDU is created and res.sysUpTime is set to
the value of sysUpTime.® for the default context.

2) If h.sessionID does not correspond to a currently
established session with this subagent, the
agentx-Response-PDU is sent in reply with res.error set
to "notOpen'.

3) If the NON_DEFAULT_CONTEXT bit is set, and the master agent
supports only a default context, the agentx-Response-PDU is
returned with res.error set to “unsupportedContext'.
Otherwise: The value of res.sysUpTime is set to the value
of sysUpTime.0® for the indicated context.

4) The agentx-Response-PDU is sent, with res.error set to
"noError'.

If a subagent does not receive a response to its pings, or if it
is able to detect (from the underlying transport) that the
master agent is not able to receive AgentX messages, then it
eventually must initiate a new AgentX session, re-register its
regions, etc.

7.2. Processing Received SNMP Protocol Messages

When an SNMP GetRequest, GetNextRequest, GetBulkRequest, or
SetRequest protocol message is received by the master agent, the
master agent applies its access control policy.

In particular, for SNMPvl or SNMPv2c PDUs, the master agent
applies the Elements of Procedure defined in section 4.1 of RFC
1157 [6] that apply to receiving entities. (For other versions
of SNMP, the master agent applies the access control policy
defined in the Elements of Procedure for those versions.)

In the SNMPv1l or v2c frameworks, the master agent uses the community
string as an index into a local repository of configuration
information that may include community profiles or more complex
context information.

If application of the access control policy results in a valid SNMP
request PDU, then an SNMP Response-PDU is constructed from
information gathered in the exchange of AgentX PDUs between the
master agent and one or more subagents. Upon receipt and initial

https://datatracker.ietf.org/doc/html/rfc1157
https://datatracker.ietf.org/doc/html/rfc1157

validation of an SNMP request PDU, a master agent uses the
procedures described below to dispatch AgentX PDUs to the proper

Daniele/Wijnen Expires November 1997 [Page 58]

Draft Agent Extensibility (AgentX) Protocol April 1997

subagents, marshal the subagent responses, and construct an SNMP
response PDU.

7.2.1. Dispatching AgentX PDUs

Upon receipt and initial validation of an SNMP request PDU, a master
agent uses the procedures described below to dispatch AgentX PDUs to
the proper subagents.

Note: In the following procedures, an object identifier is said to
be "contained" within an 0ID range when both of the following
are true:

- The object identifier does not lexicographically precede
the range.

- The object identifier lexicographically precedes the end
of the range.

General Rules of Procedure

While processing a particular SNMP request, the master agent may
send one or more AgentX PDUs to one or more subagents. The
following rules of procedure apply in general to the AgentX master
agent. PDU-specific rules are listed in the applicable sections.

1) Honoring the registry

Because AgentX supports overlapping registrations, it is
possible for the master agent to obtain a value for a requested
varbind from within multiple registered MIB regions.

The master agent must ensure that the value (or exception)
actually returned in the SNMP response PDU is taken from the
authoritative region (as defined in section 7.1.5.1).

2) GetNext and GetBulk Processing

The master agent may choose to send agentx-Get-PDUs while
servicing an SNMP GetNextRequest-PDU. The master agent may
choose to send agentx-Get-PDUs or agentx-GetNext-PDUs while
servicing an SNMP GetBulkRequest-PDU. One possible reason for
this would be if the current iteration has targeted
instance-level registrations.

The master agent may or may not choose to "scope" the possible
instances returned by a subagent through the use of the ending
OID in the SearchRange. A typical usage of this field would be
to encode the ending OID with the registered MIB region that is

the first lexicographical successor to the target OID range,
and that was not registered by the target subagent.

Daniele/Wijnen Expires November 1997 [Page 59]

Draft

3)

4)

Agent Extensibility (AgentX) Protocol April 1997

Regardless of this choice, rule (1) must be obeyed.

The master agent may require multiple request-response
iterations on the same subagent session, to determine the
final value of all requested variables.

All AgentX PDUs sent on the session while processing a given
SNMP request must contain identical values of transactionID.
Each different SNMP request processed by the master agent must
present a unique value of transactionID (within the limits of
the 32-bit field) to the session.

Number and order of variables sent per AgentX PDU

For Get/GetNext/GetBulk operations, at any stage of the
possibly iterative process, the master agent may need to
dispatch several SearchRanges to a particular subagent
session. The master agent may send one, some, or all

of the SearchRanges in a single AgentX PDU.

The master agent must ensure that the correct contents
and ordering of the VarBindList in the SNMP Response-PDU
are maintained.

The following rules govern the number of VarBinds in a
given AgentX PDU:

a) The subagent must support processing of AgentX PDUs
with multiple VarBinds.

b) When processing an SNMP Set request, the master agent
must send all of the VvarBinds applicable to a particular
subagent session in a single Test/Set transaction.

c) When processing an SNMP Get, GetNext, or GetBulk request,
the master agent may send a single AgentX PDU to the
subagent with all applicable VarBinds, or multiple
PDUs with single VarBinds, or something in between
those extremes. The determination of which method to
use in a particular case is implementation-specific.

Timeout Values

The master agent chooses a timeout value for each MIB region
being queried, which is

a) the value specified during registration of the MIB region,
if it was non-zero

b) otherwise, the value specified during establishment of
the session in which this region was subsequently

Daniele/Wijnen Expires November 1997 [Page 60]

Draft Agent Extensibility (AgentX) Protocol April 1997

registered, if that value was non-zero.
c) otherwise, the master agent's default value

When an AgentX PDU that references multiple MIB regions is
dispatched, the timeout value used for the PDU is the maximum
value of the timeouts so determined for each of the referenced
MIB regions.

5) Context

If the master agent has determined that a specific non-default
context is associated with the request PDU, that context is
encoded into the AgentX PDU's context field and the
NON_DEFAULT_CONTEXT bit is set in h.flags.

Otherwise, no context Octet String is added to the PDU, and the
NON_DEFAULT_CONTEXT bit is cleared.

7.2.1.1. agentx-Get-PDU

Each variable binding in the SNMP request PDU is processed as
follows:

(1) Identify the target OID range.

Within a lexicographically ordered set of 0OID ranges, valid for
the indicated context, locate the region that contains the
binding's name.

(2) If no such OID range exists the variable binding is not
processed further, and its value is set to "noSuchObject'.

(3) Identify the subagent session in which this region was
registered, termed the target session.

(4) If this is the first variable binding to be dispatched over
the target session in a request-response exchange entailed
in the processing of this management request:

- Create an agentx-Get-PDU for this session, with the header
fields initialized as described above (see 6.1 AgentX PDU
Header).

(5) Add a SearchRange to the end of the target session's PDU
for this variable binding.

- The variable binding's name is encoded into the starting O0ID.

- The ending OID is encoded as null.

Daniele/Wijnen Expires November 1997 [Page 61]

Draft

Agent Extensibility (AgentX) Protocol April 1997

7.2.1.2. agentx-GetNext-PDU

Each variable binding in the SNMP request PDU is processed as
follows:

(1)

(2)

(3)

(4)

(5)

Identify the target OID range.

Within a lexicographically ordered set of 0OID ranges, valid for
the indicated context, locate

a) the OID range that contains the variable binding's name and
is not a fully qualified instance, or

b) the OID range that is the first lexicographical successor to
the variable binding's name.

If no such OID range exists the variable binding is not processed
further, and its value is set to “endOfMibView'.

Identify the subagent session in which this region was
registered, termed the target session.

If this is the first variable binding to be dispatched over the
target session in a request-response exchange entailed in the
processing of this management request:

- Create an agentx-GetNext-PDU for the session, with
the header fields initialized as described above (see 6.1
AgentX PDU Header).

Add a SearchRange to the end of the target session's
agentx-GetNext-PDU for this variable binding.

- if (1a) applies, the variable binding's name is encoded
into the starting OID, and the 0ID's "include" field
is set to 0.

- if (1b) applies, the target OID is encoded into the starting
0ID, and its "include" field is set to 1.

7.2.1.3. agentx-GetBulk-PDU

(Note: The outline of the following procedure is based closely on
section 4.2.3, "The GetBulkRequest-PDU" of RFC 1905 [4]. Please

refer to it for details on the format of the SNMP GetBulkRequest-PDU
itself.)

Each variable binding in the request PDU is processed as follows:

https://datatracker.ietf.org/doc/html/rfc1905

(1) Identify the target OID range and target session, exactly as
described for the agentx-GetNext-PDU (see 7.2.1.2).

Daniele/Wijnen Expires November 1997 [Page 62]

Draft Agent Extensibility (AgentX) Protocol April 1997

(2) If this is the first variable binding to be dispatched over the
target session in a request-response exchange entailed in the
processing of this management request:

- Create an agentx-GetBulk-PDU for the session, with
the header fields initialized as described above (see 6.1
AgentX PDU Header).

(3) Add a SearchRange to the end of the target session's
agentx-GetBulk-PDU for this variable binding, as described
for the agentx-GetNext-PDU. If the variable binding was
a non-repeater in the original request PDU, it must be a
non-repeater in the agentx-GetBulk-PDU.

The value of g.max_repetitions in the agentx-GetBulk-PDU may be less
than (but not greater than) the value in the original request PDU.

The master agent may make such alterations due to simple sanity
checking, optimizations for the current iteration based on the
registry, the maximum possible size of a potential Response-PDU,
known constraints of the AgentX transport, or any other
implementation-specific constraint.

7.2.1.4. agentx-TestSet-PDU

AgentX employs test-commit-undo-cleanup phases

to achieve "as if simultaneous" semantics of the SNMP SetRequest-PDU
within the extensible agent. The initial phase involves

the agentx-TestSet-PDU.

Each variable binding in the request PDU is processed in order, as
follows:

(1) Identify the target OID range.

wWithin a lexicographically ordered set of 0ID ranges, valid for
the indicated context, locate the range that contains the
variable binding's name.

(2) If no such OID range exists, this variable binding fails with an
error of "notWritable'. Processing is complete for this
request.

(3) Identify the single subagent responsible for this OID range,
termed the target subagent, and the applicable session,

termed the target session.

(4) If this is the first variable binding to be dispatched over

the target session in a request-response exchange entailed
in the processing of this management request:

Daniele/Wijnen Expires November 1997 [Page 63]

Draft Agent Extensibility (AgentX) Protocol April 1997

- create an agentx-TestSet-PDU for the session, with the
header fields initialized as described above (see 6.1
AgentX PDU Header).

(5) Add a VarBind to the end of the target session's PDU
for this variable binding, as described in section 5.4.

Note that all VvarBinds applicable to a given session must be
sent in a single agentx-TestSet-PDU.

7.2.1.5. Dispatch

A timeout value is calculated for each PDU to be sent, which is the
maximum value of the timeouts determined for each of the PDU's
SearchRanges (as described above in 7.2.1 Dispatching AgentX PDUs,
item 4). Each pending PDU is mapped (via its h.sessionID value) to a
particular transport domain/endpoint, as described in section 8
(Transport Mappings).

7.2.2. Subagent Processing of agentx-Get, GetNext, GetBulk-PDUs

A conformant AgentX subagent must support the agentx-Get, -GetNext,
and -GetBulk PDUs, and must support multiple variables being supplied
in each PDU.

When a subagent receives an agentx-Get-, GetNext-, or GetBulk-PDU, it
performs the indicated management operations and returns an
agentx-Response-PDU.

The agentx-Response-PDU header fields are identical to the received
request PDU except that, at the start of processing, the subagent
initializes h.type to Response, res.error to "noError',

res.index to 0, and the VarBindList to null.

Each SearchRange in the request PDU's SearchRangelList is processed as
described below, and a VarBind is added in the corresponding

location of the agentx-Response-PDU's VarbindList. If processing
should fail for any reason not described below, res.error is set to
‘genkErr', res.index to the index of the failed SearchRange,

the VarBindList is reset to null, and this agentx-Response-PDU is
returned to the master agent.

7.2.2.1. Subagent Processing of the agentx-Get-PDU

Upon the subagent's receipt of an agentx-Get-PDU, each SearchRange
in the request is processed as follows:

(1) The starting OID is copied to v.name.

Daniele/Wijnen Expires November 1997 [Page 64]

Draft Agent Extensibility (AgentX) Protocol April 1997

(2) If the starting OID exactly matches the name of a
variable instantiated by this subagent within the indicated
context and session, v.type and v.data are encoded to represent
the variable's syntax and value, as described in section 5.4,
Value Representation.

(3) Otherwise, if the starting OID does not match the object
identifier prefix of any variable instantiated within the
indicated context and session, the VarBind is set to
‘noSuchObject', in the manner described in section 5.4,
Value Representation.

(4) Otherwise, the varBind is set to "noSuchInstance'
in the manner described in section 5.4, Value Representation.

7.2.2.2. Subagent Processing of the agentx-GetNext-PDU

Upon the subagent's receipt of an agentx-GetNext-PDU, each
SearchRange in the request is processed as follows:

(1) The subagent searches for a variable within the
lexicographically ordered list of variable names for all
variables it instantiates (without regard to registration of
regions) within the indicated context and session, for which
the following are all true:

- if the "include" field of the starting 0ID is 0, the
variable's name is the closest lexicographical successor to
the starting OID.

- if the "include" field of the starting 0ID is 1, the
variable's name is either equal to, or the closest
lexicographical successor to, the starting OID.

- If the ending 0ID is not null, the variable's name
lexicographically precedes the ending OID.

If all of these conditions are met, v.name is set to the
located variable's name. v.type and v.data are encoded to
represent the variable's syntax and value, as described in
section 5.4, Value Representation.

(2) If no such variable exists, v.name is set to the starting 0ID,
and the VvarBind is set to “endOfMibView', in the manner described
in section 5.4, Value Representation.

7.2.2.3. Subagent Processing of the agentx-GetBulk-PDU

A maximum of N + (M * R) VarBinds are returned, where

N equals g.non_repeaters,

Daniele/Wijnen Expires November 1997 [Page 65]

Draft Agent Extensibility (AgentX) Protocol April 1997

M equals g.max_repetitions, and
R is (number of SearchRanges in the GetBulk request) - N.

The first N SearchRanges are processed exactly as for the
agentx-GetNext-PDU.

If M and R are both non-zero, the remaining R SearchRanges are
processed iteratively to produce potentially many VarBinds. For
each iteration i, such that i is greater than zero and less than or
equal to M, and for each repeated SearchRange s, such that s is
greater than zero and less than or equal to R, the
(N+((i-1)*R)+s)-th VvarBind is added to the agentx-Response-PDU

as follows:

1) The subagent searches for a variable within the
lexicographically ordered list of variable names for all
variables it instantiates (without regard to registration of
regions) within the indicated context and session, for which
the following are all true:

- The variable's name is the (i)-th lexicographical successor
to the (N+s)-th requested 0ID.

(Note that if i is @ and the "include" field is 1, the
variable's name may be equivalent to, or the first
lexicographical successor to, the (N+s)-th requested 0ID.)

- If the ending OID is not null, the variable's name
lexicographically precedes the ending OID.

If all of these conditions are met, v.name is set to the
located variable's name. v.type and v.data are
encoded to represent the variable's syntax and value, as
described in section 5.4, Value Representation.

2) If no such variable exists, the VarBind is set to
“endO0fMibview' as described in section 5.4, Value
Representation. v.name is set to v.name of the
(N+((i-2)*R)+s)-th varBind unless i is currently 1, in which
case it is set to the value of the starting OID in the (N+s)-th
SearchRange.

Note that further iterative processing should stop if

- For any iteration i, all s values of v.type are
“endOfMibView'.

- An AgentX transport constraint or other
implementation-specific constraint is reached.

Daniele/Wijnen Expires November 1997 [Page 66]

Draft Agent Extensibility (AgentX) Protocol April 1997

7.2.3. Subagent Processing of agentx-TestSet, -CommitSet, -UndoSet,
-CleanupSet-PDUs

A conformant AgentX subagent must support the agentx-TestSet,
-CommitSet, -UndoSet, and -CleanupSet PDUs, and must support multiple
variables being supplied in each PDU.

These four PDUs are used to collectively perform the indicated
management operation. An agentx-Response-PDU is sent in reply to
each of the PDUs, to inform the master agent of the state of the
operation.

The agentx-Response-PDU header fields are identical to the received
request PDU except that, at the start of processing, the subagent
initializes h.type to Response, res.error to “noError', and
res.index to 0.

These Response-PDUs do not contain a VarBindList.

7.2.3.1. Subagent Processing of the agentx-TestSet-PDU

Upon the subagent's receipt of an agentx-TestSet-PDU, each VarBind
in the PDU is validated until they are all successful, or until one
fails, as described in section 4.2.5 of RFC 1905 [4]. The subagent
validates variables with respect to the context and session
indicated in the testSet-PDU.

If each VarBind is successful, the subagent has a further
responsibility to ensure the availability of all resources (memory,
write access, etc.) required for successfully carrying out a
subsequent agentx-CommitSet operation. If this cannot be guaranteed,
the subagent should set res.error to “resourceUnavailable'.

As a result of this validation step, an agentx-Response-PDU
is sent in reply whose res.error field is set to one of the
following (SNMPv2 SMI) values:

noError (0),
genErr (5),
noAccess (6),
wrongType (7),
wrongLength (8),
wrongEncoding (9),
wrongValue (10),
noCreation (11),
inconsistentVvalue (12),
resourceUnavailable (13),

notWritable (17),

https://datatracker.ietf.org/doc/html/rfc1905#section-4.2.5

inconsistentName (18)

Daniele/Wijnen Expires November 1997 [Page 67]

Draft Agent Extensibility (AgentX) Protocol April 1997

If this value is not "noError', the res.index field must be
set to the index of the VarBind for which validation failed.

Implementation of rigorous validation code may be one of the

most demanding aspects of subagent development. Implementors

are strongly encouraged to do this right, so as to avoid if at

all possible the extensible agent's having to return “commitFailed'
or “undoFailed' during subsequent processing.

7.2.3.2. Subagent Processing of the agentx-CommitSet-PDU

The agentx-CommitSet-PDU indicates that the subagent should actually
perform (as described in the post-validation sections of 4.2.5 of
RFC 1905 [4]) the management operation indicated by the previous
TestSet-PDU.

After carrying out the management operation, the subagent sends in
reply an agentx-Response-PDU whose res.error field is set to one of
the following (SNMPv2 SMI) values:

noError (0),
commitFailed (14)

If this value is ‘commitFailed', the res.index field must be
set to the index of the VarBind for which the operation failed.
Otherwise res.index is set to 0.

7.2.3.3. Subagent Processing of the agentx-UndoSet-PDU

The agentx-UndoSet-PDU indicates that the subagent should undo
the management operation requested in a preceding CommitSet-PDU.
The undo process is as described in section 4.2.5 of RFC 1905

[4].

After carrying out the undo process, the subagent sends in reply an
agentx-Response-PDU whose res.index field is set to 0, and whose
res.error field is set to one of the following (SNMPv2 SMI) values:

noError (0),
undoFailed (15)

If this value is ‘undoFailed', the res.index field must be
set to the index of the VarBind for which the operation failed.
Otherwise res.index is set to 0.

This PDU also signals the end of processing of the management
operation initiated by the previous TestSet-PDU. The subagent
should release resources, etc. as described in section 7.2.3.4.

https://datatracker.ietf.org/doc/html/rfc1905
https://datatracker.ietf.org/doc/html/rfc1905#section-4.2.5

Daniele/Wijnen Expires November 1997 [Page 68]

Draft Agent Extensibility (AgentX) Protocol April 1997

7.2.3.4. Subagent Processing of the agentx-CleanupSet-PDU

The agentx-CleanupSet-PDU signals the end of processing of the
management operation requested in the previous TestSet-PDU. This
is an indication to the subagent that it may now release any
resources it may have reserved in order to carry out the management
request.

No response is sent by the subagent.

7.2.4. Master Agent Processing of AgentX Responses

The master agent now marshals all subagent AgentX response PDUs and
builds an SNMP response PDU. In the next several subsections, the
initial processing of all subagent AgentX response PDUs is
described, followed by descriptions of subsequent processing

for each specific subagent Response.

7.2.4.1. Common Processing of All AgentX Response PDUs

1) If a subagent does not respond within the timeout interval for
this dispatch, it is treated as if the subagent had returned
‘genkErr' and processed as described below.

A timeout may be due to a variety of reasons, and does
not necessarily denote a failed or malfunctioning
subagent. As such, the master agent's response to a
subagent timeout is implementation-specific, but with the
following constraint:

A subagent that times out on three consecutive requests
is considered unable to respond, and the master agent
must close the AgentX session as described in

7.1.9, step (2).

2) Otherwise, the h.packetID, h.sessionID, and h.transactionID
fields of the AgentX response PDU are used to correlate subagent
responses. If the response does not pertain to this SNMP
operation, it is ignored.

3) Otherwise, the responses are processed jointly to form the SNMP
response PDU.

7.2.4.2. Processing of Responses to agentx-Get-PDUs
After common processing of the subagent's response to an

agentx-Get-PDU (see 7.2.4.1 above), processing continues with
the following steps:

1) For any received AgentX response PDU, if res.error is not

Daniele/Wijnen Expires November 1997 [Page 69]

Draft Agent Extensibility (AgentX) Protocol April 1997

"noError', the SNMP response PDU's error code is set to this
value, and its error index to the index of the variable binding
corresponding to the failed VarBind in the subagent's

AgentX response PDU.

All other AgentX response PDUs received due to processing this
SNMP request are ignored. Processing is complete; the SNMP
Response PDU is ready to be sent (see section 7.2.5, Sending
the SNMP Response-PDU).

2) Otherwise, the content of each VarBind in the AgentX response PDU
is used to update the corresponding variable binding in the SNMP
Response-PDU.

7.2.4.3. Processing of Responses to agentx-GetNext-PDU and
agentx-GetBulk-PDU

After common processing of the subagent's response to an
agentx-GetNext-PDU or agentx-GetBulk-PDU (see 7.2.4.1 above),
processing continues with the following steps:

1) For any received AgentX response PDU, if res.error is not
"noError', the SNMP response PDU's error code is set to this
value, and its error index to the index of the VvarBind
corresponding to the failed VarBind in the subagent's
AgentX response PDU.

All other AgentX response PDUs received due to processing this
SNMP request are ignored. Processing is complete; the SNMP
response PDU is ready to be sent (see section 7.2.5, Sending
the SNMP Response PDU).

2) Otherwise, the content of each VarBind in the AgentX response
PDU is used to update the corresponding VarBind in the SNMP
response PDU.

After all expected AgentX response PDUs have been processed, if
any VarBinds still contain the value “endOfMibView' in their
v.type fields, processing must continue:

3) A new iteration of AgentX request dispatching is initiated
(as described in section 7.2.1.1), in which only those
VarBinds whose v.type is “endOfMibView' are processed.

4) For each such VarBind, a target OID range is identified
which is the lexicographical successor to the target 0ID
range for this VvarBind on the last iteration. The target
subagent is the one that registered the target OID range.
The target session is the one in which the target OID range

was registered.

Daniele/Wijnen Expires November 1997 [Page 70]

Draft Agent Extensibility (AgentX) Protocol April 1997

If an agentx-GetNext- or GetBulk-PDU is being dispatched,
the starting OID in the SearchRanges is set to the target
0ID range, and its "include" field is set to 1.

5) The value of transactionID must be identical to the value
used during the previous iteration.

6) The AgentX PDUs are sent to the subagent(s), and the responses
are received and processed according to the steps described in
section 7.2.4.

7) This process continues iteratively until a complete SNMP
Response-PDU has been built, or until there remain no
target OID range lexicographical successors.

7.2.4.4. Processing of Responses to agentx-TestSet-PDUs

After common processing of the subagent's response to an
agentx-TestSet-PDU (see 7.2.4.1 above), processing continues with
the further exchange of AgentX PDUs. The value of h.transactionID
in the agentx-CommitSet, -UndoSet, and -CleanupSet-PDUs must be
identical to the value sent in the testSet-PDU.

The state transitions and PDU sequences are depicted in section 7.3.
1) If any target subagent's response is not "noError', all other
agentx-Response-PDUs received due to processing this SNMP

request are ignored.

An agentx-CleanupSet-PDU is sent to each target subagent that has
been sent a agentx-TestSet-PDU.

Processing is complete; the SNMP response PDU is constructed as
described below in 7.2.4.6, step (2).

2) Otherwise an agentx-CommitSet-PDU is sent to each target
subagent.

7.2.4.5. Processing of Responses to agentx-CommitSet-PDUs
After common processing of the subagent's response to an
agentx-CommitSet-PDU (see 7.2.4.1 above), processing continues with
the following steps:
1) If any response is not "noError', all other
agentx-Response-PDUs received due to processing this SNMP

request are ignored.

An agentx-UndoSet-PDU is sent to each target subagent that has

been sent a agentx-CommitSet-PDU. All other subagents are sent a
agentx-CleanupSet-PDU.

Daniele/Wijnen Expires November 1997 [Page 71]

Draft Agent Extensibility (AgentX) Protocol April 1997

2) Otherwise an agentx-CleanupSet-PDU is sent to each target
subagent. Processing is complete; the SNMP response PDU is
constructed as described below in 7.2.4.6, step (2).

7.2.4.6. Processing of Responses to agentx-UndoSet-PDUs

7.2.5. Sending the SNMP Response-PDU

7.2.6. MIB Views

After common processing of the subagent's response to an
agentx-UndoSet-PDU (see 7.2.4.1 above), processing continues with the
following steps:

1) If any response is not "noError' the SNMP response
PDU's error code is set to this value, and its error index to the
index of the VvarBind corresponding to the failed VvarBind
in the agentx-TestSet-PDU.

Otherwise the SNMP response PDU's error code is set to "noError'
and its error index to 0.

Once the processing described in sections 7.2.1 - 7.2.4 is

complete, there is an SNMP response PDU available. The master agent
now implements the Elements of Procedure for the applicable version
of the SNMP protocol in order to encapsulate the PDU into a message,
and transmit it to the originator of the SNMP management request.
Note that this may involve altering the PDU contents (for instance,
to replace the original VarBinds if an error condition is

to be returned).

The response PDU may also be altered in order to support the SNMP
version 1 framework. 1In such cases the required mapping is that
defined in RFC 2089 [9]. (Note in particular that the rules for
handling Counter64 syntax may require re-sending AgentX GetBulk
or GetNext PDUs until a VarBind of suitable syntax is returned.)

AgentX subagents are not aware of MIB views, since view information
is not contained in AgentX PDUs.

As stated above, the descriptions of procedures in section 7 of this
memo are not intended to constrain the internal architecture of any
conformant implementation. 1In particular, the master agent
procedures described in sections 7.2.1 and 7.2.4 may be altered so
as to optimize AgentX exchanges when implementing MIB views.

Such optimizations are beyond the scope of this memo. But note that

https://datatracker.ietf.org/doc/html/rfc2089

section 7.2.3 defines subagent behavior in such a way that alteration
of SearchRanges may be used in such optimizations.

Daniele/Wijnen Expires November 1997 [Page 72]

Draft Agent Extensibility (AgentX) Protocol April 1997

7.3. State Transitions
State diagrams are presented from the master agent's perspective
for transport connection and session establishment, and from the
subagent's perspective for Set transaction processing.

7.3.1. Set Transaction States

The following table presents, from the subagent's perspective,
the state transitions involved in Set transaction processing:

STATE
SR ——— S Fommmma - - Fommm oo - Fommm oo
I A I B | C | D | E
| (Initial | TestOK | Commit | Test | Commit
| State) | | OK | Fail | Fail
I | I I I
EVENT | | | | |
--------- T
| 7.2.3.1 | | | |
Receive | All varbinds | | | |
TestSet | OK? | X | X | X | X
PDU | Yes ->B | | | |
| No ->D I I I I
--------- T T gy Sy
| | 7.2.3.2 | | |
Receive | | NOError? | | |
Commit- | X | Yes ->C | X | X | X
Set PDU | [No ->E | | |
--------- e
Receive | | | 7.2.3.3 | |7.2.4.5
UndoSet | X | X | ->done | X | ->done
PDU I I I I |
--------- T
Receive | | 7.2.4.4 | 7.2.3.4 |7.2.4.4 |
Cleanup- | X | ->done | ->done | ->done | X
Set PDU | | | | |
--------- T i
Session | | rollback | undo | |
Loss | ->done | ->done | ->done | ->done | ->done
--------- g

There are three possible sequences that a subagent may follow for a
particular set transaction:

1) TestSet CommitSet CleanupSet
2) TestSet CommitSet UndoSet
3) TestSet CleanupSet

Note that a single PDU sequence may result in multiple paths through
the FSM. For example, the sequence

Daniele/Wijnen Expires November 1997 [Page 73]

Draft Agent Extensibility (AgentX) Protocol

TestSet CommitSet UndoSet

may walk through either of these two state sequences:

(initial) TestOK CommitOK (done)
(initial) TestOK CommitFail (done)

April 1997

Daniele/Wijnen Expires November 1997 [Page 74]

Draft

7.3.2 Transport Connection States

Agent Extensibility (AgentX) Protocol

April 1997

The following table presents, from the master agent's perspective,
the state transitions involved in transport connection setup

and teardown:

Transport
connect
indication
Receive
Open-PDU

Receive
Response-PDU

Receive other
PDUs

Transport
disconnect
indication

Transport
connected

if duplicate
session id,
reject, else
establish
session

if matching
session id,
feed to that
session's FSM
else ignore

if matching
session id,
feed to that
session's FSM
else reject

|notify all
| sessions on
| this transport

Daniele/Wijnen Expires November 1997 [Page 75]

Draft Agent Extensibility (AgentX) Protocol April 1997

7.3.3 Session States

The following table presents, from the master agent's perspective,
the state transitions involved in session setup and teardown:

STATE
o m e e e oo Fom e e e e e o -
[A | B
| No session | Session
| | established
EVENT | |
_______________ o
| 7.1.1 |
Receive | | X
Open PDU | ->B |
_______________ e
| | 7.1.9
Receive | X |
Close PDU | | ->A
_______________ o
Receive | | 7.1.5
Register PDU | X |
| | ->B
_______________ S
Receive | | 7.1.6
Unregister | X |
PDU | | ->B
_______________ e
Receive | |
Get PDU | |
GetNext PDU | |
GetBulk PDU | X | X
TestSet PDU | |
CommitSet PDU | |
UndoSet PDU | |
CleanupSet PDU | |
_______________ o
Receive | | 7.1.11
Notify PDU | X |
| | ->B
_______________ o
Receive Ping | | 7.1.12
PDU | X |
| | ->B
_______________ o
Receive | | 7.1.2
IndexAllocate | X |
PDU | | ->B

(continued next page)

Daniele/Wijnen Expires November 1997 [Page 76]

Draft Agent Extensibility (AgentX) Protocol April 1997

_______________ o
Receive | | 7.1.4
IndexDeallocate| X |
PDU | | ->B
_______________ S
Receive | | 7.1.7
AddAgentxCaps | X |
PDU | I ->B
_______________ e
Receive | | 7.1.8
RemoveAgentxCap | X |
PDU | | ->B
_______________ o
Receive | | 7.2.4
Response PDU | X |

I | ->B
_______________ e
Receive | |
Other PDU | X | X
_______________ o

|co

Transport Mappings

The same AgentX PDU formats, encodings, and elements of procedure
are used regardless of the underlying transport.

8.1. AgentX over TCP
8.1.1. Well-known Values

The master agent accepts TCP connection requests for the well-known
port 705. Subagents connect to the master agent using this port
number.

8.1.2. Operation

Once a TCP connection has been established, the AgentX peers use
this connection to carry all AgentX PDUs. Multiple AgentX sessions
may be established using the same TCP connection. AgentX PDUs are
sent within an AgentX session. AgentX peers are responsible for
mapping the h.sessionID to a particular TCP connection.

All AgentX PDUs are presented individually to the TCP, to be sent as
the data portion of a TCP PDU.

8.2. AgentX over UNIX-domain Sockets

Many (BSD-derived) implementations of the UNIX operating system
support the UNIX pathname address family (AF_UNIX) for socket

communications. This provides a convenient method of sending and
receiving data between processes on the same host.

Daniele/Wijnen Expires November 1997 [Page 77]

Draft Agent Extensibility (AgentX) Protocol April 1997

Mapping AgentX to this transport is useful for environments that

- wish to guarantee subagents are running on the same
managed node as the master agent, and where

- sockets provide better performance than TCP or UDP,
especially in the presence of heavy network I/0

2.1. Well-known Values

8.

8.

The master agent creates a well-known UNIX-domain socket endpoint
called "/var/agentx/master". (It may create other, implementation-
specific endpoints.)

This endpoint name uses the character set encoding native to the
managed node, and represents a UNIX-domain stream (SOCK_STREAM)
socket.

2.2. Operation

[©

Once a connection has been established, the AgentX peers use
this connection to carry all AgentX PDUs.

Multiple AgentX sessions may be established using the same
connection. AgentX PDUs are sent within an AgentX session. AgentX
peers are responsible for mapping the h.sessionID to a particular
connection.

All AgentX PDUs are presented individually to the socket layer, to
be sent in the data stream.

Security Considerations

This memo defines a protocol between two processing entities,
one of which (the master agent) is assumed to perform
authentication of received SNMP requests and to control access
to management information. The master agent performs these
security operations independently of the other processing
entity (the subagent).

Security considerations require three questions to be answered:

1. Is a particular subagent allowed to initiate a session with a
particular master agent?

2. During an AgentX session, is any SNMP security-related
information (for example, community names) passed from the
master agent to the subagent?

3. During an AgentX session, what part of the MIB tree is this

Daniele/Wijnen Expires November 1997 [Page 78]

Draft Agent Extensibility (AgentX) Protocol April 1997

subagent allowed to register?

The answer to the third question is: A subagent can register any
subtree (subject to AgentX elements of procedure, section 7.1.5).
Currently there is no access control mechanism

defined in AgentX. A concern here is that a malicious subagent
that registers an unauthorized "sensitive" subtree, could see
modification requests to those objects, or by giving its own
clever answer to NMS queries, could cause the NMS to do something
that leads to information disclosure or other damage.

The answer to the second question is: No.

Now we can answer the first question.

AgentX does not contain a mechanism for authorizing/refusing session
initiations. Thus, controlling subagent access to the master

agent may only be done at a lower layer (e.g., transport).

An AgentX subagent can connect to a master agent
using either a network transport mechanism (e.g., TCP), or a "local"
mechanism (e.g., shared memory, named pipes).

In the case where a local transport mechanism is used and both
subagent and master agent are running on the same host, connection
authorization can be delegated to the operating system features.
The answer to the first security question then becomes:

"If and only if the subagent has sufficient privileges, then the
operating system will allow the connection".

If a network transport is used, currently there is no inherent
security. Transport Layer Security or SSL could be used

to control subagent connections, but that is beyond the scope
of this document.

Thus it is recommended that subagents always run on the same
host as the master agent and that operating system features be
used to ensure that only properly authorized subagents

can establish connections to the master agent.

10. Acknowledgements

The initial draft of this memo was heavily influenced by the DPI
2.0 specification REC 1592 [7].

This document was produced by the IETF Agent Extensibility
(AgentX) Working Group, and benefited especially from the

contributions of the following working group members:

David Battle, Uri Blumenthal, Jeff Case, Maria Greene,

https://datatracker.ietf.org/doc/html/rfc1592

Dave Keeney, Harmen van der Linde, Bob Natale, Randy Presuhn,
Aleksey Romanov, Don Ryan, and Juergen Schoenwaelder.

Daniele/Wijnen Expires November 1997 [Page 79]

Draft

11.

Agent Extensibility (AgentX) Protocol

The AgentX Working Group is chaired by:

Bob Natale

ACE*COMM Corporation
704 Quince Orchard Road
Gaithersburg MD 20878

Phone: +1-301-721-3000
Fax: +1-301-721-3001
EMail: bnatale@acecomm.com

Authors' and Editor's Addresses

Mike Daniele

Digital Equipment Corporation
110 Spit Brook Rd

Nashua, NH 03062

Phone: +1-603-881-1423
EMail: daniele@zk3.dec.com

Bert Wijnen

IBM Professional Services
Watsonweg 2

1423 ND Uithoorn

The Netherlands

Phone: +31-79-322-8316
EMail: wijnen@vnet.ibm.com

Dale Francisco (editor)
Cisco Systems

150 Castilian Dr
Goleta CA 93117

Phone: +1-805-961-3642

Fax: +1-805-961-3600
EMail: dfrancis@cisco.com

References

April 1997

Information processing systems - Open Systems Interconnection -
Specification of Abstract Syntax Notation One (ASN.1),

International Organization for Standardization.
Standard 8824, (December, 1987).

International

[2] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and

Daniele/Wijnen Expires November 1997 [Page 80]

Draft

[3]

[4]

[5]

(6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Agent Extensibility (AgentX) Protocol April 1997

S. Waldbusser, "Structure of Management Information for Version 2
of the Simple Network Management Protocol (SNMPv2)", RFEC 1902,
January 1996.

SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
S. Waldbusser, "Textual Conventions for Version 2 of the Simple
Network Management Protocol (SNMPv2)", REC 1903, January 1996.

SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
S. Waldbusser, "Protocol Operations for Version 2 of the Simple
Network Management Protocol (SNMPv2)", REC 1905, January 1996.

SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and

S. Waldbusser, "Management Information Base for Version 2 of the
Simple Network Management Protocol (SNMPv2)", REC 1907,

January 1996.

Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple Network
Management Protocol", STD 15, RFC 1157, SNMP Research, Performance
Systems International, MIT Laboratory for Computer Science, May
1990.

wWijnen, B., Carpenter, G., Curran, K., Sehgal, A., and G. Waters,
"Simple Network Management Protocol: Distributed Protocol
Interface, Version 2.0", RFC 1592, T.J. Watson Research Center,
IBM Corp., Bell Northern Research, Ltd., March 1994.

SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and

S. Waldbusser, "Coexistence between Version 1 and Version 2 of the
Internet-standard Network Management Framework", RFC 1908,

January 1996.

Wijnen, B., and Levi, D., "V2ToVl: Mapping SNMPv2 onto SNMPv1l
wWithin a Bilingual SNMP Agent", RFC 2089, T.J. Watson Research
Center, IBM Corp., SNMP Research, Inc., January 1997.

SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
S. Waldbusser, "Conformance Statements for Version 2 of the
Simple Network Management Protocol (SNMPv2)", REC 1904,
January 1996.

Interfaces MIB Working Group, McCloghrie, K., and F. Kastenholz,
"Evolution of the Interfaces Group of MIB-II", RFC 1573,
January 1994.

FDDI MIB Working Group, J. Case, "FDDI Management Information
Base", RFC 1285, January 1992.

Application MIB Working Group, Krupczak, C., and J. Saperia,

https://datatracker.ietf.org/doc/html/rfc1902
https://datatracker.ietf.org/doc/html/rfc1903
https://datatracker.ietf.org/doc/html/rfc1905
https://datatracker.ietf.org/doc/html/rfc1907
https://datatracker.ietf.org/doc/html/rfc1157
https://datatracker.ietf.org/doc/html/rfc1592
https://datatracker.ietf.org/doc/html/rfc1908
https://datatracker.ietf.org/doc/html/rfc2089
https://datatracker.ietf.org/doc/html/rfc1904
https://datatracker.ietf.org/doc/html/rfc1573
https://datatracker.ietf.org/doc/html/rfc1285

"Definitions of Managed Objects for Applications",
draft-ietf-applmib-sysapplmib-05.txt, 11 Nov 1996.

Daniele/Wijnen Expires November 1997 [Page 81]

https://datatracker.ietf.org/doc/html/draft-ietf-applmib-sysapplmib-05.txt

