
ALTO WG W. Roome
Internet-Draft Nokia Bell Labs
Intended status: Standards Track Y. Yang
Expires: March 17, 2017 Tongji/Yale University
 September 13, 2016

ALTO Incremental Updates Using Server-Sent Events (SSE)
draft-ietf-alto-incr-update-sse-03

Abstract

 The Application-Layer Traffic Optimization (ALTO) [RFC7285] protocol
 provides network related information to client applications so that
 clients may make informed decisions. To that end, an ALTO Server
 provides Network and Cost Maps. Using those maps, an ALTO Client can
 determine the costs between endpoints.

 However, the ALTO protocol does not define a mechanism to allow an
 ALTO client to obtain updates to those maps, other than by
 periodically re-fetching them. Because the maps may be large
 (potentially tens of megabytes), and because only parts of the maps
 may change frequently (especially Cost Maps), that can be extremely
 inefficient.

 Therefore this document presents a mechanism to allow an ALTO Server
 to provide updates to ALTO Clients. Updates can be both immediate,
 in that the server can send updates as soon as they are available,
 and incremental, in that if only a small section of a map changes,
 the server can send just the changes.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

Roome & Yang Expires March 17, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7285
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft ALTO Incremental Updates September 2016

 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 17, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Roome & Yang Expires March 17, 2017 [Page 2]

Internet-Draft ALTO Incremental Updates September 2016

Table of Contents

1. Introduction . 5
2. Overview of Approach . 5
3. Changes Since Version -01 6
4. Overview of Server-Sent Events (SSEs) 7
5. Incremental Update Message Format 8
5.1. Overview of JSON Merge Patch 8
5.2. JSON Merge Patch Applied to Network Map Messages 9
5.3. JSON Merge Patch Applied to Cost Map Messages 11

6. ALTO Event Stream . 12
6.1. ALTO Event Format . 12
6.2. ALTO Update Events . 13
6.3. ALTO Control Events 13

7. Update Stream Service . 14
7.1. Media Type . 14
7.2. HTTP Method . 14
7.3. Accept Input Parameters 14
7.4. Capabilities . 16
7.5. Uses . 17
7.6. Response . 17
7.6.1. Keep-Alive Messages 17
7.6.2. Event Sequence Requirements 17
7.6.3. Cross-Stream Consistency Requirements 18

8. Update Stream Controller 19
8.1. URI . 19
8.2. Media Type . 20
8.3. HTTP Method . 20
8.4. Accept Input Parameters 20
8.5. Capabilities & Uses 21
8.6. Response . 21

9. Examples . 21
9.1. Example: Simple Network and Cost Map Updates 21
9.2. Example: Advanced Network and Cost Map Updates 23
9.3. Example: Endpoint Property Updates 25
9.4. IRD Example . 29

10. Client Actions When Receiving Update Messages 31
11. Design Decisions and Discussions 32
11.1. HTTP/2 Server-Push . 32
11.2. Not Allowing Stream Restart 33
11.3. Is Incremental Update Useful for Network Maps? 34
11.4. Other Incremental Update Message Types 35

12. Miscellaneous Considerations 35
12.1. Considerations For Updates To Filtered Cost Maps 35

 12.2. Considerations For Incremental Updates To Ordinal Mode
 Costs . 36

12.3. Considerations Related to SSE Line Lengths 36
13. Security Considerations 37

Roome & Yang Expires March 17, 2017 [Page 3]

Internet-Draft ALTO Incremental Updates September 2016

13.1. Denial-of-Service Attacks 37
13.2. Spoofed Control Requests 37
13.3. Privacy . 37

14. IANA Considerations . 37
15. References . 40
Appendix A. Acknowledgments 41

 Authors' Addresses . 41

Roome & Yang Expires March 17, 2017 [Page 4]

Internet-Draft ALTO Incremental Updates September 2016

1. Introduction

 The Application-Layer Traffic Optimization (ALTO) [RFC7285] protocol
 provides network related information to client applications so that
 clients may make informed decisions. To that end, an ALTO Server
 provides Network and Cost Maps, where a Network Map partitions the
 set of endpoints into a manageable number of Provider-Defined
 Identifiers (PIDs), and a Cost Map provides directed costs between
 PIDs. Given Network and Cost Maps, an ALTO Client can obtain costs
 between endpoints by using the Network Map to get the PID for each
 endpoint, and then using the Cost Map to get the costs between those
 PIDs.

 However, the ALTO protocol does not define a mechanism to allow a
 client to obtain updates to those maps, other than by periodically
 re-fetching them. Because the maps may be large (potentially tens of
 megabytes), and because parts of the maps may change frequently
 (especially Cost Maps), that can be extremely inefficient.

 Therefore this document presents a mechanism to allow an ALTO Server
 to provide incremental updates to ALTO Clients. Updates can be both
 immediate, in that the server can send updates as soon as they are
 available, and incremental, in that if only a small section of a map
 changes, the server can send just the changes.

 While primarily intended to provide updates to Network and Cost Maps,
 the mechanism defined in this document can provide updates to any
 ALTO resource, including POST-mode services such as Endpoint Property
 and Endpoint Cost Services, as well as new ALTO services to be
 defined by future extensions.

 The rest of this document is organized as follows. Section 2 gives
 an overview of the incremental update approach, which is based on
 Server-Sent Events (SSEs). Section 4 and Section 5 give SSEs and
 JSON Merge Patch, the technologies on which ALTO updates are based.

Section 6 defines the update events, Section 7 and Section 8 define
 the update services themselves, and Section 9 gives several examples.

Section 10 describes how a client should handle incoming updates.
Section 11 and Section 12 discuss the design decisions behind this

 update mechanism and other considerations. The remaining sections
 review the security and IANA considerations.

2. Overview of Approach

 This section presents a non-normative overview of the update
 mechanism to be defined in this document.

https://datatracker.ietf.org/doc/html/rfc7285

Roome & Yang Expires March 17, 2017 [Page 5]

Internet-Draft ALTO Incremental Updates September 2016

 An ALTO Server can offer one or more Update Stream resources, where
 each Update Stream resource (or Update Stream for short) is a POST-
 mode service that returns a continuous sequence of update messages
 for one or more ALTO resources. An Update Stream can provide updates
 to both GET-mode resources, such as Network and Cost Maps, and POST-
 mode resources, such as Endpoint Property Services.

 Each update message updates one resource, and is sent as a Server-
 Sent Event (SSE), as defined by [SSE]. An update message is either a
 full replacement or else an incremental change. Full replacement
 updates use the JSON message formats defined by the ALTO protocol.
 Incremental updates use JSON Merge Patch ([RFC7396]) to describe the
 changes to the resource. The ALTO Server decides when to send update
 messages, and whether to send full replacements or incremental
 updates. These decisions can vary from resource to resource and from
 update to update.

 An ALTO Server may offer any number of Update Stream resources, for
 any subset of the server's resources. An ALTO Server's Information
 Resource Directory (IRD) defines the Update Stream resources, and
 declares the set of resources for which each Update Stream provides
 updates. The server selects the resource set for each stream. It is
 recommended that if a resource depends on one or more other
 resource(s) (indicated with the "uses" attribute defined in
 [RFC7285]), these other resource(s) should also be part of that
 stream. Thus the Update Stream for a Cost Map should also provide
 updates for the Network Map on which that Cost Map depends.

 When an ALTO Client requests an Update Stream resource, the client
 establishes a new persistent connection to the server. The server
 responds by sending an event with the URI of a stream-control
 resource for this update stream. The control URI allows a client to
 modify the newly-created update stream. For example, the client can
 ask the server to send update events for additional resources, to
 stop sending update events for previously requested resources, or to
 gracefully stop and close the update stream altogether.

 A client may request any number of Update Streams simultaneously.
 Because each stream consumes resources on the server, a server may
 limit the number of open Update Streams, may close inactive streams,
 may provide Update Streams via other processors, or may require
 client authorization/authentication.

3. Changes Since Version -01

https://datatracker.ietf.org/doc/html/rfc7396
https://datatracker.ietf.org/doc/html/rfc7285

Roome & Yang Expires March 17, 2017 [Page 6]

Internet-Draft ALTO Incremental Updates September 2016

 o Defined a new "Stream Control" resource (Section 8) to allow
 clients to add or remove resources from a previously created
 Update Stream. The ALTO Server creates a new Stream Control
 resource for each Update Stream instance, assigns a unique URI to
 it, and sends the URI to the client as the first event in the
 stream.

 o The client now assigns a unique client-id to each resource in an
 update stream. The server puts the client-id in each update event
 for that resource (before, the server used the server's
 resource-id). This allows a client to use one stream to get
 updates to two different Endpoint Cost requests (before, that
 required two separate streams).

4. Overview of Server-Sent Events (SSEs)

 The following is a non-normative summary of Server-Sent Events
 (SSEs). See [SSE] for the normative definition.

 Server-Sent Events enable a server to send new data to a client by
 "server-push". The client establishes an HTTP ([RFC7230], [RFC7231])
 connection to the server, and keeps the connection open. The server
 continually sends messages. Each message has one or more lines,
 where a line is terminated by a carriage-return immediately followed
 by a new-line, a carriage-return not immediately followed by a new-
 line, or a new-line not immediately preceded by a carriage-return. A
 message is terminated by a blank line (two line terminators in a
 row).

 Each line in a message is of the form "field-name: string value".
 Lines with a blank field-name (that is, lines which start with a
 colon) are ignored, as are lines which do not have a colon. The
 protocol defines three field names: event, id, and data. If a
 message has more than one "data" line, the value of the data field is
 the concatenation of the values on those lines. There can be only
 one "event" or "id" line per message. The "data" field is required;
 the others are optional.

 Figure 1 is a sample SSE stream, starting with the client request.
 The server sends three events and then closes the stream.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231

Roome & Yang Expires March 17, 2017 [Page 7]

Internet-Draft ALTO Incremental Updates September 2016

 (Client request)
 GET /stream HTTP/1.1
 Host: example.com
 Accept: text/event-stream

 (Server response)
 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: start
 id: 1
 data: hello there

 event: middle
 id: 2
 data: let's chat some more ...
 data: and more and more and ...

 event: end
 id: 3
 data: good bye

 Figure 1: A Sample SSE stream.

5. Incremental Update Message Format

5.1. Overview of JSON Merge Patch

 The following is a non-normative summary of JSON Merge Patch. See
 [RFC7396] for the normative definition.

 JSON Merge Patch is intended to allow applications to update server
 resources via the HTTP PATCH method [RFC5789]. This document adopts
 the JSON Merge Patch message format to encode the changes, but uses a
 different transport mechanism.

 Informally, a Merge Patch object is a JSON data structure that
 defines how to transform one JSON value into another. Merge Patch
 treats the two JSON values as trees of nested JSON Objects
 (dictionaries of name-value pairs), where the leaves are values other
 than JSON Objects (e.g., JSON Arrays, Strings, Numbers, etc.), and
 the path for each leaf is the sequence of keys leading to that leaf.
 When the second tree has a different value for a leaf at a path, or
 adds a new leaf, the Merge Patch tree has a leaf, at that path, with
 the new value. When a leaf in the first tree does not exist in the
 second tree, the Merge Patch tree has a leaf with a JSON "null"

https://datatracker.ietf.org/doc/html/rfc7396
https://datatracker.ietf.org/doc/html/rfc5789

Roome & Yang Expires March 17, 2017 [Page 8]

Internet-Draft ALTO Incremental Updates September 2016

 value. The Merge Patch tree does not have an entry for any leaf that
 has the same value in both versions.

 As a result, if all leaf values are simple scalars, JSON Merge Patch
 is a very efficient representation of the change. It is less
 efficient when leaf values are arrays, because JSON Merge Patch
 replaces arrays in their entirety, even if only one entry changes.

 Formally, the process of applying a Merge Patch is defined by the
 following recursive algorithm, as specified in [RFC7396]:

 define MergePatch(Target, Patch) {
 if Patch is an Object {
 if Target is not an Object {
 Target = {} # Ignore the contents and
 # set it to an empty Object
 }
 for each Name/Value pair in Patch {
 if Value is null {
 if Name exists in Target {
 remove the Name/Value pair from Target
 }
 } else {
 Target[Name] = MergePatch(Target[Name], Value)
 }
 }
 return Target
 } else {
 return Patch
 }
 }

 Note that null as the value of a name/value pair will delete the
 element with "name" in the original JSON value.

5.2. JSON Merge Patch Applied to Network Map Messages

Section 11.2.1.6 of [RFC7285] defines the format of a Network Map
 message. Here is a simple example:

https://datatracker.ietf.org/doc/html/rfc7396
https://datatracker.ietf.org/doc/html/rfc7285#section-11.2.1.6

Roome & Yang Expires March 17, 2017 [Page 9]

Internet-Draft ALTO Incremental Updates September 2016

 {
 "meta" : {
 "vtag": {
 "resource-id" : "my-network-map",
 "tag" : "da65eca2eb7a10ce8b059740b0b2e3f8eb1d4785"
 }
 },
 "network-map" : {
 "PID1" : {
 "ipv4" : ["192.0.2.0/24", "198.51.100.0/25"]
 },
 "PID2" : {
 "ipv4" : ["198.51.100.128/25"]
 },
 "PID3" : {
 "ipv4" : ["0.0.0.0/0"],
 "ipv6" : ["::/0"]
 }
 }
 }

 When applied to that message, the following Merge Patch update
 message adds the ipv6 prefix "2001:db8:8000::/33" to "PID1", deletes
 "PID2", and assigns a new "tag" to the Network Map:

 {
 "meta" : {
 "vtag" : {
 "tag" : "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 }
 },
 "network-map": {
 "PID1" : {
 "ipv6" : ["2001:db8:8000::/33"]
 },
 "PID2" : null
 }
 }

 Here is the updated Network Map:

Roome & Yang Expires March 17, 2017 [Page 10]

Internet-Draft ALTO Incremental Updates September 2016

 {
 "meta" : {
 "vtag": {
 "resource-id" : "my-network-map",
 "tag" : "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 }
 },
 "network-map" : {
 "PID1" : {
 "ipv4" : ["192.0.2.0/24", "198.51.100.0/25"],
 "ipv6" : ["2001:db8:8000::/33"]
 },
 "PID3" : {
 "ipv4" : ["0.0.0.0/0"],
 "ipv6" : ["::/0"]
 }
 }
 }

5.3. JSON Merge Patch Applied to Cost Map Messages

Section 11.2.3.6 of [RFC7285] defines the format of a Cost Map
 message. Here is a simple example:

 {
 "meta" : {
 "dependent-vtags" : [
 {"resource-id": "my-network-map",
 "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 }
],
 "cost-type" : {
 "cost-mode" : "numerical",
 "cost-metric": "routingcost"
 }
 },
 "cost-map" : {
 "PID1": { "PID1": 1, "PID2": 5, "PID3": 10 },
 "PID2": { "PID1": 5, "PID2": 1, "PID3": 15 },
 "PID3": { "PID1": 20, "PID2": 15 }
 }
 }

 The following Merge Patch message updates the example cost map so
 that PID1->PID2 is 9 instead of 5, PID3->PID1 is no longer available,
 and PID3->PID3 is now defined as 1:

https://datatracker.ietf.org/doc/html/rfc7285#section-11.2.3.6

Roome & Yang Expires March 17, 2017 [Page 11]

Internet-Draft ALTO Incremental Updates September 2016

 {
 "cost-map" : {
 "PID1" : { "PID2" : 9 },
 "PID3" : { "PID1" : null, "PID3" : 1 }
 }
 }

 Here is the updated cost map:

 {
 "meta" : {
 "dependent-vtags" : [
 {"resource-id": "my-network-map",
 "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 }
],
 "cost-type" : {
 "cost-mode" : "numerical",
 "cost-metric": "routingcost"
 }
 },
 "cost-map" : {
 "PID1": { "PID1": 1, "PID2": 9, "PID3": 10 },
 "PID2": { "PID1": 5, "PID2": 1, "PID3": 15 },
 "PID3": { "PID2": 15, "PID3": 1 }
 }
 }

6. ALTO Event Stream

 The Update Stream service (Section 7) returns a stream of Update
 Events (Section 6.2) and Control Events (Section 6.3).

6.1. ALTO Event Format

 Update and Control Events have the same basic structure. The data
 field is a JSON object, and the event field contains the media type
 of the data field, and an optional client id. Update Events use the
 client id to identify the ALTO resource to which the update message
 applies. Client ids MUST follow the rules for ALTO ResourceIds (see
 {10.2} of [RFC7285]. Client ids MUST be unique within an Update
 Stream, but need not be globally unique. For example, if a client
 requests updates for both a Cost Map and its Network Map, the client
 might assign id "1" to the Network Map and "2" to the Cost Map.
 Alternatively, the client could use the ALTO resource ids for those
 two maps.

https://datatracker.ietf.org/doc/html/rfc7285

Roome & Yang Expires March 17, 2017 [Page 12]

Internet-Draft ALTO Incremental Updates September 2016

 JSON specifications use the type ClientId for a client-id.

 The two sub-fields of the event field are encoded as comma-separated
 strings:

 media-type [',' client-id]

 Note that media type names may not contain a comma (character code
 0x2c).

 The Update Stream Service does not use the SSE "id" field.

6.2. ALTO Update Events

 The Update Stream Service sends an update event when a monitored
 resource changes. The data is either a complete specification of the
 resource, or else a JSON Merge Patch object describing the changes
 from the last version. We will refer to these as full-replacement
 and Merge Patch messages, respectively. The data objects in full-
 replacement messages are defined by [RFC7285]; examples are Network
 and Cost Map messages. They have the media types defined in that
 document. The data objects in Merge Patch messages are defined by
 [RFC7396], and they have the media type "application/
 merge-patch+json", as defined by [RFC7396].

 Figure 2 shows some examples of ALTO update events:

 event: application/alto-networkmap+json,1
 data: { ... full Network Map message ... }

 event: application/alto-costmap+json,2
 data: { ... full Cost Map message ... }

 event: application/merge-patch+json,2
 data: { ... Merge Patch update for the Cost Map ... }

 Figure 2: Examples of ALTO update events.

6.3. ALTO Control Events

 Control events have the media type "application/
 alto-updatestreamcontrol+json", and the data is of type
 UpdateStreamControlEvent:

 object {
 [String control-uri;]
 [String remove<1..*>;]
 } UpdateStreamControlEvent;

https://datatracker.ietf.org/doc/html/rfc7285
https://datatracker.ietf.org/doc/html/rfc7396
https://datatracker.ietf.org/doc/html/rfc7396

Roome & Yang Expires March 17, 2017 [Page 13]

Internet-Draft ALTO Incremental Updates September 2016

 The "control-uri" field is the URI of the Stream Control resource for
 this Update Stream (Section 8). The ALTO server MUST send a control
 event with that URI as the first event in an Update Stream.

 The "remove" field is a list of client-ids of resources for which the
 server will no longer send updates. The server sends this event
 after processing a Stream Controller request to remove those
 resources (Section 7.6.2).

7. Update Stream Service

 An Update Stream returns a stream of SSE messages, as defined in
Section 6. An ALTO Server's IRD (Information Resource Directory) MAY

 define one or more Update Stream resources, which clients use to
 request new Update Stream instances.

 When a server creates a new Update Stream, it also create a new
 Stream Controller for that Update Stream. A client uses that Stream
 Controller to remove resources from the Update Stream instance, or to
 request updates for additional resources. A client cannot obtain the
 Stream Controller through the IRD. Instead, the first event that the
 server sends to the client has the URI for the associated controller
 (see Section 6.3.

Section 8 describes the Stream Controller.

7.1. Media Type

 The media type of an ALTO Update Stream resource is "text/
 event-stream", as defined by [SSE].

7.2. HTTP Method

 An ALTO Update Stream is requested using the HTTP POST method.

7.3. Accept Input Parameters

 An ALTO Client specifies the parameters for the new Update Stream by
 sending an HTTP POST body with the media type "application/
 alto-updatestreamparams+json". That body contains a JSON Object of
 type UpdateStreamReq, where:

Roome & Yang Expires March 17, 2017 [Page 14]

Internet-Draft ALTO Incremental Updates September 2016

 object {
 [AddUpdatesReq add;]
 [ClientId remove<0..*>;]
 } UpdateStreamReq;

 object-map {
 ClientId -> AddUpdateReq;
 } AddUpdatesReq;

 object {
 String resource-id;
 [String tag;]
 [Boolean incremental-updates;]
 [Object input;]
 } AddUpdateReq;

 The "add" field specifies the resources for which the client wants
 updates, and has one entry for each resource. The client creates a
 unique client-id (Section 6.1) for each such resource, and uses those
 client-ids as the keys in the "add" field.

 An Update Stream request MUST have an "add" field specifying one or
 more resources. If it does not, the server MUST return an
 E_INVALID_FIELD_VALUE error response (see Section 8.5.2 of
 [RFC7285]), and MUST close the stream without sending any events.

 The "resource-id" field is the resource-id of an ALTO resource, and
 MUST be in the Update Streams's "uses" list (see Section 7.5). If
 any resource-id is invalid, or is not associated with this Update
 Stream, the server MUST return an E_INVALID_FIELD_VALUE error
 response (see Section 8.5.2 of [RFC7285]), and MUST close the stream
 without sending any events.

 If the resource-id is a GET-mode resource with a version tag (or
 "vtag"), as defined in Sections 6.3 and 10.3 of [RFC7285], and if the
 client has previously retrieved a version of that resource from the
 server, the client MAY set the "tag" field to the tag part of the
 client's version of that resource. If that version is not current,
 the server MUST send a full-replacement update before sending any
 incremental updates, as described in Section 7.6.2. If that version
 is still current, the ALTO Server MAY omit the initial full-
 replacement update.

 If the "incremental-updates" field for a resource-id is "true", the
 server MAY send incremental update events for this resource-id
 (assuming the server supports incremental updates for that resource;
 see Section 7.4). If the "incremental-updates" field is "false", the
 ALTO Server MUST NOT send incremental update events for that

https://datatracker.ietf.org/doc/html/rfc7285#section-8.5.2
https://datatracker.ietf.org/doc/html/rfc7285#section-8.5.2
https://datatracker.ietf.org/doc/html/rfc7285#section-8.5.2
https://datatracker.ietf.org/doc/html/rfc7285

Roome & Yang Expires March 17, 2017 [Page 15]

Internet-Draft ALTO Incremental Updates September 2016

 resource. In this case, whenever a change occurs, the server MUST
 send a full-replacement update instead of an incremental update. The
 server MAY wait until more changes are available, and send a single
 full-replacement update with those changes. Thus an ALTO Client
 which declines to accept incremental updates may not get updates as
 quickly as a client which does.

 The default for "incremental-updates" is "true", so to suppress
 incremental updates, the client MUST explicitly set "incremental-
 updates" to "false". Note that the client cannot suppress full-
 replacement update events.

 If the resource is a POST-mode service which requires input, the
 client MUST set the "input" field to a JSON Object with the
 parameters that resource expects. If the "input" field is missing or
 invalid, the ALTO Server MUST return the same error response that
 that resource would return for missing or invalid input (see
 [RFC7285]). In this case, the server MUST close the Update Stream
 without sending any events. If the inputs for several POST-mode
 resources are missing or invalid, the server MUST pick one error
 response and return it.

 The "remove" field is used in Stream Controller requests (see
Section 8), and is not allowed in the Update Stream request. If the

 "remove" field exists, the server MUST return an
 E_INVALID_FIELD_VALUE error response (see Section 8.5.2 of
 [RFC7285]), and MUST close the stream without sending any events.

7.4. Capabilities

 The capabilities are defined by an object of type
 UpdateStreamCapabilities:

 object {
 IncrementalUpdateMediaTypes incremental-update-media-types;
 } UpdateStreamCapabilities;

 object-map {
 ResourceID -> String;
 } IncrementalUpdateMediaTypes;

 If this Update Stream can provide incremental update events for a
 resource, the "incremental-update-media-types" field has an entry for
 that resource-id, and the value is the media-type of the incremental
 update message. Normally this will be "application/
 merge-patch+json", because, as described in Section 6, JSON Merge
 Patch is the only incremental update event type defined by this
 document. However future extensions may define other types of

https://datatracker.ietf.org/doc/html/rfc7285
https://datatracker.ietf.org/doc/html/rfc7285#section-8.5.2
https://datatracker.ietf.org/doc/html/rfc7285#section-8.5.2

Roome & Yang Expires March 17, 2017 [Page 16]

Internet-Draft ALTO Incremental Updates September 2016

 incremental updates.

7.5. Uses

 The "uses" attribute MUST be an array with the resource-ids of every
 resource for which this stream can provide updates.

 This set may be any subset of the ALTO Server's resources, and may
 include resources defined in linked IRDs. However, it is RECOMMENDED
 that the ALTO Server select a set that is closed under the resource
 dependency relationship. That is, if an Update Stream's "uses" set
 includes resource R1, and resource R1 depends on ("uses") resource
 R0, then the Update Stream's "uses" set should include R0 as well as
 R1. For example, an Update Stream for a Cost Map SHOULD also provide
 updates for the Network Map upon which that Cost Map depends.

7.6. Response

 The response is a stream of SSE update events. Section 6 defines the
 events, and [SSE] defines how they are encoded into a stream.

 An ALTO server SHOULD send updates only when the underlying values
 change. However, it may be difficult for a server to guarantee that
 in all circumstances. Therefore a client MUST NOT assume that an SSE
 update event represents an actual change.

 There are additional requirements on the server's response, as
 described below.

7.6.1. Keep-Alive Messages

 In an SSE stream, any line which starts with a colon (U+003A)
 character is a comment, and an ALTO Client MUST ignore that line
 ([SSE]). As recommended in [SSE], an ALTO Server SHOULD send a
 comment line (or an event) every 15 seconds to prevent clients and
 proxy servers from dropping the HTTP connection.

7.6.2. Event Sequence Requirements

 o The first event MUST be a control event with the URI of the Stream
 Controller (Section 8) for this Update Stream (Section 6.3).

 o As soon as possible after the client initiates the connection, the
 ALTO Server MUST send a full-replacement update event for each
 resource-id requested by the client. The only exception is for a
 GET-mode resource with a version tag. In this case the server MAY
 omit the initial full-replacement event for that resource if the
 "tag" field the client provided for that resource-id matches the

Roome & Yang Expires March 17, 2017 [Page 17]

Internet-Draft ALTO Incremental Updates September 2016

 tag of the server's current version.

 o If this stream provides updates for resource-ids R0 and R1, and if
 R1 depends on R0, then the ALTO Server MUST send the update for R0
 before sending the related update for R1. For example, suppose a
 stream provides updates to a Network Map and its dependent Cost
 Maps. When the Network Map changes, the ALTO Server MUST send the
 Network Map update before sending the Cost Map updates.

 o If this stream provides updates for resource-ids R0 and R1, and if
 R1 depends on R0, then the ALTO Server SHOULD send an update for
 R1 as soon as possible after sending the update for R0. For
 example, when a Network Map changes, the ALTO Server SHOULD send
 update events for the dependent Cost Maps as soon as possible
 after the update event for the Network Map.

 o When the client uses the Stream Controller to stop updates for one
 or more resources (Section 8), the ALTO Server MUST send a control
 event (Section 6.3) whose "remove" field has the client-ids of
 those resources. If the client uses the Stream Controller to
 terminate all active resources and close the stream, the server
 MUST send a control event whose "remove" field has the client-ids
 of all active resources.

7.6.3. Cross-Stream Consistency Requirements

 If several clients create Update Streams for updates to the same
 resource, the server MUST send the same updates to all of them.
 However, the server MAY pack data items into different Merge Patch
 events, as long as the net result of applying those updates is the
 same.

 For example, suppose two different clients create Update Streams for
 the same Cost Map, and suppose the ALTO Server processes three
 separate cost point updates with a brief pause between each update.
 The server MUST send all three new cost points to both clients. But
 the server MAY send a single Merge Patch event (with all three cost
 points) to one client, while sending three separate Merge Patch
 events (with one cost point per event) to the other client.

 A server MAY offer several different Update Stream resources that
 provide updates to the same underlying resource (that is, a
 resource-id may appear in the "uses" field of more than one Update
 Stream resource). In this case, those Update Stream resources MUST
 return the same update data.

Roome & Yang Expires March 17, 2017 [Page 18]

Internet-Draft ALTO Incremental Updates September 2016

8. Update Stream Controller

 An Update Stream Controller allows a client to remove resources from
 the set of resources that are monitored by an Update Stream, or add
 additional resources to that set. The controller also allows a
 client to gracefully shutdown an Update Stream.

 The Stream Controller is not obtained from the ALTO Server's IRD.
 Instead, when a client requests a new Update Stream, the server
 creates a new controller for that stream, and sends its URI to the
 client as the first event in the Update Stream (Section 7.6.2).

 As described below, each control request adds resources to the set of
 monitored resources, or removes previously added resources, or does
 both. Each control request is a separate HTTP request; the client
 MAY NOT stream multiple control requests in one HTTP request.
 However, if the client and server support HTTP Keep-Alive
 ([RFC7230]), the client MAY send multiple HTTP requests on the same
 TCP/IP connection.

8.1. URI

 The URI for a Stream Controller, by itself, MUST uniquely specify the
 Update Stream instance which it controls. The server MUST NOT use
 other properties of an HTTP request, such as cookies or the client's
 IP address, to determine the Update Stream. Furthermore, a server
 MUST NOT re-use a controller URI once the associated Update Stream
 has been closed.

 The client MUST evaluate a non-absolute controller URI (for example,
 a URI without a host, or with a relative path) in the context of the
 URI used to create the Update Stream. The controller's host MAY be
 different from the Update Stream's host.

 It is expected that the server will assign a unique stream id to each
 Update Stream instance, and will embed that id in the associated
 Stream Controller URI. However, the exact mechanism is left to the
 server. Clients MUST NOT attempt to deduce a stream id from the
 controller URI.

 To prevent an attacker from forging a Stream Controller URI and
 sending bogus requests to disrupt other Update Streams, Stream
 Controller URIs SHOULD contain sufficient random redundency to make
 it difficult to guess valid URIs.

https://datatracker.ietf.org/doc/html/rfc7230

Roome & Yang Expires March 17, 2017 [Page 19]

Internet-Draft ALTO Incremental Updates September 2016

8.2. Media Type

 An ALTO Stream Controller response does not have a specific media
 type. If a request is successful, the server returns an HTTP "204 No
 Content" response. If a request is unsuccessful, the server returns
 an ALTO error response (Section 8.5.2 of [RFC7285])

8.3. HTTP Method

 An ALTO Update Stream Controller request uses the POST method.

8.4. Accept Input Parameters

 A Stream Controller accepts the same input media type and input
 parameters as the Update Stream Service (Section 7.3). The only
 difference is that a Stream Controller also accepts the "remove"
 field.

 If specified, the "remove" field is an array of client-ids the client
 previously added to this Update Stream. An empty "remove" array is
 equivalent to a list of all currently active resources; the server
 responds by removing all resources and closing the stream.

 A client MAY use the "add" field to add additional resources.
 However, the client MUST assign a unique client-id to each resource.
 Client-ids MUST be unique over the lifetime of this Update Stream: a
 client MUST NOT re-use a previously removed client-id.

 If a request has any error, the server MUST NOT add or remove any
 resources from the associated Update Stream. In particular,

 o Each "add" request must satisfy the requirements in Section 7.3.
 If not, the server MUST return the error response defined in

Section 7.3.

 o As described in Section 7.6.2, for each "add" request, the ALTO
 Server MUST send a full-replacement update event for that resource
 before sending any incremental updates. The only exception is for
 a GET-mode resource with a version tag. In this case the server
 MAY omit the full-replacement event for that resource if the "tag"
 field the client provided matches the server's current version.

 o The server MUST return an E_INVALID_FIELD_VALUE error if a
 client-id in the "remove" field was not added in a prior request.
 Thus it is illegal to "add" and "remove" the same client-id in the
 same request. However, it is legal to remove a client-id twice.

https://datatracker.ietf.org/doc/html/rfc7285#section-8.5.2

Roome & Yang Expires March 17, 2017 [Page 20]

Internet-Draft ALTO Incremental Updates September 2016

 o The server MUST return an E_INVALID_FIELD_VALUE error if a
 client-id in the "add" field has been used before in this stream.

 o The server MUST return an E_INVALID_FIELD_VALUE error if the
 request has a non-empty "add" field and a "remove" field with an
 empty list of client-ids (to replace all active resources with a
 new set, the client MUST explicitly enumerate the client-ids to be
 removed).

 o If the associated Update Stream has been closed, the server MUST
 return either an ALTO E_INVALID_FIELD_VALUE error, or else an HTTP
 error, such as "404 Not Found".

8.5. Capabilities & Uses

 None (Stream Controllers do not appear in the IRD).

8.6. Response

 If a request is successful, the server returns an HTTP "204 No
 Content" response with no data. If there are any errors, the server
 MUST return the appropriate error code, and MUST NOT add or remove
 any resources from the Update Stream. Thus control requests are
 atomic: they cannot partially succeed.

 The server MUST process the "add" field before the "remove" field.
 If the request removes all active resources without adding any
 additional resources, the server MUST close the Update Stream. Thus
 an Update Stream cannot have zero resources.

 Whenever a server removes resources as a result of a Stream
 Controller request, the server MUST send the corresponding "remove"
 Control Events (Section 6.3) on the Update Stream. If one control
 request removes several resources, the server MAY send one Control
 Event for all those resources, or a separate event for each removed
 resource, or any combination thereof.

9. Examples

9.1. Example: Simple Network and Cost Map Updates

 Here is an example of a client's request and the server's immediate
 response, using the Update Stream resource "update-my-costs" defined
 in the IRD in Section 9.4. The client requests updates for the
 Network Map and "routingcost" Cost Map, but not for the "hopcount"
 Cost Map. The client uses the server's resource-ids as the client-
 ids. Because the client does not provide a "tag" for the Network

Roome & Yang Expires March 17, 2017 [Page 21]

Internet-Draft ALTO Incremental Updates September 2016

 Map, the server must send a full update for the Network Map as well
 as for the Cost Map. The client does not set "incremental-updates" to
 "false", so it defaults to "true". Thus server will send Merge Patch
 updates for the Cost Map, but not for the Network Map, because this
 Update Stream resource does not provide incremental updates for the
 Network Map.

 POST /updates/costs HTTP/1.1
 Host: alto.example.com
 Accept: text/event-stream,application/alto-error+json
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: ###

 { "add": {
 "my-network-map": {
 "resource-id": "my-network-map"
 },
 "my-routingcost-map": {
 "resource-id": "my-routingcost-map"
 }
 }
 }

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: application/alto-updatestreamcontrol+json
 data: {"control-uri":
 data: "http://alto.example.com/updates/streams/3141592653589"}

 event: application/alto-networkmap+json,my-network-map
 data: { ... full Network Map message ... }

 event: application/alto-costmap+json,my-routingcost-map
 data: { ... full routingcost Cost Map message ... }

 After sending those events immediately, the ALTO Server will send
 additional events as the maps change. For example, the following
 represents a small change to the Cost Map:

 event: application/merge-patch+json,my-routingcost-map
 data: {"cost-map": {"PID1" : {"PID2" : 9}}}

 If a major change to the Network Map occurs, the ALTO Server MAY
 choose to send full Network and Cost Map messages rather than Merge
 Patch messages:

Roome & Yang Expires March 17, 2017 [Page 22]

Internet-Draft ALTO Incremental Updates September 2016

 event: application/alto-networkmap+json,my-network-map
 data: { ... full Network Map message ... }

 event: application/alto-costmap+json,my-routingcost-map
 data: { ... full Cost Map message ... }

9.2. Example: Advanced Network and Cost Map Updates

 This example is similar to the previous one, except that the client
 requests updates for the "hopcount" Cost Map as well as the
 "routingcost" Cost Map, and provides the current version tag of the
 Network Map, so the server is not required to send the full Network
 Map update event at the beginning of the stream. In this example,
 the client uses the client-ids "net", "routing" and "hops" for those
 resources. The ALTO Server sends the stream id and the full Cost
 Maps, followed by updates for the Network Map and Cost Maps as they
 become available:

 POST /updates/costs HTTP/1.1
 Host: alto.example.com
 Accept: text/event-stream,application/alto-error+json
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: ###

 { "add": {
 "net": {
 "resource-id": "my-network-map".
 "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 },
 "routing": {
 "resource-id": "my-routingcost-map"
 },
 "hops": {
 "resource-id": "my-hopcount-map"
 }
 }
 }

Roome & Yang Expires March 17, 2017 [Page 23]

Internet-Draft ALTO Incremental Updates September 2016

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: application/alto-updatestreamcontrol+json
 data: {"control-uri":
 data: "http://alto.example.com/updates/streams/2718281828459"}

 event: application/alto-costmap+json,routing
 data: { ... full routingcost Cost Map message ... }

 event: application/alto-costmap+json,hops
 data: { ... full hopcount Cost Map message ... }

 (pause)

 event: application/merge-patch+json,routing
 data: {"cost-map": {"PID2" : {"PID3" : 31}}}

 event: application/merge-patch+json,hops
 data: {"cost-map": {"PID2" : {"PID3" : 4}}}

 If the client wishes to stop receiving updates for the "hopcount"
 Cost Map, the client can send a "remove" request on the Stream
 Controller URI:

 POST /updates/streams/2718281828459" HTTP/1.1
 Host: alto.example.com
 Accept: text/plain,application/alto-error+json
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: ###

 {
 "remove": ["hops"]
 }

 HTTP/1.1 204 No Content
 Content-Length: 0

 (stream closed without sending data content)

 The ALTO Server sends a "remove" control event on the original
 request stream to inform the client that updates are stopped for that
 resource:

 event: application/alto-updatestreamcontrol+json

Roome & Yang Expires March 17, 2017 [Page 24]

Internet-Draft ALTO Incremental Updates September 2016

 data: { "remove": ["hops"] }

 If the client no longer needs any updates, and wishes to shut the
 Update Stream down gracefully, the client can send a "remove" request
 with an empty array:

 POST /updates/streams/2718281828459" HTTP/1.1
 Host: alto.example.com
 Accept: text/plain,application/alto-error+json
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: ###

 {
 "remove": []
 }

 HTTP/1.1 204 No Content
 Content-Length: 0

 (stream closed without sending data content)

 The ALTO Server sends a final "remove" control event on the original
 request stream to inform the client that all updates are stopped, and
 then closes the stream:

 event: application/alto-updatestreamcontrol+json
 data: { "remove": ["net", "routing"] }

 (server closes stream)

9.3. Example: Endpoint Property Updates

 As another example, here is how a client can request updates for the
 property "priv:ietf-bandwidth" for one set of endpoints, and "priv:
 ietf-load" for another. The ALTO Server immediately sends full-
 replacement messages with the property values for all endpoints.
 After that, the server sends update events for the individual
 endpoints as their property values change.

Roome & Yang Expires March 17, 2017 [Page 25]

Internet-Draft ALTO Incremental Updates September 2016

 POST /updates/properties HTTP/1.1
 Host: alto.example.com
 Accept: text/event-stream
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: ###

 { "add": {
 "props-1": {
 "resource-id": "my-props",
 "input": {
 "properties" : ["priv:ietf-bandwidth"],
 "endpoints" : [
 "ipv4:198.51.100.1",
 "ipv4:198.51.100.2",
 "ipv4:198.51.100.3"
]
 }
 },
 "props-2": {
 "resource-id": "my-props",
 "input": {
 "properties" : ["priv:ietf-load"],
 "endpoints" : [
 "ipv6:2001:db8:100::1",
 "ipv6:2001:db8:100::2",
 "ipv6:2001:db8:100::3",
]
 }
 },
 }
 }

Roome & Yang Expires March 17, 2017 [Page 26]

Internet-Draft ALTO Incremental Updates September 2016

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: application/alto-updatestreamcontrol+json
 data: {"control-uri":
 data: "http://alto.example.com/updates/streams/1414213562373"}

 event: application/alto-endpointprops+json,props-1
 data: { "endpoint-properties": {
 data: "ipv4:198.51.100.1" : { "priv:ietf-bandwidth": "13" },
 data: "ipv4:198.51.100.2" : { "priv:ietf-bandwidth": "42" },
 data: "ipv4:198.51.100.3" : { "priv:ietf-bandwidth": "27" }
 data: } }

 event: application/alto-endpointprops+json,props-2
 data: { "endpoint-properties": {
 data: "ipv6:2001:db8:100::1" : { "priv:ietf-load": "8" },
 data: "ipv6:2001:db8:100::2" : { "priv:ietf-load": "2" },
 data: "ipv6:2001:db8:100::3" : { "priv:ietf-load": "9" }
 data: } }

 (pause)

 event: application/merge-patch+json,props-1
 data: { "endpoint-properties":
 data: {"ipv4:198.51.100.1" : {"priv:ietf-bandwidth": "3"}}
 data: }

 (pause)

 event: application/merge-patch+json,props-2
 data: { "endpoint-properties":
 data: {"ipv6:2001:db8:100::3" : {"priv:ietf-load": "7"}}
 data: }

 If the client needs the "bandwidth" property for additional
 endpoints, the client can send a "add" request on the Stream
 Controller URI:

Roome & Yang Expires March 17, 2017 [Page 27]

Internet-Draft ALTO Incremental Updates September 2016

 POST /updates/streams/1414213562373" HTTP/1.1
 Host: alto.example.com
 Accept: text/plain,application/alto-error+json
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: ###

 { "add": {
 "props-3": {
 "resource-id": "my-props",
 "input": {
 "properties" : ["priv:ietf-bandwidth"],
 "endpoints" : [
 "ipv4:198.51.100.4",
 "ipv4:198.51.100.5",
]
 }
 },
 "props-4": {
 "resource-id": "my-props",
 "input": {
 "properties" : ["priv:ietf-load"],
 "endpoints" : [
 "ipv6:2001:db8:100::4",
 "ipv6:2001:db8:100::5",
]
 }
 },
 }
 }

 HTTP/1.1 204 No Content
 Content-Length: 0

 (stream closed without sending data content)

 The ALTO Server sends full replacement events for the two new
 resources, followed by incremental updates for all four requests as
 they arrive:

Roome & Yang Expires March 17, 2017 [Page 28]

Internet-Draft ALTO Incremental Updates September 2016

 event: application/alto-endpointprops+json,props-3
 data: { "endpoint-properties": {
 data: "ipv4:198.51.100.4" : { "priv:ietf-bandwidth": "25" },
 data: "ipv4:198.51.100.5" : { "priv:ietf-bandwidth": "31" },
 data: } }

 event: application/alto-endpointprops+json,props-4
 data: { "endpoint-properties": {
 data: "ipv6:2001:db8:100::4" : { "priv:ietf-load": "6" },
 data: "ipv6:2001:db8:100::5" : { "priv:ietf-load": "4" },
 data: } }

 (pause)

 event: application/merge-patch+json,props-3
 data: { "endpoint-properties":
 data: {"ipv4:198.51.100.5" : {"priv:ietf-bandwidth": "15"}}
 data: }

 (pause)

 event: application/merge-patch+json,props-2
 data: { "endpoint-properties":
 data: {"ipv6:2001:db8:100::2" : {"priv:ietf-load": "9"}}
 data: }

 (pause)

 event: application/merge-patch+json,props-4
 data: { "endpoint-properties":
 data: {"ipv6:2001:db8:100::4" : {"priv:ietf-load": "3"}}
 data: }

9.4. IRD Example

 Here is an example of an IRD that offers two Update Stream services.
 The first provides updates for the Network Map, the "routingcost" and
 "hopcount" Cost Maps, and a Filtered Cost Map resource. The second
 Update Stream provides updates to the Endpoint Properties service.

 Note that this IRD defines two Filtered Cost Map resources. They use
 the same cost types, but "my-filtered-cost-map" accepts cost
 constraint tests, while "my-simple-filtered-cost-map" does not. To
 avoid the issues discussed in Section 12.1, the Update Stream
 provides updates for the second, but not the first.

 "my-network-map": {

Roome & Yang Expires March 17, 2017 [Page 29]

Internet-Draft ALTO Incremental Updates September 2016

 "uri": "http://alto.example.com/networkmap",
 "media-type": "application/alto-networkmap+json",
 },
 "my-routingcost-map": {
 "uri": "http://alto.example.com/costmap/routingcost",
 "media-type": "application/alto-costmap+json",
 "uses": ["my-networkmap"],
 "capabilities": {
 "cost-type-names": ["num-routingcost"]
 }
 },
 "my-hopcount-map": {
 "uri": "http://alto.example.com/costmap/hopcount",
 "media-type": "application/alto-costmap+json",
 "uses": ["my-networkmap"],
 "capabilities": {
 "cost-type-names": ["num-hopcount"]
 }
 },
 "my-filtered-cost-map": {
 "uri": "http://alto.example.com/costmap/filtered/constraints",
 "media-type": "application/alto-costmap+json",
 "accepts": "application/alto-costmapfilter+json",
 "uses": ["my-networkmap"],
 "capabilities": {
 "cost-type-names": ["num-routingcost", "num-hopcount"],
 "cost-constraints": true
 }
 },
 "my-simple-filtered-cost-map": {
 "uri": "http://alto.example.com/costmap/filtered/simple",
 "media-type": "application/alto-costmap+json",
 "accepts": "application/alto-costmapfilter+json",
 "uses": ["my-networkmap"],
 "capabilities": {
 "cost-type-names": ["num-routingcost", "num-hopcount"],
 "cost-constraints": false
 }
 },
 "my-props": {
 "uri": "http://alto.example.com/properties",
 "media-type": "application/alto-endpointprops+json",
 "accepts": "application/alto-endpointpropparams+json",
 "capabilities": {
 "prop-types": ["priv:ietf-bandwidth"]
 }
 },
 "update-my-costs": {

Roome & Yang Expires March 17, 2017 [Page 30]

Internet-Draft ALTO Incremental Updates September 2016

 "uri": "http://alto.example.com/updates/costs",
 "media-type": "text/event-stream",
 "accepts": "application/alto-updatestreamparams+json",
 "uses": [
 "my-network-map",
 "my-routingcost-map",
 "my-hopcount-map",
 "my-simple-filtered-cost-map"
],
 "capabilities": {
 "incremental-update-media-types": {
 "my-routingcost-map": application/merge-patch+json",
 "my-hopcount-map": "application/merge-patch+json"
 }
 }
 },
 "update-my-props": {
 "uri": "http://alto.example.com/updates/properties",
 "media-type": "text/event-stream",
 "uses": ["my-props"],
 "accepts": "application/alto-updatestreamparams+json",
 "capabilities": {
 "incremental-update-media-types": {
 "my-props": "application/merge-patch+json"
 }
 }
 }

10. Client Actions When Receiving Update Messages

 In general, when a client receives a full-replacement update message
 for a resource, the client should replace the current version with
 the new version. When a client receives a Merge Patch update message
 for a resource, the client should apply those patches to the current
 version of the resource.

 However, because resources can depend on other resources (e.g., Cost
 Maps depend on Network Maps), an ALTO Client MUST NOT use a dependent
 resource if the resource on which it depends has changed. There are
 at least two ways a client can do that. We will illustrate these
 techniques by referring to Network and Cost Map messages, although
 these techniques apply to any dependent resources.

 Note that when a Network Map changes, the ALTO Server MUST send the
 Network Map update message before sending the updates for the
 dependent Cost Maps (see Section 7.6.2).

Roome & Yang Expires March 17, 2017 [Page 31]

Internet-Draft ALTO Incremental Updates September 2016

 One approach is for the ALTO Client to save the Network Map update
 message in a buffer, and continue to use the previous Network Map,
 and the associated Cost Maps, until the client receives the update
 messages for all dependent Cost Maps. The client then applies all
 Network and Cost Map updates atomically.

 Alternatively, the client MAY update the Network Map immediately. In
 this case, the client MUST mark each dependent Cost Map as
 temporarily invalid, and MUST NOT use that map until the client
 receives a Cost Map update message with the new Network Map version
 tag. Note that the client MUST NOT delete the Cost Maps, because the
 server may send Merge Patch update messages.

 The ALTO Server SHOULD send updates for dependent resources in a
 timely fashion. However, if the client does not receive the expected
 updates, the client MUST close the Update Stream connection, discard
 the dependent resources, and reestablish the Update Stream. The
 client MAY retain the version tag of the last version of any tagged
 resources, and give those version tags when requesting the new Update
 Stream. In this case, if a version is still current, the ALTO Server
 will not re-send that resource.

 Although not as efficient as possible, this recovery method is simple
 and reliable.

11. Design Decisions and Discussions

11.1. HTTP/2 Server-Push

 HTTP/2 ([RFC7540]) provides a Server Push facility. Although the
 name implies that it might be useful for sending asynchronous updates
 from the server to the client, in reality Server Push is not well
 suited for that task. To see why it is not, here is a quick summary
 of HTTP/2.

 HTTP/2 allows a client and server to multiplex many HTTP requests and
 responses over a single TCP connection. The requests and responses
 can be interleaved on a block by block basis, avoiding the head-of-
 line blocking problem encountered with the Keep-Alive mechanism in
 HTTP/1.1. Server Push allows the server to send a resource (an
 image, a CSS file, a javascript file, etc.) to the client before the
 client explicitly requests it. A server can only push cacheable GET-
 mode resources. By pushing a resource, the server implicitly tells
 the client, "Add this resource to your cache, because a resource you
 have requested needs it."

 One approach for using Server Push for ALTO updates is for the server

https://datatracker.ietf.org/doc/html/rfc7540

Roome & Yang Expires March 17, 2017 [Page 32]

Internet-Draft ALTO Incremental Updates September 2016

 to send each update event as a separate Server Push item, and let the
 client apply those updates as they arrive. Unfortunately there are
 several problems with that approach.

 First, HTTP/2 does not guarantee that pushed resources are delivered
 to the client in the order they were sent by the client, so each
 update event would need a sequence number, and the client would have
 to re-sequence them.

 Second, an HTTP/2-aware client library will not necessarily inform a
 client application when the server pushes a resource. Instead, the
 library might cache the pushed resource, and only deliver it to the
 client when the client explicitly requests that URI.

 But the third problem is the most significant: Server Push is
 optional, and can be disabled by any proxy between the client and the
 server. This is not a problem for the intended use of Server Push:
 eventually the client will request those resources, so disabling
 Server Push just adds a delay. But this means that Server Push is
 not suitable for resources which the client does not know to request.

 Thus we do not believe HTTP/2 Server Push is suitable for delivering
 asynchronous updates. Hence we have chosen to base ALTO updates on
 HTTP/1.1 and SSE.

11.2. Not Allowing Stream Restart

 If an update stream is closed accidentally, when the client
 reconnects, the server must resend the full maps. This is clearly
 inefficient. To avoid that inefficiency, the SSE specification
 allows a server to assign an id to each event. When a client
 reconnects, the client can present the id of the last successfully
 received event, and the server restarts with the next event.

 However, that mechanism adds additional complexity. The server must
 save SSE messages in a buffer, in case clients reconnect. But that
 mechanism will never be perfect: if the client waits too long to
 reconnect, or if the client sends an invalid id, then the server will
 have to resend the complete maps anyway.

 Furthermore, this is unlikely to be a problem in practice. Clients
 who want continuous updates for large resources, such as full Network
 and Cost Maps, are likely to be things like P2P trackers. These
 clients will be well connected to the network; they will rarely drop
 connections.

 Mobile devices certainly can and do drop connections, and will have
 to reconnect. But mobile devices will not need continuous updates

Roome & Yang Expires March 17, 2017 [Page 33]

Internet-Draft ALTO Incremental Updates September 2016

 for multi-megabyte Cost Maps. If mobile devices need continuous
 updates at all, they will need them for small queries, such as the
 costs from a small set of media servers from which the device can
 stream the currently playing movie. If the mobile device drops the
 connection and reestablishes the Update Stream, the ALTO Server will
 have to retransmit only a small amount of redundant data.

 In short, using event ids to avoid resending the full map adds a
 considerable amount of complexity to avoid a situation which we
 expect is very rare. We believe that complexity is not worth the
 benefit.

 The Update Stream service does allow the client to specify the tag of
 the last received version of any tagged resource, and if that is
 still current, the server need not retransmit the full resource.
 Hence clients can use this to avoid retransmitting full Network Maps.
 Cost Maps are not tagged, so this will not work for them. Of course,
 the ALTO protocol could be extended by adding version tags to Cost
 Maps, which would solve the retransmission-on-reconnect problem.
 However, adding tags to Cost Maps might add a new set of
 complications.

11.3. Is Incremental Update Useful for Network Maps?

 It is not clear whether incremental updates (that is, Merge Patch
 updates) are useful for Network Maps. For minor changes, such as
 moving a prefix from one PID to another, they can be useful. But
 more involved changes to the Network Map are likely to be "flag
 days": they represent a completely new Network Map, rather than a
 simple, well-defined change.

 At this point we do not have sufficient experience with ALTO
 deployments to know how frequently Network Maps will change, or how
 extensive those changes will be. For example, suppose a link goes
 down and the network uses an alternative route. This is a frequent
 occurrence. If an ALTO Server models that by moving prefixes from
 one PID to another, then Network Maps will change frequently.
 However, an ALTO Server might model that as a change in costs between
 PIDs, rather than a change in the PID definitions. If a server takes
 that approach, simple routing changes will affect Cost Maps, but not
 Network Maps.

 So while we allow a server to use Merge Patch on Network Maps, we do
 not require the server to do so. Each server may decide on its own
 whether to use Merge Patch for Network Maps.

 This is not to say that Network Map updates are not useful. Clearly
 Network Maps will change, and update events are necessary to inform

Roome & Yang Expires March 17, 2017 [Page 34]

Internet-Draft ALTO Incremental Updates September 2016

 clients of the new map. Further, there maybe another incremental
 update encoding that is better suited for updating Networks Maps; see
 the discussions in the next section.

11.4. Other Incremental Update Message Types

 Other JSON-based incremental update formats have been defined, in
 particular JSON Patch ([RFC6902]). The update events defined in this
 document have the media-type of the update data. JSON Patch has its
 own media type ("application/json-patch+json"), so this update
 mechanism could easily be extended to allow servers to use JSON Patch
 for incremental updates.

 However, we think that JSON Merge Patch is clearly superior to JSON
 Patch for describing incremental updates to Cost Maps, Endpoint
 Costs, and Endpoint Properties. For these data structures, JSON
 Merge Patch is more space-efficient, as well as simpler to apply; we
 see no advantage to allowing a server to use JSON Patch for those
 resources.

 The case is not as clear for incremental updates to Network Maps.
 For example, suppose a prefix moves from one PID to another. JSON
 Patch could encode that as a simple insertion and deletion, while
 Merge Patch would have to replace the entire array of prefixes for
 both PIDs. On the other hand, to process a JSON Patch update, the
 client would have to retain the indexes of the prefixes for each PID.
 Logically, the prefixes in a PID are an unordered set, not an array;
 aside from handling updates, a client has no need to retain the array
 indexes of the prefixes. Hence to take advantage of JSON Patch for
 Network Maps, clients would have to retain additional, otherwise
 unnecessary, data.

 However, it is entirely possible that JSON Patch will be appropriate
 for describing incremental updates to new, as yet undefined ALTO
 resources. In this case, the extensions defining those new resources
 can use the update framework defined in this document, but recommend
 using JSON Patch, or some other method, to describe the incremental
 changes.

12. Miscellaneous Considerations

12.1. Considerations For Updates To Filtered Cost Maps

 If an Update Stream provides updates to a Filtered Cost Map which
 allows constraint tests, then a client MAY request updates to a
 Filtered Cost Map request with a constraint test. In this case, when
 a cost changes, the server MUST send an update if the new value

https://datatracker.ietf.org/doc/html/rfc6902

Roome & Yang Expires March 17, 2017 [Page 35]

Internet-Draft ALTO Incremental Updates September 2016

 satisfies the test. If the new value does not, whether the server
 sends an update depends on whether the previous value satisfied the
 test. If it did not, the server SHOULD NOT send an update to the
 client. But if the previous value did, then the server MUST send an
 update with a "null" value, to inform the client that this cost no
 longer satisfies the criteria.

 An ALTO Server can avoid such issues by offering Update Streams only
 for Filtered Cost Maps which do not allow constraint tests.

12.2. Considerations For Incremental Updates To Ordinal Mode Costs

 For an ordinal mode cost map, a change to a single cost point may
 require updating many other costs. As an extreme example, suppose
 the lowest cost changes to the highest cost. For a numerical mode
 cost map, only that one cost changes. But for an ordinal mode cost
 map, every cost might change. While this document allows a server to
 offer incremental updates for ordinal mode cost maps, server
 implementors should be aware that incremental updates for ordinal
 costs are more complicated than for numerical costs, and clients
 should be aware that small changes may result in large updates.

 An ALTO Server can avoid this complication by only offering full
 replacement updates for ordinal cost maps.

12.3. Considerations Related to SSE Line Lengths

 SSE was designed for events that consist of relatively small amounts
 of line-oriented text data, and SSE clients frequently read input one
 line-at-a-time. However, an Update Stream sends full cost maps as
 single events, and a cost map may involve megabytes, if not tens of
 megabytes, of text. This has implications for both the ALTO Server
 and Client.

 First, SSE clients might not be able to handle a multi-megabyte data
 "line". Hence it is RECOMMENDED that an ALTO server limit data lines
 to at most 2,000 characters.

 Second, some SSE client packages read all the data for an event into
 memory, and then present it to the client as a single character
 array. However, a client computer may not have enough memory to hold
 the entire JSON text for a large cost map. Hence an ALTO client
 SHOULD consider using an SSE library which presents the event data in
 manageable chunks, so the client can parse the cost map incrementally
 and store the underlying data in a more compact format.

Roome & Yang Expires March 17, 2017 [Page 36]

Internet-Draft ALTO Incremental Updates September 2016

13. Security Considerations

13.1. Denial-of-Service Attacks

 Allowing persistent update stream connections enables a new class of
 Denial-of-Service attacks. A client might create an unreasonable
 number of update stream connections, or add an unreasonable number of
 client-ids to one update stream. To avoid those attacks, an ALTO
 Server MAY choose to limit the number of active streams, and reject
 new requests when that threshold is reached. A server MAY also chose
 to limit the number of active client-ids on any given stream, or
 limit the total number of client-ids used over the lifetime of a
 stream, and reject any stream control request which would exceed
 those limits. In these cases, the server SHOULD return the HTTP
 status "503 Service Unavailable".

 While this technique prevents Update Stream DoS attacks from
 disrupting an ALTO Server's other services, it does make it easier
 for a DoS attack to disrupt the Update Stream service. Therefore a
 server may prefer to restrict Update Stream services to authorized
 clients, as discussed in Section 15 of [RFC7285].

 Alternatively an ALTO Server MAY return the HTTP status "307
 Temporary Redirect" to redirect the client to another ALTO Server
 which can better handle a large number of update streams.

13.2. Spoofed Control Requests

 An outside party which can read the update stream response, or which
 can observe stream control requests, can obtain the controller URI
 and use that to send a fraudulent "remove" requests, thus disabling
 updates for the valid client. This can be avoided by encrypting the
 Update Stream and Stream Controller requests (see Section 15 of
 [RFC7285]). Also, the ALTO Server echoes the "remove" requests on
 the update stream, so the valid client can detect unauthorized
 requests.

13.3. Privacy

 This extension does not introduce any privacy issues not already
 present in the ALTO protocol.

14. IANA Considerations

 This document defines two new media-types, "application/
 alto-updatestreamparams+json", as described in Section 7.3, and
 "application/alto-updatestreamcontrol+json", as described in

https://datatracker.ietf.org/doc/html/rfc7285#section-15
https://datatracker.ietf.org/doc/html/rfc7285#section-15
https://datatracker.ietf.org/doc/html/rfc7285#section-15

Roome & Yang Expires March 17, 2017 [Page 37]

Internet-Draft ALTO Incremental Updates September 2016

Section 6.3. All other media-types used in this document have
 already been registered, either for ALTO or JSON Merge Patch.

 Type name: application

 Subtype name: alto-updatestreamparams+json

 Required parameters: n/a

 Optional parameters: n/a

 Encoding considerations: Encoding considerations are identical to
 those specified for the "application/json" media type. See
 [RFC7159].

 Security considerations: Security considerations relating to the
 generation and consumption of ALTO Protocol messages are discussed
 in Section 13 of this document and Section 15 of [RFC7285].

 Interoperability considerations: This document specifies format of
 conforming messages and the interpretation thereof.

 Published specification: Section 7.3 of this document.

 Applications that use this media type: ALTO servers and ALTO clients
 either stand alone or are embedded within other applications.

 Additional information:

 Magic number(s): n/a

 File extension(s): This document uses the mime type to refer to
 protocol messages and thus does not require a file extension.

 Macintosh file type code(s): n/a

 Person & email address to contact for further information: See
 Authors' Addresses section.

 Intended usage: COMMON

 Restrictions on usage: n/a

 Author: See Authors' Addresses section.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7285#section-15

Roome & Yang Expires March 17, 2017 [Page 38]

Internet-Draft ALTO Incremental Updates September 2016

 Change controller: Internet Engineering Task Force
 (mailto:iesg@ietf.org).

 Type name: application

 Subtype name: alto-updatestreamcontrol+json

 Required parameters: n/a

 Optional parameters: n/a

 Encoding considerations: Encoding considerations are identical to
 those specified for the "application/json" media type. See
 [RFC7159].

 Security considerations: Security considerations relating to the
 generation and consumption of ALTO Protocol messages are discussed
 in Section 13 of this document and Section 15 of [RFC7285].

 Interoperability considerations: This document specifies format of
 conforming messages and the interpretation thereof.

 Published specification: Section 6.3 of this document.

 Applications that use this media type: ALTO servers and ALTO clients
 either stand alone or are embedded within other applications.

 Additional information:

 Magic number(s): n/a

 File extension(s): This document uses the mime type to refer to
 protocol messages and thus does not require a file extension.

 Macintosh file type code(s): n/a

 Person & email address to contact for further information: See
 Authors' Addresses section.

 Intended usage: COMMON

 Restrictions on usage: n/a

 Author: See Authors' Addresses section.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7285#section-15

Roome & Yang Expires March 17, 2017 [Page 39]

Internet-Draft ALTO Incremental Updates September 2016

 Change controller: Internet Engineering Task Force
 (mailto:iesg@ietf.org).

15. References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, BCP 14, March 1997.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
RFC 5789, March 2010.

 [RFC6902] Bryan, P. and M. Nottingham, "JavaScript Object Notation
 (JSON) Patch", RFC 6902, April 2013.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [RFC7285] Almi, R., Penno, R., Yang, Y., Kiesel, S., Previdi, S.,
 Roome, W., Shalunov, S., and R. Woundy, "Application-Layer
 Traffic Optimization (ALTO) Protocol", RFC 7285,
 September 2014.

 [RFC7230] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Message Syntax and Routing", RFC 7230,
 June 2014.

 [RFC7231] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content", RFC 7231, June 2014.

 [RFC7232] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Conditional Requests", RFC 7232, June 2014.

 [RFC7233] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Range Requests", RFC 7233, June 2014.

 [RFC7234] Fielding, R., Nottingham, M., and J. Reschke, "Hypertext
 Transfer Protocol (HTTP/1.1): Caching", RFC 7234,
 June 2014.

 [RFC7235] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Authentication", RFC 7235, June 2014.

 [RFC7396] Hoffman, P. and J. Snell, "JSON Merge Patch", RFC 7396,
 October 2014.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, "Hypertext Transfer
 Protocol Version 2 (HTTP/2)", RFC 7540, May 2015.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc6902
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7285
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
https://datatracker.ietf.org/doc/html/rfc7233
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7396
https://datatracker.ietf.org/doc/html/rfc7540

Roome & Yang Expires March 17, 2017 [Page 40]

Internet-Draft ALTO Incremental Updates September 2016

 [SSE] Hickson, I., "Server-Sent Events (W3C)", W3C
 Recommendation 03 February 2015, February 2015.

Appendix A. Acknowledgments

 Thank you to Xiao Shi (Yale University) for his contributions to an
 earlier version of this document.

Authors' Addresses

 Wendy Roome
 Nokia Bell Labs
 600 Mountain Ave, Rm 3B-324
 Murray Hill, NJ 07974
 USA

 Phone: +1-908-582-7974
 Email: wendy.roome@nokia.com

 Y. Richard Yang
 Tongji/Yale University
 51 Prospect St
 New Haven CT
 USA

 Email: yang.r.yang@gmail.com

Roome & Yang Expires March 17, 2017 [Page 41]

