
Workgroup: ALTO Working Group

Internet-Draft:

draft-ietf-alto-new-transport-00

Published: 11 July 2022

Intended Status: Standards Track

Expires: 12 January 2023

Authors: R. Schott

Deutsche Telekom

Y. Yang

Yale University

K. Gao

Sichuan University

J. Zhang

Tongji University

ALTO/H2: The ALTO Protocol using HTTP/2

Abstract

The ALTO base protocol [RFC7285] uses HTTP/1.x as the transport

protocol and hence ALTO transport includes the limitations of HTTP/

1.x. ALTO/SSE [RFC8895] addresses some of the limitations, but is

still based on HTTP/1.x. This document introduces ALTO new

transport, which provides the transport functions of ALTO/SSE on top

of HTTP/2, for more efficient ALTO transport.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119][RFC8174] when, and only when, they appear in all

capitals, as shown here.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 January 2023.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. ALTO/H2 Design Requirements

3. ALTO/H2 Design Overview

4. Transport Queue

4.1. Transport Queue Operations

4.2. Examples

5. Incremental Updates Queue

5.1. Incremental Updates Queue Operations

5.2. Examples

6. Individual Updates

6.1. Individual Updates Operations

6.2. Examples

7. Receiver Set

7.1. Receiver Set Operations

7.2. Examples

8. ALTO/H2 Stream Management

8.1. Objectives

8.2. Client -> Server [Create Transport Queue]

8.3. Client -> Server [Close Transport Queue]

8.4. Client -> Server [Request on Data of a Transport Queue on

Stream SID_tq]

8.5. Server -> Client [PUSH_PROMISE for Transport Queue on Stream

SID_tq]

8.6. Concurrency Management

9. ALTO/H2 Information Resource Directory (IRD)

10. Security Considerations

11. IANA Considerations

12. Acknowledgments

13. References

13.1. Normative References

13.2. Informative References

Appendix A. Outlook to ALTO with HTTP/3

¶

¶

https://trustee.ietf.org/license-info

Authors' Addresses

1. Introduction

Application-Layer Traffic Optimization (ALTO) provides a means for

network applications to obtain network status information. The ALTO

base protocol [RFC7285] is based on the sequential request and

response model of HTTP/1.1 [RFC7230]; hence, in the base protocol,

an ALTO client can issue only a sequence of requests on network

information resources, and the ALTO server sends the information

resources one-by-one, in the order of the request sequence.

To address the use cases where an ALTO client may need to

efficiently monitor changes to a set of network information

resources and the protocol is still based on the HTTP/1.1 model, the

ALTO Working Group introduces ALTO/SSE (ALTO Incremental Update

based on Server-Sent-Event) [RFC8895], so that an ALTO client can

manage (i.e., add and remove) a set of requests maintained at an

ALTO server, and the server can continuously, concurrently, and

incrementally push updates whenever a monitored network information

resource changes. Figure 1 shows the architecture and message flow

of ALTO/SSE, which can be considered as a more general transport

protocol than the ALTO base transport protocol. Although ALTO/SSE

allows the concurrent transport of multiple ALTO information

resources, it has complexities and limitations. For example, it

requires that the server provide a separate control URI, leading to

complexity in management.

Figure 1: ALTO SSE Architecture and Message Flow.

¶

¶

 --

| |

| +-------+ +-------+ 1. init request +------+ |

| | | | | <------------- | | |

| | | | | -------------> | | |

| 3.add/ | | | | 1'. control uri | | |

| remove | | | | | | |

| resource |Stream | |Update | | | |

 -------->|Control| private |Stream | 2a. data update |Client| --

 |Server |<------->|Server | messages | |

 -------- | | | | --------------> | | <-

| response | | | | --------------> | | |

| | | | | 2b.control update| | |

| +-------+ +-------+ messages +------+ |

| |

 --

This document specifies ALTO/H2, which realizes ALTO/SSE but takes

advantage of new HTTP capabilities provided by HTTP/2 [RFC7540].

2. ALTO/H2 Design Requirements

ALTO/H2 is designed to satisfy a set of requirements. First, it

should satisfy the following requirements to realize the functions

of ALTO/SSE:

R0: Client can request any resource using the connection, just as

using ALTO base protocol using HTTP/1.x.

R1: The client can request the addition (start) of incremental

updates to a resource.

R2: The client can request the deletion (stop) of incremental

updates to a resource.

R3: The server can signal to the client the start or stop of

incremental updates to a resource.

R4: The server can choose the type of each incremental update

encoding, as long as the type is indicated to be acceptable by

the client.

Following the ALTO framework [RFC7285] [RFC7971], ALTO/H2 should

still be HTTP based:

R5: The design follows the basic principle of HTTP---

Representational State Transfer and hence can use only HTTP verbs

(GET, POST, PUT, DELETE, HEAD).

R6: The design takes advantage of HTTP/2 design features such as

parallel transfers and respects HTTP/2 semantics such as the

semantics of PUSH_PROMISE.

To allow flexible deployment, the new transport protocol should be

flexible, in particular,

R7: The design should support capability negotiation.

3. ALTO/H2 Design Overview

A key design of ALTO/H2 is to distinguish between information about

ALTO resources and information about ALTO transport. It introduces

the following transport information structures to distribute ALTO

information resources:

The transport state from the ALTO server to an ALTO client (or a

set of clients) for an ALTO information resource is conceptually

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

* ¶

¶

*

through a transport queue. A static ALTO information resource

(e.g., Cost Map, Network Map) has a single transport queue, and a

dynamic ALTO information resource (e.g., Filtered Cost Map) may

create a queue for each unique filter request.

Each transport queue maintains two states: (1) the incremental

update message queue, which includes a sequence of incremental

update messages and (2) the receiver set, which includes the set

of receivers receiving incremental push updates from the ALTO

server.

The transport queue state is exposed to clients through views;

that is, a client can see only a virtual view of the server

state.

Figure 2 shows an example illustrating the aforementioned

information. Each ALTO client (Client 1, Client 2, or Client 3)

maintains a single HTTP/2 connection with the ALTO server.

¶

*

¶

*

¶

¶

Figure 2: ALTO New Transport Information Structure.

Information Resource:

a) Static resource (#1) such as NetworkMap

b) Filterable resource (#3) such as FilteredCostMap

 +-------------+

 | |

 +--------------------| ALTO Server |-----------+

 | +-| |-+ |

 | | +-------------+ | |

 | | | |

---------|------------------|-----------------|---------|------------

 | | | | Information

 | | | | Resource

+-------------+ +-------------+ +-------------+ +-------------+

| Information | | Information | | Information | | Information |

| Resource #1 | | Resource #2 | | Resource #3 | | Resource #4 |

+-------------+ +-------------+ +-------------+ +-------------+

 | / \

-------|-----------------------------/------\------------------------

 | / \ Transport

 | +----/ \------+ Queues

 | | |

 +--------+ +--------+ +--------+

 | tq1 |-----+ | tq2 |-----+ | tq3 |-----+

 +----|---+ | +----|---+ | +----|---+ |

 | | | | | |

 +----|---+ +---|----+ +----|---+ +---|----+ +----|---+ +---|----+

 | tq1/uq | | tq1/rs | | tq2/uq | | tq2/rs | | tq3/uq | | tq3/rs |

 +--------+ +--------+ +--------+ +--------+ +--------+ +--------+

 |\ /\ | / | |

-------|-\-----/--\-------------|--------/------------|----------|---

 | \ / +-------+ | / | |

 | +-/-----------+ \ | / | |

 | / \ \ | / A + +

 | / +--\--\-|----/--+ single \ /

 | / +---\--\|---/---+ http2/3 \ /

 +----------+ +----------+ connection +----------+

 | Client 1 | | Client 2 | | Client 3 |

 +----------+ +------- --+ +----------+

tqi = transport queue i

tqi/uq = incremental updates queue of transport queue i

tqi/rs = receiver set of transport queue i

The basic work flow of a client connecting to an ALTO server is the

following:

Figure 3: ALTO New Transport Information Structure.

4. Transport Queue

4.1. Transport Queue Operations

A transport queue supports three basic operations (CRD): create,

read (get status), and delete.

Create a transport queue: An ALTO client creates a transport queue

using the HTTP POST method with ALTO SSE AddUpdateReq ([RFC 8895]

Sec. 6.5) as the parameter:

A successful POST request MUST return the URI for the transport

queue. Unless the request has incremental-changes to be false, the

client is added to receiver set as well, indicating that the client

will receive automatic, incremental push updates.

Read a transport queue: A client reads the status of a transport

queue by issuing a GET request to the transport queue URI returned

from the POST method.

¶

 Client opens a connection to the server

 Client opens/identifies a transport queue tq

 // pull mode

 Client requests transport queue status of tq

 Client requests an element in the incremental update queue

 // push mode

 Client becomes a receiver

 Client receives incremental push updates

 Client closes the transport queue tq

 Client closes the connection

¶

¶

 object {

 ResourceID resource-id;

 [JSONString tag;]

 [Boolean incremental-changes;]

 [Object input;]

 } AddUpdateReq;

¶

¶

¶

Delete a transport queue: a transport queue exposed to a client can

be closed (deleted) either explicitly or implicitly.

Explicit delete: A client uses the HTTP DELETE method to

explicitly delete a transport queue. If successful, the transport

queue is deleted from the local view of the client, although the

server may still maintain the transport queue for other client

connections.

Implicit delete: Transport queue for a client is ephemeral: the

close of the HTTP connection between the client and the server

deletes the transport queue from the client's view --- when the

client reconnects, the client MUST NOT assume that the transport

queue is still valid.

Error codes: ALTO/H2 uses HTTP error codes.

4.2. Examples

The first example is a client creating a transport queue.

¶

*

¶

*

¶

¶

¶

 Client -> server request

 HEADERS

 - END_STREAM

 + END_HEADERS

 :method = POST

 :scheme = https

 :path = /tqs

 host = alto.example.com

 accept = application/alto-error+json,

 application/alto-transport+json

 content-type = application/alto-transport+json

 content-length = TBD

 DATA

 - END_STREAM

 {

 "resource-id": "my-routingcost-map"

 }

¶

The client can then read the status of the transport queue using the

read operation (GET) in the same HTTP connection. Below is an

example (structure of incremental updates queue will be specified in

the next section):

 Server -> client response:

 HEADERS

 - END_STREAM

 + END_HEADERS

 :status = 200

 content-type = application/alto-transport+json

 content-length = TBD

 DATA

 - END_STREAM

 {"tq": “/tqs/2718281828459”}

¶

¶

5. Incremental Updates Queue

5.1. Incremental Updates Queue Operations

Among the CRUD operations, an incremental updates queue supports

only the read operation: a client cannot create, update, or delete

incremental updates queue directly---it is read only, and associated

with transport queue automatically.

 Client -> server request

 HEADERS

 - END_STREAM

 + END_HEADERS

 :method = GET

 :scheme = https

 :path = /tqs/2718281828459

 host = alto.example.com

 accept = application/alto-error+json,

 application/alto-transport+json

 Server -> client response:

 HEADERS

 - END_STREAM

 + END_HEADERS

 :status = 200

 content-type = application/alto-transport+json

 content-length = TBD

 DATA

 - END_STREAM

 { "uq":

 [

 {“seq”: 101,

 "media-type": "application/alto-costmap+json",

 “tag”: "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe" },

 {“seq”: 102,

 "media-type": "application/merge-patch+json",

 “tag”: "cdf0222x59740b0b2e3f8eb1d4785acd42231bfe" },

 {“seq”: 103,

 "media-type": "application/merge-patch+json",

 “tag”: "8eb1d4785acd42231bfecdf0222x59740b0b2e3f",

 "link": "/tqs/2718281828459/snapshot/2e3f"}

],

 "rs": ["self"]

 }

¶

¶

Reads an incremental updates queue: A client reads the status of an

incremental updates queue using the HTTP GET method: GET transport-

queue-uri/uq, where the transport-queue-uri is the URI returned in

the transport queue create method.

The response informs the client the backlog status, and potential

direct links. Specifically, the response is a JSON array, with each

element being one incremental update, with three required fields and

one optional field:

"seq": a required JSON integer indicating the sequence number of

the incremental update; As JSON allows a large integer space,

when the server reaches the largest integer, the server SHOULD

close the incremental update queue;

"media-type", a required JSON string giving the type of the

incremental update (see ALTO/SSE);

"tag": a required JSON string giving a unique tag (see [RFC7285];

"link": an optional JSON string giving an optional link for a

client to directly request a resource as a complete snapshot (not

through incremental updates).

Note that the server determines the state (window of history and

type of each update) in the incremental updates queue, as specified

by [R4].

5.2. Examples

Assume the same example in the preceding section. The client can

check the status of the incremental updates queue of a transport

queue from the same connection:

¶

¶

*

¶

*

¶

* ¶

*

¶

¶

¶

6. Individual Updates

6.1. Individual Updates Operations

A client can only read an individual update. The read can be either

pull read issued by the client or a push from the server to the

client.

 Client -> server request:

 HEADERS

 - END_STREAM

 + END_HEADERS

 :method = GET

 :scheme = https

 :path = /tqs/2718281828459/uq

 host = alto.example.com

 accept = application/alto-error+json,

 application/alto-transport+json

 Server -> client response:

 HEADERS

 - END_STREAM

 + END_HEADERS

 :status = 200

 content-type = application/alto-transport+json

 content-length = TBD

 DATA

 - END_STREAM

 {

 [

 {“seq”: 101,

 "media-type": "application/alto-costmap+json",

 “tag”: "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe" },

 {“seq”: 102,

 "media-type": "application/merge-patch+json",

 “tag”: "cdf0222x59740b0b2e3f8eb1d4785acd42231bfe" },

 {“seq”: 103,

 "media-type": "application/merge-patch+json",

 “tag”: "8eb1d4785acd42231bfecdf0222x59740b0b2e3f",

 "link": "/tqs/2718281828459/snapshot/2e3f"}

],

 }

¶

¶

Client pull read: A client uses HTTP GET method on the incremental

updates queue concatenated by a sequence number to pull an

individual update.

Server push read: a client starts to receive server push when it is

added to the receiver set. A client can add itself to the receiver

set when creating the transport queue, or add itself explicitly to

the receiver set (see the next section).

The work flow of server push of individual updates is the following:

Initialization: the first update pushed from the server to the

client MUST be the later of the following two: (1) the last

independent update in the incremental updates queue; and (2) the

following entry of the entry that matches the tag when the client

creates the transport queue. The client MUST set

SETTINGS_ENABLE_PUSH to be consistent.

Push state: the server MUST maintain the last entry pushed to the

client (and hence per client, per connection state) and schedule

next update push accordingly.

Push management: The client MUST NOT cancel (RST_STREAM) a

PUSH_PROMISE to avoid complex server state management.

6.2. Examples

The first example is a client pull example, in which the client

directly requests an individual update.

¶

¶

¶

*

¶

*

¶

*

¶

¶

Note from the transport queue state that the 103 message has an

OPTIONAL link to a complete snapshot, which a client can request.

 Client -> server request:

 HEADERS

 + END_STREAM

 + END_HEADERS

 :method = GET

 :scheme = https

 :path = /tqs/2718281828459/uq/101

 host = alto.example.com

 accept = application/alto-error+json,

 application/alto-costmap+json

 Server -> client response:

 HEADERS

 - END_STREAM

 + END_HEADERS

 :status = 200

 content-type = application/alto-costmap+json

 content-length = TBD

 DATA

 + END_STREAM

 {

 "meta" : {

 "dependent-vtags" : [{

 "resource-id": "my-network-map",

 "tag": "da65eca2eb7a10ce8b059740b0b2e3f8eb1d4785"

 }],

 "cost-type" : {

 "cost-mode" : "numerical",

 "cost-metric": "routingcost"

 },

 "vtag": {

 "resource-id" : "my-routingcost-map",

 "tag" : "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"

 }

 },

 "cost-map" : {

 "PID1": { "PID1": 1, "PID2": 5, "PID3": 10 },

 "PID2": { "PID1": 5, "PID2": 1, "PID3": 15 },

 "PID3": { "PID1": 20, "PID2": 15 }

 }

 }

¶

¶

Instead of directly requesting, the client can wait for the server

for incremental push, where the server first sends PUSH_PROMISE with

the GET URI as above.¶

 Server -> client PUSH_PROMISE in current stream:

 PUSH_PROMISE

 - END_STREAM

 Promised Stream 4

 HEADER BLOCK

 :method = GET

 :scheme = https

 :path = /tqs/2718281828459/uq/101

 host = alto.example.com

 accept = application/alto-error+json,

 application/alto-costmap+json

 Server -> client content Stream 4:

 HEADERS

 + END_STREAM

 + END_HEADERS

 :status = 200

 content-type = application/alto-costmap+json

 content-length = TBD

 DATA

 + END_STREAM

 {

 "meta" : {

 "dependent-vtags" : [{

 "resource-id": "my-network-map",

 "tag": "da65eca2eb7a10ce8b059740b0b2e3f8eb1d4785"

 }],

 "cost-type" : {

 "cost-mode" : "numerical",

 "cost-metric": "routingcost"

 },

 "vtag": {

 "resource-id" : "my-routingcost-map",

 "tag" : "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"

 }

 },

 "cost-map" : {

 "PID1": { "PID1": 1, "PID2": 5, "PID3": 10 },

 "PID2": { "PID1": 5, "PID2": 1, "PID3": 15 },

 "PID3": { "PID1": 20, "PID2": 15 }

 }

 }

 Server -> client PUSH_PROMISE in current stream:

 PUSH_PROMISE

 - END_STREAM

 Promised Stream 6

 HEADER BLOCK

 :method = GET

 :scheme = https

 :path = /tqs/2718281828459/uq/102

 host = alto.example.com

 accept = application/alto-error+json,

 application/merge-patch+json

 Server -> client content Stream 6

 HEADERS

 + END_STREAM

 + END_HEADERS

 :status = 200

 content-type = application/merge-patch+json

 content-length = TBD

 DATA

 + END_STREAM

 { ...}

¶

7. Receiver Set

7.1. Receiver Set Operations

Among the CRUD operations, a client can add to or delete itself from

the receiver set of a transport queue. It can also read the status

of the receiver set.

Creat: A client can add itself in the receiver set by using the HTTP

PUT method: PUT transport-queue/rs/self

Read: A client can see only itself in the receiver set. The

appearance of self in the receiver set (read does not return "not

exists" error) is an indication that push starts.

Delete: A client can delete itself (stops receiving push) either

explicitly or implicitly.

Explicit delete: A client deletes itself using the HTTP DELETE

method: DELETE transport-queue/rs/self.

Implicit delete: Transport queue is connection ephemeral: the

close of connection or stream for the transport queue deletes the

transport queue (from the view) for the client.

7.2. Examples

A client can stop incremental push updates from the server to itself

by sending the request:

8. ALTO/H2 Stream Management

8.1. Objectives

A main benefit of using HTTP/2 for ALTO is to take advantage of

HTTP/2 streams. In particular, the objectives of ALTO/H2 include:

Allow stream concurrency to reduce latency

Minimize the number of streams created

Enforce dependency among streams (so that if A depends on B, then

A should be sent after B)

¶

¶

¶

¶

*

¶

*

¶

¶

 DELETE /tqs/2718281828459/rs/self HTTP/2

 Accept: application/alto-transport+json

 HTTP/2 200 OK

¶

¶

* ¶

* ¶

*

¶

Encode dependency to enforce semantics (correctness)

To realize the objectives, ALTO/H2 MUST satisfy the following stream

management requirements in all 4 phases specified in the next 4

subsections.

8.2. Client -> Server [Create Transport Queue]

Each request to create a transport queue (POST) MUST choose a new

client selected stream ID (SID_tq), with the following requirements:

Stream Identifier of the frame is a new client-selected stream

ID; Stream Dependency in HEADERS is 0 (connection) for an

independent resource, the other transport queue if the dependency

is known.

Invariant: Stream keeps open until close or error.

8.3. Client -> Server [Close Transport Queue]

DELETE to close a transport queue (SID_tq) MUST be sent in SID_tq,

with the following requirements:

Stream Identifier of the frame is SID_tq, and Stream Dependency

in HEADER is 0 (connection), so that a client cannot close a

different stream.

HEADERS indicates END_STREAM; server response SHOULD close the

stream.

8.4. Client -> Server [Request on Data of a Transport Queue on Stream

SID_tq]

The request and response MUST satisfy the following requirements:

The Stream Identifier of the frame is a new client-selected

stream ID, and Stream Dependency in HEADERs MUST be SID_tq, so

that a client cannot issue request on a closed transport queue;

Both the request and the response MUST indicate END_STREAM.

8.5. Server -> Client [PUSH_PROMISE for Transport Queue on Stream

SID_tq]

The server push MUST satisfy the following requirements:

PUSH_PROMISE MUST be sent in stream SID_tq to serialize to allow

the client to know the push order;

* ¶

¶

¶

*

¶

* ¶

¶

*

¶

*

¶

¶

*

¶

* ¶

¶

*

¶

Each PUSH_PROMISE chooses a new server-selected stream ID, and

the stream is closed after push.

8.6. Concurrency Management

ALTO/H2 must allow concurrency control using the

SETTINGS_MAX_CONCURRENT_STREAMS option in HTTP/2.

From the client to the server direction, there MUST be one stream

for each open transport queue, and hence a client can always

close a transport queue (which it uses to open the stream) and

hence can also close, without the risk of deadlock.

From the server to the client direction, each push needs to open

a new stream and this should be controlled bu

SETTINGS_MAX_CONCURRENT_STREAMS.

9. ALTO/H2 Information Resource Directory (IRD)

Extending the IRD example in Section 8.1 of [RFC8895], below is the

IRD of an ALTO server supporting ALTO base protocol, ALTO/SSE, and

ALTO/H2.

In particular,

*

¶

*

¶

*

¶

*

¶

¶

¶

 "my-network-map": {

 "uri": "https://alto.example.com/networkmap",

 "media-type": "application/alto-networkmap+json",

 },

 "my-routingcost-map": {

 "uri": "https://alto.example.com/costmap/routingcost",

 "media-type": "application/alto-costmap+json",

 "uses": ["my-networkmap"],

 "capabilities": {

 "cost-type-names": ["num-routingcost"]

 }

 },

 "my-hopcount-map": {

 "uri": "https://alto.example.com/costmap/hopcount",

 "media-type": "application/alto-costmap+json",

 "uses": ["my-networkmap"],

 "capabilities": {

 "cost-type-names": ["num-hopcount"]

 }

 },

 "my-filtered-cost-map": {

 "uri": "https://alto.example.com/costmap/filtered/constraints",

 "media-type": "application/alto-costmap+json",

 "accepts": "application/alto-costmapfilter+json",

 "uses": ["my-networkmap"],

 "capabilities": {

 "cost-type-names": ["num-routingcost", "num-hopcount"],

 "cost-constraints": true

 }

 },

 "my-simple-filtered-cost-map": {

 "uri": "https://alto.example.com/costmap/filtered/simple",

 "media-type": "application/alto-costmap+json",

 "accepts": "application/alto-costmapfilter+json",

 "uses": ["my-networkmap"],

 "capabilities": {

 "cost-type-names": ["num-routingcost", "num-hopcount"],

 "cost-constraints": false

 }

 },

 "my-props": {

 "uri": "https://alto.example.com/properties",

 "media-type": "application/alto-endpointprops+json",

 "accepts": "application/alto-endpointpropparams+json",

 "capabilities": {

 "prop-types": ["priv:ietf-bandwidth"]

 }

 },

 "my-pv": {

 "uri": "https://alto.example.com/endpointcost/pv",

 "media-type": "multipart/related;

 type=application/alto-endpointcost+json",

 "accepts": "application/alto-endpointcostparams+json",

 "capabilities": {

 "cost-type-names": ["path-vector"],

 "ane-properties": ["maxresbw", "persistent-entities"]

 }

 },

 "update-my-costs": {

 "uri": "https://alto.example.com/updates/costs",

 "media-type": "text/event-stream",

 "accepts": "application/alto-updatestreamparams+json",

 "uses": [

 "my-network-map",

 "my-routingcost-map",

 "my-hopcount-map",

 "my-simple-filtered-cost-map"

],

 "capabilities": {

 "incremental-change-media-types": {

 "my-network-map": "application/json-patch+json",

 "my-routingcost-map": "application/merge-patch+json",

 "my-hopcount-map": "application/merge-patch+json"

 },

 "support-stream-control": true

 }

 },

 "update-my-costs-h2": {

 "uri": "https://alto.example.com/updates-h2/costs",

 "media-type": "application/alto-transport+json",

 "accepts": "application/alto-updatestreamparams+json",

 "uses": [

 "my-network-map",

 "my-routingcost-map",

 "my-hopcount-map",

 "my-simple-filtered-cost-map"

],

 "capabilities": {

 "incremental-change-media-types": {

 "my-network-map": "application/json-patch+json",

 "my-routingcost-map": "application/merge-patch+json",

 "my-hopcount-map": "application/merge-patch+json"

 },

 "support-stream-control": true

 }

 },

 "update-my-props": {

 "uri": "https://alto.example.com/updates/properties",

 "media-type": "text/event-stream",

 "uses": ["my-props"],

 "accepts": "application/alto-updatestreamparams+json",

 "capabilities": {

 "incremental-change-media-types": {

 "my-props": "application/merge-patch+json"

 },

 "support-stream-control": true

 }

 },

 "update-my-pv": {

 "uri": "https://alto.example.com/updates/pv",

 "media-type": "text/event-stream",

 "uses": ["my-pv"],

 "accepts": "application/alto-updatestreamparams+json",

 "capabilities": {

 "incremental-change-media-types": {

 "my-pv": "application/merge-patch+json"

 },

 "support-stream-control": true

 }

 }

¶

[RFC2119]

[RFC7230]

[RFC7285]

[RFC7540]

Note that it is straightforward for an ALTO sever to run HTTP/2 and

support concurrent retrieval of multiple resources such as "my-

network-map" and "my-routingcost-map" using multiple HTTP/2 streams

with the need to introducing ALTO/H2.

The resource "update-my-costs-h2" provides an ALTO/H2 based

connection, and this is indicated by the media-type "application/

alto-transport+json". For an ALTO/H2 connection, the client can send

in a sequence of control requests using media type application/alto-

updatestreamparams+json. The server creates HTTP/2 streams and

pushes updates to the client.

10. Security Considerations

The properties defined in this document present no security

considerations beyond those in Section 15 of the base ALTO

specification [RFC7285].

11. IANA Considerations

IANA will need to register the application/alto-transport+json media

type under ALTO registry as defined in [RFC7285].

12. Acknowledgments

The authors of this document would also like to thank many for the

reviews and comments.

13. References

13.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel,

S., Previdi, S., Roome, W., Shalunov, S., and R. Woundy,

"Application-Layer Traffic Optimization (ALTO) Protocol",

RFC 7285, DOI 10.17487/RFC7285, September 2014, <https://

www.rfc-editor.org/info/rfc7285>.

Belshe, M., Peon, R., and M. Thomson, "Hypertext Transfer

Protocol Version 2 (HTTP/2)", RFC 7540, DOI 10.17487/

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7285
https://www.rfc-editor.org/info/rfc7285

[RFC8174]

[RFC8895]

[RFC7971]

RFC7540, May 2015, <https://www.rfc-editor.org/info/

rfc7540>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Roome, W. and Y. Yang, "Application-Layer Traffic

Optimization (ALTO) Incremental Updates Using Server-Sent

Events (SSE)", RFC 8895, DOI 10.17487/RFC8895, November

2020, <https://www.rfc-editor.org/info/rfc8895>.

13.2. Informative References

Stiemerling, M., Kiesel, S., Scharf, M., Seidel, H., and

S. Previdi, "Application-Layer Traffic Optimization

(ALTO) Deployment Considerations", RFC 7971, DOI

10.17487/RFC7971, October 2016, <https://www.rfc-

editor.org/info/rfc7971>.

Appendix A. Outlook to ALTO with HTTP/3

This draft is focusing on HTTP/2 enhancement of the ALTO protocol

and the design takes advantage of HTTP/2 design features such as

parallel transfer and respects HTTP/2 semantics (e.g.,

PUSH_PROMISE). Since QUIC and HTTP/3 respectively are coming up for

various protocols on the Internet it is understandable that the

question arises, if ATLO could also take advantage of the advantages

of HTTP/3. QUIC can be seen as a replacement for TCP+TLS+HTTP2.

HTTP/3 bases on the QUIC transport protocol and uses UDP instead of

a TCP connection.

QUIC has been developed by the IETF QUIC Working Group with the

following goals:

Minimizing connection establishment and overall transport latency

for applications, starting with HTTP/2

Providing multiplexing without head-of-line blocking

Requiring only changes to path endpoints to enable deployment

Enabling multipath and forward error correction extensions

Providing always-secure transport, using TLS 1.3 by default

If HTTP/3 is not supported, it automatically runs on HTTP/2. The

prerequisite for HTTP/3 is that both client and server support it.

¶

¶

*

¶

* ¶

* ¶

* ¶

* ¶

¶

https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8895
https://www.rfc-editor.org/info/rfc7971
https://www.rfc-editor.org/info/rfc7971

The basic assumption is that an implementation that runs on HTTP/2

should also run-on HTTP/3. This should be transparent. HTTP/3 uses

"well known port" UDP 443 analogous to TCP 443. The network between

client and server must not filter HTTP/3.

Since many applications still using HTTP/2 it is mandatory for ALTO

to support this protocol first. This ensures compatibility.

Therefore, this document describes the update of ALTO from HTTP/1.x

to HTTP/2. The usage of HTTP/3 will be described in a separate

document so that compatibility of ALTO with HTTP/3 will be ensured

in a later stage.

Authors' Addresses

Roland Schott

Deutsche Telekom

Heinrich-Hertz-Strasse 3-7

64295 Darmstadt

Germany

Email: Roland.Schott@telekom.de

Y. Richard Yang

Yale University

51 Prospect St

New Haven, CT 06520

United States of America

Email: yry@cs.yale.edu

Kai Gao

Sichuan University

Chengdu

201804

China

Email: kgao@scu.edu.cn

Jingxuan Jensen Zhang

Tongji University

4800 Cao'An Hwy

Shanghai

201804

China

Email: jingxuan.n.zhang@gmail.com

¶

¶

mailto:Roland.Schott@telekom.de
mailto:yry@cs.yale.edu
mailto:kgao@scu.edu.cn
mailto:jingxuan.n.zhang@gmail.com

	ALTO/H2: The ALTO Protocol using HTTP/2
	Abstract
	Requirements Language
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. ALTO/H2 Design Requirements
	3. ALTO/H2 Design Overview
	4. Transport Queue
	4.1. Transport Queue Operations
	4.2. Examples

	5. Incremental Updates Queue
	5.1. Incremental Updates Queue Operations
	5.2. Examples

	6. Individual Updates
	6.1. Individual Updates Operations
	6.2. Examples

	7. Receiver Set
	7.1. Receiver Set Operations
	7.2. Examples

	8. ALTO/H2 Stream Management
	8.1. Objectives
	8.2. Client -> Server [Create Transport Queue]
	8.3. Client -> Server [Close Transport Queue]
	8.4. Client -> Server [Request on Data of a Transport Queue on Stream SID_tq]
	8.5. Server -> Client [PUSH_PROMISE for Transport Queue on Stream SID_tq]
	8.6. Concurrency Management

	9. ALTO/H2 Information Resource Directory (IRD)
	10. Security Considerations
	11. IANA Considerations
	12. Acknowledgments
	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. Outlook to ALTO with HTTP/3
	Authors' Addresses

