
Workgroup: ALTO

Internet-Draft: draft-ietf-alto-path-vector-15

Published: 9 August 2021

Intended Status: Standards Track

Expires: 10 February 2022

Authors: K. Gao

Sichuan University

Y. Lee

Samsung

S. Randriamasy

Nokia Bell Labs

Y.R. Yang

Yale University

J. Zhang

Tongji University

ALTO Extension: Path Vector

Abstract

This document is an extension to the base Application-Layer Traffic

Optimization (ALTO) protocol. It extends the ALTO Cost Map service

and ALTO Property Map service so that the application can decide

which endpoint(s) to connect based on not only numerical/ordinal

cost values but also details of the paths. This is useful for

applications whose performance is impacted by specified components

of a network on the end-to-end paths, e.g., they may infer that

several paths share common links and prevent traffic bottlenecks by

avoiding such paths. This extension introduces a new abstraction

called Abstract Network Element (ANE) to represent these components

and encodes a network path as a vector of ANEs. Thus, it provides a

more complete but still abstract graph representation of the

underlying network(s) for informed traffic optimization among

endpoints.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 February 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Requirements Languages

3. Terminology

4. Problem Statement

4.1. Design Requirements

4.2. Use Cases

4.2.1. Large-scale Data Analytics

4.2.2. Context-aware Data Transfer

4.2.3. CDN and Service Edge

5. Path Vector Extension: Overview

5.1. Abstract Network Element

5.1.1. ANE Domain

5.1.2. Ephemeral ANE and Persistent ANE

5.1.3. Property Filtering

5.2. Path Vector Cost Type

5.3. Multipart Path Vector Response

5.3.1. Identifying the Media Type of the Root Object

5.3.2. References to Part Messages

6. Specification: Basic Data Types

6.1. ANE Name

6.2. ANE Domain

6.2.1. Entity Domain Type

6.2.2. Domain-Specific Entity Identifier

6.2.3. Hierarchy and Inheritance

6.2.4. Media Type of Defining Resource

6.3. ANE Property Name

6.4. Initial ANE Property Types

6.4.1. New ANE Property Type: Maximum Reservable Bandwidth

6.4.2. New ANE Property Type: Persistent Entity ID

6.5. Path Vector Cost Type

6.5.1. Cost Metric: ane-path

6.5.2. Cost Mode: array

6.6. Part Resource ID

7. Specification: Service Extensions

7.1. Notations

7.2. Multipart Filtered Cost Map for Path Vector

7.2.1. Media Type

¶

https://trustee.ietf.org/license-info

7.2.2. HTTP Method

7.2.3. Accept Input Parameters

7.2.4. Capabilities

7.2.5. Uses

7.2.6. Response

7.3. Multipart Endpoint Cost Service for Path Vector

7.3.1. Media Type

7.3.2. HTTP Method

7.3.3. Accept Input Parameters

7.3.4. Capabilities

7.3.5. Uses

7.3.6. Response

8. Examples

8.1. Example: Information Resource Directory

8.2. Example: Multipart Filtered Cost Map

8.3. Example: Multipart Endpoint Cost Service Resource

8.4. Example: Incremental Updates

9. Compatibility with Other ALTO Extensions

9.1. Compatibility with Legacy ALTO Clients/Servers

9.2. Compatibility with Multi-Cost Extension

9.3. Compatibility with Incremental Update

9.4. Compatibility with Cost Calendar

10. General Discussions

10.1. Constraint Tests for General Cost Types

10.2. General Multi-Resource Query

11. Security Considerations

12. IANA Considerations

12.1. ALTO Entity Domain Type Registry

12.2. ALTO Entity Property Type Registry

13. Acknowledgments

14. References

14.1. Normative References

14.2. Informative References

Appendix A. Revision Logs

A.1. Changes since -14

A.2. Changes since -13

A.3. Changes since -12

A.4. Changes since -11

A.5. Changes since -10

A.6. Changes since -09

A.7. Changes since -08

A.8. Changes Since Version -06

Authors' Addresses

1. Introduction

Network performance metrics are crucial to the Quality of Experience

(QoE) of today's applications. The ALTO protocol allows Internet

Service Providers (ISPs) to provide guidance, such as topological

distance between different end hosts, to overlay applications. Thus,

the overlay applications can potentially improve the QoE by better

orchestrating their traffic to utilize the resources in the

underlying network infrastructure.

Existing ALTO Cost Map and Endpoint Cost Service provide only cost

information on an end-to-end path defined by its <source,

destination> endpoints: The base protocol [RFC7285] allows the

services to expose the topological distances of end-to-end paths,

while various extensions have been proposed to extend the capability

of these services, e.g., to express other performance metrics [I-

D.ietf-alto-performance-metrics], to query multiple costs

simultaneously [RFC8189], and to obtain the time-varying values

[RFC8896].

While the existing extensions are sufficient for many overlay

applications, the QoE of some overlay applications depends not only

on the cost information of end-to-end paths, but also on particular

components of a network on the paths and their properties. For

example, job completion time, which is an important QoE metric for a

large-scale data analytics application, is impacted by shared

bottleneck links inside the carrier network as link capacity may

impact the rate of data input/output to the job. We refer to such

components of a network as Abstract Network Elements (ANE).

Predicting such information can be very complex without the help of

the ISP [AAAI2019]. With proper guidance from the ISP, an overlay

application may be able to schedule its traffic for better QoE. In

the meantime, it may be helpful as well for ISPs if applications

could avoid using bottlenecks or challenging the network with poorly

scheduled traffic.

Despite the benefits, ISPs are not likely to expose details on their

network paths: first for the sake of confidentiality, second because

it may increase volume and computation overhead, and last because it

is difficult for ISPs to figure out what information and what

details an application needs. Likewise, applications do not

necessarily need all the network path details and are likely not

able to understand them.

Therefore, it is beneficial for both parties if an ALTO server

provides ALTO clients with an "abstract network state" that provides

the necessary details to applications, while hiding the network

complexity and confidential information. An "abstract network state"

is a selected set of abstract representations of Abstract Network

Elements traversed by the paths between <source, destination> pairs

combined with properties of these Abstract Network Elements that are

relevant to the overlay applications' QoE. Both an application via

its ALTO client and the ISP via the ALTO server can achieve better

¶

¶

¶

¶

¶

confidentiality and resource utilization by appropriately

abstracting relevant Abstract Network Elements. Server scalability

can also be improved by combining Abstract Network Elements and

their properties in a single response.

This document extends [RFC7285] to allow an ALTO server to convey

"abstract network state", for paths defined by their <source,

destination> pairs. To this end, it introduces a new cost type

called "Path Vector". A Path Vector is an array of identifiers that

identifies an Abstract Network Element, which can be associated with

various properties. The associations between ANEs and their

properties are encoded in an ALTO information resource called

Unified Property Map, which is specified in [I-D.ietf-alto-unified-

props-new].

For better confidentiality, this document aims to minimize

information exposure. In particular, this document enables and

recommends that first ANEs are constructed on demand, and second an

ANE is only associated with properties that are requested by an ALTO

client. A Path Vector response involves two ALTO Maps: the Cost Map

that contains the Path Vector results and the up-to-date Unified

Property Map that contains the properties requested for these ANEs.

To enforce consistency and improve server scalability, this document

uses the multipart/related message defined in [RFC2387] to return

the two maps in a single response.

The rest of the document is organized as follows. Section 3

introduces the extra terminologies that are used in this document.

Section 4 uses an illustrative example to introduce the additional

requirements of the ALTO framework, and discusses potential use

cases. Section 5 gives an overview of the protocol design. Section 6

and Section 7 specify the extension to the ALTO IRD and the

information resources, with some concrete examples presented in

Section 8. Section 9 discusses the backward compatibility with the

base protocol and existing extensions. Security and IANA

considerations are discussed in Section 11 and Section 12

respectively.

2. Requirements Languages

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

When the words appear in lower case, they are to be interpreted with

their natural language meanings.

¶

¶

¶

¶

¶

¶

3. Terminology

NOTE: This document depends on the Unified Property Map extension

[I-D.ietf-alto-unified-props-new] and should be processed after the

Unified Property Map document.

This document extends the ALTO base protocol [RFC7285] and the

Unified Property Map extension [I-D.ietf-alto-unified-props-new]. In

addition to the terms defined in these documents, this document also

uses the following additional terms:

Abstract Network Element (ANE): An Abstract Network Element is an

abstract representation for a component in a network that handles

data packets and whose properties can potentially have an impact

on the end-to-end performance of traffic. An ANE can be a

physical device such as a router, a link or an interface, or an

aggregation of devices such as a subnetwork, or a data center.

The definition of Abstract Network Element is similar to Network

Element defined in [RFC2216] in the sense that they both provide

an abstract representation of particular components of a network.

However, they have different criteria on how these particular

components are selected. Specifically, Network Element requires

the components to be capable of exercising QoS control, while

Abstract Network Element only requires the components to have an

impact on the end-to-end performance.

ANE Name: An ANE can be constructed either statically in advance

or on demand based on the requested information. Thus, different

ANEs may only be valid within a particular scope, either

ephemeral or persistent. Within each scope, an ANE is uniquely

identified by an ANE Name, as defined in Section 6.1. Note that

an ALTO client must not assume ANEs in different scopes but with

the same ANE Name refer to the same component(s) of the network.

Path Vector: A Path Vector, or an ANE Path Vector, is a JSON

array of ANE Names. It is a generalization of BGP path vector.

While standard BGP path vector specifies a sequence of autonomous

systems for a destination IP prefix, the Path Vector defined in

this extension specifies a sequence of ANEs either for a source

PID and a destination PID as in the CostMapData (11.2.3.6 in

[RFC7285]), or for a source endpoint and a destination endpoint

as in the EndpointCostMapData (11.5.1.6 in [RFC7285]).

Path Vector resource: A Path Vector resource refers to an ALTO

resource which supports the extension defined in this document.

Path Vector cost type: The Path Vector cost type is a special

cost type, which is specified in Section 6.5. When this cost type

is present in an IRD entry, it indicates that the information

¶

¶

*

¶

¶

*

¶

*

¶

*

¶

*

resource is a Path Vector resource. When this cost type is

present in a Filtered Cost Map request or an Endpoint Cost

Service request, it indicates each cost value must be interpreted

as a Path Vector.

Path Vector request: A Path Vector request refers to the POST

message sent to an ALTO Path Vector resource.

Path Vector response: A Path Vector response refers to the

multipart/related message returned by a Path Vector resource.

4. Problem Statement

4.1. Design Requirements

This section gives an illustrative example of how an overlay

application can benefit from the extension defined in this document.

Assume that an application has control over a set of flows, which

may go through shared links or switches and share bottlenecks. The

application hopes to schedule the traffic among multiple flows to

get better performance. The capacity region information for those

flows will benefit the scheduling. However, existing cost maps can

not reveal such information.

Specifically, consider a network as shown in Figure 1. The network

has 7 switches (sw1 to sw7) forming a dumb-bell topology. Switches

sw1/sw3 provide access on one side, sw2/sw4 provide access on the

other side, and sw5-sw7 form the backbone. End hosts eh1 to eh4 are

connected to access switches sw1 to sw4 respectively. Assume that

the bandwidth of link eh1 -> sw1 and link sw1 -> sw5 is 150 Mbps,

and the bandwidth of the other links is 100 Mbps.

¶

*

¶

*

¶

¶

¶

¶

 +-----+

 | |

 --+ sw6 +--

 / | | \

 PID1 +-----+ / +-----+ \ +-----+ PID2

 eh1__| |_ / \ ____| |__eh2

192.0.2.2 | sw1 | \ +--|--+ +--|--+ / | sw2 | 192.0.2.3

 +-----+ \ | | | |/ +-----+

 _| sw5 +---------+ sw7 |

 PID3 +-----+ / | | | |\ +-----+ PID4

 eh3__| |__/ +-----+ +-----+ ____| |__eh4

192.0.2.4 | sw3 | | sw4 | 192.0.2.5

 +-----+ +-----+

bw(eh1--sw1) = bw(sw1--sw5) = 150 Mbps

bw(eh2--sw2) = bw(eh3--sw3) = bw(eh4--sw4) = 100 Mbps

bw(sw1--sw5) = bw(sw3--sw5) = bw(sw2--sw7) = bw(sw4--sw7) = 100 Mbps

bw(sw5--sw6) = bw(sw5--sw7) = bw(sw6--sw7) = 100 Mbps

Figure 1: Raw Network Topology

The single-node ALTO topology abstraction of the network is shown in

Figure 2. Assume the cost map returns a hypothetical cost type

representing the available bandwidth between a source and a

destination.

 +----------------------+

 {eh1} | | {eh2}

 PID1 | | PID2

 +------+ +------+

 | |

 | |

 {eh3} | | {eh4}

 PID3 | | PID4

 +------+ +------+

 | |

 +----------------------+

Figure 2: Base Single-Node Topology Abstraction

Now assume the application wants to maximize the total rate of the

traffic among a set of <source, destination> pairs, say eh1 -> eh2

and eh1 -> eh4. Let x denote the transmission rate of eh1 -> eh2 and

y denote the rate of eh1 -> eh4. The objective function is

¶

¶

 max(x + y).¶

With the ALTO Cost Map, the cost between PID1 and PID2 and between

PID1 and PID4 will be 100 Mbps. And the client can get a capacity

region of

With this information, the client may mistakenly think it can

achieve a maximum total rate of 200 Mbps. However, one can easily

see that this rate is infeasible, as there are only two potential

cases:

Case 1: eh1 -> eh2 and eh1 -> eh4 take different path segments

from sw5 to sw7. For example, if eh1 -> eh2 uses path eh1 -> sw1

-> sw5 -> sw6 -> sw7 -> sw2 -> eh2 and eh1 -> eh4 uses path eh1 -

> sw1 -> sw5 -> sw7 -> sw4 -> eh4, then the shared bottleneck

links are eh1 -> sw1 and sw1 -> sw5. In this case, the capacity

region is

and the real optimal total rate is 150 Mbps.

Case 2: eh1 -> eh2 and eh1 -> eh4 take the same path segment from

sw5 to sw7. For example, if eh1 -> eh2 uses path eh1 -> sw1 ->

sw5 -> sw7 -> sw2 -> eh2 and eh1 -> eh4 also uses path eh1 -> sw1

-> sw5 -> sw7 -> sw4 -> eh4, then the shared bottleneck link is

sw5 -> sw7. In this case, the capacity region is

and the real optimal total rate is 100 Mbps.

Clearly, with more accurate and fine-grained information, the

application can gain a better prediction of its traffic and may

orchestrate its resources accordingly. However, to provide such

information, the network needs to expose more details beyond the

simple cost map abstraction. In particular:

The ALTO server must give more details about the network paths

that are traversed by the traffic between a source and a

destination beyond a simple numerical value, which allows the

overlay application to distinguish between Case 1 and Case 2 and

to compute the optimal total rate accordingly.

¶

 x <= 100 Mbps,

 y <= 100 Mbps.

¶

¶

*

¶

 x <= 100 Mbps

 y <= 100 Mbps

 x + y <= 150 Mbps

¶

¶

*

¶

 x <= 100 Mbps

 y <= 100 Mbps

 x + y <= 100 Mbps

¶

¶

¶

*

¶

AR1:

AR2:

AR3:

The ALTO server must allow the client to distinguish the common

ANE shared by eh1 -> eh2 and eh1 -> eh4, e.g., eh1 - sw1 and sw1

- sw5 in Case 1.

The ALTO server must give details on the properties of the ANEs

used by eh1 -> eh2 and eh1 -> eh4, e.g., the available bandwidth

between eh1 - sw1, sw1 - sw5, sw5 - sw7, sw5 - sw6, sw6 - sw7,

sw7 - sw2, sw7 - sw4, sw2 - eh2, sw4 - eh4 in Case 1.

In general, we can conclude that to support the multiple flow

scheduling use case, the ALTO framework must be extended to satisfy

the following additional requirements:

An ALTO server must provide essential information on ANEs on

the path of a <source, destination> pair that are critical to the

QoE of the overlay application.

An ALTO server must provide essential information on how the

paths of different <source, destination> pairs share a common

ANE.

An ALTO server must provide essential information on the

properties associated with the ANEs.

The extension defined in this document proposes a solution to

provide these details.

4.2. Use Cases

While the multiple flow scheduling problem is used to help identify

the additional requirements, the extension defined in this document

can be applied to a wide range of applications. This section

highlights some real use cases that are reported.

4.2.1. Large-scale Data Analytics

One potential use case of the extension defined in this document is

for large-scale data analytics such as [SENSE] and [LHC], where data

of gigabytes, terabytes and even petabytes are transferred. For

these applications, the QoE is usually measured as the job

completion time, which is related to the completion time of all the

data transfers belonging to the job. With the extension defined in

this document, an ALTO client can identify bottlenecks inside the

network. Therefore, the overlay application can make optimal traffic

distribution or resource reservation (i.e., proportional to the size

of the transferred data), leading to optimal job completion time and

network resource utilization.

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

4.2.2. Context-aware Data Transfer

It is important to know the capabilities of various ANEs between two

end hosts, especially in the mobile environment. With the extension

defined in this document, an ALTO client may query the "network

context" information, i.e., whether the two hosts are connected to

the access network through a wireless link or a wire, and the

capabilities of the access network. Thus, the client may use

different data transfer mechanisms, or even deploy different 5G User

Plane Functions (UPF) [I-D.ietf-dmm-5g-uplane-analysis] to optimize

the data transfer.

4.2.3. CDN and Service Edge

A growing trend in today's applications is to bring storage and

computation closer to the end users for better QoE, such as Content

Delivery Network (CDN), AR/VR, and cloud gaming, as reported in

various documents ([I-D.contreras-alto-service-edge], [I-D.huang-

alto-mowie-for-network-aware-app], and [I-D.yang-alto-deliver-

functions-over-networks]).

With the extension defined in this document, an ALTO server can

selectively reveal the CDNs and service edges that reside along the

paths between different end hosts, together with their properties

such as capabilities (e.g., storage, GPU) and available Service

Level Agreement (SLA) plans. Thus, an ALTO client may leverage the

information to better conduct CDN request routing or offload

functionalities from the user equipment to the service edge, with

considerations on different resource constraints.

5. Path Vector Extension: Overview

This section gives a non-normative overview of the extension defined

in this document. It is assumed that readers are familiar with both

the base protocol [RFC7285] and the Unified Property Map extension

[I-D.ietf-alto-unified-props-new].

To satisfies the additional requirements, this extension:

introduces Abstract Network Element (ANE) as the abstraction of

components in a network whose properties may have an impact on

the end-to-end performance of the traffic handled by those

component,

extends the Cost Map and Endpoint Cost Service to convey the

ANEs traversed by the path of a <source, destination> pair as

Path Vectors,

uses the Unified Property Map to convey the association between

the ANEs and their properties.

¶

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

Thus, an ALTO client can learn about the ANEs that are critical to

the QoE of a <source, destination> pair by investigating the

corresponding Path Vector value (AR1), identify common ANEs if an

ANE appears in the Path Vectors of multiple <source, destination>

pairs (AR2), and retrieve the properties of the ANEs by searching

the Unified Property Map (AR3).

5.1. Abstract Network Element

This extension introduces Abstract Network Element (ANE) as an

indirect and network-agnostic way to specify a component or an

aggregation of components of a network whose properties have an

impact on the end-to-end performance for traffic between a source

and a destination.

When an ANE is defined by the ALTO server, it is assigned an

identifier, i.e., a string of type ANEName as specified in Section

6.1, and a set of associated properties.

5.1.1. ANE Domain

In this extension, the associations between ANE and the properties

are conveyed in a Unified Property Map. Thus, ANEs must constitute

an entity domain (Section 5.1 of [I-D.ietf-alto-unified-props-new]),

and each ANE property must be an entity property (Section 5.2 of [I-

D.ietf-alto-unified-props-new]).

Specifically, this document defines a new entity domain called ane

as specified in Section 6.2 and defines two initial properties for

the ane domain.

5.1.2. Ephemeral ANE and Persistent ANE

By design, ANEs are ephemeral and not to be used in further

requests. More precisely, the corresponding ANE names are no longer

valid beyond the scope of the Path Vector response or the

incremental update stream for a Path Vector request. This has

several benefits including better privacy of the ISPs and more

flexible ANE computation.

For example, an ALTO server may define an ANE for each aggregated

bottleneck link between the sources and destinations specified in

the request. For requests with different sources and destinations,

the bottlenecks may be different but can safely reuse the same ANE

names. The client can still adjust its traffic based on the

information but is difficult to infer the underlying topology with

multiple queries.

However, sometimes an ISP may intend to selectively reveal some

"persistent" network components which, opposite to being ephemeral,

¶

¶

¶

¶

¶

¶

¶

have a longer life cycle. For example, an ALTO server may define an

ANE for each service edge cluster. Once a client chooses to use a

service edge, e.g., by deploying some user-defined functions, it may

want to stick to the service edge to avoid the complexity of state

transition or synchronization, and continuously query the properties

of the edge cluster.

This document provides a mechanism to expose such network components

as persistent ANEs. A persistent ANE has a persistent ID that is

registered in a Property Map, together with their properties. See

Section 6.2.4 and Section 6.4.2 for more detailed instructions on

how to identify ephemeral ANEs and persistent ANEs.

5.1.3. Property Filtering

Resource-constrained ALTO clients may benefit from the filtering of

Path Vector query results at the ALTO server, as an ALTO client may

only require a subset of the available properties.

Specifically, the available properties for a given resource are

announced in the Information Resource Directory as a new capability

called ane-property-names. The selected properties are specified in

a filter called ane-property-names in the request body, and the

response includes and only includes the selected properties for the

ANEs in the response.

The ane-property-names capability for Cost Map and for Endpoint Cost

Service is specified in Section 7.2.4 and Section 7.3.4

respectively. The ane-property-names filter for Cost Map and

Endpoint Cost Service is specified in Section 7.2.3 and Section

7.3.3 accordingly.

5.2. Path Vector Cost Type

For an ALTO client to correctly interpret the Path Vector, this

extension specifies a new cost type called the Path Vector cost

type.

The Path Vector cost type must convey both the interpretation and

semantics in the "cost-mode" and "cost-metric" respectively.

Unfortunately, a single "cost-mode" value cannot fully specify the

interpretation of a Path Vector, which is a compound data type. For

example, in programming languages such as C++, a Path Vector will

have the type of JSONArray<ANEName>.

Instead of extending the "type system" of ALTO, this document takes

a simple and backward compatible approach. Specifically, the "cost-

mode" of the Path Vector cost type is "array", which indicates the

value is a JSON array. Then, an ALTO client must check the value of

¶

¶

¶

¶

¶

¶

¶

the "cost-metric". If the value is "ane-path", it means that the

JSON array should be further interpreted as a path of ANENames.

The Path Vector cost type is specified in Section 6.5.

5.3. Multipart Path Vector Response

For a basic ALTO information resource, a response contains only one

type of ALTO resources, e.g., Network Map, Cost Map, or Property

Map. Thus, only one round of communication is required: An ALTO

client sends a request to an ALTO server, and the ALTO server

returns a response, as shown in Figure 3.

Figure 3: A Typical ALTO Request and Response

The extension defined in this document, on the other hand, involves

two types of information resources: Path Vectors conveyed in an

InfoResourceCostMap (defined in Section 11.2.3.6 of [RFC7285]) or an

InfoResourceEndpointCostMap (defined in Section 11.5.1.6 of

[RFC7285]), and ANE properties conveyed in an InfoResourceProperties

(defined in Section 7.6 of [I-D.ietf-alto-unified-props-new]).

Instead of two consecutive message exchanges, the extension defined

in this document enforces one round of communication. Specifically,

the ALTO client must include the source and destination pairs and

the requested ANE properties in a single request, and the ALTO

server must return a single response containing both the Path

Vectors and properties associated with the ANEs in the Path Vectors,

as shown in Figure 4. Since the two parts are bundled together in

one response message, their orders are interchangeable. See Section

7.2.6 and Section 7.3.6 for details.

Figure 4: The Path Vector Extension Request and Response

This design is based on the following considerations:

Since ANEs may be constructed on demand, and potentially based

on the requested properties (See Section 5.1 for more details).

If sources and destinations are not in the same request as the

¶

¶

¶

 ALTO client ALTO server

 |-------------- Request ---------------->|

 |<------------- Response ----------------|

¶

¶

 ALTO client ALTO server

 |------------- PV Request -------------->|

 |<----- PV Response (Cost Map Part) -----|

 |<--- PV Response (Property Map Part) ---|

¶

1.

properties, an ALTO server either cannot construct ANEs on-

demand, or must wait until both requests are received.

As ANEs may be constructed on demand, mappings of each ANE to

its underlying network devices and resources can be specific to

the request. In order to respond to the Property Map request

correctly, an ALTO server must store the mapping of each Path

Vector request until the client fully retrieves the property

information. The "stateful" behavior may substantially harm the

server scalability and potentially lead to Denial-of-Service

attacks.

One approach to realize the one-round communication is to define a

new media type to contain both objects, but this violates modular

design. This document follows the standard-conforming usage of

multipart/related media type defined in [RFC2387] to elegantly

combine the objects. Path Vectors are encoded in an

InfoResourceCostMap or an InfoResourceEndpointCostMap, and the

Property Map is encoded in an InfoResourceProperties. They are

encapsulated as parts of a multipart message. The modular

composition allows ALTO servers and clients to reuse the data models

of the existing information resources. Specifically, this document

addresses the following practical issues using multipart/related.

5.3.1. Identifying the Media Type of the Root Object

ALTO uses media type to indicate the type of an entry in the

Information Resource Directory (IRD) (e.g., application/alto-

costmap+json for Cost Map and application/alto-endpointcost+json for

Endpoint Cost Service). Simply putting multipart/related as the

media type, however, makes it impossible for an ALTO client to

identify the type of service provided by related entries.

To address this issue, this document uses the type parameter to

indicate the root object of a multipart/related message. For a Cost

Map resource, the media-type in the IRD entry is multipart/related

with the parameter type=application/alto-costmap+json; for an

Endpoint Cost Service, the parameter is type=application/alto-

endpointcost+json.

5.3.2. References to Part Messages

As the response of a Path Vector resource is a multipart message

with two different parts, it is important that each part can be

uniquely identified. Following the designs of [RFC8895], this

extension requires that an ALTO server assigns a unique identifier

to each part of the multipart/related response message. This

identifier, referred to as a Part Resource ID (See Section 6.6 for

details), is present in the part message's Content-ID header. By

¶

2.

¶

¶

¶

¶

concatenating the Part Resource ID to the identifier of the Path

Vector request, an ALTO server/client can uniquely identify the Path

Vector Part or the Property Map part.

6. Specification: Basic Data Types

6.1. ANE Name

An ANE Name is encoded as a JSON string with the same format as that

of the type PIDName (Section 10.1 of [RFC7285]).

The type ANEName is used in this document to indicate a string of

this format.

6.2. ANE Domain

The ANE domain associates property values with the Abstract Network

Elements in a Property Map. Accordingly, the ANE domain always

depends on a Property Map.

6.2.1. Entity Domain Type

ane

6.2.2. Domain-Specific Entity Identifier

The entity identifiers are the ANE Names in the associated Property

Map.

6.2.3. Hierarchy and Inheritance

There is no hierarchy or inheritance for properties associated with

ANEs.

6.2.4. Media Type of Defining Resource

When resource specific domains are defined with entities of domain

type ane, the defining resource for entity domain type pid MUST be a

Property Map. The media type of defining resources for the ane

domain is:

Specifically, for ephemeral ANEs that appear in a Path Vector

response, their entity domain names MUST be exactly ".ane" and the

defining resource of these ANEs is the Property Map part of the

multipart response. Meanwhile, for persistent ANEs whose entity

domain name has the format of "PROPMAP.ane" where PROPMAP is the

name of a Property Map resource, PROPMAP is the defining resource of

these ANEs. Persistent entities are persistent because standalone

¶

¶

¶

¶

¶

¶

¶

¶

application/alto-propmap+json¶

queries can be made by an ALTO client to their defining resources

when the connection to the Path Vector service is closed.

For example, the defining resource of an ephemeral ANE whose entity

identifier is ".ane:NET1" is the Property Map part that contains

this identifier. The defining resource of a persistent ANE whose

entity identifier is "dc-props.ane:DC1" is the Property Map with the

resource ID "dc-props".

6.3. ANE Property Name

An ANE Property Name is encoded as a JSON string with the same

format as that of Entity Property Name (Section 5.2.2 of [I-D.ietf-

alto-unified-props-new]).

6.4. Initial ANE Property Types

In this document, two initial ANE property types are specified, max-

reservable-bandwidth and persistent-entity-id.

Note that the two property types defined in this document do not

depend on any information resource, so their ResourceID part must be

empty.

Figure 5: Examples of ANE Properties

In this document, Figure 5 is used to illustrate the use of the two

initial ANE property types. There are 3 sub-networks (NET1, NET2 and

NET3) and two interconnection links (L1 and L2). It is assumed that

each sub-network has sufficiently large bandwidth to be reserved.

¶

¶

¶

¶

¶

 ----- L1

 /

 PID1 +---------------+ 10 Gbps +----------+ PID3

 192.0.2.0/28+-+ +-----------+ +---------+ +--+192.0.2.32/28

 | | MEC1 | | | |

 | +-----------+ | +-----+ |

 PID2 | | | +----------+

 192.0.2.16/28+-+ | | NET3

 | | | 15 Gbps

 | | | \

 +---------------+ | -------- L2

 NET1 |

 +---------------+

 | +-----------+ | PID4

 | | MEC2 | +--+192.0.2.48/28

 | +-----------+ |

 +---------------+

 NET2

¶

Identifier:

Intended Semantics:

Security Considerations:

Identifier:

Intended Semantics:

Security Considerations:

6.4.1. New ANE Property Type: Maximum Reservable Bandwidth

max-reservable-bandwidth

The maximum reservable bandwidth property

stands for the maximum bandwidth that can be reserved for all the

traffic that traverses an ANE. The value MUST be encoded as a

non-negative numerical cost value as defined in Section 6.1.2.1

of [RFC7285] and the unit is bit per second. If this property is

requested but not present in an ANE, it MUST be interpreted as

that the ANE does not support bandwidth reservation.

ALTO entity properties expose information

to ALTO clients. ALTO service providers should be made aware of

the security ramifications related to the exposure of an entity

property.

To illustrate the use of max-reservable-bandwidth, consider the

network in Figure 5. An ALTO server can create an ANE for each

interconnection link, where the initial value for max-reservable-

bandwidth is the link capacity.

6.4.2. New ANE Property Type: Persistent Entity ID

persistent-entity-id

The persistent entity ID property is the entity

identifier of the persistent ANE which an ephemeral ANE presents

(See Section 5.1.2 for details). The value of this property is

encoded with the format defined in Section 5.1.3 of [I-D.ietf-

alto-unified-props-new].

In this format, the entity ID combines:

a defining information resource for the ANE on which a

"persistent-entity-id" is queried, which is the Property

Map resource defining the ANE as a persistent entity,

together with the properties

the persistent name of the ANE in that Property Map

With this format, the client has all the needed information for

further standalone query properties on the persistent ANE.

ALTO entity properties expose information

to ALTO clients. ALTO service providers should be made aware of

the security ramifications related to the exposure of an entity

property.

¶

¶

¶

¶

¶

¶

¶

*

¶

* ¶

¶

¶

To illustrate the use of persistent-entity-id, consider the network

in Figure 5. Assume the ALTO server has a Property Map resource

called "mec-props" that defines persistent ANEs "MEC1" and "MEC2"

that represent the corresponding mobile edge computing (MEC)

clusters. Since MEC1 is associated with NET1, the persistent-entity-

id of the ephemeral ANE .ane:NET1 is the persistent entity id mec-

props.ane:MEC1.

6.5. Path Vector Cost Type

This document defines a new cost type, which is referred to as the

Path Vector cost type. An ALTO server MUST offer this cost type if

it supports the extension defined in this document.

6.5.1. Cost Metric: ane-path

The cost metric "ane-path" indicates the value of such a cost type

conveys an array of ANE names, where each ANE name uniquely

represents an ANE traversed by traffic from a source to a

destination.

An ALTO client MUST interpret the Path Vector as if the traffic

between a source and a destination logically traverses the ANEs in

the same order as they appear in the Path Vector.

6.5.2. Cost Mode: array

The cost mode "array" indicates that every cost value in the

response body of a (Filtered) Cost Map or an Endpoint Cost Service

MUST be interpreted as a JSON array object.

Note that this cost mode only requires the cost value to be a JSON

array of JSONValue. However, an ALTO server that enables this

extension MUST return a JSON array of ANEName (Section 6.1) when the

cost metric is "ane-path".

6.6. Part Resource ID

A Part Resource ID is encoded as a JSON string with the same format

as that of the type ResourceID (Section 10.2 of [RFC7285]).

Even though the client-id assigned to a Path Vector request and the

Part Resource ID MAY contain up to 64 characters by their own

definition, their concatenation (see Section 5.3.2) MUST also

conform to the same length constraint. The same requirement applies

to the resource ID of the Path Vector resource, too. Thus, it is

RECOMMENDED to limit the length of resource ID and client ID related

to a Path Vector resource to 31 characters.

¶

¶

¶

¶

¶

¶

¶

¶

ane-property-names:

7. Specification: Service Extensions

7.1. Notations

This document uses the same syntax and notations as introduced in

Section 8.2 of RFC 7285 [RFC7285] to specify the extensions to

existing ALTO resources and services.

7.2. Multipart Filtered Cost Map for Path Vector

This document introduces a new ALTO resource called multipart

Filtered Cost Map resource, which allows an ALTO server to provide

other ALTO resources associated with the Cost Map resource in the

same response.

7.2.1. Media Type

The media type of the multipart Filtered Cost Map resource is

multipart/related;type=application/alto-costmap+json.

7.2.2. HTTP Method

The multipart Filtered Cost Map is requested using the HTTP POST

method.

7.2.3. Accept Input Parameters

The input parameters of the multipart Filtered Cost Map are supplied

in the body of an HTTP POST request. This document extends the input

parameters to a Filtered Cost Map, which is defined as a JSON object

of type ReqFilteredCostMap in Section 11.3.2.3 of RFC 7285

[RFC7285], with a data format indicated by the media type

application/alto-costmapfilter+json, which is a JSON object of type

PVReqFilteredCostMap:

with fields:

A list of selected ANE properties to be

included in the response. Each property in this list MUST match

one of the supported ANE properties indicated in the resource's

ane-property-names capability (See Section 7.2.4). If the field

is NOT present, it MUST be interpreted as an empty list.

Example: Consider the network in Figure 1. If an ALTO client wants

to query the max-reservable-bandwidth between PID1 and PID2, it can

submit the following request.

¶

¶

¶

¶

¶

object {

 [EntityPropertyName ane-property-names<0..*>;]

} PVReqFilteredCostMap : ReqFilteredCostMap;

¶

¶

¶

¶

cost-type-names:

cost-constraints:

testable-cost-type-names:

ane-property-names:

7.2.4. Capabilities

The multipart Filtered Cost Map resource extends the capabilities

defined in Section 11.3.2.4 of [RFC7285]. The capabilities are

defined by a JSON object of type PVFilteredCostMapCapabilities:

with fields:

The cost-type-names field MUST only include the

Path Vector cost type, unless explicitly documented by a future

extension. This also implies that the Path Vector cost type MUST

be defined in the cost-types of the Information Resource

Directory's meta field.

If the cost-type-names field includes the Path

Vector cost type, cost-constraints field MUST be false or not

present unless specifically instructed by a future document.

If the cost-type-names field includes the

Path Vector cost type, the Path Vector cost type MUST NOT be

included in the testable-cost-type-names field unless

specifically instructed by a future document.

Defines a list of ANE properties that can be

returned. If the field is NOT present, it MUST be interpreted as

an empty list, indicating the ALTO server cannot provide any ANE

property.

 POST /costmap/pv HTTP/1.1

 Host: alto.example.com

 Accept: multipart/related;type=application/alto-costmap+json,

 application/alto-error+json

 Content-Length: 201

 Content-Type: application/alto-costmapfilter+json

 {

 "cost-type": {

 "cost-mode": "array",

 "cost-metric": "ane-path"

 },

 "pids": {

 "srcs": ["PID1"],

 "dsts": ["PID2"]

 },

 "ane-property-names": ["max-reservable-bandwidth"]

 }

¶

¶

object {

 [EntityPropertyName ane-property-names<0..*>;]

} PVFilteredCostMapCapabilities : FilteredCostMapCapabilities;

¶

¶

¶

¶

¶

¶

type:

start:

boundary:

7.2.5. Uses

This member MUST include the resource ID of the network map based on

which the PIDs are defined. If this resource supports persistent-

entity-id, it MUST also include the defining resources of persistent

ANEs that may appear in the response.

7.2.6. Response

The response MUST indicate an error, using ALTO protocol error

handling, as defined in Section 8.5 of [RFC7285], if the request is

invalid.

The "Content-Type" header of the response MUST be multipart/related

as defined by [RFC2387] with the following parameters:

The type parameter MUST be "application/alto-costmap+json".

Note that [RFC2387] permits both parameters with and without the

double quotes.

The start parameter is as defined in [RFC2387]. If present,

it MUST have the same value as the Content-ID header of the Path

Vector part.

The boundary parameter is as defined in [RFC2387].

The body of the response MUST consist of two parts:

The Path Vector part MUST include Content-ID and Content-Type in

its header. The value of Content-ID MUST has the format of a Part

Resource ID. The Content-Type MUST be application/alto-

costmap+json.

The body of the Path Vector part MUST be a JSON object with the

same format as defined in Section 11.2.3.6 of [RFC7285]. The JSON

object MUST include the vtag field in the meta field, which

provides the version tag of the returned CostMapData. The

resource ID of the version tag MUST follow the format of

where resource-id is the resource Id of the Path Vector resource,

and part-resource-id has the same value as the Content-ID of the

Path Vector part. The meta field MUST also include the dependent-

vtags field, whose value is a single-element array to indicate

the version tag of the network map used, where the network map is

specified in the uses attribute of the multipart Filtered Cost

Map resource in IRD.

¶

¶

¶

¶

¶

¶

¶

*

¶

¶

resource-id '.' part-resource-id¶

¶

The Unified Property Map part MUST also include Content-ID and

Content-Type in its header. The value of Content-ID has the

format of a Part Resource ID. The Content-Type MUST be

application/alto-propmap+json.

The body of the Unified Property Map part is a JSON object with

the same format as defined in Section 4.6 of [I-D.ietf-alto-

unified-props-new]. The JSON object MUST include the dependent-

vtags field in the meta field. The value of the dependent-vtags

field MUST be an array of VersionTag objects as defined by

Section 10.3 of [RFC7285]. The vtag of the Path Vector part MUST

be included in the dependent-vtags. If persistent-entity-id is

requested, the version tags of the dependent resources that MAY

expose the entities in the response MUST also be included.

The PropertyMapData has one member for each ANEName that appears

in the Path Vector part, which is an entity identifier belonging

to the self-defined entity domain as defined in Section 5.1.2.3

of [I-D.ietf-alto-unified-props-new]. The EntityProps for each

ANE has one member for each property that is both 1) associated

with the ANE, and 2) specified in the ane-property-names in the

request.

A complete and valid response MUST include both the Path Vector part

and the Property Map part in the multipart message. If any part is

NOT present, the client MUST discard the received information and

send another request if necessary.

According to [RFC2387], the Path Vector part, whose media type is

the same as the type parameter of the multipart response message, is

the root object. Thus, it is the element the application processes

first. Even though the start parameter allows it to be placed

anywhere in the part sequence, it is RECOMMENDED that the parts

arrive in the same order as they are processed, i.e., the Path

Vector part is always put as the first part, followed by the

Property Map part. When doing so, an ALTO server MAY choose to NOT

set the start parameter, which implies the first part is the root

object.

Example: Consider the network in Figure 1. The response of the

example request in Section 7.2.3 is as follows, where ANE1

represents the aggregation of all the switches in the network.

*

¶

¶

¶

¶

¶

¶

7.3. Multipart Endpoint Cost Service for Path Vector

This document introduces a new ALTO resource called multipart

Endpoint Cost Service, which allows an ALTO server to provide other

HTTP/1.1 200 OK

Content-Length: 821

Content-Type: multipart/related; boundary=example-1;

 type=application/alto-costmap+json

--example-1

Content-ID: costmap

Content-Type: application/alto-costmap+json

{

 "meta": {

 "vtag": {

 "resource-id": "filtered-cost-map-pv.costmap",

 "tag": "d827f484cb66ce6df6b5077cb8562b0a"

 },

 "dependent-vtags": [

 {

 "resource-id": "my-default-networkmap",

 "tag": "75ed013b3cb58f896e839582504f6228"

 }

],

 "cost-type": { "cost-mode": "array", "cost-metric": "ane-path" }

 },

 "cost-map": {

 "PID1": { "PID2": ["ANE1"] }

 }

}

--example-1

Content-ID: propmap

Content-Type: application/alto-propmap+json

{

 "meta": {

 "dependent-vtags": [

 {

 "resource-id": "filtered-cost-map-pv.costmap",

 "tag": "d827f484cb66ce6df6b5077cb8562b0a"

 }

]

 },

 "property-map": {

 ".ane:ANE1": { "max-reservable-bandwidth": 100000000 }

 }

}

¶

ane-property-names:

ALTO resources associated with the Endpoint Cost Service resource in

the same response.

7.3.1. Media Type

The media type of the multipart Endpoint Cost Service resource is

multipart/related;type=application/alto-endpointcost+json.

7.3.2. HTTP Method

The multipart Endpoint Cost Service resource is requested using the

HTTP POST method.

7.3.3. Accept Input Parameters

The input parameters of the multipart Endpoint Cost Service resource

are supplied in the body of an HTTP POST request. This document

extends the input parameters to an Endpoint Cost Service, which is

defined as a JSON object of type ReqEndpointCost in Section 11.5.1.3

in RFC 7285 [RFC7285], with a data format indicated by the media

type application/alto-endpointcostparams+json, which is a JSON

object of type PVReqEndpointCost:

with fields:

This document defines the ane-property-names in

PVReqEndpointcost as the same as in PVReqFilteredCostMap. See

Section 7.2.3.

Example: Consider the network in Figure 1. If an ALTO client wants

to query the max-reservable-bandwidth between eh1 and eh2, it can

submit the following request.

¶

¶

¶

¶

object {

 [EntityPropertyName ane-property-names<0..*>;]

} PVReqEndpointcost : ReqEndpointcost;

¶

¶

¶

¶

type:

start:

boundary:

7.3.4. Capabilities

The capabilities of the multipart Endpoint Cost Service resource are

defined by a JSON object of type PVEndpointcostCapabilities, which

is defined as the same as PVFilteredCostMapCapabilities. See Section

7.2.4.

7.3.5. Uses

If this resource supports persistent-entity-id, it MUST also include

the defining resources of persistent ANEs that may appear in the

response.

7.3.6. Response

The response MUST indicate an error, using ALTO protocol error

handling, as defined in Section 8.5 of [RFC7285], if the request is

invalid.

The "Content-Type" header of the response MUST be multipart/related

as defined by [RFC7285] with the following parameters:

The type parameter MUST be "application/alto-

endpointcost+json".

The start parameter is as defined in Section 7.2.6.

The boundary parameter is as defined in [RFC2387].

POST /ecs/pv HTTP/1.1

Host: alto.example.com

Accept: multipart/related;type=application/alto-endpointcost+json,

 application/alto-error+json

Content-Length: 222

Content-Type: application/alto-endpointcostparams+json

{

 "cost-type": {

 "cost-mode": "array",

 "cost-metric": "ane-path"

 },

 "endpoints": {

 "srcs": ["ipv4:192.0.2.2"],

 "dsts": ["ipv4:192.0.2.18"]

 },

 "ane-property-names": ["max-reservable-bandwidth"]

}

¶

¶

¶

¶

¶

¶

¶

¶

The body MUST consist of two parts:

The Path Vector part MUST include Content-ID and Content-Type in

its header. The value of Content-ID MUST has the format of a Part

Resource ID. The Content-Type MUST be application/alto-

endpointcost+json.

The body of the Path Vector part MUST be a JSON object with the

same format as defined in Section 11.5.1.6 of [RFC7285]. The JSON

object MUST include the vtag field in the meta field, which

provides the version tag of the returned EndpointCostMapData. The

resource ID of the version tag MUST follow the format of

where resource-id is the resource Id of the Path Vector resource,

and part-resource-id has the same value as the Content-ID of the

Path Vector part.

The Unified Property Map part MUST also include Content-ID and

Content-Type in its header. The value of Content-ID MUST has the

format of a Part Resource ID. The Content-Type MUST be

application/alto-propmap+json.

The body of the Unified Property Map part MUST be a JSON object

with the same format as defined in Section 4.6 of [I-D.ietf-alto-

unified-props-new]. The JSON object MUST include the dependent-

vtags field in the meta field. The value of the dependent-vtags

field MUST be an array of VersionTag objects as defined by

Section 10.3 of [RFC7285]. The vtag of the Path Vector part MUST

be included in the dependent-vtags. If persistent-entity-id is

requested, the version tags of the dependent resources that MAY

expose the entities in the response MUST also be included.

The PropertyMapData has one member for each ANEName that appears

in the Path Vector part, which is an entity identifier belonging

to the self-defined entity domain as defined in Section 5.1.2.3

of [I-D.ietf-alto-unified-props-new]. The EntityProps for each

ANE has one member for each property that is both 1) associated

with the ANE, and 2) specified in the ane-property-names in the

request.

A complete and valid response MUST include both the Path Vector part

and the Property Map part in the multipart message. If any part is

NOT present, the client MUST discard the received information and

send another request if necessary.

According to [RFC2387], the Path Vector part, whose media type is

the same as the type parameter of the multipart response message, is

the root object. Thus, it is the element the application processes

¶

*

¶

¶

resource-id '.' part-resource-id¶

¶

*

¶

¶

¶

¶

first. Even though the start parameter allows it to be placed

anywhere in the part sequence, it is RECOMMENDED that the parts

arrive in the same order as they are processed, i.e., the Path

Vector part is always put as the first part, followed by the

Property Map part. When doing so, an ALTO server MAY choose to NOT

set the start parameter, which implies the first part is the root

object.

Example: Consider the network in Figure 1. The response of the

example request in Section 7.3.3 is as follows.

¶

¶

HTTP/1.1 200 OK

Content-Length: 810

Content-Type: multipart/related; boundary=example-1;

 type=application/alto-endpointcost+json

--example-1

Content-ID: ecs

Content-Type: application/alto-endpointcost+json

{

 "meta": {

 "vtag": {

 "resource-id": "ecs-pv.costmap",

 "tag": "d827f484cb66ce6df6b5077cb8562b0a"

 },

 "dependent-vtags": [

 {

 "resource-id": "my-default-networkmap",

 "tag": "75ed013b3cb58f896e839582504f6228"

 }

],

 "cost-type": { "cost-mode": "array", "cost-metric": "ane-path" }

 },

 "cost-map": {

 "ipv4:192.0.2.2": { "ipv4:192.0.2.18": ["ANE1"] }

 }

}

--example-1

Content-ID: propmap

Content-Type: application/alto-propmap+json

{

 "meta": {

 "dependent-vtags": [

 {

 "resource-id": "ecs-pv.costmap",

 "tag": "d827f484cb66ce6df6b5077cb8562b0a"

 }

]

 },

 "property-map": {

 ".ane:ANE1": { "max-reservable-bandwidth": 100000000 }

 }

}

¶

8. Examples

This section lists some examples of Path Vector queries and the

corresponding responses. Some long lines are truncated for better

readability.

8.1. Example: Information Resource Directory

To give a comprehensive example of the extension defined in this

document, we consider the network in Figure 5. Assume that the ALTO

server provides the following information resources:

my-default-networkmap: A Network Map resource which contains the

PIDs in the network.

filtered-cost-map-pv: A Multipart Filtered Cost Map resource for

Path Vector, which exposes the max-reservable-bandwidth property

for the PIDs in my-default-networkmap.

ane-props: A filtered Unified Property resource that exposes the

information for persistent ANEs in the network.

endpoint-cost-pv: A Multipart Endpoint Cost Service for Path

Vector, which exposes the max-reservable-bandwidth and the

persistent-entity-id properties.

update-pv: An Update Stream service, which provides the

incremental update service for the endpoint-cost-pv service.

Below is the Information Resource Directory of the example ALTO

server. To enable the extension defined in this document, the path-

vector cost type (Section 6.5) is defined in the cost-types of the

meta field, and is included in the cost-type-names of resources

filtered-cost-map-pv and endpoint-cost-pv.

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

{

 "meta": {

 "cost-types": {

 "path-vector": {

 "cost-mode": "array",

 "cost-metric": "ane-path"

 }

 }

 },

 "resources": {

 "my-default-networkmap": {

 "uri" : "https://alto.example.com/networkmap",

 "media-type" : "application/alto-networkmap+json"

 },

 "filtered-cost-map-pv": {

 "uri": "https://alto.example.com/costmap/pv",

 "media-type": "multipart/related;

 type=application/alto-costmap+json",

 "accepts": "application/alto-costmapfilter+json",

 "capabilities": {

 "cost-type-names": ["path-vector"],

 "ane-property-names": ["max-reservable-bandwidth"]

 },

 "uses": ["my-default-networkmap"]

 },

 "ane-props": {

 "uri": "https://alto.example.com/ane-props",

 "media-type": "application/alto-propmap+json",

 "accepts": "application/alto-propmapparams+json",

 "capabilities": {

 "mappings": {

 ".ane": ["cpu"]

 }

 }

 },

 "endpoint-cost-pv": {

 "uri": "https://alto.exmaple.com/endpointcost/pv",

 "media-type": "multipart/related;

 type=application/alto-endpointcost+json",

 "accepts": "application/alto-endpointcostparams+json",

 "capabilities": {

 "cost-type-names": ["path-vector"],

 "ane-property-names": [

 "max-reservable-bandwidth", "persistent-entity-id"

]

 },

 "uses": ["ane-props"]

 },

 "update-pv": {

 "uri": "https://alto.example.com/updates/pv",

 "media-type": "text/event-stream",

 "uses": ["endpoint-cost-pv"],

 "accepts": "application/alto-updatestreamparams+json",

 "capabilities": {

 "support-stream-control": true

 }

 }

 }

}

¶

8.2. Example: Multipart Filtered Cost Map

The following examples demonstrate the request to the filtered-cost-

map-pv resource and the corresponding response.

The request uses the "path-vector" cost type in the cost-type field.

The ane-property-names field is missing, indicating that the client

only requests for the Path Vector but not the ANE properties.

The response consists of two parts. The first part returns the array

of ANEName for each source and destination pair. There are two ANEs,

where L1 represents the interconnection link L1, and L2 represents

the interconnection link L2.

The second part returns an empty Property Map. Note that the ANE

entries are omitted since they have no properties (See Section 3.1

of [I-D.ietf-alto-unified-props-new]).

¶

¶

¶

¶

POST /costmap/pv HTTP/1.1

Host: alto.example.com

Accept: multipart/related;type=application/alto-costmap+json,

 application/alto-error+json

Content-Length: 153

Content-Type: application/alto-costmapfilter+json

{

 "cost-type": {

 "cost-mode": "array",

 "cost-metric": "ane-path"

 },

 "pids": {

 "srcs": ["PID1"],

 "dsts": ["PID3", "PID4"]

 }

}

¶

HTTP/1.1 200 OK

Content-Length: 818

Content-Type: multipart/related; boundary=example-1;

 type=application/alto-costmap+json

--example-1

Content-ID: costmap

Content-Type: application/alto-costmap+json

{

 "meta": {

 "vtag": {

 "resource-id": "filtered-cost-map-pv.costmap",

 "tag": "d827f484cb66ce6df6b5077cb8562b0a"

 },

 "dependent-vtags": [

 {

 "resource-id": "my-default-networkmap",

 "tag": "75ed013b3cb58f896e839582504f6228"

 }

],

 "cost-type": {

 "cost-mode": "array",

 "cost-metric": "ane-path"

 }

 },

 "cost-map": {

 "PID1": {

 "PID3": ["L1"],

 "PID4": ["L1", "L2"]

 }

 }

}

--example-1

Content-ID: propmap

Content-Type: application/alto-propmap+json

{

 "meta": {

 "dependent-vtags": [

 {

 "resource-id": "filtered-cost-map-pv.costmap",

 "tag": "d827f484cb66ce6df6b5077cb8562b0a"

 }

]

 },

 "property-map": {

 }

}

¶

8.3. Example: Multipart Endpoint Cost Service Resource

The following examples demonstrate the request to the endpoint-cost-

pv resource and the corresponding response.

The request uses the Path Vector cost type in the cost-type field,

and queries the Maximum Reservable Bandwidth ANE property and the

Persistent Entity property for two source and destination pairs:

192.0.2.34 -> 192.0.2.2 and 192.0.2.34 -> 192.0.2.50.

The response consists of two parts. The first part returns the array

of ANEName for each valid source and destination pair. As one can

see in Figure 5, flow 192.0.2.34 -> 192.0.2.2 traverses NET2, L1 and

NET1, and flow 192.0.2.34 -> 192.0.2.50 traverses NET2, L2 and NET3.

The second part returns the requested properties of ANEs. Assume

NET1, NET2 and NET3 has sufficient bandwidth and their max-

reservable-bandwidth values are set to a sufficiently large number

(50 Gbps in this case). On the other hand, assume there are no prior

reservation on L1 and L2, and their max-reservable-bandwidth values

are the corresponding link capacity (10 Gbps for L1 and 15 Gbps for

L2).

Both NET1 and NET2 have a mobile edge deployed, i.e., MEC1 in NET1

and MEC2 in NET2. Assume the ANEName for MEC1 and MEC2 are MEC1 and

MEC2 and their properties can be retrieved from the Property Map

ane-props. Thus, the persistent-entity-id property of NET1 and NET3

are ane-props.ane:MEC1 and ane-props.ane:MEC2 respectively.

¶

¶

¶

¶

¶

POST /endpointcost/pv HTTP/1.1

Host: alto.example.com

Accept: multipart/related;

 type=application/alto-endpointcost+json,

 application/alto-error+json

Content-Length: 278

Content-Type: application/alto-endpointcostparams+json

{

 "cost-type": {

 "cost-mode": "array",

 "cost-metric": "ane-path"

 },

 "endpoints": {

 "srcs": ["ipv4:192.0.2.34"],

 "dsts": ["ipv4:192.0.2.2", "ipv4:192.0.2.50"]

 },

 "ane-property-names": [

 "max-reservable-bandwidth",

 "persistent-entity-id"

]

}

¶

HTTP/1.1 200 OK

Content-Length: 1305

Content-Type: multipart/related; boundary=example-2;

 type=application/alto-endpointcost+json

--example-2

Content-ID: ecs

Content-Type: application/alto-endpointcost+json

{

 "meta": {

 "vtags": {

 "resource-id": "endpoint-cost-pv.ecs",

 "tag": "bb6bb72eafe8f9bdc4f335c7ed3b10822a391cef"

 },

 "cost-type": {

 "cost-mode": "array",

 "cost-metric": "ane-path"

 }

 },

 "endpoint-cost-map": {

 "ipv4:192.0.2.34": {

 "ipv4:192.0.2.2": ["NET3", "L1", "NET1"],

 "ipv4:192.0.2.50": ["NET3", "L2", "NET2"]

 }

 }

}

--example-2

Content-ID: propmap

Content-Type: application/alto-propmap+json

{

 "meta": {

 "dependent-vtags": [

 {

 "resource-id": "endpoint-cost-pv.ecs",

 "tag": "bb6bb72eafe8f9bdc4f335c7ed3b10822a391cef"

 },

 {

 "resource-id": "ane-props",

 "tag": "bf3c8c1819d2421c9a95a9d02af557a3"

 }

]

 },

 "property-map": {

 ".ane:NET1": {

 "max-reservable-bandwidth": 50000000000,

 "persistent-entity-id": "ane-props.ane:MEC1"

 },

 ".ane:NET2": {

 "max-reservable-bandwidth": 50000000000,

 "persistent-entity-id": "ane-props.ane:MEC2"

 },

 ".ane:NET3": {

 "max-reservable-bandwidth": 50000000000

 },

 ".ane:L1": {

 "max-reservable-bandwidth": 10000000000

 },

 ".ane:L2": {

 "max-reservable-bandwidth": 15000000000

 }

 }

}

¶

As mentioned in Section 6.5.1, an advanced ALTO server may obfuscate

the response in order to preserve its own privacy or conform to its

own policies. For example, an ALTO server may choose to aggregate

NET1 and L1 as a new ANE with ANE name AGGR1, and aggregate NET2 and

L2 as a new ANE with ANE name AGGR2. The max-reservable-bandwidth of

AGGR1 takes the value of L1, which is smaller than that of NET1, and

the persistent-entity-id of AGGR1 takes the value of NET1. The

properties of AGGR2 are computed in a similar way and the obfuscated

response is as shown below. Note that the obfuscation of Path Vector

responses is implementation-specific and is out of the scope of this

document, and developers may refer to Section 11 for further

references.¶

HTTP/1.1 200 OK

Content-Length: 1157

Content-Type: multipart/related; boundary=example-2;

 type=application/alto-endpointcost+json

--example-2

Content-ID: ecs

Content-Type: application/alto-endpointcost+json

{

 "meta": {

 "vtags": {

 "resource-id": "endpoint-cost-pv.ecs",

 "tag": "bb6bb72eafe8f9bdc4f335c7ed3b10822a391cef"

 },

 "cost-type": {

 "cost-mode": "array",

 "cost-metric": "ane-path"

 }

 },

 "endpoint-cost-map": {

 "ipv4:192.0.2.34": {

 "ipv4:192.0.2.2": ["NET3", "AGGR1"],

 "ipv4:192.0.2.50": ["NET3", "AGGR2"]

 }

 }

}

--example-2

Content-ID: propmap

Content-Type: application/alto-propmap+json

{

 "meta": {

 "dependent-vtags": [

 {

 "resource-id": "endpoint-cost-pv.ecs",

 "tag": "bb6bb72eafe8f9bdc4f335c7ed3b10822a391cef"

 },

 {

 "resource-id": "ane-props",

 "tag": "bf3c8c1819d2421c9a95a9d02af557a3"

 }

]

 },

 "property-map": {

 ".ane:AGGR1": {

 "max-reservable-bandwidth": 10000000000,

 "persistent-entity-id": "ane-props.ane:MEC1"

 },

 ".ane:AGGR2": {

 "max-reservable-bandwidth": 15000000000,

 "persistent-entity-id": "ane-props.ane:MEC2"

 },

 ".ane:NET3": {

 "max-reservable-bandwidth": 50000000000

 }

 }

}

¶

8.4. Example: Incremental Updates

In this example, an ALTO client subscribes to the incremental update

for the multipart Endpoint Cost Service resource endpoint-cost-pv.

Based on the server-side process defined in [RFC8895], the ALTO

server will send the control-uri first using Server-Sent Event

(SSE), followed by the full response of the multipart message.

When the contents change, the ALTO server will publish the updates

for each node in this tree separately.

¶

POST /updates/pv HTTP/1.1

Host: alto.example.com

Accept: text/event-stream

Content-Type: application/alto-updatestreamparams+json

Content-Length: 112

{

 "add": {

 "ecspvsub1": {

 "resource-id": "endpoint-cost-pv",

 "input": <ecs-input>

 }

 }

}

¶

¶

HTTP/1.1 200 OK

Connection: keep-alive

Content-Type: text/event-stream

event: application/alto-updatestreamcontrol+json

data: {"control-uri": "https://alto.example.com/updates/streams/123"}

event: multipart/related;boundary=example-3;

 type=application/alto-endpointcost+json,ecspvsub1

data: --example-3

data: Content-ID: ecsmap

data: Content-Type: application/alto-endpointcost+json

data:

data: <endpoint-cost-map-entry>

data: --example-3

data: Content-ID: propmap

data: Content-Type: application/alto-propmap+json

data:

data: <property-map-entry>

data: --example-3--

¶

¶

9. Compatibility with Other ALTO Extensions

9.1. Compatibility with Legacy ALTO Clients/Servers

The multipart Filtered Cost Map resource and the multipart Endpoint

Cost Service resource has no backward compatibility issue with

legacy ALTO clients and servers. Although these two types of

resources reuse the media types defined in the base ALTO protocol

for the accept input parameters, they have different media types for

responses. If the ALTO server provides these two types of resources,

but the ALTO client does not support them, the ALTO client will

ignore the resources without incurring any incompatibility problem.

9.2. Compatibility with Multi-Cost Extension

The extension defined in this document is NOT compatible with the

multi-cost extension [RFC8189]. The reason is that if a resource

supports both the extension defined in this document and the multi-

cost extension, the media type of this resource depends on the

selection of cost types: if the Path Vector cost type is selected,

the media type of the response is either multipart/related;

type=application/alto-costmap+json or multipart/related;

type=application/alto-endpointcost+json; if the Path Vector cost

type is not selected, the media type of the response is either

application/alto-costmap+json or application/alto-endpointcost+json.

Thus, there can be multiple media types associated with the

information resource, which is not compatible with [RFC7285]

(Section 9.1.2).

Note that this problem may happen when an ALTO information resource

supports multiple cost types, even if it does not enable the multi-

cost extension. Thus, Section 7.2.4 has specified that if an ALTO

information resource enables the extension defined in this document,

the Path Vector cost type MUST be the only cost type in the cost-

type-names capability of this resource.

9.3. Compatibility with Incremental Update

ALTO clients and servers MUST follow the specifications given in

Section 5.2 of [RFC8895] to support incremental updates for a Path

Vector resource.

event: application/merge-patch+json, ecspvsub1.ecsmap

data: <Merge patch for endpoint-cost-map-update>

event: application/merge-patch+json, ecspvsub1.propmap

data: <Merge patch for property-map-update>

¶

¶

¶

¶

¶

9.4. Compatibility with Cost Calendar

The extension specified in this document is compatible with the Cost

Calendar extension [RFC8896]. When used together with the Cost

Calendar extension, the cost value between a source and a

destination is an array of Path Vectors, where the k-th Path Vector

refers to the abstract network paths traversed in the k-th time

interval by traffic from the source to the destination.

When used with time-varying properties, e.g., maximum reservable

bandwidth (maxresbw), a property of a single ANE may also have

different values in different time intervals. In this case, if such

an ANE has different property values in two time intervals, it MUST

be treated as two different ANEs, i.e., with different entity

identifiers. However, if it has the same property values in two time

intervals, it MAY use the same identifier.

This rule allows the Path Vector extension to represent both changes

of ANEs and changes of the ANEs' properties in a uniform way. The

Path Vector part is calendared in a compatible way, and the Property

Map part is not affected by the calendar extension.

The two extensions combined together can provide the historical

network correlation information for a set of source and destination

pairs. A network broker or client may use this information to derive

other resource requirements such as Time-Block-Maximum Bandwidth,

Bandwidth-Sliding-Window, and Time-Bandwidth-Product (TBP) (See

[SENSE] for details).

10. General Discussions

10.1. Constraint Tests for General Cost Types

The constraint test is a simple approach to query the data. It

allows users to filter the query result by specifying some boolean

tests. This approach is already used in the ALTO protocol. [RFC7285]

and [RFC8189] allow ALTO clients to specify the constraints and or-

constraints tests to better filter the result.

However, the current syntax can only be used to test scalar cost

types, and cannot easily express constraints on complex cost types,

e.g., the Path Vector cost type defined in this document.

In practice, developing a bespoke language for general-purpose

boolean tests can be a complex undertaking, and it is conceivable

that there are some existing implementations already (the authors

have not done an exhaustive search to determine whether there are

such implementations). One avenue to develop such a language may be

to explore extending current query languages like XQuery [XQuery] or

JSONiq [JSONiq] and integrating these with ALTO.

¶

¶

¶

¶

¶

¶

¶

Filtering the Path Vector results or developing a more sophisticated

filtering mechanism is beyond the scope of this document.

10.2. General Multi-Resource Query

Querying multiple ALTO information resources continuously is a

general requirement. Enabling such a capability, however, must

address general issues like efficiency and consistency. The

incremental update extension [RFC8895] supports submitting multiple

queries in a single request, and allows flexible control over the

queries. However, it does not cover the case introduced in this

document where multiple resources are needed for a single request.

This extension gives an example of using a multipart message to

encode the responses from two specific ALTO information resources: a

Filtered Cost Map or an Endpoint Cost Service, and a Property Map.

By packing multiple resources in a single response, the implication

is that servers may proactively push related information resources

to clients.

Thus, it is worth looking into the direction of extending the SSE

mechanism as used in the incremental update extension [RFC8895], or

upgrading to HTTP/2 [RFC7540] and HTTP/3 [I-D.ietf-quic-http], which

provides the ability to multiplex queries and to allow servers

proactively send related information resources.

Defining a general multi-resource query mechanism is out of the

scope of this document.

11. Security Considerations

This document is an extension of the base ALTO protocol, so the

Security Considerations [RFC7285] of the base ALTO protocol fully

apply when this extension is provided by an ALTO server.

The Path Vector extension requires additional scrutiny on three

security considerations discussed in the base protocol:

confidentiality of ALTO information (Section 15.3 of [RFC7285]),

potential undesirable guidance from authenticated ALTO information

(Section 15.2 of [RFC7285]), and availability of ALTO service

(Section 15.5 of [RFC7285]).

For confidentiality of ALTO information, a network operator should

be aware of that this extension may introduce a new risk: the Path

Vector information may make network attacks easier. For example, as

the Path Vector information may reveal more fine-grained internal

network structures than the base protocol, an ALTO client may detect

the bottleneck link and start a distributed denial-of-service (DDoS)

attack involving minimal flows to conduct the in-network congestion.

¶

¶

¶

¶

¶

¶

¶

¶

To mitigate this risk, the ALTO server should consider protection

mechanisms to reduce information exposure or obfuscate the real

information, in particular, in settings where the network and the

application do not belong to the same trust domain. For example, in

the multi-flow bandwidth reservation use case as introduced in

Section 4, only the available bandwidth of the shared bottleneck

link is crucial, and the ALTO server may only preserve the critical

bottlenecks and can change the order of links appearing in the Path

Vector response.

However, arbitrary reduction and obfuscation of information exposure

may potentially introduce a risk on the integrity of the ALTO

information, leading to infeasible or suboptimal decisions of ALTO

clients,

To mitigate this risk, if an ALTO client finds that the traffic

distribution based on the Path Vector information is not feasible

(e.g., causing constant congestion) or not better than a

distribution which does not fully conform to the information (e.g.,

by randomly choosing the source/destination for certain flows), it

can follow the protection strategies for potential undesirable

guidance from authenticated ALTO information, specified in Section

15.2.2 of RFC 7285 [RFC7285]. While repeatedly sending the same

query can potentially detect the integrity problem for certain

obfuscation methods (e.g., those based on time or randomness) under

certain network conditions (e.g., where the routing and ANE

properties are stable), an ALTO client must be aware that this

behavior may be considered as a denial-of-service attack on the

server and may lead to the rejection of further requests from the

client.

On the other hand, this risk can also be mitigated from the server

side. While the implementation of an ALTO server is beyond the scope

of this document, implementations of ALTO servers involving

reduction or obfuscation of the Path Vector information should

consider reduction/obfuscation mechanisms that can preserve the

integrity of ALTO information, for example, by using minimal

feasible region compression algorithms [TON2019] or obfuscation

protocols [SC2018][JSAC2019].

For availability of ALTO service, an ALTO server should be cognizant

that using Path Vector extension might have a new risk: frequent

requesting for Path Vectors might consume intolerable amounts of the

server-side computation and storage, which can break the ALTO

server. For example, if an ALTO server implementation dynamically

computes the Path Vectors for each request, the service providing

Path Vectors may become an entry point for denial-of-service attacks

on the availability of an ALTO server.

¶

¶

¶

¶

¶

Identifier:

Entity Identifier Encoding:

Hierarchy:

Inheritance:

Media Type of Defining Resource:

Security Considerations:

To mitigate this risk, an ALTO server may consider using

optimizations such as precomputation-and-projection mechanisms

[JSAC2019] to reduce the overhead for processing each query. Also,

an ALTO server may also protect itself from malicious clients by

monitoring the behaviors of clients and stopping serving clients

with suspicious behaviors (e.g., sending requests at a high

frequency).

12. IANA Considerations

12.1. ALTO Entity Domain Type Registry

This document registers a new entry to the ALTO Domain Entity Type

Registry, as instructed by Section 12.2 of [I-D.ietf-alto-unified-

props-new]. The new entry is as shown below in Table 1.

Identifier Entity Address Encoding Hierarchy & Inheritance

ane See Section 6.2.2 None

Table 1: ALTO Entity Domain Type Registry

See Section 6.2.1.

See Section 6.2.2.

None

None

See Section 6.2.4.

In some usage scenarios, ANE addresses

carried in ALTO Protocol messages may reveal information about an

ALTO client or an ALTO service provider. Applications and ALTO

service providers using addresses of ANEs will be made aware of

how (or if) the addressing scheme relates to private information

and network proximity, in further iterations of this document.

12.2. ALTO Entity Property Type Registry

Two initial entries are registered to the ALTO Domain ane in the

ALTO Entity Property Type Registry, as instructed by Section 12.3

of [I-D.ietf-alto-unified-props-new]. The two new entries are shown

below in Table 2.

Identifier Intended Semantics

max-reservable-bandwidth See Section 6.4.1

persistent-entity-id See Section 6.4.2

¶

¶

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-alto-unified-props-new]

[RFC2119]

[RFC2387]

[RFC7285]

[RFC8174]

[RFC8189]

[RFC8895]

Table 2: Initial Entries for ane Domain in the

ALTO Entity Property Types Registry

13. Acknowledgments

The authors would like to thank discussions with Andreas Voellmy,

Erran Li, Haibin Song, Haizhou Du, Jiayuan Hu, Qiao Xiang, Tianyuan

Liu, Xiao Shi, Xin Wang, and Yan Luo. The authors thank Greg

Bernstein (Grotto Networks), Dawn Chen (Tongji University), Wendy

Roome, and Michael Scharf for their contributions to earlier drafts.

14. References

14.1. Normative References

Roome, W., Randriamasy, S., Yang,

Y. R., Zhang, J. J., and K. Gao, "ALTO Extension: Entity

Property Maps", Work in Progress, Internet-Draft, draft-

ietf-alto-unified-props-new-17, 16 April 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-alto-unified-

props-new-17>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Levinson, E., "The MIME Multipart/Related Content-type",

RFC 2387, DOI 10.17487/RFC2387, August 1998, <https://

www.rfc-editor.org/rfc/rfc2387>.

Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel,

S., Previdi, S., Roome, W., Shalunov, S., and R. Woundy,

"Application-Layer Traffic Optimization (ALTO) Protocol",

RFC 7285, DOI 10.17487/RFC7285, September 2014, <https://

www.rfc-editor.org/rfc/rfc7285>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Randriamasy, S., Roome, W., and N. Schwan, "Multi-Cost

Application-Layer Traffic Optimization (ALTO)", RFC 8189,

DOI 10.17487/RFC8189, October 2017, <https://www.rfc-

editor.org/rfc/rfc8189>.

Roome, W. and Y. Yang, "Application-Layer Traffic

Optimization (ALTO) Incremental Updates Using Server-Sent

Events (SSE)", RFC 8895, DOI 10.17487/RFC8895, November

2020, <https://www.rfc-editor.org/rfc/rfc8895>.

¶

https://datatracker.ietf.org/doc/html/draft-ietf-alto-unified-props-new-17
https://datatracker.ietf.org/doc/html/draft-ietf-alto-unified-props-new-17
https://datatracker.ietf.org/doc/html/draft-ietf-alto-unified-props-new-17
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2387
https://www.rfc-editor.org/rfc/rfc2387
https://www.rfc-editor.org/rfc/rfc7285
https://www.rfc-editor.org/rfc/rfc7285
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8189
https://www.rfc-editor.org/rfc/rfc8189
https://www.rfc-editor.org/rfc/rfc8895

[RFC8896]

[AAAI2019]

[I-D.contreras-alto-service-edge]

[I-D.huang-alto-mowie-for-network-aware-app]

[I-D.ietf-alto-performance-metrics]

[I-D.ietf-dmm-5g-uplane-analysis]

[I-D.ietf-quic-http]

Randriamasy, S., Yang, R., Wu, Q., Deng, L., and N.

Schwan, "Application-Layer Traffic Optimization (ALTO)

Cost Calendar", RFC 8896, DOI 10.17487/RFC8896, November

2020, <https://www.rfc-editor.org/rfc/rfc8896>.

14.2. Informative References

Xiang, Q., Yu, H., Aspnes, J., Le, F., Kong, L., and Y.R.

Yang, "Optimizing in the dark: Learning an optimal

solution through a simple request interface", Proceedings

of the AAAI Conference on Artificial Intelligence 33,

1674-1681 , 2019.

Contreras, L. M., Lachos, D. A.,

Rothenberg, C. E., and S. Randriamasy, "Use of ALTO for

Determining Service Edge", Work in Progress, Internet-

Draft, draft-contreras-alto-service-edge-03, 12 July

2021, <https://datatracker.ietf.org/doc/html/draft-

contreras-alto-service-edge-03>.

Xiong, C., Zhang, Y., Yang, Y. R., Li, G., Lei, Y., and

Y. Han, "MoWIE for Network Aware Application", Work in

Progress, Internet-Draft, draft-huang-alto-mowie-for-

network-aware-app-03, 12 July 2021, <https://

datatracker.ietf.org/doc/html/draft-huang-alto-mowie-for-

network-aware-app-03>.

Wu, Q., Yang, Y. R., Lee, Y., Dhody, D., Randriamasy, S.,

and L. M. C. Murillo, "ALTO Performance Cost Metrics",

Work in Progress, Internet-Draft, draft-ietf-alto-

performance-metrics-17, 27 July 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-alto-

performance-metrics-17>.

Homma, S., Miyasaka, T.,

Matsushima, S., and D. Voyer, "User Plane Protocol and

Architectural Analysis on 3GPP 5G System", Work in

Progress, Internet-Draft, draft-ietf-dmm-5g-uplane-

analysis-04, 2 November 2020, <https://

datatracker.ietf.org/doc/html/draft-ietf-dmm-5g-uplane-

analysis-04>.

Bishop, M., "Hypertext Transfer Protocol

Version 3 (HTTP/3)", Work in Progress, Internet-Draft,

draft-ietf-quic-http-34, 2 February 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-quic-http-34>.

https://www.rfc-editor.org/rfc/rfc8896
https://datatracker.ietf.org/doc/html/draft-contreras-alto-service-edge-03
https://datatracker.ietf.org/doc/html/draft-contreras-alto-service-edge-03
https://datatracker.ietf.org/doc/html/draft-huang-alto-mowie-for-network-aware-app-03
https://datatracker.ietf.org/doc/html/draft-huang-alto-mowie-for-network-aware-app-03
https://datatracker.ietf.org/doc/html/draft-huang-alto-mowie-for-network-aware-app-03
https://datatracker.ietf.org/doc/html/draft-ietf-alto-performance-metrics-17
https://datatracker.ietf.org/doc/html/draft-ietf-alto-performance-metrics-17
https://datatracker.ietf.org/doc/html/draft-ietf-alto-performance-metrics-17
https://datatracker.ietf.org/doc/html/draft-ietf-dmm-5g-uplane-analysis-04
https://datatracker.ietf.org/doc/html/draft-ietf-dmm-5g-uplane-analysis-04
https://datatracker.ietf.org/doc/html/draft-ietf-dmm-5g-uplane-analysis-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34

[I-D.yang-alto-deliver-functions-over-networks]

[JSAC2019]

[JSONiq]

[LHC]

[RFC2216]

[RFC7540]

[SC2018]

[SENSE]

[TON2019]

[XQuery]

Yang, S., Cui, L., Xu, M., Yang, Y., and R. Huang,

"Delivering Functions over Networks: Traffic and

Performance Optimization for Edge Computing using ALTO",

Work in Progress, Internet-Draft, draft-yang-alto-

deliver-functions-over-networks-01, 13 July 2020,

<https://datatracker.ietf.org/doc/html/draft-yang-alto-

deliver-functions-over-networks-01>.

Xiang, Q., Zhang, J., Wang, X., Liu, Y., Guok, C., Le,

F., MacAuley, J., Newman, H., and Y.R. Yang, "Toward

Fine-Grained, Privacy-Preserving, Efficient Multi-Domain

Network Resource Discovery", IEEE/ACM IEEE Journal on

Selected Areas of Communication 37(8): 1924-1940, 2019.

"The JSON Query language", 2020, <https://www.jsoniq.org/

>.

"CERN - LHC", 2019, <https://atlas.cern/tags/lhc>.

Shenker, S. and J. Wroclawski, "Network Element Service

Specification Template", RFC 2216, DOI 10.17487/RFC2216,

September 1997, <https://www.rfc-editor.org/rfc/rfc2216>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

rfc/rfc7540>.

Xiang, Q., Zhang, J., Wang, X., Liu, Y., Guok, C., Le,

F., MacAuley, J., Newman, H., and Y.R. Yang, "Fine-

grained, multi-domain network resource abstraction as a

fundamental primitive to enable high-performance,

collaborative data sciences", Proceedings of the Super

Computing 2018, 5:1-5:13 , 2019.

"Services - SENSE", 2019, <http://sense.es.net/services>.

Gao, K., Xiang, Q., Wang, X., Yang, Y.R., and J. Bi, "An

objective-driven on-demand network abstraction for

adaptive applications", IEEE/ACM Transactions on

Networking (TON) Vol 27, no. 2 (2019): 805-818., 2019.

"XQuery 3.1: An XML Query Language", 2017, <https://

www.w3.org/TR/xquery-31/>.

https://datatracker.ietf.org/doc/html/draft-yang-alto-deliver-functions-over-networks-01
https://datatracker.ietf.org/doc/html/draft-yang-alto-deliver-functions-over-networks-01
https://www.jsoniq.org/
https://atlas.cern/tags/lhc
https://www.rfc-editor.org/rfc/rfc2216
https://www.rfc-editor.org/rfc/rfc7540
https://www.rfc-editor.org/rfc/rfc7540
http://sense.es.net/services
https://www.w3.org/TR/xquery-31/
https://www.w3.org/TR/xquery-31/

Appendix A. Revision Logs

A.1. Changes since -14

Revision -15

fixes the IDNits warnings,

fixes grammar issues,

addresses the comments in the AD review.

A.2. Changes since -13

Revision -14

addresses the comments in the chair review,

fixes most issues raised by IDNits.

A.3. Changes since -12

Revision -13

changes the abstract based on the chairs' reviews

integrates Richard's responds to WGLC reviews

A.4. Changes since -11

Revision -12

clarifies the definition of ANEs in a similar way as how Network

Elements is defined in [RFC2216]

restructures several paragraphs that are not clear (Sec 3, Path

Vector bullet, Sec 4.2, Sec 5.1.3, Sec 6.2.4, Sec 6.4.2, Sec 9.3)

uses ALTO Entity Domain Type Registry

A.5. Changes since -10

Revision -11

replaces "part" with "components" in the abstract;

identifies additional requirements (AR) derived from the flow

scheduling example, and introduces how the extension addresses

the additional requirements

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

¶

* ¶

* ¶

¶

*

¶

*

¶

* ¶

¶

* ¶

*

¶

fixes the inconsistent use of "start" parameter in multipart

responses;

specifies explicitly how to handle "cost-constraints";

uses the latest IANA registration mechanism defined in [I-D.ietf-

alto-unified-props-new];

renames persistent-entities to persistent-entity-id;

makes application/alto-propmap+json as the media type of defining

resources for the ane domain;

updates the examples;

adds the discussion on ephemeral and persistent ANEs.

A.6. Changes since -09

Revision -10

revises the introduction which

extends the scope where the PV extension can be applied beyond

the "path correlation" information

brings back the capacity region use case to better illustrate the

problem

revises the overview to explain and defend the concepts and

decision choices

fixes inconsistent terms, typos

A.7. Changes since -08

This revision

fixes a few spelling errors

emphasizes that abstract network elements can be generated on

demand in both introduction and motivating use cases

A.8. Changes Since Version -06

We emphasize the importance of the path vector extension in two

aspects:

It expands the problem space that can be solved by ALTO,

from preferences of network paths to correlations of network

paths.

*

¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

¶

* ¶

-

¶

*

¶

*

¶

* ¶

¶

* ¶

*

¶

*

¶

1.

¶

It is motivated by new usage scenarios from both

application's and network's perspectives.

More use cases are included, in addition to the original capacity

region use case.

We add more discussions to fully explore the design space of the

path vector extension and justify our design decisions, including

the concept of abstract network element, cost type (reverted to

-05), newer capabilities and the multipart message.

Fix the incremental update process to be compatible with SSE -16

draft, which uses client-id instead of resource-id to demultiplex

updates.

Register an additional ANE property (i.e., persistent-entities)

to cover all use cases mentioned in the draft.

Authors' Addresses

Kai Gao

Sichuan University

No.24 South Section 1, Yihuan Road

Chengdu

610000

China

Email: kaigao@scu.edu.cn

Young Lee

Samsung

South Korea

Email: younglee.tx@gmail.com

Sabine Randriamasy

Nokia Bell Labs

Route de Villejust

91460 Nozay

France

Email: sabine.randriamasy@nokia-bell-labs.com

Yang Richard Yang

Yale University

51 Prospect Street

New Haven, CT

United States of America

Email: yry@cs.yale.edu

2.

¶

*

¶

*

¶

*

¶

*

¶

mailto:kaigao@scu.edu.cn
mailto:younglee.tx@gmail.com
mailto:sabine.randriamasy@nokia-bell-labs.com
mailto:yry@cs.yale.edu

Jingxuan Jensen Zhang

Tongji University

4800 Caoan Road

Shanghai

201804

China

Email: jingxuan.n.zhang@gmail.com

mailto:jingxuan.n.zhang@gmail.com

	ALTO Extension: Path Vector
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements Languages
	3. Terminology
	4. Problem Statement
	4.1. Design Requirements
	4.2. Use Cases
	4.2.1. Large-scale Data Analytics
	4.2.2. Context-aware Data Transfer
	4.2.3. CDN and Service Edge

	5. Path Vector Extension: Overview
	5.1. Abstract Network Element
	5.1.1. ANE Domain
	5.1.2. Ephemeral ANE and Persistent ANE
	5.1.3. Property Filtering

	5.2. Path Vector Cost Type
	5.3. Multipart Path Vector Response
	5.3.1. Identifying the Media Type of the Root Object
	5.3.2. References to Part Messages

	6. Specification: Basic Data Types
	6.1. ANE Name
	6.2. ANE Domain
	6.2.1. Entity Domain Type
	6.2.2. Domain-Specific Entity Identifier
	6.2.3. Hierarchy and Inheritance
	6.2.4. Media Type of Defining Resource

	6.3. ANE Property Name
	6.4. Initial ANE Property Types
	6.4.1. New ANE Property Type: Maximum Reservable Bandwidth
	6.4.2. New ANE Property Type: Persistent Entity ID

	6.5. Path Vector Cost Type
	6.5.1. Cost Metric: ane-path
	6.5.2. Cost Mode: array

	6.6. Part Resource ID

	7. Specification: Service Extensions
	7.1. Notations
	7.2. Multipart Filtered Cost Map for Path Vector
	7.2.1. Media Type
	7.2.2. HTTP Method
	7.2.3. Accept Input Parameters
	7.2.4. Capabilities
	7.2.5. Uses
	7.2.6. Response

	7.3. Multipart Endpoint Cost Service for Path Vector
	7.3.1. Media Type
	7.3.2. HTTP Method
	7.3.3. Accept Input Parameters
	7.3.4. Capabilities
	7.3.5. Uses
	7.3.6. Response

	8. Examples
	8.1. Example: Information Resource Directory
	8.2. Example: Multipart Filtered Cost Map
	8.3. Example: Multipart Endpoint Cost Service Resource
	8.4. Example: Incremental Updates

	9. Compatibility with Other ALTO Extensions
	9.1. Compatibility with Legacy ALTO Clients/Servers
	9.2. Compatibility with Multi-Cost Extension
	9.3. Compatibility with Incremental Update
	9.4. Compatibility with Cost Calendar

	10. General Discussions
	10.1. Constraint Tests for General Cost Types
	10.2. General Multi-Resource Query

	11. Security Considerations
	12. IANA Considerations
	12.1. ALTO Entity Domain Type Registry
	12.2. ALTO Entity Property Type Registry

	13. Acknowledgments
	14. References
	14.1. Normative References
	14.2. Informative References

	Appendix A. Revision Logs
	A.1. Changes since -14
	A.2. Changes since -13
	A.3. Changes since -12
	A.4. Changes since -11
	A.5. Changes since -10
	A.6. Changes since -09
	A.7. Changes since -08
	A.8. Changes Since Version -06

	Authors' Addresses

