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Abstract

This document proposes guidelines for the design of Autonomic
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1. Introduction

This document proposes guidelines for the design of Autonomic

Service Agents (ASAs) in the context of an Autonomic Network (AN)

based on the Autonomic Network Infrastructure (ANI) outlined in the

autonomic networking reference model [RFC8993]. This infrastructure

makes use of the Autonomic Control Plane (ACP) [RFC8994] and the

Generic Autonomic Signaling Protocol (GRASP) [RFC8990]. A general

introduction to this environment may be found at [IPJ], which also

includes explanatory diagrams, and a summary of terminology is in 

Appendix B.

This document is a contribution to the description of an autonomic

networking ecosystem, recognizing that a deployable autonomic

network needs more than just ACP and GRASP implementations. Such an

autonomic network must achieve management tasks that a Network

Operations Center (NOC) cannot readily achieve manually, such as

continuous resource optimization or automated fault detection and

repair. These tasks, and other management automation goals, are

described at length in [RFC7575]. The net result should be

significant operational improvement. To achieve this, the autonomic

networking ecosystem must include at least a library of ASAs and

corresponding GRASP technical objective definitions. A GRASP

objective [RFC8990] is a data structure whose main contents are a

name and a value. The value consists of a single configurable

parameter or a set of parameters of some kind.

There must also be tools to deploy and oversee ASAs, and integration

with existing operational mechanisms [RFC8368]. However, this

document focuses on the design of ASAs, with some reference to

implementation and operational aspects.

There is a considerable literature about autonomic agents with a

variety of proposals about how they should be characterized. Some

examples are [DeMola06], [Huebscher08], [Movahedi12] and [GANA13].

However, for the present document, the basic definitions and goals

for autonomic networking given in [RFC7575] apply. According to RFC

7575, an Autonomic Service Agent is "An agent implemented on an

autonomic node that implements an autonomic function, either in part

(in the case of a distributed function) or whole."

ASAs must be distinguished from other forms of software component.

They are components of network or service management; they do not in

themselves provide services to end users. They do however provide

management services to network operators and administrators. For

example, the services envisaged for network function virtualisation 

[NFV] or for service function chaining [RFC7665] might be managed by

an ASA rather than by traditional configuration tools.
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Another example is that an existing script running within a router

to locally monitor or configure functions or services could be

upgraded to an ASA that could communicate with peer scripts on

neighboring or remote routers. A high-level API will allow such

upgraded scripts to take full advantage of the secure ACP and the

discovery, negotiation and synchronization features of GRASP.

Familiar tasks such as configuring an Interior Gateway Protocol

(IGP) on neighboring routers or even exchanging IGP security keys

could be performed securely in this way. This document mainly

addresses issues affecting quite complex ASAs, but initially the

most useful ASAs may in fact be rather simple evolutions of existing

scripts.

The reference model [RFC8993] for autonomic networks explains

further the functionality of ASAs by adding "[An ASA is] a process

that makes use of the features provided by the ANI to achieve its

own goals, usually including interaction with other ASAs via the

GRASP protocol [RFC8990] or otherwise. Of course, it also interacts

with the specific targets of its function, using any suitable

mechanism. Unless its function is very simple, the ASA will need to

handle overlapping asynchronous operations. It may therefore be a

quite complex piece of software in its own right, forming part of

the application layer above the ANI."

As mentioned, there will certainly be simple ASAs that manage a

single objective in a straightforward way and do not need

asynchronous operations. In nodes where computing power and memory

space are limited, ASAs should run at a much lower frequency than

the primary workload, so CPU load should not be a big issue, but

memory footprint in a constrained node is certainly a concern. ASAs

installed in constrained devices will have limited functionality. In

such cases, many aspects of the current document do not apply.

However, in the general case, an ASA may be a relatively complex

software component that will in many cases control and monitor

simpler entities in the same or remote host(s). For example, a

device controller that manages tens or hundreds of simple devices

might contain a single ASA.

The remainder of this document offers guidance on the design of

complex ASAs. Some of the material may be familiar to those

experienced in distributed fault-tolerant and real-time control

systems. Robustness and security are of particular importance in

autonomic networks and are discussed in Section 8 and Section 9.

2. Logical Structure of an Autonomic Service Agent

As mentioned above, all but the simplest ASAs will need to support

asynchronous operations. Different programming environments support

asynchronicity in different ways. In this document, we use an
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explicit multi-threading model to describe operations. This is

illustrative, and alternatives to multi-threading are discussed in

detail in connection with the GRASP API Section 3.3.

A typical ASA will have a main thread that performs various initial

housekeeping actions such as:

Obtain authorization credentials, if needed.

Register the ASA with GRASP.

Acquire relevant policy parameters.

Declare data structures for relevant GRASP objectives.

Register with GRASP those objectives that it will actively

manage.

Launch a self-monitoring thread.

Enter its main loop.

The logic of the main loop will depend on the details of the

autonomic function concerned. Whenever asynchronous operations are

required, extra threads may be launched. Examples of such threads

include:

Repeatedly flood an objective to the AN, so that any ASA can

receive the objective's latest value.

Accept incoming synchronization requests for an objective managed

by this ASA.

Accept incoming negotiation requests for an objective managed by

this ASA, and then conduct the resulting negotiation with the

counterpart ASA.

Manage subsidiary non-autonomic devices directly.

These threads should all either exit after their job is done, or

enter a wait state for new work, to avoid wasting system resources.

According to the degree of parallelism needed by the application,

some of these threads might be launched in multiple instances. In

particular, if negotiation sessions with other ASAs are expected to

be long or to involve wait states, the ASA designer might allow for

multiple simultaneous negotiating threads, with appropriate use of

queues and synchronization primitives to maintain consistency.
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The main loop itself could act as the initiator of synchronization

requests or negotiation requests, when the ASA needs data or

resources from other ASAs. In particular, the main loop should watch

for changes in policy parameters that affect its operation, and if

appropriate, occasionally refresh authorization credentials. It

should also do whatever is required to avoid unnecessary resource

consumption, for example by limiting its frequency of execution.

The self-monitoring thread is of considerable importance. Failure of

autonomic service agents is highly undesirable. To a large extent

this depends on careful coding and testing, with no unhandled error

returns or exceptions, but if there is nevertheless some sort of

failure, the self-monitoring thread should detect it, fix it if

possible, and in the worst case restart the entire ASA.

Appendix C presents some example logic flows in informal pseudocode.

3. Interaction with the Autonomic Networking Infrastructure

3.1. Interaction with the security mechanisms

An ASA by definition runs in an autonomic node. Before any normal

ASAs are started, such nodes must be bootstrapped into the autonomic

network's secure key infrastructure, typically in accordance with 

[RFC8995]. This key infrastructure will be used to secure the ACP

(next section) and may be used by ASAs to set up additional secure

interactions with their peers, if needed.

Note that the secure bootstrap process itself incorporates simple

special-purpose ASAs that use a restricted mode of GRASP (Section 4

of [RFC8995]).

3.2. Interaction with the Autonomic Control Plane

In a normal autonomic network, ASAs will run as clients of the ACP,

which will provide a fully secured network environment for all

communication with other ASAs, in most cases mediated by GRASP (next

section).

Note that the ACP formation process itself incorporates simple

special-purpose ASAs that use a restricted mode of GRASP (Section

6.4 of [RFC8994]).

3.3. Interaction with GRASP and its API

In a node where a significant number of ASAs are installed, GRASP 

[RFC8990] is likely to run as a separate process with its API 

[RFC8991] available in user space. Thus, ASAs may operate without

special privilege, unless they need it for other reasons. The ASA's

view of GRASP is built around GRASP objectives (Section 5), defined
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as data structures containing administrative information such as the

objective's unique name, and its current value. The format and size

of the value is not restricted by the protocol, except that it must

be possible to serialise it for transmission in Concise Binary

Object Representation (CBOR) [RFC8949], subject only to GRASP's

maximum message size as discussed in Section 5.

As discussed in Section 2, GRASP is an asynchronous protocol, and

this document uses a multi-threading model to describe operations.

In many programming environments, an 'event loop' model is used

instead, in which case each thread would be implemented as an event

handler called in turn by the main loop. For this case, the GRASP

API must provide non-blocking calls and possibly support callbacks.

This topic is discussed in more detail in [RFC8991], and other

asynchronicity models are also possible. Whenever necessary, the

GRASP session identifier will be used to distinguish simultaneous

operations.

The GRASP API should offer the following features:

Registration functions, so that an ASA can register itself and

the objectives that it manages.

A discovery function, by which an ASA can discover other ASAs

supporting a given objective.

A negotiation request function, by which an ASA can start

negotiation of an objective with a counterpart ASA. With this,

there is a corresponding listening function for an ASA that

wishes to respond to negotiation requests, and a set of functions

to support negotiating steps. Once a negotiation starts, it is a

symmetric process with both sides sending successive objective

values to each other until agreement is reached (or the

negotiation fails).

A synchronization function, by which an ASA can request the

current value of an objective from a counterpart ASA. With this,

there is a corresponding listening function for an ASA that

wishes to respond to synchronization requests. Unlike

negotiation, synchronization is an asymmetric process in which

the listener sends a single objective value to the requester.

A flood function, by which an ASA can cause the current value of

an objective to be flooded throughout the AN so that any ASA can

receive it.

For further details and some additional housekeeping functions, see 

[RFC8991].
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The GRASP API is intended to support the various interactions

expected between most ASAs, such as the interactions outlined in 

Section 2. However, if ASAs require additional communication between

themselves, they can do so directly over the ACP to benefit from its

security. One option is to use GRASP discovery and synchronization

as a rendez-vous mechanism between two ASAs, passing communication

parameters such as a TCP port number via GRASP. The use of TLS over

the ACP for such communications is advisable, as described in

Section 6.9.2 of [RFC8994].

3.4. Interaction with policy mechanisms

At the time of writing, the policy mechanisms for the ANI are

undefined. In particular, the use of declarative policies (aka

Intents) for the definition and management of ASA's behaviors

remains a research topic [I-D.irtf-nmrg-ibn-concepts-definitions].

In the cases where ASAs are defined as closed control loops, the

specifications defined in [ZSM009-1] regarding imperative and

declarative goal statements may be applicable.

In the ANI, policy dissemination is expected to operate by an

information distribution mechanism (e.g. via GRASP [RFC8990]) that

can reach all autonomic nodes, and therefore every ASA. However,

each ASA must be capable of operating "out of the box" in the

absence of locally defined policy, so every ASA implementation must

include carefully chosen default values and settings for all policy

parameters.

4. Interaction with Non-Autonomic Components and Systems

An ASA, to have any external effects, must also interact with non-

autonomic components of the node where it is installed. For example,

an ASA whose purpose is to manage a resource must interact with that

resource. An ASA managing an entity that is also managed by local

software must interact with that software. For example, if such

management is performed by NETCONF [RFC6241], the ASA must interact

with the NETCONF server as an independent NETCONF client in the same

node to avoid any inconsistency between configuration changes

delivered via NETCONF and configuration changes made by the ASA.

In an environment where systems are virtualized and specialized

using techniques such as network function virtualization or network

slicing, there will be a design choice whether ASAs are deployed

once per physical node or once per virtual context. A related issue

is whether the ANI as a whole is deployed once on a physical

network, or whether several virtual ANIs are deployed. This aspect

needs to be considered by the ASA designer.
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5. Design of GRASP Objectives

The design of an ASA will often require the design of a new GRASP

objective. The general rules for the format of GRASP objectives,

their names, and IANA registration are given in [RFC8990].

Additionally, that document discusses various general considerations

for the design of objectives, which are not repeated here. However,

note that the GRASP protocol, like HTTP, does not provide

transactional integrity. In particular, steps in a GRASP negotiation

are not idempotent. The design of a GRASP objective and the logic

flow of the ASA should take this into account. One approach, which

should be used when possible, is to design objectives with

idempotent semantics. If this is not possible, typically if an ASA

is allocating part of a shared resource to other ASAs, it needs to

ensure that the same part of the resource is not allocated twice.

The easiest way is to run only one negotiation at a time. If an ASA

is capable of overlapping several negotiations, it must avoid

interference between these negotiations.

Negotiations will always end, normally because one end or the other

declares success or failure. If this does not happen, either a

timeout or exhaustion of the loop count will occur. The definition

of a GRASP objective should describe a specific negotiation policy

if it is not self-evident.

GRASP allows a 'dry run' mode of negotiation, where a negotiation

session follows its normal course but is not committed at either end

until a subsequent live negotiation session. If 'dry run' mode is

defined for the objective, its specification, and every

implementation, must consider what state needs to be saved following

a dry run negotiation, such that a subsequent live negotiation can

be expected to succeed. It must be clear how long this state is

kept, and what happens if the live negotiation occurs after this

state is deleted. An ASA that requests a dry run negotiation must

take account of the possibility that a successful dry run is

followed by a failed live negotiation. Because of these

complexities, the dry run mechanism should only be supported by

objectives and ASAs where there is a significant benefit from it.

The actual value field of an objective is limited by the GRASP

protocol definition to any data structure that can be expressed in

Concise Binary Object Representation (CBOR) [RFC8949]. For some

objectives, a single data item will suffice; for example an integer,

a floating point number, a UTF-8 string or an arbitrary byte string.

For more complex cases, a simple tuple structure such as [item1,

item2, item3] could be used. Since CBOR is closely linked to JSON,

it is also rather easy to define an objective whose value is a JSON

structure. The formats acceptable by the GRASP API will limit the

options in practice. A generic solution is for the API to accept and
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deliver the value field in raw CBOR, with the ASA itself encoding

and decoding it via a CBOR library (section 2.3.2.4 of [RFC8991]).

The maximum size of the value field of an objective is limited by

the GRASP maximum message size. If the default maximum size

specified as GRASP_DEF_MAX_SIZE by [RFC8990] is not enough, the

specification of the objective must indicate the required maximum

message size, both for unicast and multicast messages.

A mapping from YANG to CBOR is defined by [I-D.ietf-core-yang-cbor].

Subject to the size limit defined for GRASP messages, nothing

prevents objectives transporting YANG in this way.

The flexibility of CBOR implies that the value field of many

objectives can be extended in service, to add additional information

or alternative content, especially if JSON-like structures are used.

This has consequences for the robustness of ASAs, as discussed in 

Section 8.

6. Life Cycle

The ASA life cycle was discussed in [I-D.peloso-anima-autonomic-

function], from which the following text was derived. It does not

cover all details, and some of the terms used would require precise

definitions in a given implementation.

In simple cases, Autonomic functions could be permanent, in the

sense that ASAs are shipped as part of a product and persist

throughout the product's life. However, in complex cases, a more

likely situation is that ASAs need to be installed or updated

dynamically, because of new requirements or bugs. This section

describes one approach to the resulting life cycle of individual

ASAs. It does not consider wider issues such as updates of shared

libraries.

Because continuity of service is fundamental to autonomic

networking, the process of seamlessly replacing a running instance

of an ASA with a new version needs to be part of the ASA's design.

The implication of service continuity on the design of ASAs can be

illustrated along the three main phases of the ASA life cycle,

namely Installation, Instantiation and Operation.

¶

¶

¶

¶

¶

¶

¶



Figure 1: Life Cycle of an Autonomic Service Agent

6.1. Installation phase

We define "installation" to mean that a piece of software is loaded

into a device, along with any necessary libraries, but is not yet

activated.

Before being able to instantiate and run ASAs, the operator will

first provision the infrastructure with the sets of ASA software

corresponding to its needs and objectives. Such software must be

checked for integrity and authenticity before installation. The

provisioning of the infrastructure is realized in the installation

phase and consists of installing (or checking the availability of)

the pieces of software of the different ASAs in a set of

Installation Hosts within the autonomic network.

There are 3 properties applicable to the installation of ASAs:

The dynamic installation property allows installing an ASA on

demand, on any hosts compatible with the ASA.

The decoupling property allows an ASA on one machine to control

resources in another machine (known as "decoupled mode").

The multiplicity property allows controlling multiple sets of

resources from a single ASA.

These three properties are very important in the context of the

installation phase as their variations condition how the ASA could

be installed on the infrastructure.

                  +--------------+

Undeployed ------>|              |------> Undeployed

                  |  Installed   |

              +-->|              |---+

     Mandate  |   +--------------+   | Receives a

   is revoked |   +--------------+   |  Mandate

              +---|              |<--+

                  | Instantiated |

              +-->|              |---+

          set |   +--------------+   | set

         down |   +--------------+   | up

              +---|              |<--+

                  |  Operational |

                  |              |

                  +--------------+
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6.1.1. Installation phase inputs and outputs

Inputs are:

[ASA_type] specifies which ASA to install.

[Installation_target_infrastructure] specifies the candidate

installation Hosts.

[ASA_placement_function] specifies how the installation phase

will meet the operator's needs and objectives for the provision

of the infrastructure. This function is only useful in the

decoupled mode. It can be as simple as an explicit list of

Installation Hosts, or it could consist of operator-defined

criteria and constraints.

The main output of the installation phase is a [List_of_ASAs]

installed on [List_of_hosts]. This output is also useful for the

coordination function where it acts as a static interaction map (see

Section 7.1).

The condition to validate in order to pass to next phase is to

ensure that [List_of_ASAs] are correctly installed on

[List_of_hosts]. A minimum set of primitives to support the

installation of ASAs could be: install(List_of_ASAs,

Installation_target_infrastructure, ASA_placement_function), and

uninstall (List_of_ASAs).

6.2. Instantiation phase

We define "instantiation" as the operation of creating a single ASA

instance from the corresponding piece of installed software.

Once the ASAs are installed on the appropriate hosts in the network,

these ASAs may start to operate. From the operator viewpoint, an

operating ASA means the ASA manages the network resources as per the

objectives given. At the ASA local level, operating means executing

their control loop algorithm.

There are two apsects to take into consideration. First, having a

piece of code installed and available to run on a host is not the

same as having an agent based on this piece of code running inside

the host. Second, in a coupled case, determining which resources are

controlled by an ASA is straightforward (the ASA runs on the same

autonomic node as the resources it is controlling); in a decoupled

mode determining this is a bit more complex: a starting agent will

have to either discover the set of resources it ought to control, or

such information has to be communicated to the ASA.
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The instantiation phase of an ASA covers both these aspects:

starting the agent code (when this does not start automatically) and

determining which resources have to be controlled (when this is not

straightforward).

6.2.1. Operator's goal

Through this phase, the operator wants to control its autonomic

network regarding at least two aspects:

determine the scope of autonomic functions by instructing

which network resources have to be managed by which autonomic

function (and more precisely by which release of the ASA

software code, e.g., version number or provider),

determine how the autonomic functions are organized by

instantiating a set of ASAs across one or more autonomic nodes

and instructing them accordingly about the other ASAs in the

set as necessary.

In this phase, the operator may also want to set goals for autonomic

functions, e.g., by configuring GRASP objectives.

The operator's goal can be summarized in an instruction to the

autonomic ecosystem matching the following format, explained in

detail in the next sub-section:

[Instances_of_ASA_type] ready to control

[Instantiation_target_infrastructure] with

[Instantiation_target_parameters]

6.2.2. Instantiation phase inputs and outputs

Inputs are:

[Instances_of_ASA_type] that specifies which ASAs to instantiate

[Instantiation_target_infrastructure] that specifies which are

the resources to be managed by the autonomic function; this can

be the whole network or a subset of it like a domain, a physical

segment or even a specific list of resources,

[Instantiation_target_parameters] that specifies which are the

GRASP objectives to be sent to ASAs (e.g., an optimization

target)
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Outputs are:

[Set_of_ASA_resources_relations] describing which resources are

managed by which ASA instances; this is not a formal message, but

a resulting configuration log for a set of ASAs.

6.2.3. Instantiation phase requirements

The instructions described in Section 6.2 could be either:

Sent to a targeted ASA. In the case, the receiving Agent will

have to manage the specified list of

[Instantiation_target_infrastructure], with the

[Instantiation_target_parameters].

Broadcast to all ASAs. In this case, the ASAs would determine

from the list which ASAs would handle which

[Instantiation_target_infrastructure], with the

[Instantiation_target_parameters].

These instructions may be grouped as a specific data structure,

referred to as an ASA Instance Mandate. The specification of such an

ASA Instance Mandate is beyond the scope of this document.

The conclusion of this instantiation phase is a set of ASA instances

ready to operate. These ASA instances are characterized by the

resources they manage, the metrics being monitored and the actions

that can be executed (like modifying certain parameters values). The

description of the ASA instance may be defined in an ASA Instance

Manifest data structure. The specification of such an ASA Instance

Manifest is beyond the scope of this document.

The ASA Instance Manifest does not only serve informational purposes

such as acknowledgement of successful instantiation to the operator,

but is also necessary for further autonomic operations with:

coordinated entities (see Section 7.1)

collaborative entities with purposes such as to establish

knowledge exchange (some ASAs may produce knowledge or monitor

metrics that would be useful for other ASAs)

6.3. Operation phase

During the Operation phase, the operator can:

Activate/Deactivate ASAs: enable/disable their autonomic loops.

Modify ASAs targets: set different technical objectives.
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Modify ASAs managed resources: update the instance mandate to

specify a different set of resources to manage (only applicable

to decoupled ASAs).

During the Operation phase, running ASAs can interact with other

ASAs:

in order to exchange knowledge (e.g. an ASA providing traffic

predictions to a load balancing ASA)

in order to collaboratively reach an objective (e.g. ASAs

pertaining to the same autonomic function will collaborate, e.g.,

in the case of a load balancing function, by modifying link

metrics according to neighboring resource loads)

During the Operation phase, running ASAs are expected to apply

coordination schemes as per Section 7.1.

6.4. Removal phase

When an ASA is removed from service and uninstalled, the above steps

are reversed. It is important that its data, especially any security

key material, is purged.

7. Coordination and Data Models

7.1. Coordination between Autonomic Functions

Some autonomic functions will be completely independent of each

other. However, others are at risk of interfering with each other -

for example, two different optimization functions might both attempt

to modify the same underlying parameter in different ways. In a

complete system, a method is needed of identifying ASAs that might

interfere with each other and coordinating their actions when

necessary.

7.2. Coordination with Traditional Management Functions

Some ASAs will have functions that overlap with existing

configuration tools and network management mechanisms such as

command line interfaces, DHCP, DHCPv6, SNMP, NETCONF, and RESTCONF.

This is of course an existing problem whenever multiple

configuration tools are in use by the NOC. Each ASA designer will

need to consider this issue and how to avoid clashes and

inconsistencies in various deployment scenarios. Some specific

considerations for interaction with OAM tools are given in 

[RFC8368]. As another example, [RFC8992] describes how autonomic

management of IPv6 prefixes can interact with prefix delegation via

DHCPv6. The description of a GRASP objective and of an ASA using it

should include a discussion of any such interactions.
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7.3. Data Models

Management functions often include a shared data model, quite likely

to be expressed in a formal notation such as YANG. This aspect

should not be an afterthought in the design of an ASA. To the

contrary, the design of the ASA and of its GRASP objectives should

match the data model; as noted in Section 5, YANG serialized as CBOR

may be used directly as the value of a GRASP objective.

8. Robustness

It is of great importance that all components of an autonomic system

are highly robust. Although ASA designers should aim for their

component to never fail, it is more important to design the ASA to

assume that failures will happen and to gracefully recover from

those failures when they occur. Hence, this section lists various

aspects of robustness that ASA designers should consider:

If despite all precautions, an ASA does encounter a fatal

error, it should in any case restart automatically and try

again. To mitigate a loop in case of persistent failure, a

suitable pause should be inserted before such a restart. The

length of the pause depends on the use case; randomization and

exponential backoff should be considered.

If a newly received or calculated value for a parameter falls

out of bounds, the corresponding parameter should be either

left unchanged or restored to a value known to be safe in all

configurations.

If a GRASP synchronization or negotiation session fails for any

reason, it may be repeated after a suitable pause. The length

of the pause depends on the use case; randomization and

exponential backoff should be considered.

If a session fails repeatedly, the ASA should consider that its

peer has failed, and cause GRASP to flush its discovery cache

and repeat peer discovery.

In any case, it may be prudent to repeat discovery

periodically, depending on the use case.

Any received GRASP message should be checked. If it is wrongly

formatted, it should be ignored. Within a unicast session, an

Invalid message (M_INVALID) may be sent. This function may be

provided by the GRASP implementation itself.

Any received GRASP objective should be checked. Basic

formatting errors like invalid CBOR will likely be detected by

GRASP itself, but the ASA is responsible for checking the
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precise syntax and semantics of a received objective. If it is

wrongly formatted, it should be ignored. Within a negotiation

session, a Negotiation End message (M_END) with a Decline

option (O_DECLINE) should be sent. An ASA may log such events

for diagnostic purposes.

On the other hand, the definitions of GRASP objectives are very

likely to be extended, using the flexibility of CBOR or JSON.

Therefore, ASAs should be able to deal gracefully with unknown

components within the values of objectives. The specification

of an objective should describe how unknown components are to

be handled (ignored, logged and ignored, or rejected as an

error).

If an ASA receives either an Invalid message (M_INVALID) or a

Negotiation End message (M_END) with a Decline option

(O_DECLINE), one possible reason is that the peer ASA does not

support a new feature of either GRASP or of the objective in

question. In such a case the ASA may choose to repeat the

operation concerned without using that new feature.

All other possible exceptions should be handled in an orderly

way. There should be no such thing as an unhandled exception

(but see point 1 above).

At a slightly more general level, ASAs are not services in

themselves, but they automate services. This has a fundamental

impact on how to design robust ASAs. In general, when an ASA

observes a particular state (1) of operations of the services/

resources it controls, it typically aims to improve this state to a

better state, say (2). Ideally, the ASA is built so that it can

ensure that any error encountered can still lead to returning to (1)

instead of a state (3) which is worse than (1). One example instance

of this principle is "make-before-break" used in reconfiguration of

routing protocols in manual operations. This principle of operations

can accordingly be coded into the operation of an ASA. The GRASP dry

run option mentioned in Section 5 is another tool helpful for this

ASA design goal of "test-before-make".

9. Security Considerations

ASAs are intended to run in an environment that is protected by the

Autonomic Control Plane [RFC8994], admission to which depends on an

initial secure bootstrap process such as BRSKI [RFC8995]. Those

documents describe security considerations relating to the use of

and properties provided by the ACP and BRSKI, respectively. Such an

ACP can provide keying material for mutual authentication between

ASAs as well as confidential communication channels for messages

between ASAs. In some deployments, a secure partition of the link
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layer might be used instead. GRASP itself has significant security

considerations [RFC8990]. However, this does not relieve ASAs of

responsibility for security. When ASAs configure or manage network

elements outside the ACP, potentially in a different physical node,

they must interact with other non-autonomic software components to

perform their management functions. The details are specific to each

case, but this has an important security implication. An ASA might

act as a loophole by which the managed entity could penetrate the

security boundary of the ANI. Thus, ASAs must be designed to avoid

loopholes such as passing on executable code or proxying unverified

commands, and should if possible operate in an unprivileged mode. In

particular, they must use secure coding practices, e.g., carefully

validate all incoming information and avoid unnecessary elevation of

privilege. This will apply in particular when an ASA interacts with

a management component such as a NETCONF server.

A similar situation will arise if an ASA acts as a gateway between

two separate autonomic networks, i.e. it has access to two separate

ACPs. Such an ASA must also be designed to avoid loopholes and to

validate incoming information from both sides.

As a reminder, GRASP does not intrinsically provide transactional

integrity (Section 5).

As appropriate to their specific functions, ASAs should take account

of relevant privacy considerations [RFC6973].

The initial version of the autonomic infrastructure assumes that all

autonomic nodes are trusted by virtue of their admission to the ACP.

ASAs are therefore trusted to manipulate any GRASP objective, simply

because they are installed on a node that has successfully joined

the ACP. In the general case, a node may have multiple roles and a

role may use multiple ASAs, each using multiple GRASP objectives.

Additional mechanisms for the fine-grained authorization of nodes

and ASAs to manipulate specific GRASP objectives could be designed.

Meanwhile, we repeat that ASAs should run without special privilege

if possible. Independently of this, interfaces between ASAs and the

router configuration and monitoring services of the node can be

subject to authentication that provides more fine-grained

authorization for specific services. These additional authentication

parameters could be passed to an ASA during its instantiation phase.

10. IANA Considerations

This document makes no request of the IANA.
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Appendix B. Terminology

This appendix summarises various acronyms and terminology used in

the document. Where no other reference is given, please consult 

[RFC8993] or [RFC7575].

Autonomic: Self-managing (self-configuring, self-protecting,

self- healing, self-optimizing), but allowing high-level guidance

by a central entity such as a NOC.

Autonomic Function: A function that adapts on its own to a

changing environment.
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Autonomic Node: A node that employs autonomic functions.

ACP: Autonomic Control Plane [RFC8994].

AN: Autonomic Network: A network of autonomic nodes, which

interact directly with each other.

ANI: Autonomic Network Infrastructure.

ASA: Autonomic Service Agent. An agent installed on an autonomic

node that implements an autonomic function, either partially (in

the case of a distributed function) or completely.

BRSKI: Bootstrapping Remote Secure Key Infrastructure [RFC8995].

CBOR: Concise Binary Object Representation [RFC8949].

GRASP: Generic Autonomic Signaling Protocol [RFC8990].

GRASP API: GRASP Application Programming Interface [RFC8991].

NOC: Network Operations Center [RFC8368].

Objective: A GRASP technical objective is a data structure whose

main contents are a name and a value. The value consists of a

single configurable parameter or a set of parameters of some

kind. [RFC8990].

Appendix C. Example Logic Flows

This appendix describes generic logic flows that combine to act as

an Autonomic Service Agent (ASA) for resource management. Note that

these are illustrative examples, and in no sense requirements. As

long as the rules of GRASP are followed, a real implementation could

be different. The reader is assumed to be familiar with GRASP 

[RFC8990] and its conceptual API [RFC8991].

A complete autonomic function for a distributed resource will

consist of a number of instances of the ASA placed at relevant

points in a network. Specific details will of course depend on the

resource concerned. One example is IP address prefix management, as

specified in [RFC8992]. In this case, an instance of the ASA will

exist in each delegating router.

An underlying assumption is that there is an initial source of the

resource in question, referred to here as an origin ASA. The other

ASAs, known as delegators, obtain supplies of the resource from the

origin, and then delegate quantities of the resource to consumers

that request it, and recover it when no longer needed.

Another assumption is there is a set of network wide policy

parameters, which the origin will provide to the delegators. These

parameters will control how the delegators decide how much resource

to provide to consumers. Thus, the ASA logic has two operating

modes: origin and delegator. When running as an origin, it starts by

obtaining a quantity of the resource from the NOC, and it acts as a

source of policy parameters, via both GRASP flooding and GRASP

synchronization. (In some scenarios, flooding or synchronization

alone might be sufficient, but this example includes both.)
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When running as a delegator, it starts with an empty resource pool,

it acquires the policy parameters by GRASP synchronization, and it

delegates quantities of the resource to consumers that request it.

Both as an origin and as a delegator, when its pool is low it seeks

quantities of the resource by requesting GRASP negotiation with peer

ASAs. When its pool is sufficient, it hands out resource to peer

ASAs in response to negotiation requests. Thus, over time, the

initial resource pool held by the origin will be shared among all

the delegators according to demand.

In theory a network could include any number of origins and any

number of delegators, with the only condition being that each

origin's initial resource pool is unique. A realistic scenario is to

have exactly one origin and as many delegators as you like. A

scenario with no origin is useless.

An implementation requirement is that resource pools are kept in

stable storage. Otherwise, if a delegator exits for any reason, all

the resources it has obtained or delegated are lost. If an origin

exits, its entire spare pool is lost. The logic for using stable

storage and for crash recovery is not included in the pseudocode

below, which focuses on communication between ASAs. Since GRASP

operations are not intrinsically idempotent, data integrity during

failure scenarios is the responsibility of the ASA designer. This is

a complex topic in its own right that is not discussed in the

present document.

The description below does not implement GRASP's 'dry run' function.

That would require temporarily marking any resource handed out in a

dry run negotiation as reserved, until either the peer obtains it in

a live run, or a suitable timeout occurs.

The main data structures used in each instance of the ASA are:

The resource_pool, for example an ordered list of available

resources. Depending on the nature of the resource, units of

resource are split when appropriate, and a background garbage

collector recombines split resources if they are returned to the

pool.

The delegated_list, where a delegator stores the resources it has

given to subsidiary devices.

Possible main logic flows are below, using a threaded implementation

model. As noted above, alternative approaches to asynchronous

operations are possible. The transformation to an event loop model

should be apparent - each thread would correspond to one event in

the event loop.
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¶

¶



The GRASP objectives are as follows:

["EX1.Resource", flags, loop_count, value] where the value

depends on the resource concerned, but will typically include its

size and identification.

["EX1.Params", flags, loop_count, value] where the value will be,

for example, a JSON object defining the applicable parameters.

In the outline logic flows below, these objectives are represented

simply by their names.

¶

*

¶

*

¶

¶



MAIN PROGRAM:

Create empty resource_pool (and an associated lock)

Create empty delegated_list

Determine whether to act as origin

if origin:

    Obtain initial resource_pool contents from NOC

    Obtain value of EX1.Params from NOC

Register ASA with GRASP

Register GRASP objectives EX1.Resource and EX1.Params

if origin:

    Start FLOODER thread to flood EX1.Params

    Start SYNCHRONIZER listener for EX1.Params

Start MAIN_NEGOTIATOR thread for EX1.Resource

if not origin:

    Obtain value of EX1.Params from GRASP flood or synchronization

    Start DELEGATOR thread

Start GARBAGE_COLLECTOR thread

good_peer = none

do forever:

    if resource_pool is low:

        Calculate amount A of resource needed

        Discover peers using GRASP M_DISCOVER / M_RESPONSE

        if good_peer in peers:

            peer = good_peer

        else:

            peer =  #any choice among peers

        grasp.request_negotiate("EX1.Resource", peer)

        #i.e., send negotiation request

        Wait for response (M_NEGOTIATE, M_END or M_WAIT)

        if OK:

            if offered amount of resource sufficient:

                Send M_END + O_ACCEPT #negotiation succeeded

                Add resource to pool

                good_peer = peer      #remember this choice

            else:

                Send M_END + O_DECLINE #negotiation failed

                good_peer = none       #forget this choice

    sleep() #periodic timer suitable for application scenario

¶

MAIN_NEGOTIATOR thread:

do forever:

    grasp.listen_negotiate("EX1.Resource")

    #i.e., wait for negotiation request

    Start a separate new NEGOTIATOR thread for requested amount A

¶



NEGOTIATOR thread:

Request resource amount A from resource_pool

if not OK:

    while not OK and A > Amin:

        A = A-1

        Request resource amount A from resource_pool

if OK:

    Offer resource amount A to peer by GRASP M_NEGOTIATE

    if received M_END + O_ACCEPT:

        #negotiation succeeded

    elif received M_END + O_DECLINE or other error:

        #negotiation failed

        Return resource to resource_pool

else:

    Send M_END + O_DECLINE #negotiation failed

#thread exits

¶

DELEGATOR thread:

do forever:

    Wait for request or release for resource amount A

    if request:

        Get resource amount A from resource_pool

        if OK:

            Delegate resource to consumer #atomic

            Record in delegated_list      #operation

        else:

            Signal failure to consumer

            Signal main thread that resource_pool is low

    else:

        Delete resource from delegated_list

        Return resource amount A to resource_pool

¶

SYNCHRONIZER thread:

do forever:

    Wait for  M_REQ_SYN message for EX1.Params

    Reply with M_SYNCH message for EX1.Params

¶

FLOODER thread:

do forever:

    Send M_FLOOD message for EX1.Params

    sleep() #periodic timer suitable for application scenario

¶
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GARBAGE_COLLECTOR thread:

do forever:

    Search resource_pool for adjacent resources

    Merge adjacent resources

    sleep() #periodic timer suitable for application scenario

¶
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