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Abstract

   Autonomic functions need a control plane to communicate, which
   depends on some addressing and routing.  This Autonomic Control Plane
   should ideally be self-managing, and as independent as possible of
   configuration.  This document defines an "Autonomic Control Plane",
   with the primary use as a control plane for autonomic functions.  It
   also serves as a "virtual out of band channel" for OAM communications
   over a network that is not configured, or mis-configured.
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   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   Autonomic Networking is a concept of self-management: Autonomic
   functions self-configure, and negotiate parameters and settings
   across the network.  [RFC7575] defines the fundamental ideas and
   design goals of Autonomic Networking.  A gap analysis of Autonomic
   Networking is given in [RFC7576].  The reference architecture for
   Autonomic Networking in the IETF is currently being defined in the
   document [I-D.ietf-anima-reference-model]

   Autonomic functions need a stable and robust infrastructure to
   communicate on.  This infrastructure should be as robust as possible,
   and it should be re-usable by all autonomic functions.  [RFC7575]
   calls it the "Autonomic Control Plane".  This document defines the
   Autonomic Control Plane.

   Today, the management and control plane of networks typically runs in
   the global routing table, which is dependent on correct configuration
   and routing.  Misconfigurations or routing problems can therefore
   disrupt management and control channels.  Traditionally, an out of
   band network has been used to recover from such problems, or
   personnel is sent on site to access devices through console ports
   (craft ports).  However, both options are operationally expensive.

   In increasingly automated networks either controllers or distributed
   autonomic service agents in the network require a control plane which
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   is independent of the network they manage, to avoid impacting their
   own operations.

   This document describes options for a self-forming, self-managing and
   self-protecting "Autonomic Control Plane" (ACP) which is inband on
   the network, yet as independent as possible of configuration,
   addressing and routing problems (for details how this achieved, see

Section 5).  It therefore remains operational even in the presence of
   configuration errors, addressing or routing issues, or where policy
   could inadvertently affect control plane connectivity.  The Autonomic
   Control Plane serves several purposes at the same time:

   o  Autonomic functions communicate over the ACP.  The ACP therefore
      supports directly Autonomic Networking functions, as described in
      [I-D.ietf-anima-reference-model].  For example, GRASP
      [I-D.ietf-anima-grasp] can run securely inside the ACP.

   o  An operator can use it to log into remote devices, even if the
      data plane is misconfigured or unconfigured.

   o  A controller or network management system can use it to securely
      bootstrap network devices in remote locations, even if the network
      in between is not yet configured; no data-plane dependent
      bootstrap configuration is required.  An example of such a secure
      bootstrap process is described in
      [I-D.ietf-anima-bootstrapping-keyinfra]

   This document describes some use cases for the ACP in Section 2, it
   defines the requirements in Section 3, Section 4 gives an overview
   how an Autonomic Control Plane is constructed, and in Section 5 the
   detailed process is explained.  Section 6 explains how non-autonomic
   nodes and networks can be integrated, and Section 5.5 the first
   channel types for the ACP.

   The document "Autonomic Network Stable Connectivity"
   [I-D.ietf-anima-stable-connectivity] describes how the ACP can be
   used to provide stable connectivity for OAM applications.  It also
   explains on how existing management solutions can leverage the ACP in
   parallel with traditional management models, when to use the ACP
   versus the data plane, how to integrate IPv4 based management, etc.

2.  Use Cases for an Autonomic Control Plane

2.1.  An Infrastructure for Autonomic Functions

   Autonomic Functions need a stable infrastructure to run on, and all
   autonomic functions should use the same infrastructure to minimise
   the complexity of the network.  This way, there is only need for a
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   single discovery mechanism, a single security mechanism, and other
   processes that distributed functions require.

2.2.  Secure Bootstrap over an Unconfigured Network

   Today, bootstrapping a new device typically requires all devices
   between a controlling node (such as an SDN controller) and the new
   device to be completely and correctly addressed, configured and
   secured.  Therefore, bootstrapping a network happens in layers around
   the controller.  Without console access (for example through an out
   of band network) it is not possible today to make devices securely
   reachable before having configured the entire network between.

   With the ACP, secure bootstrap of new devices can happen without
   requiring any configuration on the network.  A new device can
   automatically be bootstrapped in a secure fashion and be deployed
   with a domain certificate.  This does not require any configuration
   on intermediate nodes, because they can communicate through the ACP.

2.3.  Data Plane Independent Permanent Reachability

   Today, most critical control plane protocols and network management
   protocols are running in the data plane (global routing table) of the
   network.  This leads to undesirable dependencies between control and
   management plane on one side and the data plane on the other: Only if
   the data plane is operational, will the other planes work as
   expected.

   Data plane connectivity can be affected by errors and faults, for
   example certain AAA misconfigurations can lock an administrator out
   of a device; routing or addressing issues can make a device
   unreachable; shutting down interfaces over which a current management
   session is running can lock an admin irreversibly out of the device.
   Traditionally only console access can help recover from such issues.

   Data plane dependencies also affect NOC/SDN controller applications:
   Certain network changes are today hard to operate, because the change
   itself may affect reachability of the devices.  Examples are address
   or mask changes, routing changes, or security policies.  Today such
   changes require precise hop-by-hop planning.

   The ACP provides reachability that is largely independent of the data
   plane, which allows control plane and management plane to operate
   more robustly:

   o  For management plane protocols, the ACP provides the functionality
      of a "Virtual-out-of-band (VooB) channel", by providing
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      connectivity to all devices regardless of their configuration or
      global routing table.

   o  For control plane protocols, the ACP allows their operation even
      when the data plane is temporarily faulty, or during transitional
      events, such as routing changes, which may affect the control
      plane at least temporarily.  This is specifically important for
      autonomic service agents, which could affect data plane
      connectivity.

   The document "Autonomic Network Stable Connectivity"
   [I-D.ietf-anima-stable-connectivity] explains the use cases for the
   ACP in significantly more detail and explains how the ACP can be used
   in practical network operations.

3.  Requirements

   The Autonomic Control Plane has the following requirements:

   ACP1:  The ACP SHOULD provide robust connectivity: As far as
          possible, it should be independent of configured addressing,
          configuration and routing.  Requirements 2 and 3 build on this
          requirement, but also have value on their own.

   ACP2:  The ACP MUST have a separate address space from the data
          plane.  Reason: traceability, debug-ability, separation from
          data plane, security (can block easily at edge).

   ACP3:  The ACP MUST use autonomically managed address space.  Reason:
          easy bootstrap and setup ("autonomic"); robustness (admin
          can't mess things up so easily).  This document suggests to
          use ULA addressing for this purpose.

   ACP4:  The ACP MUST be generic.  Usable by all the functions and
          protocols of the AN infrastructure.  It MUST NOT be tied to a
          particular protocol.

   ACP5:  The ACP MUST provide security: Messages coming through the ACP
          MUST be authenticated to be from a trusted node, and SHOULD
          (very strong SHOULD) be encrypted.

   The default mode of operation of the ACP is hop-by-hop, because this
   interaction can be built on IPv6 link local addressing, which is
   autonomic, and has no dependency on configuration (requirement 1).
   It may be necessary to have ACP connectivity over non-autonomic
   nodes, for example to link autonomic nodes over the general Internet.
   This is possible, but then has a dependency on routing over the non-
   autonomic hops.
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4.  Overview

   The Autonomic Control Plane is constructed in the following way (for
   details, see Section 5):

   1.  An autonomic node creates a virtual routing and forwarding (VRF)
       instance, or a similar virtual context.

   2.  It determines, following a policy, a candidate peer list.  This
       is the list of nodes to which it should establish an Autonomic
       Control Plane.  Default policy is: To all adjacent nodes in the
       same domain.

   3.  For each node in the candidate peer list, it authenticates that
       node and negotiates a mutually acceptable channel type.

   4.  It then establishes a secure tunnel of the negotiated channel
       type.  These tunnels are placed into the previously set up VRF.
       This creates an overlay network with hop-by-hop tunnels.

   5.  Inside the ACP VRF, each node sets up a virtual interface with
       its ULA IPv6 address.

   6.  Each node runs a lightweight routing protocol, to announce
       reachability of the virtual addresses inside the ACP.

   Note:

   o  Non-autonomic NMS systems or controllers have to be manually
      connected into the ACP.

   o  Connecting over non-autonomic Layer-3 clouds initially requires a
      tunnel between autonomic nodes.

   o  None of the above operations (except manual ones) is reflected in
      the configuration of the device.

   The following figure illustrates the ACP.
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           autonomic node 1                  autonomic node 2
          ...................               ...................
   secure .                 .   secure      .                 .  secure
   tunnel :  +-----------+  :   tunnel      :  +-----------+  :  tunnel
   ..--------| ACP VRF   |---------------------| ACP VRF   |---------..
          : / \         / \   <--routing-->   / \         / \ :
          : \ /         \ /                   \ /         \ / :
   ..--------|  virtual  |---------------------|  virtual  |---------..
          :  | interface |  :               :  | interface |  :
          :  +-----------+  :               :  +-----------+  :
          :                 :               :                 :
          :   data plane    :...............:   data plane    :
          :                 :    link       :                 :
          :.................:               :.................:

                                 Figure 1

   The resulting overlay network is normally based exclusively on hop-
   by-hop tunnels.  This is because addressing used on links is IPv6
   link local addressing, which does not require any prior set-up.  This
   way the ACP can be built even if there is no configuration on the
   devices, or if the data plane has issues such as addressing or
   routing problems.

5.  Self-Creation of an Autonomic Control Plane

   This section describes the steps to set up an Autonomic Control
   Plane, and highlights the key properties which make it
   "indestructible" against many inadvert changes to the data plane, for
   example caused by misconfigurations.

5.1.  Preconditions

   An autonomic node can be a router, switch, controller, NMS host, or
   any other IP device.  We assume an autonomic node has a globally
   unique domain certificate (LDevID), as well as an adjacency table.

5.1.1.  Domain Certificate with ANIMA information

   To establish an ACP securely, an Autnomic Node MUST have a globally
   unique domain certificate (LDevID), with which it can
   cryptographically assert its membership of the domain.  The document
   [I-D.ietf-anima-bootstrapping-keyinfra] describes how a domain
   certificate can be automatically and securely derived from a vendor
   specific Unique Device Identifier (UDI) or IDevID certificate.

   The domain certificate (LDevID) of an autonomic node MUST contain
   ANIMA specific information, specifically the domain name, and its ACP
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   address with the zone-ID set to zero.  This information MUST be
   encoded in the LDevID in the subjectAltName / rfc822Name field in the
   following way:

   anima.acp+<ACP address>@<domain>

   Example:

   anima.acp+FD99:B02D:8EC3:0:200:0:6400:1@example.com

   The ACP address MUST be specified in its canonical form, as specified
   in [RFC5952], to allow for easy textual comparisons.

   The particular subjectAlName / rfc822Name encoding is choosen for
   several reasons:

   o  We want to permit the reuse of the ANIMA LDevID in other uses
      beside the ACP as appropriate, eg: there are a wide number of pre-
      existing data-plane security mechanisms where re-using the ACP
      certificate could help to further automate security.

   o  We therefore want to make sure that ACP elements in the LDevID
      will not cause incompatibilities with any pre-existing ASN.1 code
      potentially in use in those other pre-existing SW systems.

   o  subjectAltname / rfc822Name is a pre-existing element that must be
      supported by all existing ASN.1 parsers for LDevID.

   o  We also want to make sure that the ACP information will not be
      misinterpreted by any such pre-existing code interpreting the
      LDevID, or if it is misinterpreted, that the impact is benign.

   o  Using an IP address format encoding could result in non-benign
      misinterpretation of the ACP information.

   o  At minimum, we need to encode both the AN domain name and the non-
      domain name derived part of the ACP, so there are not many
      alternatives with pre-existing fields where those two elements
      could be encoded.

   o  rfc822Name encoding allows to be quite flexible.  We choose to
      encode the full ACP address AND the domain name, so that it is
      easier to examine/use.

   o  The format of the rfc822Name is choosen so that an operator can
      set up a mailbox called   anima.acp@<domain> that would receive
      emails sent towards the rfc822Name of any AN device inside a

https://datatracker.ietf.org/doc/html/rfc5952
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      domain.  This is possible because components behind a plus symbol
      are considered part of a single mailbox.

   o  In result, if any unexpected use of the ACP addressing information
      in a certificate happens, it is benign and detectable: it would be
      mail to that mailbox.

   The bootstrap process defined in
   [I-D.ietf-anima-bootstrapping-keyinfra] MUST in an ANIMA network pass
   on ACP address and domain to a new node, such that the new node can
   add this to its enrolment request.

   The Certificate Authority in an ANIMA network MUST honor these
   parameters, and create the respective subjectAltName / rfc822Name in
   the certificate.

   ANIMA nodes can therefore find ACP address and domain using this
   field in the domain certificate, both for themselves, as well as for
   other nodes.

   See section 4.2.1.6 of [RFC5280] for details on the subjectAltName
   field.

5.1.2.  AN Adjacency Table

   To know to which nodes to establish an ACP channel, every autonomic
   node maintains an adjacency table.  The adjacency table contains
   information about adjacent autonomic nodes, at a minimum: node-ID, IP
   address, domain, certificate.  An autonomic device MUST maintain this
   adjacency table up to date.  This table is used to determine to which
   neighbor an ACP connection is established.

   Where the next autonomic device is not directly adjacent, the
   information in the adjacency table can be supplemented by
   configuration.  For example, the node-ID and IP address could be
   configured.

   The adjacency table MAY contain information about the validity and
   trust of the adjacent autonomic node's certificate.  However,
   subsequent steps MUST always start with authenticating the peer.

   The adjacency table contains information about adjacent autonomic
   nodes in general, independently of their domain and trust status.
   The next step determines to which of those autonomic nodes an ACP
   connection should be established.

https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.6
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5.2.  Neighbor discovery

5.2.1.  L2 topology considerations

       ANrtr1 ------ ANswitch1 --- ANswitch2 ------- ANrtr2
                 .../   \                   \  ...
       ANrtrM ------     \                   ------- ANrtrN
                          ANswitchM ...

                                 Figure 2

   Consider a large L2 LAN with ANrtr1...ANrtrN connected via some
   topology of L2 switches (eg: in a large enterprise campus or IoT
   environment using large L2 LANs).  If the discovery protocol used for
   the ACP is operating at the subnet level, every AN router will see
   all other AN routers on the LAN as neighbors and a full mesh of ACP
   channels will be built.  If some or all of the AN switches are
   autonomic with the same discovery protocol, then the full mesh would
   include those switches as well.

   A full mesh of ACP connections like this can creates fundamental
   challenges.  The number of security associations of the secure
   channel protocols will not scale arbitrarily, especially when they
   leverage platform accelerated encryption/decryption.  Likewise, any
   other ACP operations needs to scale to the number of direct ACP
   neigbors.  An AN router with just 4 interfaces might be deployed into
   a LAN with hundreds of neighbors connected via switches.  Introducing
   such a new unpredictable scaling factor requirement makes it harder
   to support the ACP on arbitrary platforms and in arbitrary
   deployments.

   Predictable scaling requirements for ACP neighbors can most easily be
   achieved if in topologies like these, AN capable L2 switches can
   ensure that discovery messages terminate on them so that neighboring
   AN routers and switches will only find the physcially connected AN L2
   switches as their candidate ACP neighbors.  With such a discovery
   mechanism in place, the ACP and its security associations will only
   need to scale to the number of physcial interfaces instead of a
   potentially much larger number of "LAN-connected" neighbors.  And the
   ACP topology will follow directly the physical topology, something
   which can then also be leveraged in management operations or by ASAs.

   In the example above, consider ANswitch1 and ANswitchM are AN
   capable, and ANswitch2 is not AN capable.  The desired ACP topology
   is therefore that ANrtr1 and ANrtrM only have an ACP connetion to
   ANswitch1, and that ANswitch1, ANrtr2, ANrtrN have a full mesh of ACP
   connection amongst each other.  ANswitch1 also has an ACP connection
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   with ANswitchM and ANswitchM has ACP connections to anything else
   behind it.

5.2.2.  CDP/LLDP/mDNS considerations

   LLDP (and Cisco's CDP) are example of L2 discovery protocols that
   terminate their messages on L2 ports.  If those protocols would be
   chosen for ACP neighbor discovery, ACP neighbor discovery would
   therefore also terminate on L2 ports.  This would prevent ACP
   construction over non-ANIMA switches.

   mDNS operates at the subnet level, and is also used on L2 switches.
   The authors of this document are not aware of mDNS implementation
   that terminate their messages on L2 ports instead of the subnet
   level.  If mDNS was used as the ACP discovery mechanism on an ACP
   capable L2 switch, then this would be necessary to implement.  It is
   likely that termination of mDNS messages could only be applied to all
   mDNS messages from a port, which would then make it necessary to
   software forward any non-ACP related mDNS messages to maintain prior
   non-ACP mDNS functionality.  With low performance of software
   forwarding in many L2 switches, this could easily make the ACP
   unsupportable on such L2 switches.

5.2.3.  Discovery with GRASP

   In conclusion for the above described considerations, the ACP uses
   "insecure" instances of GRASP for discovery of ACP neighbors because
   it can easily be set up to match the requiremetns without affecting
   other uses of the protocol.

   The name of the GRASP objective to announce/discover the capability
   of a neighbor to run the ACP is "ACP".  Section 3.5.2.2 of
   [I-D.ietf-anima-grasp] describes the instance of GRASP to be used for
   this purpose: "DULL" (Discovery Unsolicited Link Local).  The precise
   GRASP objective to be used is specified in Section 3 of
   [I-D.carpenter-anima-ani-objectives].

   As explained above, in an ACP enabled L2 switch, each of these
   instances would actually need to be per-L2-port.  The result of the
   discovery is the IPv6 link-local address of the neighbor.  It is
   stored in the AN Adjacency Table, see Section 5.1.2 which then drives
   the further building of the ACP to that neighbor.

   For example, ANswitch1 would run separate DULL GRASP instances on its
   ports to ANrtr1, ANswitch2 and ANswitchI, even though all those three
   ports may be in the data plane in the same (V)LAN.  This is easily
   achieved by extracting native GRASP multicast messages by their MAC
   multicast destination address.  None of the other type of GRASP
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   instances (eg: as used inside the ACP) use GRASP messages that would
   be affected by such extraction, because all other GRASP messages have
   encrypted encapsulations.

5.2.4.  Discovery and BRSKY

   Before a node has a domain certificate, it can not participate in the
   ACP and therefore does also not try to discover an ACP neighbor.
   Instead, it uses the discovery mechanism described in
   [I-D.ietf-anima-grasp] to discover a bootstrap proxy.  Currently,
   that document describes mDNS as the protocol of choice for that
   discovery.  In the context of above topology example, ANrtr1 might
   therefore discover and choose any ANrtr or ANswitch on the LAN that
   is already part of the autonomic domain - instead of the closest one
   which is ANswitch1.  This choice of bootstrap proxy does not impact
   in the later building of the ACP on ANrtr1 and is therefore not a
   concern for the ACP.

   Once a device has its domain certificate, it will start announcing
   itself via GRASP as ACP capable.

   When an autonomic device is a registrar, it will announce the
   registrar function via GRASP in the ACP as the "6JOIN" objective.  An
   AN device that is a registrar or learns about one or more reachable
   registrars via this GRASP/ACP announcements will announce itself as a
   boostrap proxy via mDNS.  See [I-D.richardson-anima-6join-discovery]
   for more details.

5.3.  Candidate ACP Neighbor Selection

   An autonomic node must determine to which other autonomic nodes in
   the adjacency table it should build an ACP connection.  This is based
   on the information in the AN Adjacency table.

   The ACP is by default established exclusively between nodes in the
   same domain.

   Intent can change this default behaviour.  Since Intent is
   transported over the ACP, the first ACP connection a node establishes
   is always following the default behaviour.  The precise format for
   this Intent needs to be defined outside this document.  Example
   Intent policies which need to be supported include:

   o  The ACP should be built between all sub-domains for a given parent
      domain.  For example: For domain "example.com", nodes of
      "example.com", "access.example.com", "core.example.com" and
      "city.core.example.com" should all establish one single ACP.
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   o  Two domains should build one single ACP between themselves, for
      example "example1.com" should establish the ACP also with nodes
      from "example2.com".  For this case, the two domains must be able
      to validate their trust, typically by cross-signing their
      certificate infrastructure.

   The result of the candidate ACP neighbor selection process is a list
   of adjacent or configured autonomic neighbors to which an ACP channel
   should be established.  The next step begins that channel
   establishment.

5.4.  Channel Selection

   To avoid attacks, initial discovery of candidate ACP peers can not
   include any non-protected negotiation.  To avoid re-inventing and
   validating security association mechanisms, the next step after
   discoving the address of a candidate neighbor can only be to try
   first to establish a security association with that neighbor using a
   well-known security association method.

   At this time in the lifecycle of autonomic devices, it is unclear
   whether it is feasible to even decide on a single MTI (mandatory to
   implement) security association protocol across all autonomic
   devices.

   From the use-cases it is clear that not all type of autonomic devices
   can or need to connect directly to each other or are able to support
   or prefer all possible mechanisms.  For example, code space limited
   IoT devices may only support dTLS (because that code exists already
   on them for end-to-end security use-cases), but low-end in-ceiling L2
   switches may only want to support MacSec because that is also
   supported in HW, and only a more flexible garteway device may need to
   support both of these mechanisms and potentially more.

   To support these requirements, and make ACP channel negotiation also
   easily extensible, the secure channel selection between Alice and Bob
   is a potentially two stage process.  In the first stage, Alice and
   Bob directly try to establish a secure channel using the security-
   association and channel protocols they support.  One or more of these
   protocols may simply be protocols not directly resulting in an ACP
   channel, but instead establishing a secure negotiation channel
   through which the final secure channel protocol is decided.  If both
   Alice and Bob support such a negotiation step, then this secured
   negotiation channel is the first step, and the secure channel
   protocol is the second step.

   If Alice supports multiple security association protocols in the
   first step, it is a matter of Alices local policy to determine the
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   order in which she will try to build the connection to Bob. To
   support multiple security association protocols, Alice must be able
   to simultaneously act as a responder in parallel for all of them - so
   that she can respond to any order in which Bob wants to prefer
   building the security association.

   When ACP setup between Alice and Bob results in the first secure
   association to be established, the peer with the higher Device-ID in
   the certificate will stop building new security associations.  The
   peer with the lower certificate Device-ID is now responsible to
   continue building its most preferred security association and to tear
   down all but that most preferred one - unless the secure association
   is one of a negotation protocols whose rules superceed this.

   All this negotiation is in the context of an "L2 interface".  Alice
   and Bob will build ACP connections to each other on every "L2
   interface" that they both connect to.

5.5.  Security Association protocols

   The following sections define the security association protocols that
   we consider to be important and feasible to specify in this document.
   In all cases, the mutual authentication is done via the autonomic
   domain certificate of the peer as follows - unless superceeded by
   Intent:

   o  The certificate is valid as proven by the security associations
      protocol exchanges.

   o  If the certificate is included in a Certificate Revocation List
      (CRL), the connection attempt is aborted and an error logged.
      [EDNOTE: Do we want OCSP instead of CRL?]  [EDNOTE: Distribution
      of the CRL, and handling of CRL timeouts during network partition
      needs to be discussed in more detail.]

   o  The peers certificate is signed by the same CA as the devices
      domain certificate.

   o  The peers OU (Organizational Unit) field in the certificates
      Subject is the same as in the devices certificate.

5.5.1.  ACP via IPsec

   To run ACP via IPsec transport mode, no further IANA assignments/
   definitions are required.  All autonomic devices suppoting IPsec MUST
   support IPsec security setup via IKEv2, transport mode encapsulation
   via the device and peer link-local IPv6 addresses and AES256
   encryption.
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   In terms of IKEv2, this means the initiator will offer to support
   IPsec transport mode with next protocol equal 41 (IPv6).

5.5.2.  ACP via GRE/IPsec

   In network devices it is often easier to provide virtual interfaces
   on top of GRE encapsulation than natively on top of a simple IPsec
   association.  On those devices it may be necessary to run the ACP
   secure channel on top of a GRE connection protected by the IPsec
   association.  The requirements for the IPsec association are the same
   as described above, but instead of directly carrying the ACP IPv6
   packets, the payload is an ACP IPv6 packet inside GRE/IPv6.

   In terms of IKEv2 negotiation, this means the initiator must offer to
   support IPsec transport mode with next protocol equal to GRE (47),
   followed by 41 (IPv6) (because native IPsec is required to be
   supported, see below).

   If IKEv2 initiator and responder support GRE, it will be selected.
   The version of GRE to be used must the according to [RFC7676].

5.5.3.  ACP via dTLS

   We define the use of ACP via dTLS in the assumption that it is likely
   the first transport encryption code basis supported in some classes
   of constrained devices.

   To run ACP via UDP and dTLS v1.2 [RFC6347] an IANA assigned port
   [TBD] is used.  All autonomic devices supporting ACP via dTLS must
   use AES256 encryption.

   There is no additional session setup or other security association
   other than dTLS.  As soon as the dTLS session is functional, the ACP
   peers will exchange ACP IPv6 packets as the payload of the dTLS
   transport connecetion.  Any dTLS defined security association
   mechanisms such as re-keying are used as they would be for any
   transport application relying solely on dTLS.

5.5.4.  GRASP/TLS negotiation

   To explicitly allow negotiation of the ACP channel protocol, GRASP
   over a TLS connection using the GRASP_LISTEN_PORT and the devices and
   peers link-local IPv6 address is used.  When Alice and Bob support
   GRASP negotiation, they do prefer it over any other non-explicitly
   negotiated security association protocol and should wait trying any
   non-negotiated ACP channel protocol until after it is clear that
   GRASP/TLS will not work to the peer.

https://datatracker.ietf.org/doc/html/rfc7676
https://datatracker.ietf.org/doc/html/rfc6347
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   When Alice and Bob successfully establish the GRASP/TSL session, they
   will initially negotiate the channel mechanism to use.  Bob and Alice
   each have a list of channel mehanisms they support, sorted by
   preference.  They negotiate the best mechansm supported by both of
   them.  In the absence of Intent, the mechanism choosen is the best
   one for the device with the lower Device-ID.

   After agreeing on a channel mechanism, Alice and Bob start the
   selected Channel protocol.  The GRASP/TLS connection can be kept
   alive or timed out as long as the seelected channel protocol has a
   secure association between Alice and Bob. When it terminates, it
   needs to be re-negotiated via GRASP/TLS.

   Negotiation of a channel type may require IANA assignments of code
   points.  See IANA Considerations (Section 11) for the formal
   definition of those code points.

   The exact negotiation steps in GRASP to achieve this outcome.

5.5.5.  ACP Security Profiles

   A baseline autonomic device MUST support IPsec and SHOULD support
   GRASP/TLS and dTLS.  A constrained autonomic device MUST support
   dTLS.

   The MTU for ACP secure channels must be derived locally from the
   underlying link MTU minus the security encapsulation overhead.  Given
   how ACP channels are built across layer2 connections only, the
   probability for MTU mismatch is low.  For additional reliability,
   applications to be runa cross the ACP should only assume to have
   minimum MTU available (1280).

   Autonomic devices need to specify in documentation the set of secure
   ACP mechanisms they suppport.

5.6.  GRASP instance details

   Received GRASP packets are assigned to an instance of GRASP by the
   context they are received on:

   o  GRASP packets received on an ACP (virtual) interfaces are assigned
      to the ACP instance of GRASP

   o  GRASP/UDP packets received on L2 interfaces/ports where the device
      is willing to run ACP are assigned to a DULL instance of GRASP for
      that interface/port.
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   o  GRASP packets received inside a TLS connection established for
      GRASP/TLS ACP negotiation are assigned to a separate instance of
      GRASP for that negotiation.

5.7.  Context Separation

   The ACP is in a separate context from the normal data plane of the
   device.  This context includes the ACP channels IPv6 forwarding and
   routing as well as any required higher layer ACP functions.

   In classical network device platforms, a dedicated so called "Virtual
   routing and forwarding instance" (VRF) is one logical implementation
   option for the ACP.  If possible by the platform SW architecture,
   separation options that minimize shared components are preferred,
   such as a logical container or virtual machine instance.  The context
   for the ACP needs to be established automatically during bootstrap of
   a device.  As much as possible it should be protected from being
   modified unintentionally by data plane configuration.

   Context separation improves security, because the ACP is not
   reachable from the global routing table.  Also, configuration errors
   from the data plane setup do not affect the ACP.

5.8.  Addressing inside the ACP

   The channels explained above typically only establish communication
   between two adjacent nodes.  In order for communication to happen
   across multiple hops, the autonomic control plane requires internal
   network wide valid addresses and routing.  Each autonomic node must
   create a virtual interface with a network wide unique address inside
   the ACP context mentioned in Section 5.7.  This address may be used
   also in other virtual contexts.

   With the algorithm introduced here, all autonomic devices in the same
   domain have the same /48 prefix.  Conversely, global IDs from
   different domains are unlikely to clash, such that two networks can
   be merged, as long as the policy allows that merge.  See also

Section 7 for a discussion on merging domains.

   Links inside the ACP only use link-local IPv6 addressing, such that
   each node only requires one routable virtual address.

5.8.1.  Fundamental Concepts of Autonomic Addressing

   o  Usage: Autonomic addresses are exclusively used for self-
      management functions inside a trusted domain.  They are not used
      for user traffic.  Communications with entities outside the
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      trusted domain use another address space, for example normally
      managed routable address space.

   o  Separation: Autonomic address space is used separately from user
      address space and other address realms.  This supports the
      robustness requirement.

   o  Loopback-only: Only loopback interfaces of autonomic nodes carry a
      routable address; all other interfaces exclusively use IPv6 link
      local for autonomic functions.  The usage of IPv6 link local
      addressing is discussed in [RFC7404].

   o  Use-ULA: For loopback interfaces of autonomic nodes, we use Unique
      Local Addresses (ULA), as specified in [RFC4193].  An alternative
      scheme was discussed, using assigned ULA addressing.  The
      consensus was to use ULA-random [[RFC4193] with L=1], because it
      was deemed to be sufficient.

   o  No external connectivity: They do not provide access to the
      Internet.  If a node requires further reaching connectivity, it
      should use another, traditionally managed address scheme in
      parallel.

   o  Addresses in the ACP are permanent, and do not support temporary
      addresses as defined in [RFC4941].

   The ACP is based exclusively on IPv6 addressing, for a variety of
   reasons:

   o  Simplicity, reliability and scale: If other network layer
      protocols were supported, each would have to have its own set of
      security associations, routing table and process, etc.

   o  Autonomic functions do not require IPv4: Autonomic functions and
      autonomic service agents are new concepts.  They can be
      exclusively built on IPv6 from day one.  There is no need for
      backward compatibility.

   o  OAM protocols no not require IPv4: The ACP may carry OAM
      protocols.  All relevant protocols (SNMP, TFTP, SSH, SCP, Radius,
      Diameter, ...) are available in IPv6.

5.8.2.  The ACP Addressing Base Scheme

   The Base ULA addressing scheme for autonomic nodes has the following
   format:

https://datatracker.ietf.org/doc/html/rfc7404
https://datatracker.ietf.org/doc/html/rfc4193
https://datatracker.ietf.org/doc/html/rfc4193
https://datatracker.ietf.org/doc/html/rfc4941
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     8      40          3                     77
   +--+--------------+------+------------------------------------------+
   |FD| hash(domain) | Type |             (sub-scheme)                 |
   +--+--------------+------+------------------------------------------+

                   Figure 3: ACP Addressing Base Scheme

   The first 48 bits follow the ULA scheme, as defined in [RFC4193], to
   which a type field is added:

   o  "FD" identifies a locally defined ULA address.

   o  The ULA "global ID" is set here to be a hash of the domain name,
      which results in a pseudo-random 40 bit value.  It is calculated
      as the first 40 bits of the SHA256 hash of the domain name, in the
      example "example.com".

   o  Type: This field allows different address sub-schemes in the
      future.  The goal is to start with a single sub-schemes, but to
      allow for extensions later if and when required.  This addresses
      the "upgradability" requirement.  Assignment of types for this
      field should be maintained by IANA.

5.8.3.  ACP Addressing Sub-Scheme

   The sub-scheme defined here is defined by the Type value 0 (zero) in
   the base scheme.

             51                 13                    63             1
   +------------------------+---------+----------------------------+---+
   |    (base scheme)       | Zone ID |         Device ID          | V |
   +------------------------+---------+----------------------------+---+

                    Figure 4: ACP Addressing Sub-Scheme

   The fields are defined as follows: [Editor's note: The lengths of the
   fields is for discussion.]

   o  Zone ID: If set to all zero bits: The device ID bits are used as
      an identifier (as opposed to a locator).  This results in a non-
      hierarchical, flat addressing scheme.  Any other value indicates a
      zone.  See section Section 5.8.4 on how this field is used in
      detail.

   o  Device ID: A unique value for each device.

   o  V: Virtualization bit: 0: autonomic node base system; 1: a virtual
      context on an autonomic node.

https://datatracker.ietf.org/doc/html/rfc4193
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   The device ID is derived as follows: In an Autonomic Network, a
   registrar is enrolling new devices.  As part of the enrolment process
   the registrar assigns a number to the device, which is unique for
   this registrar, but not necessarily unique in the domain.  The 64 bit
   device ID is then composed as:

   o  48 bit: Registrar ID, a number unique inside the domain that
      identifies the registrar which assigned the name to the device.  A
      MAC address of the registrar can be used for this purpose.

   o  15 bit: Device number, a number which is unique for a given
      registrar, to identify the device.  This can be a sequentially
      assigned number.

   The "device ID" itself is unique in a domain (i.e., the Zone-ID is
   not required for uniqueness).  Therefore, a device can be addressed
   either as part of a flat hierarchy (zone ID = 0), or with an
   aggregation scheme (any other zone ID).  A address with zone-ID = 0
   is an identifier, with another zone-ID as a locator.  See

Section 5.8.4 for a description of the zone bits.

   This addressing sub-scheme allows the direct addressing of specific
   virtual containers / VMs on an autonomic node.  An increasing number
   of hardware platforms have a distributed architecture, with a base OS
   for the node itself, and the support for hardware blades with
   potentially different OSs.  The VMs on the blades could be considered
   as separate autonomic nodes, in which case it would make sense to be
   able to address them directly.  Autonomic Service Agents (ASAs) could
   be instantiated in either the base OS, or one of the VMs on a blade.
   This addressing scheme allows for the easy separation of the hardware
   context.

   The location of the V bit(s) at the end of the address allows to
   announce a single prefix for each autonomic node, while having
   separate virtual contexts addressable directly.

   [EDNOTE: various suggestions from mcr in his mail from 30 Nov 2016 to
   be considered (https://mailarchive.ietf.org/arch/msg/anima/

nZpEphrTqDCBdzsKMpaIn2gsIzI).]

5.8.4.  Usage of the Zone Field

   The "zone ID" allows for the introduction of structure in the
   addressing scheme.

   Zone = zero is the default addressing scheme in an autonomic domain.
   Every autonomic node MUST respond to its ACP address with zone=0.
   Used on its own this leads to a non-hierarchical address scheme,

https://mailarchive.ietf.org/arch/msg/anima/nZpEphrTqDCBdzsKMpaIn2gsIzI
https://mailarchive.ietf.org/arch/msg/anima/nZpEphrTqDCBdzsKMpaIn2gsIzI
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   which is suitable for networks up to a certain size.  In this case,
   the addresses primarily act as identifiers for the nodes, and
   aggregation is not possible.

   If aggregation is required, the 13 bit value allows for up to 8191
   zones.  The allocation of zone numbers may either happen
   automatically through a to-be-defined algorithm; or it could be
   configured and maintained manually.

   If a device learns through an autonomic method or through
   configuration that it is part of a zone, it MUST also respond to its
   ACP address with that zone number.  In this case the ACP loopback is
   configured with two ACP addresses: One for zone 0 and one for the
   assigned zone.  This method allows for a smooth transition between a
   flat addressing scheme and an hierarchical one.

   (Theoretically, the 13 bits for the zone ID would allow also for two
   levels of zones, introducing a sub-hierarchy.  We do not think this
   is required at this point, but a new type could be used in the future
   to support such a scheme.)

   Note: Another way to introduce hierarchy is to use sub-domains in the
   naming scheme.  The node names "node17.subdomainA.example.com" and
   "node4.subdomainB.example.com" would automatically lead to different
   ULA prefixes, which can be used to introduce a routing hierarchy in
   the network, assuming that the subdomains are aligned with routing
   areas.

5.8.5.  Other ACP Addressing Sub-Schemes

   Other ACP addressing sub-schemes can be defined if and when required.
   IANA will assign a new "type" for each new addressing sub-scheme.

5.9.  Routing in the ACP

   Once ULA address are set up all autonomic entities should run a
   routing protocol within the autonomic control plane context.  This
   routing protocol distributes the ULA created in the previous section
   for reachability.  The use of the autonomic control plane specific
   context eliminates the probable clash with the global routing table
   and also secures the ACP from interference from the configuration
   mismatch or incorrect routing updates.

   The establishment of the routing plane and its parameters are
   automatic and strictly within the confines of the autonomic control
   plane.  Therefore, no manual configuration is required.
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   All routing updates are automatically secured in transit as the
   channels of the autonomic control plane are by default secured, and
   this routing runs only inside the ACP.

   The routing protocol inside the ACP is RPL ([RFC6550]) with the
   following profile.  See Appendix A for more details on the choice of
   RPL.

5.9.1.  RPL Profile for the ACP

   o  RPL Mode of Operations (MOP): mode 3 "Storing Mode of Operations
      with multicast support".  Implementations should support also
      other modes.  Note: Root indicates mode in DIO flow.

   o  Objective Function (OF): Use OF0 [RFC6552].  No use of metric
      containers, Default RPLInstanceID = 0.

      *  stretch_rank: none provided ("not stretched").

      *  rank_factor: Derived from link speed: <= 100Mbps:
         LOW_SPEED_FACTOR(5), else HIGH_SPEED_FACTOR(1)

   o  Trickle: Not used; Data Path Validation: Not used.

   o  Proactive, aggressive DAO state maintenance:

      *  Use K-flag in unsolicited DAO indicating change from previous
         information (to require DAO-ACK).

      *  Retry such DAO DAO-RETRIES(3) times with DAO-
         ACK_TIME_OUT(256ms) in between.

   o  Administrative Preference ([RFC6552], 3.2.6 - to become root):
      Indicated in DODAGPreference field of DIO message.

      *  Explicit configured "root": 0b100

      *  Registrar (Default): 0b011

      *  AN-connect (non registrar): 0b010

      *  Default: 0b001.

   The RPL root can create additional RPL instances with other OF and
   metrics as desired, eg: via intent.

https://datatracker.ietf.org/doc/html/rfc6550
https://datatracker.ietf.org/doc/html/rfc6552
https://datatracker.ietf.org/doc/html/rfc6552
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5.10.  General ACP Considerations

   In order to be independent of configured link addresses, channels
   SHOULD use IPv6 link local addresses between adjacent neighbors
   wherever possible.  This way, the ACP tunnels are independent of
   correct network wide routing.

   Since channels are by default established between adjacent neighbors,
   the resulting overlay network does hop by hop encryption.  Each node
   decrypts incoming traffic from the ACP, and encrypts outgoing traffic
   to its neighbors in the ACP.  Routing is discussed in Section 5.9.

   If two nodes are connected via several links, the ACP SHOULD be
   established on every link, but it is possible to establish the ACP
   only on a sub-set of links.  Having an ACP channel on every link has
   a number of advantages, for example it allows for a faster failover
   in case of link failure, and it reflects the physical topology more
   closely.  Using a subset of links (for example, a single link),
   reduces resource consumption on the devices, because state needs to
   be kept per ACP channel.

6.  Workarounds for Non-Autonomic Nodes

6.1.  Connecting a Non-Autonomic Controller / NMS system

   The Autonomic Control Plane can be used by management systems, such
   as controllers or network management system (NMS) hosts (henceforth
   called simply "NMS hosts"), to connect to devices through it.  For
   this, an NMS host must have access to the ACP.  The ACP is a self-
   protecting overlay network, which allows by default access only to
   trusted, autonomic systems.  Therefore, a traditional, non-autonomic
   NMS system does not have access to the ACP by default, just like any
   other external device.

   If the NMS host is not autonomic, i.e., it does not support autonomic
   negotiation of the ACP, then it can be brought into the ACP by
   explicit configuration.  On an adjacent autonomic node with ACP, the
   interface with the NMS host can be configured as "ACP Connect".  In
   this case, all devices on this port, including the NMS host, is
   entirely and exclusively inside the ACP.  It would likely require a
   second interface outside the ACP for connections between the NMS host
   and administrators, or Internet based services.  This mode of
   connecting an NMS host has security consequences: All systems and
   processes connected to this implicitly trusted "ACP Connect"
   interface have access to all autonomic nodes on the entire ACP,
   without further authentication.  Thus, this connection must be
   physically controlled.
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   The non-autonomic NMS host must be routed in the ACP.  This involves
   two parts: 1) the NMS host must point default to the AN device for
   the ULA prefix used inside the ACP, and 2) the prefix used between AN
   node and NMS host must be announced into the ACP, and distributed
   there.

   The document "Autonomic Network Stable Connectivity"
   [I-D.ietf-anima-stable-connectivity] explains in more detail how the
   ACP can be integrated in a mixed NOC environment.

   If an NMS host is autonomic itself, it negotiates access to the ACP
   with its neighbor, like any other autonomic node.

6.2.  ACP through Non-Autonomic L3 Clouds

   Not all devices in a network may be autonomic.  If non-autonomic
   Layer-2 devices are between autonomic nodes, the communications
   described in this document should work, since it is IP based.
   However, non-autonomic Layer-3 devices do not forward link local
   autonomic messages, and thus break the Autonomic Control Plane.

   One workaround is to manually configure IP tunnels between autonomic
   nodes across a non-autonomic Layer-3 cloud.  The tunnels are
   represented on each autonomic node as virtual interfaces, and all
   autonomic transactions work across such tunnels.

   Such manually configured tunnels are less "indestructible" than an
   automatically created ACP based on link local addressing, since they
   depend on correct data plane operations, such as routing and
   addressing.

   Future work should envisage an option where the edge device of the L3
   cloud is configured to automatically forward ACP discovery messages
   to the right exit point.  This optimisation is not considered in this
   document.

7.  Self-Healing Properties

   The ACP is self-healing:

   o  New neighbors will automatically join the ACP after successful
      validation and will become reachable using their unique ULA
      address across the ACP.

   o  When any changes happen in the topology, the routing protocol used
      in the ACP will automatically adapt to the changes and will
      continue to provide reachability to all devices.
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   o  If an existing device gets revoked, it will automatically be
      denied access to the ACP as its domain certificate will be
      validated against a Certificate Revocation List during
      authentication.  Since the revocation check is only done at the
      establishment of a new security association, existing ones are not
      automatically torn down.  If an immediate disconnect is required,
      existing sessions to a freshly revoked device can be re-set.

   The ACP can also sustain network partitions and mergers.  Practically
   all ACP operations are link local, where a network partition has no
   impact.  Devices authenticate each other using the domain
   certificates to establish the ACP locally.  Addressing inside the ACP
   remains unchanged, and the routing protocol inside both parts of the
   ACP will lead to two working (although partitioned) ACPs.

   There are few central dependencies: A certificate revocation list
   (CRL) may not be available during a network partition; a suitable
   policy to not immediately disconnect neighbors when no CRL is
   available can address this issue.  Also, a registrar or Certificate
   Authority might not be available during a partition.  This may delay
   renewal of certificates that are to expire in the future, and it may
   prevent the enrolment of new devices during the partition.

   After a network partition, a re-merge will just establish the
   previous status, certificates can be renewed, the CRL is available,
   and new devices can be enrolled everywhere.  Since all devices use
   the same trust anchor, a re-merge will be smooth.

   Merging two networks with different trust anchors requires the trust
   anchors to mutually trust each other (for example, by cross-signing).
   As long as the domain names are different, the addressing will not
   overlap (see Section 5.8).

   It is also highly desirable for implementation of the ACP to be able
   to run it over interfaces that are administratively down.  If this is
   not feasible, then it might instead be possible to request explicit
   operator override upon administrative actions that would
   administratively bring down an interface across whicht the ACP is
   running.  Especially if bringing down the ACP is known to disconnect
   the operator from the device.  For example any such down
   administrative action could perform a dependency check to see if the
   transport connection across which this action is performed is
   affected by the down action (with default RPL routing used, packet
   forwarding will be symmetric, so this is actually possible to check).
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8.  Self-Protection Properties

   As explained in Section 5, the ACP is based on secure channels built
   between devices that have mutually authenticated each other with
   their domain certificates.  The channels themselves are protected
   using standard encryption technologies like DTLS or IPsec which
   provide additional authentication during channel establishment, data
   integrity and data confidentiality protection of data inside the ACP
   and in addition, provide replay protection.

   An attacker will therefore not be able to join the ACP unless having
   a valid domain certificate, also packet injection and sniffing
   traffic will not be possible due to the security provided by the
   encryption protocol.

   The remaining attack vector would be to attack the underlying AN
   protocols themselves, either via directed attacks or by denial-of-
   service attacks.  However, as the ACP is built using link-local IPv6
   address, remote attacks are impossible.  The ULA addresses are only
   reachable inside the ACP context, therefore unreachable from the data
   plane.  Also, the ACP protocols should be implemented to be attack
   resistant and not consume unnecessary resources even while under
   attack.

9.  The Administrator View

   An ACP is self-forming, self-managing and self-protecting, therefore
   has minimal dependencies on the administrator of the network.
   Specifically, since it is independent of configuration, there is no
   scope for configuration errors on the ACP itself.  The administrator
   may have the option to enable or disable the entire approach, but
   detailed configuration is not possible.  This means that the ACP must
   not be reflected in the running configuration of devices, except a
   possible on/off switch.

   While configuration is not possible, an administrator must have full
   visibility of the ACP and all its parameters, to be able to do
   trouble-shooting.  Therefore, an ACP must support all show and debug
   options, as for any other network function.  Specifically, a network
   management system or controller must be able to discover the ACP, and
   monitor its health.  This visibility of ACP operations must clearly
   be separated from visibility of data plane so automated systems will
   never have to deal with ACP aspect unless they explicitly desire to
   do so.

   Since an ACP is self-protecting, a device not supporting the ACP, or
   without a valid domain certificate cannot connect to it.  This means
   that by default a traditional controller or network management system
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   cannot connect to an ACP.  See Section 6.1 for more details on how to
   connect an NMS host into the ACP.

10.  Security Considerations

   An ACP is self-protecting and there is no need to apply configuration
   to make it secure.  Its security therefore does not depend on
   configuration.

   However, the security of the ACP depends on a number of other
   factors:

   o  The usage of domain certificates depends on a valid supporting PKI
      infrastructure.  If the chain of trust of this PKI infrastructure
      is compromised, the security of the ACP is also compromised.  This
      is typically under the control of the network administrator.

   o  Security can be compromised by implementation errors (bugs), as in
      all products.

   There is no prevention of source-address spoofing inside the ACP.
   This implies that if an attacker gains access to the ACP, (s)he can
   spoof all addresses inside the ACP and fake messages from any other
   device.

   Fundamentally, security depends on correct operation, implementation
   and architecture.  Autonomic approaches such as the ACP largely
   eliminate the dependency on correct operation; implementation and
   architectural mistakes are still possible, as in all networking
   technologies.

11.  IANA Considerations

Section 5.5.3 describes ACP over dTLS, which requires a well-known
   UDP port.  We request IANA to assign this UDP port for 'ACP over
   dTLS'.

Section 5.5.4 describes an option for the channel negotiation, the
   'ACP channel type'.  We request IANA to create a registry for 'ACP
   channel type'.

   The ACP channel type is a 8-bit unsigned integer.  This document only
   assigns the first value.
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        Number | Channel Type                      | RFC
      ---------+-----------------------------------+------------
            0  | GRE tunnel protected with         | this document
               | IPsec transport mode              |
        1-255  | reserved for future channel types |

Section 5.8.2 describes a 'type' field in the base addressing scheme.
   We request IANA to create a registry for the 'ACP addressing scheme
   type', with the following initial values:

        Number | Address Type (sub-scheme)         | RFC
      ---------+-----------------------------------+------------
            0  | Default address sub-scheme        | this document
            7  | Reserved for private use          |
               | sub-scheme                        |
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13.  Change log [RFC Editor: Please remove]

13.1.  Initial version

   First version of this document: draft-behringer-autonomic-control-
plane

13.2.  draft-behringer-anima-autonomic-control-plane-00

   Initial version of the anima document; only minor edits.

13.3.  draft-behringer-anima-autonomic-control-plane-01

   o  Clarified that the ACP should be based on, and support only IPv6.

   o  Clarified in intro that ACP is for both, between devices, as well
      as for access from a central entity, such as an NMS.

https://datatracker.ietf.org/doc/html/draft-behringer-autonomic-control-plane
https://datatracker.ietf.org/doc/html/draft-behringer-autonomic-control-plane
https://datatracker.ietf.org/doc/html/draft-behringer-anima-autonomic-control-plane-00
https://datatracker.ietf.org/doc/html/draft-behringer-anima-autonomic-control-plane-01
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   o  Added a section on how to connect an NMS system.

   o  Clarified the hop-by-hop crypto nature of the ACP.

   o  Added several references to GDNP as a candidate protocol.

   o  Added a discussion on network split and merge.  Although, this
      should probably go into the certificate management story longer
      term.

13.4.  draft-behringer-anima-autonomic-control-plane-02

   Addresses (numerous) comments from Brian Carpenter.  See mailing list
   for details.  The most important changes are:

   o  Introduced a new section "overview", to ease the understanding of
      the approach.

   o  Merged the previous "problem statement" and "use case" sections
      into a mostly re-written "use cases" section, since they were
      overlapping.

   o  Clarified the relationship with draft-ietf-anima-stable-
connectivity

13.5.  draft-behringer-anima-autonomic-control-plane-03

   o  Took out requirement for IPv6 --> that's in the reference doc.

   o  Added requirement section.

   o  Changed focus: more focus on autonomic functions, not only virtual
      out of band.  This goes a bit throughout the document, starting
      with a changed abstract and intro.

13.6.  draft-ietf-anima-autonomic-control-plane-00

   No changes; re-submitted as WG document.

13.7.  draft-ietf-anima-autonomic-control-plane-01

   o  Added some paragraphs in addressing section on "why IPv6 only", to
      reflect the discussion on the list.

   o  Moved the data-plane ACP out of the main document, into an
      appendix.  The focus is now the virtually separated ACP, since it
      has significant advantages, and isn't much harder to do.

https://datatracker.ietf.org/doc/html/draft-behringer-anima-autonomic-control-plane-02
https://datatracker.ietf.org/doc/html/draft-ietf-anima-stable-connectivity
https://datatracker.ietf.org/doc/html/draft-ietf-anima-stable-connectivity
https://datatracker.ietf.org/doc/html/draft-behringer-anima-autonomic-control-plane-03
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-00
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-01
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   o  Changed the self-creation algorithm: Part of the initial steps go
      into the reference document.  This document now assumes an
      adjacency table, and domain certificate.  How those get onto the
      device is outside scope for this document.

   o  Created a new section 6 "workarounds for non-autonomic nodes", and
      put the previous controller section (5.9) into this new section.
      Now, section 5 is "autonomic only", and section 6 explains what to
      do with non-autonomic stuff.  Much cleaner now.

   o  Added an appendix explaining the choice of RPL as a routing
      protocol.

   o  Formalised the creation process a bit more.  Now, we create a
      "candidate peer list" from the adjacency table, and form the ACP
      with those candidates.  Also it explains now better that policy
      (Intent) can influence the peer selection. (section 4 and 5)

   o  Introduce a section for the capability negotiation protocol
      (section 7).  This needs to be worked out in more detail.  This
      will likely be based on GRASP.

   o  Introduce a new parameter: ACP tunnel type.  And defines it in the
      IANA considerations section.  Suggest GRE protected with IPSec
      transport mode as the default tunnel type.

   o  Updated links, lots of small edits.

13.8.  draft-ietf-anima-autonomic-control-plane-02

   o  Added explicitly text for the ACP channel negotiation.

   o  Merged draft-behringer-anima-autonomic-addressing-02 into this
      document, as suggested by WG chairs.

13.9.  draft-ietf-anima-autonomic-control-plane-03

   o  Changed Neighbor discovery protocol from GRASP to mDNS.  Bootstrap
      protocol team decided to go with mDNS to discover bootstrap proxy,
      and ACP should be consistent with this.  Reasons to go with mDNS
      in bootstrap were a) Bootstrap should be reuseable also outside of
      full anima solutions and introduce as few as possible new
      elements. mDNS was considered well-known and very-likely even pre-
      existing in low-end devices (IoT). b) Using GRASP both for the
      insecure neighbor discovery and secure ACP operatations raises the
      risk of introducing security issues through implementation issues/
      non-isolation between those two instances of GRASP.

https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-02
https://datatracker.ietf.org/doc/html/draft-behringer-anima-autonomic-addressing-02
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-03
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   o  Shortened the section on GRASP instances, because with mDNS being
      used for discovery, there is no insecure GRASP session any longer,
      simplifying the GRASP considerations.

   o  Added certificate requirements for ANIMA in section 5.1.1,
      specifically how the ANIMA information is encoded in
      subjectAltName.

   o  Deleted the appendix on "ACP without separation", as originally
      planned, and the paragraph in the main text referring to it.

   o  Deleted one sub-addressing scheme, focusing on a single scheme
      now.

   o  Included information on how ANIMA information must be encoded in
      the domain certificate in Section 5.1.

   o  Editorial changes, updated draft references, etc.

13.10.  draft-ietf-anima-autonomic-control-plane-04

   Changed discovery of ACP neighbor back from mDNS to GRASP after
   revisiting the L2 problem.  Described problem in discovery section
   itself to justify.  Added text to explain how ACP discovery relates
   to BRSKY (bootstrap) discovery and pointed to Michael Richardsons
   draft detailing it.  Removed appendix section that contained the
   original explanations why GRASP would be useful (current text is
   meant to be better).

13.11.  draft-ietf-anima-autonomic-control-plane-05

   o  Section 5.3 (candidate ACP neighbor selection): Add that Intent
      can override only AFTER an initial default ACP establishment.

   o  Section 5.8.1 (addressing): State that addresses in the ACP are
      permanent, and do not support temporary addresses as defined in

RFC4941.

   o  Modified Section 5.2.3 to point to the GRASP objective defined in
      [I-D.carpenter-anima-ani-objectives]. (and added that reference)

   o  Section 5.8.2: changed from MD5 for calculating the first 40 bits
      to SHA256; reason is MD5 should not be used any more.

   o  Added address sub-scheme to the IANA section.

   o  Made the routing section more prescriptive.

https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-04
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-05
https://datatracker.ietf.org/doc/html/rfc4941
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   o  Clarified in Section 6.1 the ACP Connect port, and defined that
      term "ACP Connect".

   o  Section 6.2: Added some thoughts (from mcr) on how traversing a L3
      cloud could be automated.

   o  Added a CRL check in Section 5.5.

   o  Added a note on the possibility of source-address spoofing into
      the security considerations section.

   o  Other editoral changes, including those proposed by Michael
      Richardson on 30 Nov 2016 (see ANIMA list).

13.12.  draft-ietf-anima-autonomic-control-plane-06

   o  Added proposed RPL profile.

   o  detailed dTLS profile - dTLS with any additional negotiation/
      signaling channel.

   o  Fixed up text for ACP/GRE encap.  Removed text claiming its
      incompatible with non-GRE IPsec and detailled it.

   o  Added text to suggest admin down interfaces should still run ACP.
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Appendix A.  Background on the choice of routing protocol

   In a pre-standard implementation, the "IPv6 Routing Protocol for Low-
   Power and Lossy Networks (RPL, [RFC6550] was chosen.  This
   Appendix explains the reasoning behind that decision.

   Requirements for routing in the ACP are:

   o  Self-management: The ACP must build automatically, without human
      intervention.  Therefore routing protocol must also work
      completely automatically.  RPL is a simple, self-managing
      protocol, which does not require zones or areas; it is also self-
      configuring, since configuration is carried as part of the
      protocol (see Section 6.7.6 of [RFC6550]).

   o  Scale: The ACP builds over an entire domain, which could be a
      large enterprise or service provider network.  The routing
      protocol must therefore support domains of 100,000 nodes or more,
      ideally without the need for zoning or separation into areas.  RPL
      has this scale property.  This is based on extensive use of
      default routing.  RPL also has other scalability improvements,
      such as selecting only a subset of peers instead of all possible
      ones, and trickle support for information synchronisation.

   o  Low resource consumption: The ACP supports traditional network
      infrastructure, thus runs in addition to traditional protocols.
      The ACP, and specifically the routing protocol must have low
      resource consumption both in terms of memory and CPU requirements.
      Specifically, at edge nodes, where memory and CPU are scarce,
      consumption should be minimal.  RPL builds a destination-oriented
      directed acyclic graph (DODAG), where the main resource
      consumption is at the root of the DODAG.  The closer to the edge
      of the network, the less state needs to be maintained.  This
      adapts nicely to the typical network design.  Also, all changes
      below a common parent node are kept below that parent node.

   o  Support for unstructured address space: In the Autonomic
      Networking Infrastructure, node addresses are identifiers, and may
      not be assigned in a topological way.  Also, nodes may move
      topologically, without changing their address.  Therefore, the
      routing protocol must support completely unstructured address
      space.  RPL is specifically made for mobile ad-hoc networks, with
      no assumptions on topologically aligned addressing.

   o  Modularity: To keep the initial implementation small, yet allow
      later for more complex methods, it is highly desirable that the
      routing protocol has a simple base functionality, but can import
      new functional modules if needed.  RPL has this property with the

https://datatracker.ietf.org/doc/html/rfc6550
https://datatracker.ietf.org/doc/html/rfc6550#section-6.7.6
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      concept of "objective function", which is a plugin to modify
      routing behaviour.

   o  Extensibility: Since the Autonomic Networking Infrastructure is a
      new concept, it is likely that changes in the way of operation
      will happen over time.  RPL allows for new objective functions to
      be introduced later, which allow changes to the way the routing
      protocol creates the DAGs.

   o  Multi-topology support: It may become necessary in the future to
      support more than one DODAG for different purposes, using
      different objective functions.  RPL allow for the creation of
      several parallel DODAGs, should this be required.  This could be
      used to create different topologies to reach different roots.

   o  No need for path optimisation: RPL does not necessarily compute
      the optimal path between any two nodes.  However, the ACP does not
      require this today, since it carries mainly non-delay-sensitive
      feedback loops.  It is possible that different optimisation
      schemes become necessary in the future, but RPL can be expanded
      (see point "Extensibility" above).
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