
ANIMA WG M. Behringer, Ed.
Internet-Draft Cisco Systems
Intended status: Standards Track T. Eckert
Expires: September 28, 2017 Huawei
 S. Bjarnason
 Arbor Networks
 March 27, 2017

An Autonomic Control Plane
draft-ietf-anima-autonomic-control-plane-06

Abstract

 Autonomic functions need a control plane to communicate, which
 depends on some addressing and routing. This Autonomic Control Plane
 should ideally be self-managing, and as independent as possible of
 configuration. This document defines an "Autonomic Control Plane",
 with the primary use as a control plane for autonomic functions. It
 also serves as a "virtual out of band channel" for OAM communications
 over a network that is not configured, or mis-configured.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 28, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Behringer, et al. Expires September 28, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft An Autonomic Control Plane March 2017

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Use Cases for an Autonomic Control Plane 4
2.1. An Infrastructure for Autonomic Functions 4
2.2. Secure Bootstrap over an Unconfigured Network 5
2.3. Data Plane Independent Permanent Reachability 5

3. Requirements . 6
4. Overview . 7
5. Self-Creation of an Autonomic Control Plane 8
5.1. Preconditions . 8
5.1.1. Domain Certificate with ANIMA information 8
5.1.2. AN Adjacency Table 10

5.2. Neighbor discovery 11
5.2.1. L2 topology considerations 11
5.2.2. CDP/LLDP/mDNS considerations 12
5.2.3. Discovery with GRASP 12
5.2.4. Discovery and BRSKY 13

5.3. Candidate ACP Neighbor Selection 13
5.4. Channel Selection . 14
5.5. Security Association protocols 15
5.5.1. ACP via IPsec . 15
5.5.2. ACP via GRE/IPsec 16
5.5.3. ACP via dTLS . 16
5.5.4. GRASP/TLS negotiation 16
5.5.5. ACP Security Profiles 17

5.6. GRASP instance details 17
5.7. Context Separation 18
5.8. Addressing inside the ACP 18
5.8.1. Fundamental Concepts of Autonomic Addressing 18
5.8.2. The ACP Addressing Base Scheme 19
5.8.3. ACP Addressing Sub-Scheme 20
5.8.4. Usage of the Zone Field 21
5.8.5. Other ACP Addressing Sub-Schemes 22

5.9. Routing in the ACP 22
5.9.1. RPL Profile for the ACP 23

5.10. General ACP Considerations 24
6. Workarounds for Non-Autonomic Nodes 24
6.1. Connecting a Non-Autonomic Controller / NMS system . . . 24
6.2. ACP through Non-Autonomic L3 Clouds 25

7. Self-Healing Properties 25
8. Self-Protection Properties 27

Behringer, et al. Expires September 28, 2017 [Page 2]

Internet-Draft An Autonomic Control Plane March 2017

9. The Administrator View 27
10. Security Considerations 28
11. IANA Considerations . 28
12. Acknowledgements . 29
13. Change log [RFC Editor: Please remove] 29
13.1. Initial version . 29
13.2. draft-behringer-anima-autonomic-control-plane-00 29
13.3. draft-behringer-anima-autonomic-control-plane-01 29
13.4. draft-behringer-anima-autonomic-control-plane-02 30
13.5. draft-behringer-anima-autonomic-control-plane-03 30
13.6. draft-ietf-anima-autonomic-control-plane-00 30
13.7. draft-ietf-anima-autonomic-control-plane-01 30
13.8. draft-ietf-anima-autonomic-control-plane-02 31
13.9. draft-ietf-anima-autonomic-control-plane-03 31
13.10. draft-ietf-anima-autonomic-control-plane-04 32
13.11. draft-ietf-anima-autonomic-control-plane-05 32
13.12. draft-ietf-anima-autonomic-control-plane-06 33

14. References . 33
Appendix A. Background on the choice of routing protocol 36

 Authors' Addresses . 37

1. Introduction

 Autonomic Networking is a concept of self-management: Autonomic
 functions self-configure, and negotiate parameters and settings
 across the network. [RFC7575] defines the fundamental ideas and
 design goals of Autonomic Networking. A gap analysis of Autonomic
 Networking is given in [RFC7576]. The reference architecture for
 Autonomic Networking in the IETF is currently being defined in the
 document [I-D.ietf-anima-reference-model]

 Autonomic functions need a stable and robust infrastructure to
 communicate on. This infrastructure should be as robust as possible,
 and it should be re-usable by all autonomic functions. [RFC7575]
 calls it the "Autonomic Control Plane". This document defines the
 Autonomic Control Plane.

 Today, the management and control plane of networks typically runs in
 the global routing table, which is dependent on correct configuration
 and routing. Misconfigurations or routing problems can therefore
 disrupt management and control channels. Traditionally, an out of
 band network has been used to recover from such problems, or
 personnel is sent on site to access devices through console ports
 (craft ports). However, both options are operationally expensive.

 In increasingly automated networks either controllers or distributed
 autonomic service agents in the network require a control plane which

https://datatracker.ietf.org/doc/html/draft-behringer-anima-autonomic-control-plane-00
https://datatracker.ietf.org/doc/html/draft-behringer-anima-autonomic-control-plane-01
https://datatracker.ietf.org/doc/html/draft-behringer-anima-autonomic-control-plane-02
https://datatracker.ietf.org/doc/html/draft-behringer-anima-autonomic-control-plane-03
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-00
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-01
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-02
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-03
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-04
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-05
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-06
https://datatracker.ietf.org/doc/html/rfc7575
https://datatracker.ietf.org/doc/html/rfc7576
https://datatracker.ietf.org/doc/html/rfc7575

Behringer, et al. Expires September 28, 2017 [Page 3]

Internet-Draft An Autonomic Control Plane March 2017

 is independent of the network they manage, to avoid impacting their
 own operations.

 This document describes options for a self-forming, self-managing and
 self-protecting "Autonomic Control Plane" (ACP) which is inband on
 the network, yet as independent as possible of configuration,
 addressing and routing problems (for details how this achieved, see

Section 5). It therefore remains operational even in the presence of
 configuration errors, addressing or routing issues, or where policy
 could inadvertently affect control plane connectivity. The Autonomic
 Control Plane serves several purposes at the same time:

 o Autonomic functions communicate over the ACP. The ACP therefore
 supports directly Autonomic Networking functions, as described in
 [I-D.ietf-anima-reference-model]. For example, GRASP
 [I-D.ietf-anima-grasp] can run securely inside the ACP.

 o An operator can use it to log into remote devices, even if the
 data plane is misconfigured or unconfigured.

 o A controller or network management system can use it to securely
 bootstrap network devices in remote locations, even if the network
 in between is not yet configured; no data-plane dependent
 bootstrap configuration is required. An example of such a secure
 bootstrap process is described in
 [I-D.ietf-anima-bootstrapping-keyinfra]

 This document describes some use cases for the ACP in Section 2, it
 defines the requirements in Section 3, Section 4 gives an overview
 how an Autonomic Control Plane is constructed, and in Section 5 the
 detailed process is explained. Section 6 explains how non-autonomic
 nodes and networks can be integrated, and Section 5.5 the first
 channel types for the ACP.

 The document "Autonomic Network Stable Connectivity"
 [I-D.ietf-anima-stable-connectivity] describes how the ACP can be
 used to provide stable connectivity for OAM applications. It also
 explains on how existing management solutions can leverage the ACP in
 parallel with traditional management models, when to use the ACP
 versus the data plane, how to integrate IPv4 based management, etc.

2. Use Cases for an Autonomic Control Plane

2.1. An Infrastructure for Autonomic Functions

 Autonomic Functions need a stable infrastructure to run on, and all
 autonomic functions should use the same infrastructure to minimise
 the complexity of the network. This way, there is only need for a

Behringer, et al. Expires September 28, 2017 [Page 4]

Internet-Draft An Autonomic Control Plane March 2017

 single discovery mechanism, a single security mechanism, and other
 processes that distributed functions require.

2.2. Secure Bootstrap over an Unconfigured Network

 Today, bootstrapping a new device typically requires all devices
 between a controlling node (such as an SDN controller) and the new
 device to be completely and correctly addressed, configured and
 secured. Therefore, bootstrapping a network happens in layers around
 the controller. Without console access (for example through an out
 of band network) it is not possible today to make devices securely
 reachable before having configured the entire network between.

 With the ACP, secure bootstrap of new devices can happen without
 requiring any configuration on the network. A new device can
 automatically be bootstrapped in a secure fashion and be deployed
 with a domain certificate. This does not require any configuration
 on intermediate nodes, because they can communicate through the ACP.

2.3. Data Plane Independent Permanent Reachability

 Today, most critical control plane protocols and network management
 protocols are running in the data plane (global routing table) of the
 network. This leads to undesirable dependencies between control and
 management plane on one side and the data plane on the other: Only if
 the data plane is operational, will the other planes work as
 expected.

 Data plane connectivity can be affected by errors and faults, for
 example certain AAA misconfigurations can lock an administrator out
 of a device; routing or addressing issues can make a device
 unreachable; shutting down interfaces over which a current management
 session is running can lock an admin irreversibly out of the device.
 Traditionally only console access can help recover from such issues.

 Data plane dependencies also affect NOC/SDN controller applications:
 Certain network changes are today hard to operate, because the change
 itself may affect reachability of the devices. Examples are address
 or mask changes, routing changes, or security policies. Today such
 changes require precise hop-by-hop planning.

 The ACP provides reachability that is largely independent of the data
 plane, which allows control plane and management plane to operate
 more robustly:

 o For management plane protocols, the ACP provides the functionality
 of a "Virtual-out-of-band (VooB) channel", by providing

Behringer, et al. Expires September 28, 2017 [Page 5]

Internet-Draft An Autonomic Control Plane March 2017

 connectivity to all devices regardless of their configuration or
 global routing table.

 o For control plane protocols, the ACP allows their operation even
 when the data plane is temporarily faulty, or during transitional
 events, such as routing changes, which may affect the control
 plane at least temporarily. This is specifically important for
 autonomic service agents, which could affect data plane
 connectivity.

 The document "Autonomic Network Stable Connectivity"
 [I-D.ietf-anima-stable-connectivity] explains the use cases for the
 ACP in significantly more detail and explains how the ACP can be used
 in practical network operations.

3. Requirements

 The Autonomic Control Plane has the following requirements:

 ACP1: The ACP SHOULD provide robust connectivity: As far as
 possible, it should be independent of configured addressing,
 configuration and routing. Requirements 2 and 3 build on this
 requirement, but also have value on their own.

 ACP2: The ACP MUST have a separate address space from the data
 plane. Reason: traceability, debug-ability, separation from
 data plane, security (can block easily at edge).

 ACP3: The ACP MUST use autonomically managed address space. Reason:
 easy bootstrap and setup ("autonomic"); robustness (admin
 can't mess things up so easily). This document suggests to
 use ULA addressing for this purpose.

 ACP4: The ACP MUST be generic. Usable by all the functions and
 protocols of the AN infrastructure. It MUST NOT be tied to a
 particular protocol.

 ACP5: The ACP MUST provide security: Messages coming through the ACP
 MUST be authenticated to be from a trusted node, and SHOULD
 (very strong SHOULD) be encrypted.

 The default mode of operation of the ACP is hop-by-hop, because this
 interaction can be built on IPv6 link local addressing, which is
 autonomic, and has no dependency on configuration (requirement 1).
 It may be necessary to have ACP connectivity over non-autonomic
 nodes, for example to link autonomic nodes over the general Internet.
 This is possible, but then has a dependency on routing over the non-
 autonomic hops.

Behringer, et al. Expires September 28, 2017 [Page 6]

Internet-Draft An Autonomic Control Plane March 2017

4. Overview

 The Autonomic Control Plane is constructed in the following way (for
 details, see Section 5):

 1. An autonomic node creates a virtual routing and forwarding (VRF)
 instance, or a similar virtual context.

 2. It determines, following a policy, a candidate peer list. This
 is the list of nodes to which it should establish an Autonomic
 Control Plane. Default policy is: To all adjacent nodes in the
 same domain.

 3. For each node in the candidate peer list, it authenticates that
 node and negotiates a mutually acceptable channel type.

 4. It then establishes a secure tunnel of the negotiated channel
 type. These tunnels are placed into the previously set up VRF.
 This creates an overlay network with hop-by-hop tunnels.

 5. Inside the ACP VRF, each node sets up a virtual interface with
 its ULA IPv6 address.

 6. Each node runs a lightweight routing protocol, to announce
 reachability of the virtual addresses inside the ACP.

 Note:

 o Non-autonomic NMS systems or controllers have to be manually
 connected into the ACP.

 o Connecting over non-autonomic Layer-3 clouds initially requires a
 tunnel between autonomic nodes.

 o None of the above operations (except manual ones) is reflected in
 the configuration of the device.

 The following figure illustrates the ACP.

Behringer, et al. Expires September 28, 2017 [Page 7]

Internet-Draft An Autonomic Control Plane March 2017

 autonomic node 1 autonomic node 2

 secure . . secure . . secure
 tunnel : +-----------+ : tunnel : +-----------+ : tunnel
 ..--------| ACP VRF |---------------------| ACP VRF |---------..
 : / \ / \ <--routing--> / \ / \ :
 : \ / \ / \ / \ / :
 ..--------| virtual |---------------------| virtual |---------..
 : | interface | : : | interface | :
 : +-----------+ : : +-----------+ :
 : : : :
 : data plane :...............: data plane :
 : : link : :
 :.................: :.................:

 Figure 1

 The resulting overlay network is normally based exclusively on hop-
 by-hop tunnels. This is because addressing used on links is IPv6
 link local addressing, which does not require any prior set-up. This
 way the ACP can be built even if there is no configuration on the
 devices, or if the data plane has issues such as addressing or
 routing problems.

5. Self-Creation of an Autonomic Control Plane

 This section describes the steps to set up an Autonomic Control
 Plane, and highlights the key properties which make it
 "indestructible" against many inadvert changes to the data plane, for
 example caused by misconfigurations.

5.1. Preconditions

 An autonomic node can be a router, switch, controller, NMS host, or
 any other IP device. We assume an autonomic node has a globally
 unique domain certificate (LDevID), as well as an adjacency table.

5.1.1. Domain Certificate with ANIMA information

 To establish an ACP securely, an Autnomic Node MUST have a globally
 unique domain certificate (LDevID), with which it can
 cryptographically assert its membership of the domain. The document
 [I-D.ietf-anima-bootstrapping-keyinfra] describes how a domain
 certificate can be automatically and securely derived from a vendor
 specific Unique Device Identifier (UDI) or IDevID certificate.

 The domain certificate (LDevID) of an autonomic node MUST contain
 ANIMA specific information, specifically the domain name, and its ACP

Behringer, et al. Expires September 28, 2017 [Page 8]

Internet-Draft An Autonomic Control Plane March 2017

 address with the zone-ID set to zero. This information MUST be
 encoded in the LDevID in the subjectAltName / rfc822Name field in the
 following way:

 anima.acp+<ACP address>@<domain>

 Example:

 anima.acp+FD99:B02D:8EC3:0:200:0:6400:1@example.com

 The ACP address MUST be specified in its canonical form, as specified
 in [RFC5952], to allow for easy textual comparisons.

 The particular subjectAlName / rfc822Name encoding is choosen for
 several reasons:

 o We want to permit the reuse of the ANIMA LDevID in other uses
 beside the ACP as appropriate, eg: there are a wide number of pre-
 existing data-plane security mechanisms where re-using the ACP
 certificate could help to further automate security.

 o We therefore want to make sure that ACP elements in the LDevID
 will not cause incompatibilities with any pre-existing ASN.1 code
 potentially in use in those other pre-existing SW systems.

 o subjectAltname / rfc822Name is a pre-existing element that must be
 supported by all existing ASN.1 parsers for LDevID.

 o We also want to make sure that the ACP information will not be
 misinterpreted by any such pre-existing code interpreting the
 LDevID, or if it is misinterpreted, that the impact is benign.

 o Using an IP address format encoding could result in non-benign
 misinterpretation of the ACP information.

 o At minimum, we need to encode both the AN domain name and the non-
 domain name derived part of the ACP, so there are not many
 alternatives with pre-existing fields where those two elements
 could be encoded.

 o rfc822Name encoding allows to be quite flexible. We choose to
 encode the full ACP address AND the domain name, so that it is
 easier to examine/use.

 o The format of the rfc822Name is choosen so that an operator can
 set up a mailbox called anima.acp@<domain> that would receive
 emails sent towards the rfc822Name of any AN device inside a

https://datatracker.ietf.org/doc/html/rfc5952

Behringer, et al. Expires September 28, 2017 [Page 9]

Internet-Draft An Autonomic Control Plane March 2017

 domain. This is possible because components behind a plus symbol
 are considered part of a single mailbox.

 o In result, if any unexpected use of the ACP addressing information
 in a certificate happens, it is benign and detectable: it would be
 mail to that mailbox.

 The bootstrap process defined in
 [I-D.ietf-anima-bootstrapping-keyinfra] MUST in an ANIMA network pass
 on ACP address and domain to a new node, such that the new node can
 add this to its enrolment request.

 The Certificate Authority in an ANIMA network MUST honor these
 parameters, and create the respective subjectAltName / rfc822Name in
 the certificate.

 ANIMA nodes can therefore find ACP address and domain using this
 field in the domain certificate, both for themselves, as well as for
 other nodes.

 See section 4.2.1.6 of [RFC5280] for details on the subjectAltName
 field.

5.1.2. AN Adjacency Table

 To know to which nodes to establish an ACP channel, every autonomic
 node maintains an adjacency table. The adjacency table contains
 information about adjacent autonomic nodes, at a minimum: node-ID, IP
 address, domain, certificate. An autonomic device MUST maintain this
 adjacency table up to date. This table is used to determine to which
 neighbor an ACP connection is established.

 Where the next autonomic device is not directly adjacent, the
 information in the adjacency table can be supplemented by
 configuration. For example, the node-ID and IP address could be
 configured.

 The adjacency table MAY contain information about the validity and
 trust of the adjacent autonomic node's certificate. However,
 subsequent steps MUST always start with authenticating the peer.

 The adjacency table contains information about adjacent autonomic
 nodes in general, independently of their domain and trust status.
 The next step determines to which of those autonomic nodes an ACP
 connection should be established.

https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.6

Behringer, et al. Expires September 28, 2017 [Page 10]

Internet-Draft An Autonomic Control Plane March 2017

5.2. Neighbor discovery

5.2.1. L2 topology considerations

 ANrtr1 ------ ANswitch1 --- ANswitch2 ------- ANrtr2
 .../ \ \ ...
 ANrtrM ------ \ ------- ANrtrN
 ANswitchM ...

 Figure 2

 Consider a large L2 LAN with ANrtr1...ANrtrN connected via some
 topology of L2 switches (eg: in a large enterprise campus or IoT
 environment using large L2 LANs). If the discovery protocol used for
 the ACP is operating at the subnet level, every AN router will see
 all other AN routers on the LAN as neighbors and a full mesh of ACP
 channels will be built. If some or all of the AN switches are
 autonomic with the same discovery protocol, then the full mesh would
 include those switches as well.

 A full mesh of ACP connections like this can creates fundamental
 challenges. The number of security associations of the secure
 channel protocols will not scale arbitrarily, especially when they
 leverage platform accelerated encryption/decryption. Likewise, any
 other ACP operations needs to scale to the number of direct ACP
 neigbors. An AN router with just 4 interfaces might be deployed into
 a LAN with hundreds of neighbors connected via switches. Introducing
 such a new unpredictable scaling factor requirement makes it harder
 to support the ACP on arbitrary platforms and in arbitrary
 deployments.

 Predictable scaling requirements for ACP neighbors can most easily be
 achieved if in topologies like these, AN capable L2 switches can
 ensure that discovery messages terminate on them so that neighboring
 AN routers and switches will only find the physcially connected AN L2
 switches as their candidate ACP neighbors. With such a discovery
 mechanism in place, the ACP and its security associations will only
 need to scale to the number of physcial interfaces instead of a
 potentially much larger number of "LAN-connected" neighbors. And the
 ACP topology will follow directly the physical topology, something
 which can then also be leveraged in management operations or by ASAs.

 In the example above, consider ANswitch1 and ANswitchM are AN
 capable, and ANswitch2 is not AN capable. The desired ACP topology
 is therefore that ANrtr1 and ANrtrM only have an ACP connetion to
 ANswitch1, and that ANswitch1, ANrtr2, ANrtrN have a full mesh of ACP
 connection amongst each other. ANswitch1 also has an ACP connection

Behringer, et al. Expires September 28, 2017 [Page 11]

Internet-Draft An Autonomic Control Plane March 2017

 with ANswitchM and ANswitchM has ACP connections to anything else
 behind it.

5.2.2. CDP/LLDP/mDNS considerations

 LLDP (and Cisco's CDP) are example of L2 discovery protocols that
 terminate their messages on L2 ports. If those protocols would be
 chosen for ACP neighbor discovery, ACP neighbor discovery would
 therefore also terminate on L2 ports. This would prevent ACP
 construction over non-ANIMA switches.

 mDNS operates at the subnet level, and is also used on L2 switches.
 The authors of this document are not aware of mDNS implementation
 that terminate their messages on L2 ports instead of the subnet
 level. If mDNS was used as the ACP discovery mechanism on an ACP
 capable L2 switch, then this would be necessary to implement. It is
 likely that termination of mDNS messages could only be applied to all
 mDNS messages from a port, which would then make it necessary to
 software forward any non-ACP related mDNS messages to maintain prior
 non-ACP mDNS functionality. With low performance of software
 forwarding in many L2 switches, this could easily make the ACP
 unsupportable on such L2 switches.

5.2.3. Discovery with GRASP

 In conclusion for the above described considerations, the ACP uses
 "insecure" instances of GRASP for discovery of ACP neighbors because
 it can easily be set up to match the requiremetns without affecting
 other uses of the protocol.

 The name of the GRASP objective to announce/discover the capability
 of a neighbor to run the ACP is "ACP". Section 3.5.2.2 of
 [I-D.ietf-anima-grasp] describes the instance of GRASP to be used for
 this purpose: "DULL" (Discovery Unsolicited Link Local). The precise
 GRASP objective to be used is specified in Section 3 of
 [I-D.carpenter-anima-ani-objectives].

 As explained above, in an ACP enabled L2 switch, each of these
 instances would actually need to be per-L2-port. The result of the
 discovery is the IPv6 link-local address of the neighbor. It is
 stored in the AN Adjacency Table, see Section 5.1.2 which then drives
 the further building of the ACP to that neighbor.

 For example, ANswitch1 would run separate DULL GRASP instances on its
 ports to ANrtr1, ANswitch2 and ANswitchI, even though all those three
 ports may be in the data plane in the same (V)LAN. This is easily
 achieved by extracting native GRASP multicast messages by their MAC
 multicast destination address. None of the other type of GRASP

Behringer, et al. Expires September 28, 2017 [Page 12]

Internet-Draft An Autonomic Control Plane March 2017

 instances (eg: as used inside the ACP) use GRASP messages that would
 be affected by such extraction, because all other GRASP messages have
 encrypted encapsulations.

5.2.4. Discovery and BRSKY

 Before a node has a domain certificate, it can not participate in the
 ACP and therefore does also not try to discover an ACP neighbor.
 Instead, it uses the discovery mechanism described in
 [I-D.ietf-anima-grasp] to discover a bootstrap proxy. Currently,
 that document describes mDNS as the protocol of choice for that
 discovery. In the context of above topology example, ANrtr1 might
 therefore discover and choose any ANrtr or ANswitch on the LAN that
 is already part of the autonomic domain - instead of the closest one
 which is ANswitch1. This choice of bootstrap proxy does not impact
 in the later building of the ACP on ANrtr1 and is therefore not a
 concern for the ACP.

 Once a device has its domain certificate, it will start announcing
 itself via GRASP as ACP capable.

 When an autonomic device is a registrar, it will announce the
 registrar function via GRASP in the ACP as the "6JOIN" objective. An
 AN device that is a registrar or learns about one or more reachable
 registrars via this GRASP/ACP announcements will announce itself as a
 boostrap proxy via mDNS. See [I-D.richardson-anima-6join-discovery]
 for more details.

5.3. Candidate ACP Neighbor Selection

 An autonomic node must determine to which other autonomic nodes in
 the adjacency table it should build an ACP connection. This is based
 on the information in the AN Adjacency table.

 The ACP is by default established exclusively between nodes in the
 same domain.

 Intent can change this default behaviour. Since Intent is
 transported over the ACP, the first ACP connection a node establishes
 is always following the default behaviour. The precise format for
 this Intent needs to be defined outside this document. Example
 Intent policies which need to be supported include:

 o The ACP should be built between all sub-domains for a given parent
 domain. For example: For domain "example.com", nodes of
 "example.com", "access.example.com", "core.example.com" and
 "city.core.example.com" should all establish one single ACP.

Behringer, et al. Expires September 28, 2017 [Page 13]

Internet-Draft An Autonomic Control Plane March 2017

 o Two domains should build one single ACP between themselves, for
 example "example1.com" should establish the ACP also with nodes
 from "example2.com". For this case, the two domains must be able
 to validate their trust, typically by cross-signing their
 certificate infrastructure.

 The result of the candidate ACP neighbor selection process is a list
 of adjacent or configured autonomic neighbors to which an ACP channel
 should be established. The next step begins that channel
 establishment.

5.4. Channel Selection

 To avoid attacks, initial discovery of candidate ACP peers can not
 include any non-protected negotiation. To avoid re-inventing and
 validating security association mechanisms, the next step after
 discoving the address of a candidate neighbor can only be to try
 first to establish a security association with that neighbor using a
 well-known security association method.

 At this time in the lifecycle of autonomic devices, it is unclear
 whether it is feasible to even decide on a single MTI (mandatory to
 implement) security association protocol across all autonomic
 devices.

 From the use-cases it is clear that not all type of autonomic devices
 can or need to connect directly to each other or are able to support
 or prefer all possible mechanisms. For example, code space limited
 IoT devices may only support dTLS (because that code exists already
 on them for end-to-end security use-cases), but low-end in-ceiling L2
 switches may only want to support MacSec because that is also
 supported in HW, and only a more flexible garteway device may need to
 support both of these mechanisms and potentially more.

 To support these requirements, and make ACP channel negotiation also
 easily extensible, the secure channel selection between Alice and Bob
 is a potentially two stage process. In the first stage, Alice and
 Bob directly try to establish a secure channel using the security-
 association and channel protocols they support. One or more of these
 protocols may simply be protocols not directly resulting in an ACP
 channel, but instead establishing a secure negotiation channel
 through which the final secure channel protocol is decided. If both
 Alice and Bob support such a negotiation step, then this secured
 negotiation channel is the first step, and the secure channel
 protocol is the second step.

 If Alice supports multiple security association protocols in the
 first step, it is a matter of Alices local policy to determine the

Behringer, et al. Expires September 28, 2017 [Page 14]

Internet-Draft An Autonomic Control Plane March 2017

 order in which she will try to build the connection to Bob. To
 support multiple security association protocols, Alice must be able
 to simultaneously act as a responder in parallel for all of them - so
 that she can respond to any order in which Bob wants to prefer
 building the security association.

 When ACP setup between Alice and Bob results in the first secure
 association to be established, the peer with the higher Device-ID in
 the certificate will stop building new security associations. The
 peer with the lower certificate Device-ID is now responsible to
 continue building its most preferred security association and to tear
 down all but that most preferred one - unless the secure association
 is one of a negotation protocols whose rules superceed this.

 All this negotiation is in the context of an "L2 interface". Alice
 and Bob will build ACP connections to each other on every "L2
 interface" that they both connect to.

5.5. Security Association protocols

 The following sections define the security association protocols that
 we consider to be important and feasible to specify in this document.
 In all cases, the mutual authentication is done via the autonomic
 domain certificate of the peer as follows - unless superceeded by
 Intent:

 o The certificate is valid as proven by the security associations
 protocol exchanges.

 o If the certificate is included in a Certificate Revocation List
 (CRL), the connection attempt is aborted and an error logged.
 [EDNOTE: Do we want OCSP instead of CRL?] [EDNOTE: Distribution
 of the CRL, and handling of CRL timeouts during network partition
 needs to be discussed in more detail.]

 o The peers certificate is signed by the same CA as the devices
 domain certificate.

 o The peers OU (Organizational Unit) field in the certificates
 Subject is the same as in the devices certificate.

5.5.1. ACP via IPsec

 To run ACP via IPsec transport mode, no further IANA assignments/
 definitions are required. All autonomic devices suppoting IPsec MUST
 support IPsec security setup via IKEv2, transport mode encapsulation
 via the device and peer link-local IPv6 addresses and AES256
 encryption.

Behringer, et al. Expires September 28, 2017 [Page 15]

Internet-Draft An Autonomic Control Plane March 2017

 In terms of IKEv2, this means the initiator will offer to support
 IPsec transport mode with next protocol equal 41 (IPv6).

5.5.2. ACP via GRE/IPsec

 In network devices it is often easier to provide virtual interfaces
 on top of GRE encapsulation than natively on top of a simple IPsec
 association. On those devices it may be necessary to run the ACP
 secure channel on top of a GRE connection protected by the IPsec
 association. The requirements for the IPsec association are the same
 as described above, but instead of directly carrying the ACP IPv6
 packets, the payload is an ACP IPv6 packet inside GRE/IPv6.

 In terms of IKEv2 negotiation, this means the initiator must offer to
 support IPsec transport mode with next protocol equal to GRE (47),
 followed by 41 (IPv6) (because native IPsec is required to be
 supported, see below).

 If IKEv2 initiator and responder support GRE, it will be selected.
 The version of GRE to be used must the according to [RFC7676].

5.5.3. ACP via dTLS

 We define the use of ACP via dTLS in the assumption that it is likely
 the first transport encryption code basis supported in some classes
 of constrained devices.

 To run ACP via UDP and dTLS v1.2 [RFC6347] an IANA assigned port
 [TBD] is used. All autonomic devices supporting ACP via dTLS must
 use AES256 encryption.

 There is no additional session setup or other security association
 other than dTLS. As soon as the dTLS session is functional, the ACP
 peers will exchange ACP IPv6 packets as the payload of the dTLS
 transport connecetion. Any dTLS defined security association
 mechanisms such as re-keying are used as they would be for any
 transport application relying solely on dTLS.

5.5.4. GRASP/TLS negotiation

 To explicitly allow negotiation of the ACP channel protocol, GRASP
 over a TLS connection using the GRASP_LISTEN_PORT and the devices and
 peers link-local IPv6 address is used. When Alice and Bob support
 GRASP negotiation, they do prefer it over any other non-explicitly
 negotiated security association protocol and should wait trying any
 non-negotiated ACP channel protocol until after it is clear that
 GRASP/TLS will not work to the peer.

https://datatracker.ietf.org/doc/html/rfc7676
https://datatracker.ietf.org/doc/html/rfc6347

Behringer, et al. Expires September 28, 2017 [Page 16]

Internet-Draft An Autonomic Control Plane March 2017

 When Alice and Bob successfully establish the GRASP/TSL session, they
 will initially negotiate the channel mechanism to use. Bob and Alice
 each have a list of channel mehanisms they support, sorted by
 preference. They negotiate the best mechansm supported by both of
 them. In the absence of Intent, the mechanism choosen is the best
 one for the device with the lower Device-ID.

 After agreeing on a channel mechanism, Alice and Bob start the
 selected Channel protocol. The GRASP/TLS connection can be kept
 alive or timed out as long as the seelected channel protocol has a
 secure association between Alice and Bob. When it terminates, it
 needs to be re-negotiated via GRASP/TLS.

 Negotiation of a channel type may require IANA assignments of code
 points. See IANA Considerations (Section 11) for the formal
 definition of those code points.

 The exact negotiation steps in GRASP to achieve this outcome.

5.5.5. ACP Security Profiles

 A baseline autonomic device MUST support IPsec and SHOULD support
 GRASP/TLS and dTLS. A constrained autonomic device MUST support
 dTLS.

 The MTU for ACP secure channels must be derived locally from the
 underlying link MTU minus the security encapsulation overhead. Given
 how ACP channels are built across layer2 connections only, the
 probability for MTU mismatch is low. For additional reliability,
 applications to be runa cross the ACP should only assume to have
 minimum MTU available (1280).

 Autonomic devices need to specify in documentation the set of secure
 ACP mechanisms they suppport.

5.6. GRASP instance details

 Received GRASP packets are assigned to an instance of GRASP by the
 context they are received on:

 o GRASP packets received on an ACP (virtual) interfaces are assigned
 to the ACP instance of GRASP

 o GRASP/UDP packets received on L2 interfaces/ports where the device
 is willing to run ACP are assigned to a DULL instance of GRASP for
 that interface/port.

Behringer, et al. Expires September 28, 2017 [Page 17]

Internet-Draft An Autonomic Control Plane March 2017

 o GRASP packets received inside a TLS connection established for
 GRASP/TLS ACP negotiation are assigned to a separate instance of
 GRASP for that negotiation.

5.7. Context Separation

 The ACP is in a separate context from the normal data plane of the
 device. This context includes the ACP channels IPv6 forwarding and
 routing as well as any required higher layer ACP functions.

 In classical network device platforms, a dedicated so called "Virtual
 routing and forwarding instance" (VRF) is one logical implementation
 option for the ACP. If possible by the platform SW architecture,
 separation options that minimize shared components are preferred,
 such as a logical container or virtual machine instance. The context
 for the ACP needs to be established automatically during bootstrap of
 a device. As much as possible it should be protected from being
 modified unintentionally by data plane configuration.

 Context separation improves security, because the ACP is not
 reachable from the global routing table. Also, configuration errors
 from the data plane setup do not affect the ACP.

5.8. Addressing inside the ACP

 The channels explained above typically only establish communication
 between two adjacent nodes. In order for communication to happen
 across multiple hops, the autonomic control plane requires internal
 network wide valid addresses and routing. Each autonomic node must
 create a virtual interface with a network wide unique address inside
 the ACP context mentioned in Section 5.7. This address may be used
 also in other virtual contexts.

 With the algorithm introduced here, all autonomic devices in the same
 domain have the same /48 prefix. Conversely, global IDs from
 different domains are unlikely to clash, such that two networks can
 be merged, as long as the policy allows that merge. See also

Section 7 for a discussion on merging domains.

 Links inside the ACP only use link-local IPv6 addressing, such that
 each node only requires one routable virtual address.

5.8.1. Fundamental Concepts of Autonomic Addressing

 o Usage: Autonomic addresses are exclusively used for self-
 management functions inside a trusted domain. They are not used
 for user traffic. Communications with entities outside the

Behringer, et al. Expires September 28, 2017 [Page 18]

Internet-Draft An Autonomic Control Plane March 2017

 trusted domain use another address space, for example normally
 managed routable address space.

 o Separation: Autonomic address space is used separately from user
 address space and other address realms. This supports the
 robustness requirement.

 o Loopback-only: Only loopback interfaces of autonomic nodes carry a
 routable address; all other interfaces exclusively use IPv6 link
 local for autonomic functions. The usage of IPv6 link local
 addressing is discussed in [RFC7404].

 o Use-ULA: For loopback interfaces of autonomic nodes, we use Unique
 Local Addresses (ULA), as specified in [RFC4193]. An alternative
 scheme was discussed, using assigned ULA addressing. The
 consensus was to use ULA-random [[RFC4193] with L=1], because it
 was deemed to be sufficient.

 o No external connectivity: They do not provide access to the
 Internet. If a node requires further reaching connectivity, it
 should use another, traditionally managed address scheme in
 parallel.

 o Addresses in the ACP are permanent, and do not support temporary
 addresses as defined in [RFC4941].

 The ACP is based exclusively on IPv6 addressing, for a variety of
 reasons:

 o Simplicity, reliability and scale: If other network layer
 protocols were supported, each would have to have its own set of
 security associations, routing table and process, etc.

 o Autonomic functions do not require IPv4: Autonomic functions and
 autonomic service agents are new concepts. They can be
 exclusively built on IPv6 from day one. There is no need for
 backward compatibility.

 o OAM protocols no not require IPv4: The ACP may carry OAM
 protocols. All relevant protocols (SNMP, TFTP, SSH, SCP, Radius,
 Diameter, ...) are available in IPv6.

5.8.2. The ACP Addressing Base Scheme

 The Base ULA addressing scheme for autonomic nodes has the following
 format:

https://datatracker.ietf.org/doc/html/rfc7404
https://datatracker.ietf.org/doc/html/rfc4193
https://datatracker.ietf.org/doc/html/rfc4193
https://datatracker.ietf.org/doc/html/rfc4941

Behringer, et al. Expires September 28, 2017 [Page 19]

Internet-Draft An Autonomic Control Plane March 2017

 8 40 3 77
 +--+--------------+------+--+
 |FD| hash(domain) | Type | (sub-scheme) |
 +--+--------------+------+--+

 Figure 3: ACP Addressing Base Scheme

 The first 48 bits follow the ULA scheme, as defined in [RFC4193], to
 which a type field is added:

 o "FD" identifies a locally defined ULA address.

 o The ULA "global ID" is set here to be a hash of the domain name,
 which results in a pseudo-random 40 bit value. It is calculated
 as the first 40 bits of the SHA256 hash of the domain name, in the
 example "example.com".

 o Type: This field allows different address sub-schemes in the
 future. The goal is to start with a single sub-schemes, but to
 allow for extensions later if and when required. This addresses
 the "upgradability" requirement. Assignment of types for this
 field should be maintained by IANA.

5.8.3. ACP Addressing Sub-Scheme

 The sub-scheme defined here is defined by the Type value 0 (zero) in
 the base scheme.

 51 13 63 1
 +------------------------+---------+----------------------------+---+
 | (base scheme) | Zone ID | Device ID | V |
 +------------------------+---------+----------------------------+---+

 Figure 4: ACP Addressing Sub-Scheme

 The fields are defined as follows: [Editor's note: The lengths of the
 fields is for discussion.]

 o Zone ID: If set to all zero bits: The device ID bits are used as
 an identifier (as opposed to a locator). This results in a non-
 hierarchical, flat addressing scheme. Any other value indicates a
 zone. See section Section 5.8.4 on how this field is used in
 detail.

 o Device ID: A unique value for each device.

 o V: Virtualization bit: 0: autonomic node base system; 1: a virtual
 context on an autonomic node.

https://datatracker.ietf.org/doc/html/rfc4193

Behringer, et al. Expires September 28, 2017 [Page 20]

Internet-Draft An Autonomic Control Plane March 2017

 The device ID is derived as follows: In an Autonomic Network, a
 registrar is enrolling new devices. As part of the enrolment process
 the registrar assigns a number to the device, which is unique for
 this registrar, but not necessarily unique in the domain. The 64 bit
 device ID is then composed as:

 o 48 bit: Registrar ID, a number unique inside the domain that
 identifies the registrar which assigned the name to the device. A
 MAC address of the registrar can be used for this purpose.

 o 15 bit: Device number, a number which is unique for a given
 registrar, to identify the device. This can be a sequentially
 assigned number.

 The "device ID" itself is unique in a domain (i.e., the Zone-ID is
 not required for uniqueness). Therefore, a device can be addressed
 either as part of a flat hierarchy (zone ID = 0), or with an
 aggregation scheme (any other zone ID). A address with zone-ID = 0
 is an identifier, with another zone-ID as a locator. See

Section 5.8.4 for a description of the zone bits.

 This addressing sub-scheme allows the direct addressing of specific
 virtual containers / VMs on an autonomic node. An increasing number
 of hardware platforms have a distributed architecture, with a base OS
 for the node itself, and the support for hardware blades with
 potentially different OSs. The VMs on the blades could be considered
 as separate autonomic nodes, in which case it would make sense to be
 able to address them directly. Autonomic Service Agents (ASAs) could
 be instantiated in either the base OS, or one of the VMs on a blade.
 This addressing scheme allows for the easy separation of the hardware
 context.

 The location of the V bit(s) at the end of the address allows to
 announce a single prefix for each autonomic node, while having
 separate virtual contexts addressable directly.

 [EDNOTE: various suggestions from mcr in his mail from 30 Nov 2016 to
 be considered (https://mailarchive.ietf.org/arch/msg/anima/

nZpEphrTqDCBdzsKMpaIn2gsIzI).]

5.8.4. Usage of the Zone Field

 The "zone ID" allows for the introduction of structure in the
 addressing scheme.

 Zone = zero is the default addressing scheme in an autonomic domain.
 Every autonomic node MUST respond to its ACP address with zone=0.
 Used on its own this leads to a non-hierarchical address scheme,

https://mailarchive.ietf.org/arch/msg/anima/nZpEphrTqDCBdzsKMpaIn2gsIzI
https://mailarchive.ietf.org/arch/msg/anima/nZpEphrTqDCBdzsKMpaIn2gsIzI

Behringer, et al. Expires September 28, 2017 [Page 21]

Internet-Draft An Autonomic Control Plane March 2017

 which is suitable for networks up to a certain size. In this case,
 the addresses primarily act as identifiers for the nodes, and
 aggregation is not possible.

 If aggregation is required, the 13 bit value allows for up to 8191
 zones. The allocation of zone numbers may either happen
 automatically through a to-be-defined algorithm; or it could be
 configured and maintained manually.

 If a device learns through an autonomic method or through
 configuration that it is part of a zone, it MUST also respond to its
 ACP address with that zone number. In this case the ACP loopback is
 configured with two ACP addresses: One for zone 0 and one for the
 assigned zone. This method allows for a smooth transition between a
 flat addressing scheme and an hierarchical one.

 (Theoretically, the 13 bits for the zone ID would allow also for two
 levels of zones, introducing a sub-hierarchy. We do not think this
 is required at this point, but a new type could be used in the future
 to support such a scheme.)

 Note: Another way to introduce hierarchy is to use sub-domains in the
 naming scheme. The node names "node17.subdomainA.example.com" and
 "node4.subdomainB.example.com" would automatically lead to different
 ULA prefixes, which can be used to introduce a routing hierarchy in
 the network, assuming that the subdomains are aligned with routing
 areas.

5.8.5. Other ACP Addressing Sub-Schemes

 Other ACP addressing sub-schemes can be defined if and when required.
 IANA will assign a new "type" for each new addressing sub-scheme.

5.9. Routing in the ACP

 Once ULA address are set up all autonomic entities should run a
 routing protocol within the autonomic control plane context. This
 routing protocol distributes the ULA created in the previous section
 for reachability. The use of the autonomic control plane specific
 context eliminates the probable clash with the global routing table
 and also secures the ACP from interference from the configuration
 mismatch or incorrect routing updates.

 The establishment of the routing plane and its parameters are
 automatic and strictly within the confines of the autonomic control
 plane. Therefore, no manual configuration is required.

Behringer, et al. Expires September 28, 2017 [Page 22]

Internet-Draft An Autonomic Control Plane March 2017

 All routing updates are automatically secured in transit as the
 channels of the autonomic control plane are by default secured, and
 this routing runs only inside the ACP.

 The routing protocol inside the ACP is RPL ([RFC6550]) with the
 following profile. See Appendix A for more details on the choice of
 RPL.

5.9.1. RPL Profile for the ACP

 o RPL Mode of Operations (MOP): mode 3 "Storing Mode of Operations
 with multicast support". Implementations should support also
 other modes. Note: Root indicates mode in DIO flow.

 o Objective Function (OF): Use OF0 [RFC6552]. No use of metric
 containers, Default RPLInstanceID = 0.

 * stretch_rank: none provided ("not stretched").

 * rank_factor: Derived from link speed: <= 100Mbps:
 LOW_SPEED_FACTOR(5), else HIGH_SPEED_FACTOR(1)

 o Trickle: Not used; Data Path Validation: Not used.

 o Proactive, aggressive DAO state maintenance:

 * Use K-flag in unsolicited DAO indicating change from previous
 information (to require DAO-ACK).

 * Retry such DAO DAO-RETRIES(3) times with DAO-
 ACK_TIME_OUT(256ms) in between.

 o Administrative Preference ([RFC6552], 3.2.6 - to become root):
 Indicated in DODAGPreference field of DIO message.

 * Explicit configured "root": 0b100

 * Registrar (Default): 0b011

 * AN-connect (non registrar): 0b010

 * Default: 0b001.

 The RPL root can create additional RPL instances with other OF and
 metrics as desired, eg: via intent.

https://datatracker.ietf.org/doc/html/rfc6550
https://datatracker.ietf.org/doc/html/rfc6552
https://datatracker.ietf.org/doc/html/rfc6552

Behringer, et al. Expires September 28, 2017 [Page 23]

Internet-Draft An Autonomic Control Plane March 2017

5.10. General ACP Considerations

 In order to be independent of configured link addresses, channels
 SHOULD use IPv6 link local addresses between adjacent neighbors
 wherever possible. This way, the ACP tunnels are independent of
 correct network wide routing.

 Since channels are by default established between adjacent neighbors,
 the resulting overlay network does hop by hop encryption. Each node
 decrypts incoming traffic from the ACP, and encrypts outgoing traffic
 to its neighbors in the ACP. Routing is discussed in Section 5.9.

 If two nodes are connected via several links, the ACP SHOULD be
 established on every link, but it is possible to establish the ACP
 only on a sub-set of links. Having an ACP channel on every link has
 a number of advantages, for example it allows for a faster failover
 in case of link failure, and it reflects the physical topology more
 closely. Using a subset of links (for example, a single link),
 reduces resource consumption on the devices, because state needs to
 be kept per ACP channel.

6. Workarounds for Non-Autonomic Nodes

6.1. Connecting a Non-Autonomic Controller / NMS system

 The Autonomic Control Plane can be used by management systems, such
 as controllers or network management system (NMS) hosts (henceforth
 called simply "NMS hosts"), to connect to devices through it. For
 this, an NMS host must have access to the ACP. The ACP is a self-
 protecting overlay network, which allows by default access only to
 trusted, autonomic systems. Therefore, a traditional, non-autonomic
 NMS system does not have access to the ACP by default, just like any
 other external device.

 If the NMS host is not autonomic, i.e., it does not support autonomic
 negotiation of the ACP, then it can be brought into the ACP by
 explicit configuration. On an adjacent autonomic node with ACP, the
 interface with the NMS host can be configured as "ACP Connect". In
 this case, all devices on this port, including the NMS host, is
 entirely and exclusively inside the ACP. It would likely require a
 second interface outside the ACP for connections between the NMS host
 and administrators, or Internet based services. This mode of
 connecting an NMS host has security consequences: All systems and
 processes connected to this implicitly trusted "ACP Connect"
 interface have access to all autonomic nodes on the entire ACP,
 without further authentication. Thus, this connection must be
 physically controlled.

Behringer, et al. Expires September 28, 2017 [Page 24]

Internet-Draft An Autonomic Control Plane March 2017

 The non-autonomic NMS host must be routed in the ACP. This involves
 two parts: 1) the NMS host must point default to the AN device for
 the ULA prefix used inside the ACP, and 2) the prefix used between AN
 node and NMS host must be announced into the ACP, and distributed
 there.

 The document "Autonomic Network Stable Connectivity"
 [I-D.ietf-anima-stable-connectivity] explains in more detail how the
 ACP can be integrated in a mixed NOC environment.

 If an NMS host is autonomic itself, it negotiates access to the ACP
 with its neighbor, like any other autonomic node.

6.2. ACP through Non-Autonomic L3 Clouds

 Not all devices in a network may be autonomic. If non-autonomic
 Layer-2 devices are between autonomic nodes, the communications
 described in this document should work, since it is IP based.
 However, non-autonomic Layer-3 devices do not forward link local
 autonomic messages, and thus break the Autonomic Control Plane.

 One workaround is to manually configure IP tunnels between autonomic
 nodes across a non-autonomic Layer-3 cloud. The tunnels are
 represented on each autonomic node as virtual interfaces, and all
 autonomic transactions work across such tunnels.

 Such manually configured tunnels are less "indestructible" than an
 automatically created ACP based on link local addressing, since they
 depend on correct data plane operations, such as routing and
 addressing.

 Future work should envisage an option where the edge device of the L3
 cloud is configured to automatically forward ACP discovery messages
 to the right exit point. This optimisation is not considered in this
 document.

7. Self-Healing Properties

 The ACP is self-healing:

 o New neighbors will automatically join the ACP after successful
 validation and will become reachable using their unique ULA
 address across the ACP.

 o When any changes happen in the topology, the routing protocol used
 in the ACP will automatically adapt to the changes and will
 continue to provide reachability to all devices.

Behringer, et al. Expires September 28, 2017 [Page 25]

Internet-Draft An Autonomic Control Plane March 2017

 o If an existing device gets revoked, it will automatically be
 denied access to the ACP as its domain certificate will be
 validated against a Certificate Revocation List during
 authentication. Since the revocation check is only done at the
 establishment of a new security association, existing ones are not
 automatically torn down. If an immediate disconnect is required,
 existing sessions to a freshly revoked device can be re-set.

 The ACP can also sustain network partitions and mergers. Practically
 all ACP operations are link local, where a network partition has no
 impact. Devices authenticate each other using the domain
 certificates to establish the ACP locally. Addressing inside the ACP
 remains unchanged, and the routing protocol inside both parts of the
 ACP will lead to two working (although partitioned) ACPs.

 There are few central dependencies: A certificate revocation list
 (CRL) may not be available during a network partition; a suitable
 policy to not immediately disconnect neighbors when no CRL is
 available can address this issue. Also, a registrar or Certificate
 Authority might not be available during a partition. This may delay
 renewal of certificates that are to expire in the future, and it may
 prevent the enrolment of new devices during the partition.

 After a network partition, a re-merge will just establish the
 previous status, certificates can be renewed, the CRL is available,
 and new devices can be enrolled everywhere. Since all devices use
 the same trust anchor, a re-merge will be smooth.

 Merging two networks with different trust anchors requires the trust
 anchors to mutually trust each other (for example, by cross-signing).
 As long as the domain names are different, the addressing will not
 overlap (see Section 5.8).

 It is also highly desirable for implementation of the ACP to be able
 to run it over interfaces that are administratively down. If this is
 not feasible, then it might instead be possible to request explicit
 operator override upon administrative actions that would
 administratively bring down an interface across whicht the ACP is
 running. Especially if bringing down the ACP is known to disconnect
 the operator from the device. For example any such down
 administrative action could perform a dependency check to see if the
 transport connection across which this action is performed is
 affected by the down action (with default RPL routing used, packet
 forwarding will be symmetric, so this is actually possible to check).

Behringer, et al. Expires September 28, 2017 [Page 26]

Internet-Draft An Autonomic Control Plane March 2017

8. Self-Protection Properties

 As explained in Section 5, the ACP is based on secure channels built
 between devices that have mutually authenticated each other with
 their domain certificates. The channels themselves are protected
 using standard encryption technologies like DTLS or IPsec which
 provide additional authentication during channel establishment, data
 integrity and data confidentiality protection of data inside the ACP
 and in addition, provide replay protection.

 An attacker will therefore not be able to join the ACP unless having
 a valid domain certificate, also packet injection and sniffing
 traffic will not be possible due to the security provided by the
 encryption protocol.

 The remaining attack vector would be to attack the underlying AN
 protocols themselves, either via directed attacks or by denial-of-
 service attacks. However, as the ACP is built using link-local IPv6
 address, remote attacks are impossible. The ULA addresses are only
 reachable inside the ACP context, therefore unreachable from the data
 plane. Also, the ACP protocols should be implemented to be attack
 resistant and not consume unnecessary resources even while under
 attack.

9. The Administrator View

 An ACP is self-forming, self-managing and self-protecting, therefore
 has minimal dependencies on the administrator of the network.
 Specifically, since it is independent of configuration, there is no
 scope for configuration errors on the ACP itself. The administrator
 may have the option to enable or disable the entire approach, but
 detailed configuration is not possible. This means that the ACP must
 not be reflected in the running configuration of devices, except a
 possible on/off switch.

 While configuration is not possible, an administrator must have full
 visibility of the ACP and all its parameters, to be able to do
 trouble-shooting. Therefore, an ACP must support all show and debug
 options, as for any other network function. Specifically, a network
 management system or controller must be able to discover the ACP, and
 monitor its health. This visibility of ACP operations must clearly
 be separated from visibility of data plane so automated systems will
 never have to deal with ACP aspect unless they explicitly desire to
 do so.

 Since an ACP is self-protecting, a device not supporting the ACP, or
 without a valid domain certificate cannot connect to it. This means
 that by default a traditional controller or network management system

Behringer, et al. Expires September 28, 2017 [Page 27]

Internet-Draft An Autonomic Control Plane March 2017

 cannot connect to an ACP. See Section 6.1 for more details on how to
 connect an NMS host into the ACP.

10. Security Considerations

 An ACP is self-protecting and there is no need to apply configuration
 to make it secure. Its security therefore does not depend on
 configuration.

 However, the security of the ACP depends on a number of other
 factors:

 o The usage of domain certificates depends on a valid supporting PKI
 infrastructure. If the chain of trust of this PKI infrastructure
 is compromised, the security of the ACP is also compromised. This
 is typically under the control of the network administrator.

 o Security can be compromised by implementation errors (bugs), as in
 all products.

 There is no prevention of source-address spoofing inside the ACP.
 This implies that if an attacker gains access to the ACP, (s)he can
 spoof all addresses inside the ACP and fake messages from any other
 device.

 Fundamentally, security depends on correct operation, implementation
 and architecture. Autonomic approaches such as the ACP largely
 eliminate the dependency on correct operation; implementation and
 architectural mistakes are still possible, as in all networking
 technologies.

11. IANA Considerations

Section 5.5.3 describes ACP over dTLS, which requires a well-known
 UDP port. We request IANA to assign this UDP port for 'ACP over
 dTLS'.

Section 5.5.4 describes an option for the channel negotiation, the
 'ACP channel type'. We request IANA to create a registry for 'ACP
 channel type'.

 The ACP channel type is a 8-bit unsigned integer. This document only
 assigns the first value.

Behringer, et al. Expires September 28, 2017 [Page 28]

Internet-Draft An Autonomic Control Plane March 2017

 Number | Channel Type | RFC
 ---------+-----------------------------------+------------
 0 | GRE tunnel protected with | this document
 | IPsec transport mode |
 1-255 | reserved for future channel types |

Section 5.8.2 describes a 'type' field in the base addressing scheme.
 We request IANA to create a registry for the 'ACP addressing scheme
 type', with the following initial values:

 Number | Address Type (sub-scheme) | RFC
 ---------+-----------------------------------+------------
 0 | Default address sub-scheme | this document
 7 | Reserved for private use |
 | sub-scheme |

12. Acknowledgements

 This work originated from an Autonomic Networking project at Cisco
 Systems, which started in early 2010. Many people contributed to
 this project and the idea of the Autonomic Control Plane, amongst
 which (in alphabetical order): Ignas Bagdonas, Parag Bhide, Balaji
 BL, Alex Clemm, Yves Hertoghs, Bruno Klauser, Max Pritikin, Ravi
 Kumar Vadapalli.

 Special thanks to Pascal Thubert to provide the details for the
 recommendations of the RPL profile to use in the ACP

 Further input and suggestions were received from: Rene Struik, Brian
 Carpenter, Benoit Claise.

13. Change log [RFC Editor: Please remove]

13.1. Initial version

 First version of this document: draft-behringer-autonomic-control-
plane

13.2. draft-behringer-anima-autonomic-control-plane-00

 Initial version of the anima document; only minor edits.

13.3. draft-behringer-anima-autonomic-control-plane-01

 o Clarified that the ACP should be based on, and support only IPv6.

 o Clarified in intro that ACP is for both, between devices, as well
 as for access from a central entity, such as an NMS.

https://datatracker.ietf.org/doc/html/draft-behringer-autonomic-control-plane
https://datatracker.ietf.org/doc/html/draft-behringer-autonomic-control-plane
https://datatracker.ietf.org/doc/html/draft-behringer-anima-autonomic-control-plane-00
https://datatracker.ietf.org/doc/html/draft-behringer-anima-autonomic-control-plane-01

Behringer, et al. Expires September 28, 2017 [Page 29]

Internet-Draft An Autonomic Control Plane March 2017

 o Added a section on how to connect an NMS system.

 o Clarified the hop-by-hop crypto nature of the ACP.

 o Added several references to GDNP as a candidate protocol.

 o Added a discussion on network split and merge. Although, this
 should probably go into the certificate management story longer
 term.

13.4. draft-behringer-anima-autonomic-control-plane-02

 Addresses (numerous) comments from Brian Carpenter. See mailing list
 for details. The most important changes are:

 o Introduced a new section "overview", to ease the understanding of
 the approach.

 o Merged the previous "problem statement" and "use case" sections
 into a mostly re-written "use cases" section, since they were
 overlapping.

 o Clarified the relationship with draft-ietf-anima-stable-
connectivity

13.5. draft-behringer-anima-autonomic-control-plane-03

 o Took out requirement for IPv6 --> that's in the reference doc.

 o Added requirement section.

 o Changed focus: more focus on autonomic functions, not only virtual
 out of band. This goes a bit throughout the document, starting
 with a changed abstract and intro.

13.6. draft-ietf-anima-autonomic-control-plane-00

 No changes; re-submitted as WG document.

13.7. draft-ietf-anima-autonomic-control-plane-01

 o Added some paragraphs in addressing section on "why IPv6 only", to
 reflect the discussion on the list.

 o Moved the data-plane ACP out of the main document, into an
 appendix. The focus is now the virtually separated ACP, since it
 has significant advantages, and isn't much harder to do.

https://datatracker.ietf.org/doc/html/draft-behringer-anima-autonomic-control-plane-02
https://datatracker.ietf.org/doc/html/draft-ietf-anima-stable-connectivity
https://datatracker.ietf.org/doc/html/draft-ietf-anima-stable-connectivity
https://datatracker.ietf.org/doc/html/draft-behringer-anima-autonomic-control-plane-03
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-00
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-01

Behringer, et al. Expires September 28, 2017 [Page 30]

Internet-Draft An Autonomic Control Plane March 2017

 o Changed the self-creation algorithm: Part of the initial steps go
 into the reference document. This document now assumes an
 adjacency table, and domain certificate. How those get onto the
 device is outside scope for this document.

 o Created a new section 6 "workarounds for non-autonomic nodes", and
 put the previous controller section (5.9) into this new section.
 Now, section 5 is "autonomic only", and section 6 explains what to
 do with non-autonomic stuff. Much cleaner now.

 o Added an appendix explaining the choice of RPL as a routing
 protocol.

 o Formalised the creation process a bit more. Now, we create a
 "candidate peer list" from the adjacency table, and form the ACP
 with those candidates. Also it explains now better that policy
 (Intent) can influence the peer selection. (section 4 and 5)

 o Introduce a section for the capability negotiation protocol
 (section 7). This needs to be worked out in more detail. This
 will likely be based on GRASP.

 o Introduce a new parameter: ACP tunnel type. And defines it in the
 IANA considerations section. Suggest GRE protected with IPSec
 transport mode as the default tunnel type.

 o Updated links, lots of small edits.

13.8. draft-ietf-anima-autonomic-control-plane-02

 o Added explicitly text for the ACP channel negotiation.

 o Merged draft-behringer-anima-autonomic-addressing-02 into this
 document, as suggested by WG chairs.

13.9. draft-ietf-anima-autonomic-control-plane-03

 o Changed Neighbor discovery protocol from GRASP to mDNS. Bootstrap
 protocol team decided to go with mDNS to discover bootstrap proxy,
 and ACP should be consistent with this. Reasons to go with mDNS
 in bootstrap were a) Bootstrap should be reuseable also outside of
 full anima solutions and introduce as few as possible new
 elements. mDNS was considered well-known and very-likely even pre-
 existing in low-end devices (IoT). b) Using GRASP both for the
 insecure neighbor discovery and secure ACP operatations raises the
 risk of introducing security issues through implementation issues/
 non-isolation between those two instances of GRASP.

https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-02
https://datatracker.ietf.org/doc/html/draft-behringer-anima-autonomic-addressing-02
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-03

Behringer, et al. Expires September 28, 2017 [Page 31]

Internet-Draft An Autonomic Control Plane March 2017

 o Shortened the section on GRASP instances, because with mDNS being
 used for discovery, there is no insecure GRASP session any longer,
 simplifying the GRASP considerations.

 o Added certificate requirements for ANIMA in section 5.1.1,
 specifically how the ANIMA information is encoded in
 subjectAltName.

 o Deleted the appendix on "ACP without separation", as originally
 planned, and the paragraph in the main text referring to it.

 o Deleted one sub-addressing scheme, focusing on a single scheme
 now.

 o Included information on how ANIMA information must be encoded in
 the domain certificate in Section 5.1.

 o Editorial changes, updated draft references, etc.

13.10. draft-ietf-anima-autonomic-control-plane-04

 Changed discovery of ACP neighbor back from mDNS to GRASP after
 revisiting the L2 problem. Described problem in discovery section
 itself to justify. Added text to explain how ACP discovery relates
 to BRSKY (bootstrap) discovery and pointed to Michael Richardsons
 draft detailing it. Removed appendix section that contained the
 original explanations why GRASP would be useful (current text is
 meant to be better).

13.11. draft-ietf-anima-autonomic-control-plane-05

 o Section 5.3 (candidate ACP neighbor selection): Add that Intent
 can override only AFTER an initial default ACP establishment.

 o Section 5.8.1 (addressing): State that addresses in the ACP are
 permanent, and do not support temporary addresses as defined in

RFC4941.

 o Modified Section 5.2.3 to point to the GRASP objective defined in
 [I-D.carpenter-anima-ani-objectives]. (and added that reference)

 o Section 5.8.2: changed from MD5 for calculating the first 40 bits
 to SHA256; reason is MD5 should not be used any more.

 o Added address sub-scheme to the IANA section.

 o Made the routing section more prescriptive.

https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-04
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-05
https://datatracker.ietf.org/doc/html/rfc4941

Behringer, et al. Expires September 28, 2017 [Page 32]

Internet-Draft An Autonomic Control Plane March 2017

 o Clarified in Section 6.1 the ACP Connect port, and defined that
 term "ACP Connect".

 o Section 6.2: Added some thoughts (from mcr) on how traversing a L3
 cloud could be automated.

 o Added a CRL check in Section 5.5.

 o Added a note on the possibility of source-address spoofing into
 the security considerations section.

 o Other editoral changes, including those proposed by Michael
 Richardson on 30 Nov 2016 (see ANIMA list).

13.12. draft-ietf-anima-autonomic-control-plane-06

 o Added proposed RPL profile.

 o detailed dTLS profile - dTLS with any additional negotiation/
 signaling channel.

 o Fixed up text for ACP/GRE encap. Removed text claiming its
 incompatible with non-GRE IPsec and detailled it.

 o Added text to suggest admin down interfaces should still run ACP.

14. References

 [I-D.carpenter-anima-ani-objectives]
 Carpenter, B. and B. Liu, "Technical Objective Formats for
 the Autonomic Network Infrastructure", draft-carpenter-

anima-ani-objectives-01 (work in progress), February 2017.

 [I-D.ietf-anima-bootstrapping-keyinfra]
 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-

keyinfra-05 (work in progress), March 2017.

 [I-D.ietf-anima-grasp]
 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-

grasp-10 (work in progress), March 2017.

https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-06
https://datatracker.ietf.org/doc/html/draft-carpenter-anima-ani-objectives-01
https://datatracker.ietf.org/doc/html/draft-carpenter-anima-ani-objectives-01
https://datatracker.ietf.org/doc/html/draft-ietf-anima-bootstrapping-keyinfra-05
https://datatracker.ietf.org/doc/html/draft-ietf-anima-bootstrapping-keyinfra-05
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-10
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-10

Behringer, et al. Expires September 28, 2017 [Page 33]

Internet-Draft An Autonomic Control Plane March 2017

 [I-D.ietf-anima-reference-model]
 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 Pierre, P., Liu, B., Nobre, J., and J. Strassner, "A
 Reference Model for Autonomic Networking", draft-ietf-

anima-reference-model-03 (work in progress), March 2017.

 [I-D.ietf-anima-stable-connectivity]
 Eckert, T. and M. Behringer, "Using Autonomic Control
 Plane for Stable Connectivity of Network OAM", draft-ietf-

anima-stable-connectivity-02 (work in progress), February
 2017.

 [I-D.richardson-anima-6join-discovery]
 Richardson, M., "GRASP discovery of Registrar by Join
 Assistant", draft-richardson-anima-6join-discovery-00
 (work in progress), October 2016.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <http://www.rfc-editor.org/info/rfc4122>.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
 <http://www.rfc-editor.org/info/rfc4193>.

 [RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy
 Extensions for Stateless Address Autoconfiguration in
 IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,
 <http://www.rfc-editor.org/info/rfc4941>.

 [RFC5082] Gill, V., Heasley, J., Meyer, D., Savola, P., Ed., and C.
 Pignataro, "The Generalized TTL Security Mechanism
 (GTSM)", RFC 5082, DOI 10.17487/RFC5082, October 2007,
 <http://www.rfc-editor.org/info/rfc5082>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952,
 DOI 10.17487/RFC5952, August 2010,
 <http://www.rfc-editor.org/info/rfc5952>.

https://datatracker.ietf.org/doc/html/draft-ietf-anima-reference-model-03
https://datatracker.ietf.org/doc/html/draft-ietf-anima-reference-model-03
https://datatracker.ietf.org/doc/html/draft-ietf-anima-stable-connectivity-02
https://datatracker.ietf.org/doc/html/draft-ietf-anima-stable-connectivity-02
https://datatracker.ietf.org/doc/html/draft-richardson-anima-6join-discovery-00
https://datatracker.ietf.org/doc/html/rfc4122
http://www.rfc-editor.org/info/rfc4122
https://datatracker.ietf.org/doc/html/rfc4193
http://www.rfc-editor.org/info/rfc4193
https://datatracker.ietf.org/doc/html/rfc4941
http://www.rfc-editor.org/info/rfc4941
https://datatracker.ietf.org/doc/html/rfc5082
http://www.rfc-editor.org/info/rfc5082
https://datatracker.ietf.org/doc/html/rfc5280
http://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc5952
http://www.rfc-editor.org/info/rfc5952

Behringer, et al. Expires September 28, 2017 [Page 34]

Internet-Draft An Autonomic Control Plane March 2017

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC6550] Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,
 Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,
 JP., and R. Alexander, "RPL: IPv6 Routing Protocol for
 Low-Power and Lossy Networks", RFC 6550,
 DOI 10.17487/RFC6550, March 2012,
 <http://www.rfc-editor.org/info/rfc6550>.

 [RFC6552] Thubert, P., Ed., "Objective Function Zero for the Routing
 Protocol for Low-Power and Lossy Networks (RPL)",

RFC 6552, DOI 10.17487/RFC6552, March 2012,
 <http://www.rfc-editor.org/info/rfc6552>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <http://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <http://www.rfc-editor.org/info/rfc6763>.

 [RFC7404] Behringer, M. and E. Vyncke, "Using Only Link-Local
 Addressing inside an IPv6 Network", RFC 7404,
 DOI 10.17487/RFC7404, November 2014,
 <http://www.rfc-editor.org/info/rfc7404>.

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <http://www.rfc-editor.org/info/rfc7575>.

 [RFC7576] Jiang, S., Carpenter, B., and M. Behringer, "General Gap
 Analysis for Autonomic Networking", RFC 7576,
 DOI 10.17487/RFC7576, June 2015,
 <http://www.rfc-editor.org/info/rfc7576>.

 [RFC7676] Pignataro, C., Bonica, R., and S. Krishnan, "IPv6 Support
 for Generic Routing Encapsulation (GRE)", RFC 7676,
 DOI 10.17487/RFC7676, October 2015,
 <http://www.rfc-editor.org/info/rfc7676>.

https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc6550
http://www.rfc-editor.org/info/rfc6550
https://datatracker.ietf.org/doc/html/rfc6552
http://www.rfc-editor.org/info/rfc6552
https://datatracker.ietf.org/doc/html/rfc6762
http://www.rfc-editor.org/info/rfc6762
https://datatracker.ietf.org/doc/html/rfc6763
http://www.rfc-editor.org/info/rfc6763
https://datatracker.ietf.org/doc/html/rfc7404
http://www.rfc-editor.org/info/rfc7404
https://datatracker.ietf.org/doc/html/rfc7575
http://www.rfc-editor.org/info/rfc7575
https://datatracker.ietf.org/doc/html/rfc7576
http://www.rfc-editor.org/info/rfc7576
https://datatracker.ietf.org/doc/html/rfc7676
http://www.rfc-editor.org/info/rfc7676

Behringer, et al. Expires September 28, 2017 [Page 35]

Internet-Draft An Autonomic Control Plane March 2017

Appendix A. Background on the choice of routing protocol

 In a pre-standard implementation, the "IPv6 Routing Protocol for Low-
 Power and Lossy Networks (RPL, [RFC6550] was chosen. This
 Appendix explains the reasoning behind that decision.

 Requirements for routing in the ACP are:

 o Self-management: The ACP must build automatically, without human
 intervention. Therefore routing protocol must also work
 completely automatically. RPL is a simple, self-managing
 protocol, which does not require zones or areas; it is also self-
 configuring, since configuration is carried as part of the
 protocol (see Section 6.7.6 of [RFC6550]).

 o Scale: The ACP builds over an entire domain, which could be a
 large enterprise or service provider network. The routing
 protocol must therefore support domains of 100,000 nodes or more,
 ideally without the need for zoning or separation into areas. RPL
 has this scale property. This is based on extensive use of
 default routing. RPL also has other scalability improvements,
 such as selecting only a subset of peers instead of all possible
 ones, and trickle support for information synchronisation.

 o Low resource consumption: The ACP supports traditional network
 infrastructure, thus runs in addition to traditional protocols.
 The ACP, and specifically the routing protocol must have low
 resource consumption both in terms of memory and CPU requirements.
 Specifically, at edge nodes, where memory and CPU are scarce,
 consumption should be minimal. RPL builds a destination-oriented
 directed acyclic graph (DODAG), where the main resource
 consumption is at the root of the DODAG. The closer to the edge
 of the network, the less state needs to be maintained. This
 adapts nicely to the typical network design. Also, all changes
 below a common parent node are kept below that parent node.

 o Support for unstructured address space: In the Autonomic
 Networking Infrastructure, node addresses are identifiers, and may
 not be assigned in a topological way. Also, nodes may move
 topologically, without changing their address. Therefore, the
 routing protocol must support completely unstructured address
 space. RPL is specifically made for mobile ad-hoc networks, with
 no assumptions on topologically aligned addressing.

 o Modularity: To keep the initial implementation small, yet allow
 later for more complex methods, it is highly desirable that the
 routing protocol has a simple base functionality, but can import
 new functional modules if needed. RPL has this property with the

https://datatracker.ietf.org/doc/html/rfc6550
https://datatracker.ietf.org/doc/html/rfc6550#section-6.7.6

Behringer, et al. Expires September 28, 2017 [Page 36]

Internet-Draft An Autonomic Control Plane March 2017

 concept of "objective function", which is a plugin to modify
 routing behaviour.

 o Extensibility: Since the Autonomic Networking Infrastructure is a
 new concept, it is likely that changes in the way of operation
 will happen over time. RPL allows for new objective functions to
 be introduced later, which allow changes to the way the routing
 protocol creates the DAGs.

 o Multi-topology support: It may become necessary in the future to
 support more than one DODAG for different purposes, using
 different objective functions. RPL allow for the creation of
 several parallel DODAGs, should this be required. This could be
 used to create different topologies to reach different roots.

 o No need for path optimisation: RPL does not necessarily compute
 the optimal path between any two nodes. However, the ACP does not
 require this today, since it carries mainly non-delay-sensitive
 feedback loops. It is possible that different optimisation
 schemes become necessary in the future, but RPL can be expanded
 (see point "Extensibility" above).

Authors' Addresses

 Michael H. Behringer (editor)
 Cisco Systems
 Building D, 45 Allee des Ormes
 Mougins 06250
 France

 Email: mbehring@cisco.com

 Toerless Eckert
 Futurewei Technologies Inc.
 2330 Central Expy
 Santa Clara 95050
 USA

 Email: tte+ietf@cs.fau.de

Behringer, et al. Expires September 28, 2017 [Page 37]

Internet-Draft An Autonomic Control Plane March 2017

 Steinthor Bjarnason
 Arbor Networks
 2727 South State Street, Suite 200
 Ann Arbor MI 48104
 United States

 Email: sbjarnason@arbor.net

Behringer, et al. Expires September 28, 2017 [Page 38]

