
Workgroup: ANIMA WG

Internet-Draft:

draft-ietf-anima-bootstrapping-keyinfra-45

Published: 11 November 2020

Intended Status: Standards Track

Expires: 15 May 2021

Authors: M. Pritikin

Cisco

M. Richardson

Sandelman

T.T.E. Eckert

Futurewei USA

M.H. Behringer K.W. Watsen

Watsen Networks

Bootstrapping Remote Secure Key Infrastructures (BRSKI)

Abstract

This document specifies automated bootstrapping of an Autonomic

Control Plane. To do this a Secure Key Infrastructure is

bootstrapped. This is done using manufacturer-installed X.509

certificates, in combination with a manufacturer's authorizing

service, both online and offline. We call this process the

Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol.

Bootstrapping a new device can occur using a routable address and a

cloud service, or using only link-local connectivity, or on limited/

disconnected networks. Support for deployment models with less

stringent security requirements is included. Bootstrapping is

complete when the cryptographic identity of the new key

infrastructure is successfully deployed to the device. The

established secure connection can be used to deploy a locally issued

certificate to the device as well.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 15 May 2021.

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Prior Bootstrapping Approaches

1.2. Terminology

1.3. Scope of solution

1.3.1. Support environment

1.3.2. Constrained environments

1.3.3. Network Access Controls

1.3.4. Bootstrapping is not Booting

1.4. Leveraging the new key infrastructure / next steps

1.5. Requirements for Autonomic Network Infrastructure (ANI)

devices

2. Architectural Overview

2.1. Behavior of a Pledge

2.2. Secure Imprinting using Vouchers

2.3. Initial Device Identifier

2.3.1. Identification of the Pledge

2.3.2. MASA URI extension

2.4. Protocol Flow

2.5. Architectural Components

2.5.1. Pledge

2.5.2. Join Proxy

2.5.3. Domain Registrar

2.5.4. Manufacturer Service

2.5.5. Public Key Infrastructure (PKI)

2.6. Certificate Time Validation

2.6.1. Lack of realtime clock

2.6.2. Infinite Lifetime of IDevID

2.7. Cloud Registrar

2.8. Determining the MASA to contact

3. Voucher-Request artifact

3.1. Nonceless Voucher Requests

3.2. Tree Diagram

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

3.3. Examples

3.4. YANG Module

4. Proxying details (Pledge - Proxy - Registrar)

4.1. Pledge discovery of Proxy

4.1.1. Proxy GRASP announcements

4.2. CoAP connection to Registrar

4.3. Proxy discovery and communication of Registrar

5. Protocol Details (Pledge - Registrar - MASA)

5.1. BRSKI-EST TLS establishment details

5.2. Pledge Requests Voucher from the Registrar

5.3. Registrar Authorization of Pledge

5.4. BRSKI-MASA TLS establishment details

5.4.1. MASA authentication of customer Registrar

5.5. Registrar Requests Voucher from MASA

5.5.1. MASA renewal of expired vouchers

5.5.2. MASA pinning of registrar

5.5.3. MASA checking of voucher request signature

5.5.4. MASA verification of domain registrar

5.5.5. MASA verification of pledge prior-signed-voucher-request

5.5.6. MASA nonce handling

5.6. MASA and Registrar Voucher Response

5.6.1. Pledge voucher verification

5.6.2. Pledge authentication of provisional TLS connection

5.7. Pledge BRSKI Status Telemetry

5.8. Registrar audit-log request

5.8.1. MASA audit log response

5.8.2. Calculation of domainID

5.8.3. Registrar audit log verification

5.9. EST Integration for PKI bootstrapping

5.9.1. EST Distribution of CA Certificates

5.9.2. EST CSR Attributes

5.9.3. EST Client Certificate Request

5.9.4. Enrollment Status Telemetry

5.9.5. Multiple certificates

5.9.6. EST over CoAP

6. Clarification of transfer-encoding

7. Reduced security operational modes

7.1. Trust Model

7.2. Pledge security reductions

7.3. Registrar security reductions

7.4. MASA security reductions

7.4.1. Issuing Nonceless vouchers

7.4.2. Trusting Owners on First Use

7.4.3. Updating or extending voucher trust anchors

8. IANA Considerations

8.1. The IETF XML Registry

8.2. YANG Module Names Registry

8.3. BRSKI well-known considerations

8.3.1. BRSKI .well-known registration

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

8.3.2. BRSKI .well-known registry

8.4. PKIX Registry

8.5. Pledge BRSKI Status Telemetry

8.6. DNS Service Names

8.7. GRASP Objective Names

9. Applicability to the Autonomic Control Plane (ACP)

9.1. Operational Requirements

9.1.1. MASA Operational Requirements

9.1.2. Domain Owner Operational Requirements

9.1.3. Device Operational Requirements

10. Privacy Considerations

10.1. MASA audit log

10.2. What BRSKI-EST reveals

10.3. What BRSKI-MASA reveals to the manufacturer

10.4. Manufacturers and Used or Stolen Equipment

10.5. Manufacturers and Grey market equipment

10.6. Some mitigations for meddling by manufacturers

10.7. Death of a manufacturer

11. Security Considerations

11.1. Denial of Service (DoS) against MASA

11.2. DomainID must be resistant to second-preimage attacks

11.3. Availability of good random numbers

11.4. Freshness in Voucher-Requests

11.5. Trusting manufacturers

11.6. Manufacturer Maintenance of trust anchors

11.6.1. Compromise of Manufacturer IDevID signing keys

11.6.2. Compromise of MASA signing keys

11.6.3. Compromise of MASA web service

11.7. YANG Module Security Considerations

12. Acknowledgements

13. References

13.1. Normative References

13.2. Informative References

Appendix A. IPv4 and non-ANI operations

A.1. IPv4 Link Local addresses

A.2. Use of DHCPv4

Appendix B. mDNS / DNSSD proxy discovery options

Appendix C. Example Vouchers

C.1. Keys involved

C.1.1. Manufacturer Certificate Authority for IDevID signatures

C.1.2. MASA key pair for voucher signatures

C.1.3. Registrar Certificate Authority

C.1.4. Registrar key pair

C.1.5. Pledge key pair

C.2. Example process

C.2.1. Pledge to Registrar

C.2.2. Registrar to MASA

C.2.3. MASA to Registrar

Appendix D. Additional References

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Authors' Addresses

1. Introduction

The Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol

provides a solution for secure zero-touch (automated) bootstrap of

new (unconfigured) devices that are called pledges in this document.

Pledges have an IDevID installed in them at the factory.

"BRSKI" is pronounced like "brewski", a colloquial term for beer in

Canada and parts of the US-midwest. [brewski]

This document primarily provides for the needs of the ISP and

Enterprise focused ANIMA Autonomic Control Plane (ACP) [I-D.ietf-

anima-autonomic-control-plane]. This bootstrap process satisfies

the [RFC7575] requirements of section 3.3 of making all operations

secure by default. Other users of the BRSKI protocol will need to

provide separate applicability statements that include privacy and

security considerations appropriate to that deployment. Section 9

explains the detailed applicability for this the ACP usage.

The BRSKI protocol requires a significant amount of communication

between manufacturer and owner: in its default modes it provides a

cryptographic transfer of control to the initial owner. In its

strongest modes, it leverages sales channel information to identify

the owner in advance. Resale of devices is possible, provided that

the manufacturer is willing to authorize the transfer. Mechanisms to

enable transfers of ownership without manufacturer authorization are

not included in this version of the protocol, but could be designed

into future versions.

This document describes how pledges discover (or are discovered by)

an element of the network domain to which the pledge belongs that

will perform the bootstrap. This element (device) is called the

registrar. Before any other operation, pledge and registrar need to

establish mutual trust:

Registrar authenticating the pledge: "Who is this device? What

is its identity?"

Registrar authorizing the pledge: "Is it mine? Do I want it?

What are the chances it has been compromised?"

Pledge authenticating the registrar: "What is this registrar's

identity?"

Pledge authorizing the registrar: "Should I join this network?"

This document details protocols and messages to answer the above

questions. It uses a TLS connection and an PKIX-shaped (X.509v3)

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4. ¶

certificate (an IEEE 802.1AR [IDevID] IDevID) of the pledge to

answer points 1 and 2. It uses a new artifact called a "voucher"

that the registrar receives from a "Manufacturer Authorized Signing

Authority" (MASA) and passes to the pledge to answer points 3 and 4.

A proxy provides very limited connectivity between the pledge and

the registrar.

The syntactic details of vouchers are described in detail in

[RFC8366]. This document details automated protocol mechanisms to

obtain vouchers, including the definition of a 'voucher-request'

message that is a minor extension to the voucher format (see Section

3) defined by [RFC8366].

BRSKI results in the pledge storing an X.509 root certificate

sufficient for verifying the registrar identity. In the process a

TLS connection is established that can be directly used for

Enrollment over Secure Transport (EST). In effect BRSKI provides an

automated mechanism for the "Bootstrap Distribution of CA

Certificates" described in [RFC7030] Section 4.1.1 wherein the

pledge "MUST [...] engage a human user to authorize the CA

certificate using out-of-band" information. With BRSKI the pledge

now can automate this process using the voucher. Integration with a

complete EST enrollment is optional but trivial.

BRSKI is agile enough to support bootstrapping alternative key

infrastructures, such as a symmetric key solutions, but no such

system is described in this document.

1.1. Prior Bootstrapping Approaches

To literally "pull yourself up by the bootstraps" is an impossible

action. Similarly the secure establishment of a key infrastructure

without external help is also an impossibility. Today it is commonly

accepted that the initial connections between nodes are insecure,

until key distribution is complete, or that domain-specific keying

material (often pre-shared keys, including mechanisms like SIM

cards) is pre-provisioned on each new device in a costly and non-

scalable manner. Existing automated mechanisms are known as non-

secured 'Trust on First Use' (TOFU) [RFC7435], 'resurrecting

duckling' [Stajano99theresurrecting] or 'pre-staging'.

Another prior approach has been to try and minimize user actions

during bootstrapping, but not eliminate all user-actions. The

original EST protocol [RFC7030] does reduce user actions during

¶

¶

¶

¶

¶

¶

bootstrap but does not provide solutions for how the following

protocol steps can be made autonomic (not involving user actions):

using the Implicit Trust Anchor [RFC7030] database to

authenticate an owner specific service (not an autonomic solution

because the URL must be securely distributed),

engaging a human user to authorize the CA certificate using out-

of-band data (not an autonomic solution because the human user is

involved),

using a configured Explicit TA database (not an autonomic

solution because the distribution of an explicit TA database is

not autonomic),

and using a Certificate-Less TLS mutual authentication method

(not an autonomic solution because the distribution of symmetric

key material is not autonomic).

These "touch" methods do not meet the requirements for zero-touch.

There are "call home" technologies where the pledge first

establishes a connection to a well known manufacturer service using

a common client-server authentication model. After mutual

authentication, appropriate credentials to authenticate the target

domain are transferred to the pledge. This creates several problems

and limitations:

the pledge requires realtime connectivity to the manufacturer

service,

the domain identity is exposed to the manufacturer service (this

is a privacy concern),

the manufacturer is responsible for making the authorization

decisions (this is a liability concern),

BRSKI addresses these issues by defining extensions to the EST

protocol for the automated distribution of vouchers.

1.2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terms are defined for clarity:

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

ANI:

Circuit Proxy:

drop-ship:

Domain:

domainID:

Domain CA:

enrollment:

imprint:

IDevID:

The Autonomic Network Infrastructure as defined by [I-D.ietf-

anima-reference-model]. Section 9 details specific requirements

for pledges, proxies and registrars when they are part of an ANI.

A stateful implementation of the join proxy. This is

the assumed type of proxy.

The physical distribution of equipment containing the

"factory default" configuration to a final destination. In zero-

touch scenarios there is no staging or pre-configuration during

drop-ship.

The set of entities that share a common local trust anchor.

This includes the proxy, registrar, Domain Certificate Authority,

Management components and any existing entity that is already a

member of the domain.

The domain IDentity is a unique value based upon the

Registrar CA's certificate. Section 5.8.2 specifies how it is

calculated.

The domain Certification Authority (CA) provides

certification functionalities to the domain. At a minimum it

provides certification functionalities to a registrar and manages

the private key that defines the domain. Optionally, it certifies

all elements.

The process where a device presents key material to a

network and acquires a network-specific identity. For example

when a certificate signing request is presented to a

certification authority and a certificate is obtained in

response.

The process where a device obtains the cryptographic key

material to identify and trust future interactions with a

network. This term is taken from Konrad Lorenz's work in biology

with new ducklings: during a critical period, the duckling would

assume that anything that looks like a mother duck is in fact

their mother. An equivalent for a device is to obtain the

fingerprint of the network's root certification authority

certificate. A device that imprints on an attacker suffers a

similar fate to a duckling that imprints on a hungry wolf.

Securely imprinting is a primary focus of this document

[imprinting]. The analogy to Lorenz's work was first noted in

[Stajano99theresurrecting].

An Initial Device Identity X.509 certificate installed by

the vendor on new equipment. This is a term from 802.1AR [IDevID]

¶

¶

¶

¶

¶

¶

¶

¶

¶

IPIP Proxy:

Join Proxy:

Join Registrar (and Coordinator):

LDevID:

manufacturer:

MASA Audit-Log:

MASA Service:

nonced:

A stateless proxy alternative.

A domain entity that helps the pledge join the domain.

A join proxy facilitates communication for devices that find

themselves in an environment where they are not provided

connectivity until after they are validated as members of the

domain. For simplicity this document sometimes uses the term of

'proxy' to indicate the join proxy. The pledge is unaware that

they are communicating with a proxy rather than directly with a

registrar.

A representative of the domain

that is configured, perhaps autonomically, to decide whether a

new device is allowed to join the domain. The administrator of

the domain interfaces with a "join registrar (and coordinator)"

to control this process. Typically a join registrar is "inside"

its domain. For simplicity this document often refers to this as

just "registrar". Within [I-D.ietf-anima-reference-model] this is

referred to as the "join registrar autonomic service agent".

Other communities use the abbreviation "JRC".

A Local Device Identity X.509 certificate installed by the

owner of the equipment. This is a term from 802.1AR [IDevID]

the term manufacturer is used throughout this

document to be the entity that created the device. This is

typically the "original equipment manufacturer" or OEM, but in

more complex situations it could be a "value added retailer"

(VAR), or possibly even a systems integrator. In general, it a

goal of BRSKI to eliminate small distinctions between different

sales channels. The reason for this is that it permits a single

device, with a uniform firmware load, to be shipped directly to

all customers. This eliminates costs for the manufacturer. This

also reduces the number of products supported in the field

increasing the chance that firmware will be more up to date.

An anonymized list of previous owners maintained by

the MASA on a per device (per pledge) basis. Described in Section

5.8.1.

A third-party Manufacturer Authorized Signing

Authority (MASA) service on the global Internet. The MASA signs

vouchers. It also provides a repository for audit-log information

of privacy protected bootstrapping events. It does not track

ownership.

a voucher (or request) that contains a nonce (the normal

case).

¶

¶

¶

¶

¶

¶

¶

¶

nonceless:

offline:

Ownership Tracker:

Pledge:

(Public) Key Infrastructure:

TOFU:

Voucher:

a voucher (or request) that does not contain a nonce,

relying upon accurate clocks for expiration, or which does not

expire.

When an architectural component cannot perform realtime

communications with a peer, either due to network connectivity or

because the peer is turned off, the operation is said to be

occurring offline.

An Ownership Tracker service on the global

Internet. The Ownership Tracker uses business processes to

accurately track ownership of all devices shipped against domains

that have purchased them. Although optional, this component

allows vendors to provide additional value in cases where their

sales and distribution channels allow for accurate tracking of

such ownership. Ownership tracking information is indicated in

vouchers as described in [RFC8366]

The prospective (unconfigured) device, which has an

identity installed at the factory.

The collection of systems and

processes that sustain the activities of a public key system. The

registrar acts as an [RFC5280] and [RFC5272] (see section 7)

"Registration Authority".

Trust on First Use. Used similarly to [RFC7435]. This is

where a pledge device makes no security decisions but rather

simply trusts the first registrar it is contacted by. This is

also known as the "resurrecting duckling" model.

A signed artifact from the MASA that indicates to a pledge

the cryptographic identity of the registrar it should trust.

There are different types of vouchers depending on how that trust

is asserted. Multiple voucher types are defined in [RFC8366]

1.3. Scope of solution

1.3.1. Support environment

This solution (BRSKI) can support large router platforms with multi-

gigabit inter-connections, mounted in controlled access data

centers. But this solution is not exclusive to large equipment: it

is intended to scale to thousands of devices located in hostile

environments, such as ISP provided CPE devices which are drop-

shipped to the end user. The situation where an order is fulfilled

from distributed warehouse from a common stock and shipped directly

to the target location at the request of a domain owner is

explicitly supported. That stock ("SKU") could be provided to a

¶

¶

¶

¶

¶

¶

¶

number of potential domain owners, and the eventual domain owner

will not know a-priori which device will go to which location.

The bootstrapping process can take minutes to complete depending on

the network infrastructure and device processing speed. The network

communication itself is not optimized for speed; for privacy

reasons, the discovery process allows for the pledge to avoid

announcing its presence through broadcasting.

Nomadic or mobile devices often need to acquire credentials to

access the network at the new location. An example of this is mobile

phone roaming among network operators, or even between cell towers.

This is usually called handoff. BRSKI does not provide a low-latency

handoff which is usually a requirement in such situations. For these

solutions BRSKI can be used to create a relationship (an LDevID)

with the "home" domain owner. The resulting credentials are then

used to provide credentials more appropriate for a low-latency

handoff.

1.3.2. Constrained environments

Questions have been posed as to whether this solution is suitable in

general for Internet of Things (IoT) networks. This depends on the

capabilities of the devices in question. The terminology of

[RFC7228] is best used to describe the boundaries.

The solution described in this document is aimed in general at non-

constrained (i.e., class 2+ [RFC7228]) devices operating on a non-

Challenged network. The entire solution as described here is not

intended to be useable as-is by constrained devices operating on

challenged networks (such as 802.15.4 Low-power Lossy Networks

(LLN)s).

Specifically, there are protocol aspects described here that might

result in congestion collapse or energy-exhaustion of intermediate

battery powered routers in an LLN. Those types of networks should

not use this solution. These limitations are predominately related

to the large credential and key sizes required for device

authentication. Defining symmetric key techniques that meet the

operational requirements is out-of-scope but the underlying protocol

operations (TLS handshake and signing structures) have sufficient

algorithm agility to support such techniques when defined.

The imprint protocol described here could, however, be used by non-

energy constrained devices joining a non-constrained network (for

instance, smart light bulbs are usually mains powered, and speak

802.11). It could also be used by non-constrained devices across a

non-energy constrained, but challenged network (such as 802.15.4).

The certificate contents, and the process by which the four

¶

¶

¶

¶

¶

¶

questions above are resolved do apply to constrained devices. It is

simply the actual on-the-wire imprint protocol that could be

inappropriate.

1.3.3. Network Access Controls

This document presumes that network access control has either

already occurred, is not required, or is integrated by the proxy and

registrar in such a way that the device itself does not need to be

aware of the details. Although the use of an X.509 Initial Device

Identity is consistent with IEEE 802.1AR [IDevID], and allows for

alignment with 802.1X network access control methods, its use here

is for pledge authentication rather than network access control.

Integrating this protocol with network access control, perhaps as an

Extensible Authentication Protocol (EAP) method (see [RFC3748]), is

out-of-scope.

1.3.4. Bootstrapping is not Booting

This document describes "bootstrapping" as the protocol used to

obtain a local trust anchor. It is expected that this trust anchor,

along with any additional configuration information subsequently

installed, is persisted on the device across system restarts

("booting"). Bootstrapping occurs only infrequently such as when a

device is transferred to a new owner or has been reset to factory

default settings.

1.4. Leveraging the new key infrastructure / next steps

As a result of the protocol described herein, the bootstrapped

devices have the Domain CA trust anchor in common. An end entity

certificate has optionally been issued from the Domain CA. This

makes it possible to securely deploy functionalities across the

domain, e.g:

Device management.

Routing authentication.

Service discovery.

The major intended benefit is that it possible to use the

credentials deployed by this protocol to secure the Autonomic

Control Plane (ACP) ([I-D.ietf-anima-autonomic-control-plane]).

1.5. Requirements for Autonomic Network Infrastructure (ANI) devices

The BRSKI protocol can be used in a number of environments. Some of

the options in this document are the result of requirements that are

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

out of the ANI scope. This section defines the base requirements for

ANI devices.

For devices that intend to become part of an Autonomic Network

Infrastructure (ANI) ([I-D.ietf-anima-reference-model]) that

includes an Autonomic Control Plane ([I-D.ietf-anima-autonomic-

control-plane]), the BRSKI protocol MUST be implemented.

The pledge must perform discovery of the proxy as described in

Section 4.1 using Generic Autonomic Signaling Protocol (GRASP)'s

DULL [I-D.ietf-anima-grasp] M_FLOOD announcements.

Upon successfully validating a voucher artifact, a status telemetry

MUST be returned. See Section 5.7.

An ANIMA ANI pledge MUST implement the EST automation extensions

described in Section 5.9. They supplement the [RFC7030] EST to

better support automated devices that do not have an end user.

The ANI Join Registrar Autonomic Service Agent (ASA) MUST support

all the BRSKI and above listed EST operations.

All ANI devices SHOULD support the BRSKI proxy function, using

circuit proxies over the ACP. (See Section 4.3)

2. Architectural Overview

The logical elements of the bootstrapping framework are described in

this section. Figure 1 provides a simplified overview of the

components.

¶

¶

¶

¶

¶

¶

¶

¶

Figure 1: Architecture Overview

We assume a multi-vendor network. In such an environment there could

be a Manufacturer Service for each manufacturer that supports

devices following this document's specification, or an integrator

could provide a generic service authorized by multiple

manufacturers. It is unlikely that an integrator could provide

Ownership Tracking services for multiple manufacturers due to the

required sales channel integrations necessary to track ownership.

The domain is the managed network infrastructure with a Key

Infrastructure the pledge is joining. The domain provides initial

device connectivity sufficient for bootstrapping through a proxy.

The domain registrar authenticates the pledge, makes authorization

decisions, and distributes vouchers obtained from the Manufacturer

Service. Optionally the registrar also acts as a PKI Certification

Authority.

 +------------------------+

 +--------------Drop Ship----------------| Vendor Service |

 | +------------------------+

 | | M anufacturer| |

 | | A uthorized |Ownership|

 | | S igning |Tracker |

 | | A uthority | |

 | +--------------+---------+

 | ^

 | | BRSKI-

 V | MASA

+-------+ ..|...

| | . | .

| | . +------------+ +-----------+ | .

| | . | | | | | .

|Pledge | . | Join | | Domain <-------+ .

| | . | Proxy | | Registrar | .

| <-------->............<-------> (PKI RA) | .

| | | BRSKI-EST | | .

| | . | | +-----+-----+ .

|IDevID | . +------------+ | e.g. RFC7030 .

| | . +-----------------+----------+ .

| | . | Key Infrastructure | .

| | . | (e.g., PKI Certificate | .

+-------+ . | Authority) | .

 . +----------------------------+ .

 . .

 ..

 "Domain" components

¶

¶

2.1. Behavior of a Pledge

The pledge goes through a series of steps, which are outlined here

at a high level.

Figure 2: Pledge State Diagram

State descriptions for the pledge are as follows:

Discover a communication channel to a registrar.

¶

 / Factory \

 \ default /

 -----+------

 |

 +------v-------+

 | (1) Discover |

+------------> |

| +------+-------+

| |

| +------v-------+

| | (2) Identify |

^------------+ |

| rejected +------+-------+

| |

| +------v-------+

| | (3) Request |

| | Join |

| +------+-------+

| |

| +------v-------+

| | (4) Imprint |

^------------+ |

| Bad MASA +------+-------+

| response | send Voucher Status Telemetry

| +------v-------+

| | (5) Enroll |<---+ (non-error HTTP codes)

^------------+ |___/ (e.g. 202 'Retry-After')

| Enroll +------+-------+

| Failure |

| -----v------

| / Enrolled \

^------------+ |

 Factory \------------/

 reset

¶

1. ¶

Identify itself. This is done by presenting an X.509 IDevID

credential to the discovered registrar (via the proxy) in a TLS

handshake. (The registrar credentials are only provisionally

accepted at this time).

Request to join the discovered registrar. A unique nonce is

included ensuring that any responses can be associated with

this particular bootstrapping attempt.

Imprint on the registrar. This requires verification of the

manufacturer-service-provided voucher. A voucher contains

sufficient information for the pledge to complete

authentication of a registrar. This document details this step

in depth.

Enroll. After imprint an authenticated TLS (HTTPS) connection

exists between pledge and registrar. Enrollment over Secure

Transport (EST) [RFC7030] can then be used to obtain a domain

certificate from a registrar.

The pledge is now a member of, and can be managed by, the domain and

will only repeat the discovery aspects of bootstrapping if it is

returned to factory default settings.

This specification details integration with EST enrollment so that

pledges can optionally obtain a locally issued certificate, although

any Representational State Transfer (REST) (see [REST]) interface

could be integrated in future work.

2.2. Secure Imprinting using Vouchers

A voucher is a cryptographically protected artifact (using a digital

signature) to the pledge device authorizing a zero-touch imprint on

the registrar domain.

The format and cryptographic mechanism of vouchers is described in

detail in [RFC8366].

Vouchers provide a flexible mechanism to secure imprinting: the

pledge device only imprints when a voucher can be validated. At the

lowest security levels the MASA can indiscriminately issue vouchers

and log claims of ownership by domains. At the highest security

levels issuance of vouchers can be integrated with complex sales

channel integrations that are beyond the scope of this document. The

sales channel integration would verify actual (legal) ownership of

the pledge by the domain. This provides the flexibility for a number

of use cases via a single common protocol mechanism on the pledge

and registrar devices that are to be widely deployed in the field.

The MASA services have the flexibility to leverage either the

2.

¶

3.

¶

4.

¶

5.

¶

¶

¶

¶

¶

currently defined claim mechanisms or to experiment with higher or

lower security levels.

Vouchers provide a signed but non-encrypted communication channel

among the pledge, the MASA, and the registrar. The registrar

maintains control over the transport and policy decisions, allowing

the local security policy of the domain network to be enforced.

2.3. Initial Device Identifier

Pledge authentication and pledge voucher-request signing is via a

PKIX-shaped certificate installed during the manufacturing process.

This is the 802.1AR Initial Device Identifier (IDevID), and it

provides a basis for authenticating the pledge during the protocol

exchanges described here. There is no requirement for a common root

PKI hierarchy. Each device manufacturer can generate its own root

certificate. Specifically, the IDevID enables:

Uniquely identifying the pledge by the Distinguished Name (DN)

and subjectAltName (SAN) parameters in the IDevID. The unique

identification of a pledge in the voucher objects are derived

from those parameters as described below. Section 10.3

discusses privacy implications of the identifier.

Provides a cryptographic authentication of the pledge to the

Registrar (see Section 5.3).

Secure auto-discovery of the pledge's MASA by the registrar

(see Section 2.8).

Signing of voucher-request by the pledge's IDevID (see Section

3).

Provides a cryptographic authentication of the pledge to the

MASA (see Section 5.5.5).

Section 7.2.13 (2009 edition) and section 8.10.3 (2018 edition) of

[IDevID] discusses keyUsage and extendedKeyUsage extensions in the

IDevID certificate. [IDevID] acknowledges that adding restrictions

in the certificate limits applicability of these long-lived

certificates. This specification emphasizes this point, and

therefore RECOMMENDS that no key usage restrictions be included.

This is consistent with [RFC5280] section 4.2.1.3, which does not

require key usage restrictions for end entity certificates.

2.3.1. Identification of the Pledge

In the context of BRSKI, pledges have a 1:1 relationship with a

"serial-number". This serial-number is used both in the "serial-

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

¶

number" field of voucher or voucher-requests (see Section 3) and in

local policies on registrar or MASA (see Section 5).

There is a (certificate) serialNumber field is defined in [RFC5280]

section 4.1.2.2. In the ASN.1, this is referred to as the

CertificateSerialNumber. This field is NOT relevant to this

specification. Do not confuse this field with the "serial-number"

defined by this document, or by [IDevID] and [RFC4519] section 2.31.

The device serial number is defined in [RFC5280] section A.1 and A.2

as the X520SerialNumber, with the OID tag id-at-serialNumber.

The device serial number field (X520SerialNumber) is used as follows

by the pledge to build the "serial-number" that is placed in the

voucher-request. In order to build it, the fields need to be

converted into a serial-number of "type string".

An example of a printable form of the "serialNumber" field is

provided in [RFC4519] section 2.31 ("WI-3005"). That section further

provides equality and syntax attributes.

Due to the reality of existing device identity provisioning

processes, some manufacturers have stored serial-numbers in other

fields. Registrar's SHOULD be configurable, on a per-manufacturer

basis, to look for serial-number equivalents in other fields.

As explained in Section 5.5 the Registrar MUST extract the serial-

number again itself from the pledge's TLS certificate. It can

consult the serial-number in the pledge-request if there are any

possible confusion about the source of the serial-number.

2.3.2. MASA URI extension

This document defines a new PKIX non-critical certificate extension

to carry the MASA URI. This extension is intended to be used in the

IDevID certificate. The URI is represented as described in Section

7.4 of [RFC5280].

The URI provides the authority information. The BRSKI "/.well-known"

tree ([RFC5785]) is described in Section 5.

A complete URI MAY be in this extension, including the 'scheme',

'authority', and 'path', The complete URI will typically be used in

diagnostic or experimental situations. Typically, (and in

consideration to constrained systems), this SHOULD be reduced to

only the 'authority', in which case a scheme of "https://"

([RFC7230] section 2.7.3) and 'path' of "/.well-known/brski" is to

be assumed.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The registrar can assume that only the 'authority' is present in the

extension, if there are no slash ("/") characters in the extension.

Section 7.4 of [RFC5280] calls out various schemes that MUST be

supported, including LDAP, HTTP and FTP. However, the registrar MUST

use HTTPS for the BRSKI-MASA connection.

The new extension is identified as follows:

<CODE BEGINS>

MASAURLExtnModule-2016 { iso(1) identified-organization(3) dod(6)

internet(1) security(5) mechanisms(5) pkix(7)

id-mod(0) id-mod-MASAURLExtn2016(TBD) }

DEFINITIONS IMPLICIT TAGS ::= BEGIN

-- EXPORTS ALL --

IMPORTS

EXTENSION

FROM PKIX-CommonTypes-2009

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-pkixCommon-02(57) }

id-pe FROM PKIX1Explicit-2009

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-pkix1-explicit-02(51) } ;

MASACertExtensions EXTENSION ::= { ext-MASAURL, ... }

ext-MASAURL EXTENSION ::= { SYNTAX MASAURLSyntax

IDENTIFIED BY id-pe-masa-url }

id-pe-masa-url OBJECT IDENTIFIER ::= { id-pe TBD }

MASAURLSyntax ::= IA5String

END

<CODE ENDS>

Figure 3: MASAURL ASN.1 Module

The choice of id-pe is based on guidance found in Section 4.2.2 of

[RFC5280], "These extensions may be used to direct applications to

¶

¶

¶

on-line information about the issuer or the subject". The MASA URL

is precisely that: online information about the particular subject.

2.4. Protocol Flow

A representative flow is shown in Figure 4

¶

¶

Figure 4: Protocol Time Sequence Diagram

+--------+ +---------+ +------------+ +------------+

| Pledge | | Circuit | | Domain | | Vendor |

| | | Join | | Registrar | | Service |

| | | Proxy | | (JRC) | | (MASA) |

+--------+ +---------+ +------------+ +------------+

 | | | Internet |

[discover] | | |

 |<-RFC4862 IPv6 addr | | |

 |<-RFC3927 IPv4 addr | Appendix A | Legend |

 |-++++++++++++++++++->| | C - circuit |

 | optional: mDNS query| Appendix B | join proxy |

 | RFC6763/RFC6762 (+) | | P - provisional |

 |<-++++++++++++++++++-| | TLS connection |

 | GRASP M_FLOOD | | |

 | periodic broadcast| | |

[identity] | | |

 |<------------------->C<----------------->| |

 | TLS via the Join Proxy | |

 |<--Registrar TLS server authentication---| |

[PROVISIONAL accept of server cert] | |

 P---X.509 client authentication---------->| |

[request join] | |

 P---Voucher Request(w/nonce for voucher)->| |

 P /------------------- | |

 P | [accept device?] |

 P | [contact Vendor] |

 P | |--Pledge ID-------->|

 P | |--Domain ID-------->|

 P | |--optional:nonce--->|

 P optional: | [extract DomainID]

 P can occur in advance | [update audit log]

 P if nonceleess | |

 P | |<- voucher ---------|

 P \------------------- | w/nonce if provided|

 P<------voucher---------------------------| |

[imprint] | |

 |-------voucher status telemetry--------->| |

 | |<-device audit log--|

 | [verify audit log and voucher] |

 |<--------------------------------------->| |

[enroll] | |

 | Continue with RFC7030 enrollment | |

 | using now bidirectionally authenticated | |

 | TLS session. | |

[enrolled] | |

On initial bootstrap, a new device (the pledge) uses a local service

autodiscovery (GRASP or mDNS) to locate a join proxy. The join proxy

connects the pledge to a local registrar (the JRC).

Having found a candidate registrar, the fledgling pledge sends some

information about itself to the registrar, including its serial

number in the form of a voucher request and its device identity

certificate (IDevID) as part of the TLS session.

The registrar can determine whether it expected such a device to

appear, and locates a MASA. The location of the MASA is usually

found in an extension in the IDevID. Having determined that the MASA

is suitable, the entire information from the initial voucher request

(including device serial number) is transmitted over the internet in

a TLS protected channel to the manufacturer, along with information

about the registrar/owner.

The manufacturer can then apply policy based on the provided

information, as well as other sources of information (such as sales

records), to decide whether to approve the claim by the registrar to

own the device; if the claim is accepted, a voucher is issued that

directs the device to accept its new owner.

The voucher is returned to the registrar, but not immediately to the

device -- the registrar has an opportunity to examine the voucher,

the MASA's audit-logs, and other sources of information to determine

whether the device has been tampered with, and whether the bootstrap

should be accepted.

No filtering of information is possible in the signed voucher, so

this is a binary yes-or-no decision. If the registrar accepts the

voucher as a proper one for its device, the voucher is returned to

the pledge for imprinting.

The voucher also includes a trust anchor that the pledge uses as

representing the owner. This is used to successfully bootstrap from

an environment where only the manufacturer has built-in trust by the

device into an environment where the owner now has a PKI footprint

on the device.

When BRSKI is followed with EST this single footprint is further

leveraged into the full owner's PKI and a LDevID for the device.

Subsequent reporting steps provide flows of information to indicate

success/failure of the process.

¶

¶

¶

¶

¶

¶

¶

¶

2.5. Architectural Components

2.5.1. Pledge

The pledge is the device that is attempting to join. The pledge is

assumed to talk to the Join Proxy using link-local network

connectivity. In most cases, the pledge has no other connectivity

until the pledge completes the enrollment process and receives some

kind of network credential.

2.5.2. Join Proxy

The join proxy provides HTTPS connectivity between the pledge and

the registrar. A circuit proxy mechanism is described in Section 4.

Additional mechanisms, including a CoAP mechanism and a stateless

IPIP mechanism are the subject of future work.

2.5.3. Domain Registrar

The domain's registrar operates as the BRSKI-MASA client when

requesting vouchers from the MASA (see Section 5.4). The registrar

operates as the BRSKI-EST server when pledges request vouchers (see

Section 5.1). The registrar operates as the BRSKI-EST server

"Registration Authority" if the pledge requests an end entity

certificate over the BRSKI-EST connection (see Section 5.9).

The registrar uses an Implicit Trust Anchor database for

authenticating the BRSKI-MASA connection's MASA TLS Server

Certificate. Configuration or distribution of trust anchors is out-

of-scope for this specification.

The registrar uses a different Implicit Trust Anchor database for

authenticating the BRSKI-EST connection's Pledge TLS Client

Certificate. Configuration or distribution of the BRSKI-EST client

trust anchors is out-of-scope of this specification. Note that the

trust anchors in/excluded from the database will affect which

manufacturers' devices are acceptable to the registrar as pledges,

and can also be used to limit the set of MASAs that are trusted for

enrollment.

2.5.4. Manufacturer Service

The Manufacturer Service provides two logically separate functions:

the Manufacturer Authorized Signing Authority (MASA) described in

Section 5.5 and Section 5.6, and an ownership tracking/auditing

function described in Section 5.7 and Section 5.8.

¶

¶

¶

¶

¶

¶

2.5.5. Public Key Infrastructure (PKI)

The Public Key Infrastructure (PKI) administers certificates for the

domain of concern, providing the trust anchor(s) for it and allowing

enrollment of pledges with domain certificates.

The voucher provides a method for the distribution of a single PKI

trust anchor (as the "pinned-domain-cert"). A distribution of the

full set of current trust anchors is possible using the optional EST

integration.

The domain's registrar acts as an [RFC5272] Registration Authority,

requesting certificates for pledges from the Key Infrastructure.

The expectations of the PKI are unchanged from EST [RFC7030]. This

document does not place any additional architectural requirements on

the Public Key Infrastructure.

2.6. Certificate Time Validation

2.6.1. Lack of realtime clock

Many devices when bootstrapping do not have knowledge of the current

time. Mechanisms such as Network Time Protocols cannot be secured

until bootstrapping is complete. Therefore bootstrapping is defined

with a framework that does not require knowledge of the current

time. A pledge MAY ignore all time stamps in the voucher and in the

certificate validity periods if it does not know the current time.

The pledge is exposed to dates in the following five places:

registrar certificate notBefore, registrar certificate notAfter,

voucher created-on, and voucher expires-on. Additionally, CMS

signatures contain a signingTime.

A pledge with a real time clock in which it has confidence, MUST

check the above time fields in all certificates and signatures that

it processes.

If the voucher contains a nonce then the pledge MUST confirm the

nonce matches the original pledge voucher-request. This ensures the

voucher is fresh. See Section 5.2.

2.6.2. Infinite Lifetime of IDevID

[RFC5280] explains that long lived pledge certificates "SHOULD be

assigned the GeneralizedTime value of 99991231235959Z" for the

notAfter field.

Some deployed IDevID management systems are not compliant with the

802.1AR requirement for infinite lifetimes, and put in typical <= 3

¶

¶

¶

¶

¶

¶

¶

¶

¶

year certificate lifetimes. Registrars SHOULD be configurable on a

per-manufacturer basis to ignore pledge lifetimes when the pledge

did not follow the RFC5280 recommendations.

2.7. Cloud Registrar

There exist operationally open networks wherein devices gain

unauthenticated access to the Internet at large. In these use cases

the management domain for the device needs to be discovered within

the larger Internet. The case where a device can boot and get access

to larger Internet are less likely within the ANIMA ACP scope but

may be more important in the future. In the ANIMA ACP scope, new

devices will be quarantined behind a Join Proxy.

There are additionally some greenfield situations involving an

entirely new installation where a device may have some kind of

management uplink that it can use (such as via 3G network for

instance). In such a future situation, the device might use this

management interface to learn that it should configure itself to

become the local registrar.

In order to support these scenarios, the pledge MAY contact a well

known URI of a cloud registrar if a local registrar cannot be

discovered or if the pledge's target use cases do not include a

local registrar.

If the pledge uses a well known URI for contacting a cloud registrar

a manufacturer-assigned Implicit Trust Anchor database (see

[RFC7030]) MUST be used to authenticate that service as described

in [RFC6125]. The use of a DNS-ID for validation is appropriate, and

it may include wildcard components on the left-mode side. This is

consistent with the human user configuration of an EST server URI in

[RFC7030] which also depends on RFC6125.

2.8. Determining the MASA to contact

The registrar needs to be able to contact a MASA that is trusted by

the pledge in order to obtain vouchers. There are three mechanisms

described:

The device's Initial Device Identifier (IDevID) will normally

contain the MASA URL as detailed in Section 2.3. This is the

RECOMMENDED mechanism.

It can be operationally difficult to ensure the necessary X.509

extensions are in the pledge's IDevID due to the difficulty of

aligning current pledge manufacturing with software releases and

development. As a final fallback the registrar MAY be manually

configured or distributed with a MASA URL for each manufacturer.

Note that the registrar can only select the configured MASA URL

¶

¶

¶

¶

¶

¶

¶

based on the trust anchor -- so manufacturers can only leverage this

approach if they ensure a single MASA URL works for all pledges

associated with each trust anchor.

3. Voucher-Request artifact

Voucher-requests are how vouchers are requested. The semantics of

the voucher-request are described below, in the YANG model.

A pledge forms the "pledge voucher-request", signs it with it's

IDevID and submits it to the registrar.

The registrar in turn forms the "registrar voucher-request", signs

it with it's Registrar keypair and submits it to the MASA.

The "proximity-registrar-cert" leaf is used in the pledge voucher-

requests. This provides a method for the pledge to assert the

registrar's proximity.

This network proximity results from the following properties in the

ACP context: the pledge is connected to the Join Proxy (Section 4)

using a Link-Local IPv6 connection. While the Join Proxy does not

participate in any meaningful sense in the cryptography of the TLS

connection (such as via a Channel Binding), the Registrar can

observe that the connection is via the private ACP (ULA) address of

the join proxy, and could not come from outside the ACP. The Pledge

must therefore be at most one IPv6 Link-Local hop away from an

existing node on the ACP.

Other users of BRSKI will need to define other kinds of assertions

if the network proximity described above does not match their needs.

The "prior-signed-voucher-request" leaf is used in registrar

voucher-requests. If present, it is the signed pledge voucher-

request artifact. This provides a method for the registrar to

forward the pledge's signed request to the MASA. This completes

transmission of the signed "proximity-registrar-cert" leaf.

Unless otherwise signaled (outside the voucher-request artifact),

the signing structure is as defined for vouchers, see [RFC8366].

3.1. Nonceless Voucher Requests

A registrar MAY also retrieve nonceless vouchers by sending

nonceless voucher-requests to the MASA in order to obtain vouchers

for use when the registrar does not have connectivity to the MASA.

No "prior-signed-voucher-request" leaf would be included. The

registrar will also need to know the serial number of the pledge.

This document does not provide a mechanism for the registrar to

learn that in an automated fashion. Typically this will be done via

¶

¶

¶

¶

¶

¶

¶

¶

¶

Example (1)

scanning of bar-code or QR-code on packaging, or via some sales

channel integration.

3.2. Tree Diagram

The following tree diagram illustrates a high-level view of a

voucher-request document. The voucher-request builds upon the

voucher artifact described in [RFC8366]. The tree diagram is

described in [RFC8340]. Each node in the diagram is fully described

by the YANG module in Section 3.4. Please review the YANG module for

a detailed description of the voucher-request format.

Figure 5: YANG Tree diagram for Voucher-Request

3.3. Examples

This section provides voucher-request examples for illustration

purposes. These examples show the JSON prior to CMS wrapping. JSON

encoding rules specify that any binary content be base64 encoded

([RFC4648] section 4). The contents of the (base64) encoded

certificates have been elided to save space. For detailed examples,

see Appendix C.2. These examples conform to the encoding rules

defined in [RFC7951].

The following example illustrates a pledge voucher-

request. The assertion leaf is indicated as 'proximity' and

the registrar's TLS server certificate is included in the

'proximity-registrar-cert' leaf. See Section 5.2.

¶

¶

module: ietf-voucher-request

 grouping voucher-request-grouping

 +-- voucher

 +-- created-on? yang:date-and-time

 +-- expires-on? yang:date-and-time

 +-- assertion? enumeration

 +-- serial-number string

 +-- idevid-issuer? binary

 +-- pinned-domain-cert? binary

 +-- domain-cert-revocation-checks? boolean

 +-- nonce? binary

 +-- last-renewal-date? yang:date-and-time

 +-- prior-signed-voucher-request? binary

 +-- proximity-registrar-cert? binary

¶

¶

Example (2)

Example (3)

Figure 6: JSON representation of example Voucher-Request

The following example illustrates a registrar voucher-

request. The 'prior-signed-voucher-request' leaf is populated

with the pledge's voucher-request (such as the prior example).

The pledge's voucher-request is a binary CMS signed object. In

the JSON encoding used here it must be base64 encoded. The

nonce and assertion have been carried forward from the pledge

request to the registrar request. The serial-number is

extracted from the pledge's Client Certificate from the TLS

connection. See Section 5.5.

Figure 7: JSON representation of example Prior-Signed Voucher-Request

The following example illustrates a registrar voucher-

request. The 'prior-signed-voucher-request' leaf is not

populated with the pledge's voucher-request nor is the nonce

leaf. This form might be used by a registrar requesting a

voucher when the pledge can not communicate with the registrar

(such as when it is powered down, or still in packaging), and

therefore could not submit a nonce. This scenario is most

useful when the registrar is aware that it will not be able to

reach the MASA during deployment. See Section 5.5.

{

 "ietf-voucher-request:voucher": {

 "assertion": "proximity",

 "nonce": "62a2e7693d82fcda2624de58fb6722e5",

 "serial-number" : "JADA123456789",

 "created-on": "2017-01-01T00:00:00.000Z",

 "proximity-registrar-cert": "base64encodedvalue=="

 }

}

¶

{

 "ietf-voucher-request:voucher": {

 "assertion" : "proximity",

 "nonce": "62a2e7693d82fcda2624de58fb6722e5",

 "created-on": "2017-01-01T00:00:02.000Z",

 "idevid-issuer": "base64encodedvalue==",

 "serial-number": "JADA123456789",

 "prior-signed-voucher-request": "base64encodedvalue=="

 }

}

¶

Figure 8: JSON representation of Offline Voucher-Request

3.4. YANG Module

Following is a YANG [RFC7950] module formally extending the

[RFC8366] voucher into a voucher-request.

{

 "ietf-voucher-request:voucher": {

 "created-on": "2017-01-01T00:00:02.000Z",

 "idevid-issuer": "base64encodedvalue==",

 "serial-number": "JADA123456789"

 }

}

¶

<CODE BEGINS> file "ietf-voucher-request@2018-02-14.yang"

module ietf-voucher-request {

 yang-version 1.1;

 namespace

 "urn:ietf:params:xml:ns:yang:ietf-voucher-request";

 prefix "vcr";

 import ietf-restconf {

 prefix rc;

 description "This import statement is only present to access

 the yang-data extension defined in RFC 8040.";

 reference "RFC 8040: RESTCONF Protocol";

 }

 import ietf-voucher {

 prefix vch;

 description "This module defines the format for a voucher,

 which is produced by a pledge's manufacturer or

 delegate (MASA) to securely assign a pledge to

 an 'owner', so that the pledge may establish a secure

 connection to the owner's network infrastructure";

 reference "RFC 8366: Voucher Artifact for

 Bootstrapping Protocols";

 }

 organization

 "IETF ANIMA Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/anima/>

 WG List: <mailto:anima@ietf.org>

 Author: Kent Watsen

 <mailto:kent+ietf@watsen.net>

 Author: Michael H. Behringer

 <mailto:Michael.H.Behringer@gmail.com>

 Author: Toerless Eckert

 <mailto:tte+ietf@cs.fau.de>

 Author: Max Pritikin

 <mailto:pritikin@cisco.com>

 Author: Michael Richardson

 <mailto:mcr+ietf@sandelman.ca>";

 description

 "This module defines the format for a voucher request.

 It is a superset of the voucher itself.

 It provides content to the MASA for consideration

 during a voucher request.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL

 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',

 'MAY', and 'OPTIONAL' in this document are to be interpreted as

 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

 they appear in all capitals, as shown here.

 Copyright (c) 2019 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the RFC

 itself for full legal notices.";

 revision "2018-02-14" {

 description

 "Initial version";

 reference

 "RFC XXXX: Bootstrapping Remote Secure Key Infrastructure";

 }

 // Top-level statement

 rc:yang-data voucher-request-artifact {

 uses voucher-request-grouping;

 }

 // Grouping defined for future usage

 grouping voucher-request-grouping {

 description

 "Grouping to allow reuse/extensions in future work.";

 uses vch:voucher-artifact-grouping {

 refine "voucher/created-on" {

 mandatory false;

 }

 refine "voucher/pinned-domain-cert" {

 mandatory false;

 description "A pinned-domain-cert field

 is not valid in a voucher request, and

 any occurrence MUST be ignored";

 }

 refine "voucher/last-renewal-date" {

 description "A last-renewal-date field

 is not valid in a voucher request, and

 any occurrence MUST be ignored";

 }

 refine "voucher/domain-cert-revocation-checks" {

 description "The domain-cert-revocation-checks field

 is not valid in a voucher request, and

 any occurrence MUST be ignored";

 }

 refine "voucher/assertion" {

 mandatory false;

 description "Any assertion included in registrar voucher

 requests SHOULD be ignored by the MASA.";

 }

 augment "voucher" {

 description

 "Adds leaf nodes appropriate for requesting vouchers.";

 leaf prior-signed-voucher-request {

 type binary;

 description

 "If it is necessary to change a voucher, or re-sign and

 forward a voucher that was previously provided along a

 protocol path, then the previously signed voucher SHOULD

 be included in this field.

 For example, a pledge might sign a voucher request

 with a proximity-registrar-cert, and the registrar

 then includes it as the prior-signed-voucher-request

 field. This is a simple mechanism for a chain of

 trusted parties to change a voucher request, while

 maintaining the prior signature information.

 The Registrar and MASA MAY examine the prior signed

 voucher information for the

 purposes of policy decisions. For example this

 information could be useful to a MASA to determine

 that both pledge and registrar agree on proximity

 assertions. The MASA SHOULD remove all

 prior-signed-voucher-request information when

 signing a voucher for imprinting so as to minimize

 the final voucher size.";

 }

 leaf proximity-registrar-cert {

 type binary;

 description

 "An X.509 v3 certificate structure as specified by

 RFC 5280, Section 4 encoded using the ASN.1

 distinguished encoding rules (DER), as specified

 in [ITU.X690.1994].

 The first certificate in the Registrar TLS server

 certificate_list sequence (the end-entity TLS

 certificate, see [RFC8446]) presented by the Registrar

 to the Pledge.

 This MUST be populated in a Pledge's voucher request

 when a proximity assertion is requested.";

 }

 }

 }

 }

}

<CODE ENDS>

Figure 9: YANG module for Voucher-Request

4. Proxying details (Pledge - Proxy - Registrar)

This section is normative for uses with an ANIMA ACP. The use of the

GRASP mechanism is part of the ACP. Other users of BRSKI will need

to define an equivalent proxy mechanism, and an equivalent mechanism

to configure the proxy.

The role of the proxy is to facilitate communications. The proxy

forwards packets between the pledge and a registrar that has been

provisioned to the proxy via full GRASP ACP discovery.

This section defines a stateful proxy mechanism which is referred to

as a "circuit" proxy. This is a form of Application Level Gateway

([RFC2663] section 2.9).

The proxy does not terminate the TLS handshake: it passes streams of

bytes onward without examination. A proxy MUST NOT assume any

specific TLS version. Please see [RFC8446] section 9.3 for details

on TLS invariants.

A Registrar can directly provide the proxy announcements described

below, in which case the announced port can point directly to the

Registrar itself. In this scenario the pledge is unaware that there

is no proxying occurring. This is useful for Registrars which are

servicing pledges on directly connected networks.

¶

¶

¶

¶

¶

As a result of the proxy Discovery process in Section 4.1.1, the

port number exposed by the proxy does not need to be well known, or

require an IANA allocation.

During the discovery of the Registrar by the Join Proxy, the Join

Proxy will also learn which kinds of proxy mechanisms are available.

This will allow the Join Proxy to use the lowest impact mechanism

which the Join Proxy and Registrar have in common.

In order to permit the proxy functionality to be implemented on the

maximum variety of devices the chosen mechanism should use the

minimum amount of state on the proxy device. While many devices in

the ANIMA target space will be rather large routers, the proxy

function is likely to be implemented in the control plane CPU of

such a device, with available capabilities for the proxy function

similar to many class 2 IoT devices.

The document [I-D.richardson-anima-state-for-joinrouter] provides a

more extensive analysis and background of the alternative proxy

methods.

4.1. Pledge discovery of Proxy

The result of discovery is a logical communication with a registrar,

through a proxy. The proxy is transparent to the pledge. The

communication between the pledge and Join Proxy is over IPv6 Link-

Local addresses.

To discover the proxy the pledge performs the following actions:

MUST: Obtains a local address using IPv6 methods as described

in [RFC4862] IPv6 Stateless Address AutoConfiguration. Use of

[RFC4941] temporary addresses is encouraged. To limit pervasive

monitoring ([RFC7258]), a new temporary address MAY use a

short lifetime (that is, set TEMP_PREFERRED_LIFETIME to be

short). Pledges will generally prefer use of IPv6 Link-Local

addresses, and discovery of proxy will be by Link-Local

mechanisms. IPv4 methods are described in Appendix A

MUST: Listen for GRASP M_FLOOD ([I-D.ietf-anima-grasp])

announcements of the objective: "AN_Proxy". See section Section

4.1.1 for the details of the objective. The pledge MAY listen

concurrently for other sources of information, see Appendix B.

Once a proxy is discovered the pledge communicates with a registrar

through the proxy using the bootstrapping protocol defined in

Section 5.

While the GRASP M_FLOOD mechanism is passive for the pledge, the

non-normative other methods (mDNS, and IPv4 methods) described in

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

¶

Appendix B are active. The pledge SHOULD run those methods in

parallel with listening to for the M_FLOOD. The active methods

SHOULD back-off by doubling to a maximum of one hour to avoid

overloading the network with discovery attempts. Detection of change

of physical link status (Ethernet carrier for instance) SHOULD reset

the back off timers.

The pledge could discover more than one proxy on a given physical

interface. The pledge can have a multitude of physical interfaces as

well: a layer-2/3 Ethernet switch may have hundreds of physical

ports.

Each possible proxy offer SHOULD be attempted up to the point where

a valid voucher is received: while there are many ways in which the

attempt may fail, it does not succeed until the voucher has been

validated.

The connection attempts via a single proxy SHOULD exponentially

back-off to a maximum of one hour to avoid overloading the network

infrastructure. The back-off timer for each MUST be independent of

other connection attempts.

Connection attempts SHOULD be run in parallel to avoid head of queue

problems wherein an attacker running a fake proxy or registrar could

perform protocol actions intentionally slowly. Connection attempts

to different proxies SHOULD be sent with an interval of 3 to 5s. The

pledge SHOULD continue to listen to for additional GRASP M_FLOOD

messages during the connection attempts.

Each connection attempt through a distinct Join Proxy MUST have a

unique nonce in the voucher-request.

Once a connection to a registrar is established (e.g. establishment

of a TLS session key) there are expectations of more timely

responses, see Section 5.2.

Once all discovered services are attempted (assuming that none

succeeded) the device MUST return to listening for GRASP M_FLOOD. It

SHOULD periodically retry any manufacturer-specific mechanisms. The

pledge MAY prioritize selection order as appropriate for the

anticipated environment.

4.1.1. Proxy GRASP announcements

A proxy uses the DULL GRASP M_FLOOD mechanism to announce itself.

This announcement can be within the same message as the ACP

announcement detailed in [I-D.ietf-anima-autonomic-control-plane].

The formal Concise Data Definition Language (CDDL) [RFC8610]

definition is:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

<CODE BEGINS> file "proxygrasp.cddl"

flood-message = [M_FLOOD, session-id, initiator, ttl,

 +[objective, (locator-option / [])]]

objective = ["AN_Proxy", objective-flags, loop-count,

 objective-value]

ttl = 180000 ; 180,000 ms (3 minutes)

initiator = ACP address to contact Registrar

objective-flags = sync-only ; as in GRASP spec

sync-only = 4 ; M_FLOOD only requires synchronization

loop-count = 1 ; one hop only

objective-value = any ; none

locator-option = [O_IPv6_LOCATOR, ipv6-address,

 transport-proto, port-number]

ipv6-address = the v6 LL of the Proxy

$transport-proto /= IPPROTO_TCP ; note this can be any value from the

 ; IANA protocol registry, as per

 ; [GRASP] section 2.9.5.1, note 3.

port-number = selected by Proxy

<CODE ENDS>

Figure 10: CDDL definition of Proxy Discovery message

Here is an example M_FLOOD announcing a proxy at fe80::1, on TCP

port 4443.

Figure 11: Example of Proxy Discovery message

On a small network the Registrar MAY include the GRASP M_FLOOD

announcements to locally connected networks.

The $transport-proto above indicates the method that the pledge-

proxy-registrar will use. The TCP method described here is

mandatory, and other proxy methods, such as CoAP methods not defined

in this document are optional. Other methods MUST NOT be enabled

unless the Join Registrar ASA indicates support for them in it's own

announcement.

¶

[M_FLOOD, 12340815, h'fe800000000000000000000000000001', 180000,

 [["AN_Proxy", 4, 1, ""],

 [O_IPv6_LOCATOR,

 h'fe800000000000000000000000000001', IPPROTO_TCP, 4443]]]

¶

¶

4.2. CoAP connection to Registrar

The use of CoAP to connect from pledge to registrar is out of scope

for this document, and is described in future work. See [I-D.ietf-

anima-constrained-voucher].

4.3. Proxy discovery and communication of Registrar

The registrar SHOULD announce itself so that proxies can find it and

determine what kind of connections can be terminated.

The registrar announces itself using ACP instance of GRASP using

M_FLOOD messages, with the "AN_join_registrar" objective. A

registrar may announce any convenient port number, including using a

stock port 443. ANI proxies MUST support GRASP discovery of

registrars.

The M_FLOOD is formatted as follows:

Figure 12: An example of a Registrar announcement message

The formal CDDL definition is:

<CODE BEGINS> file "jrcgrasp.cddl"

flood-message = [M_FLOOD, session-id, initiator, ttl,

 +[objective, (locator-option / [])]]

objective = ["AN_join_registrar", objective-flags, loop-count,

 objective-value]

initiator = ACP address to contact Registrar

objective-flags = sync-only ; as in GRASP spec

sync-only = 4 ; M_FLOOD only requires synchronization

loop-count = 255 ; mandatory maximum

objective-value = text ; name of the (list of) of supported

 ; protocols: "EST-TLS" for RFC7030.

<CODE ENDS>

Figure 13: CDDL definition for Registrar announcement message

¶

¶

¶

¶

[M_FLOOD, 51804321, h'fda379a6f6ee00000200000064000001', 180000,

 [["AN_join_registrar", 4, 255, "EST-TLS"],

 [O_IPv6_LOCATOR,

 h'fda379a6f6ee00000200000064000001', IPPROTO_TCP, 8443]]]

¶

The M_FLOOD message MUST be sent periodically. The default period

SHOULD be 60 seconds, the value SHOULD be operator configurable but

SHOULD NOT be smaller than 60 seconds. The frequency of sending MUST

be such that the aggregate amount of periodic M_FLOODs from all

flooding sources cause only negligible traffic across the ACP.

Here are some examples of locators for illustrative purposes. Only

the first one ($transport-protocol = 6, TCP) is defined in this

document and is mandatory to implement.

A protocol of 6 indicates that TCP proxying on the indicated port is

desired.

Registrars MUST announce the set of protocols that they support.

They MUST support TCP traffic.

Registrars MUST accept HTTPS/EST traffic on the TCP ports indicated.

Registrars MUST support ANI TLS circuit proxy and therefore BRSKI

across HTTPS/TLS native across the ACP.

In the ANI, the Autonomic Control Plane (ACP) secured instance of

GRASP ([I-D.ietf-anima-grasp]) MUST be used for discovery of ANI

registrar ACP addresses and ports by ANI proxies. The TCP leg of the

proxy connection between ANI proxy and ANI registrar therefore also

runs across the ACP.

5. Protocol Details (Pledge - Registrar - MASA)

The pledge MUST initiate BRSKI after boot if it is unconfigured. The

pledge MUST NOT automatically initiate BRSKI if it has been

configured or is in the process of being configured.

BRSKI is described as extensions to EST [RFC7030]. The goal of these

extensions is to reduce the number of TLS connections and crypto

operations required on the pledge. The registrar implements the

BRSKI REST interface within the "/.well-known/brski" URI tree, as

well as implementing the existing EST URIs as described in EST

[RFC7030] section 3.2.2. The communication channel between the

pledge and the registrar is referred to as "BRSKI-EST" (see Figure

1).

The communication channel between the registrar and MASA is a new

communication channel, similar to EST, within the newly registred

"/.well-known/brski" tree. For clarity this channel is referred to

as "BRSKI-MASA". (See Figure 1).

¶

¶

locator1 = [O_IPv6_LOCATOR, fd45:1345::6789, 6, 443]

locator2 = [O_IPv6_LOCATOR, fd45:1345::6789, 17, 5683]

locator3 = [O_IPv6_LOCATOR, fe80::1234, 41, nil]

¶

¶

¶

¶

¶

¶

¶

¶

¶

The MASA URI is "https://" authority "/.well-known/brski".

BRSKI uses existing CMS message formats for existing EST operations.

BRSKI uses JSON [RFC8259] for all new operations defined here, and

voucher formats. In all places where a binary value must be carried

in a JSON string, the use of base64 format ([RFC4648] section 4) is

to be used, as per [RFC7951] section 6.6.

While EST section 3.2 does not insist upon use of HTTP persistent

connections ([RFC7230] section 6.3), BRSKI-EST connections SHOULD

use persistent connections. The intention of this guidance is to

ensure the provisional TLS state occurs only once, and that the

subsequent resolution of the provision state is not subject to a

MITM attack during a critical phase.

If non-persistent connections are used, then both the pledge and the

registrar MUST remember the certificates seen, and also sent for the

first connection. They MUST check each subsequent connections for

the same certificates, and each end MUST use the same certificates

as well. This places a difficult restriction on rolling certificates

on the Registrar.

Summarized automation extensions for the BRSKI-EST flow are:

The pledge either attempts concurrent connections via each

discovered proxy, or it times out quickly and tries connections

in series, as explained at the end of Section 5.1.

The pledge provisionally accepts the registrar certificate during

the TLS handshake as detailed in Section 5.1.

The pledge requests a voucher using the new REST calls described

below. This voucher is then validated.

The pledge completes authentication of the server certificate as

detailed in Section 5.6.1. This moves the BRSKI-EST TLS

connection out of the provisional state.

Mandatory bootstrap steps conclude with voucher status telemetry

(see Section 5.7).

The BRSKI-EST TLS connection can now be used for EST enrollment.

The extensions for a registrar (equivalent to EST server) are:

Client authentication is automated using Initial Device Identity

(IDevID) as per the EST certificate based client authentication.

The subject field's DN encoding MUST include the "serialNumber"

attribute with the device's unique serial number as explained in

Section 2.3.1

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

The registrar requests and validates the voucher from the MASA.

The registrar forwards the voucher to the pledge when requested.

The registrar performs log verifications (described in Section

5.8.3) in addition to local authorization checks before accepting

optional pledge device enrollment requests.

5.1. BRSKI-EST TLS establishment details

The pledge establishes the TLS connection with the registrar through

the circuit proxy (see Section 4) but the TLS handshake is with the

registrar. The BRSKI-EST pledge is the TLS client and the BRSKI-EST

registrar is the TLS server. All security associations established

are between the pledge and the registrar regardless of proxy

operations.

Use of TLS 1.3 (or newer) is encouraged. TLS 1.2 or newer is

REQUIRED on the Pledge side. TLS 1.3 (or newer) SHOULD be available

on the Registrar server interface, and the Registrar client

interface, but TLS 1.2 MAY be used. TLS 1.3 (or newer) SHOULD be

available on the MASA server interface, but TLS 1.2 MAY be used.

Establishment of the BRSKI-EST TLS connection is as specified in EST

[RFC7030] section 4.1.1 "Bootstrap Distribution of CA Certificates"

[RFC7030] wherein the client is authenticated with the IDevID

certificate, and the EST server (the registrar) is provisionally

authenticated with an unverified server certificate. Configuration

or distribution of the trust anchor database used for validating the

IDevID certificate is out-of-scope of this specification. Note that

the trust anchors in/excluded from the database will affect which

manufacturers' devices are acceptable to the registrar as pledges,

and can also be used to limit the set of MASAs that are trusted for

enrollment.

The signature in the certificate MUST be validated even if a signing

key can not (yet) be validated. The certificate (or chain) MUST be

retained for later validation.

A self-signed certificate for the Registrar is acceptable as the

voucher can validate it upon successful enrollment.

The pledge performs input validation of all data received until a

voucher is verified as specified in Section 5.6.1 and the TLS

connection leaves the provisional state. Until these operations are

complete the pledge could be communicating with an attacker.

The pledge code needs to be written with the assumption that all

data is being transmitted at this point to an unauthenticated peer,

and that received data, while inside a TLS connection, MUST be

* ¶

* ¶

*

¶

¶

¶

¶

¶

¶

¶

application/voucher-cms+json

created-on:

considered untrusted. This particularly applies to HTTP headers and

CMS structures that make up the voucher.

A pledge that can connect to multiple Registrars concurrently SHOULD

do so. Some devices may be unable to do so for lack of threading, or

resource issues. Concurrent connections defeat attempts by a

malicious proxy from causing a TCP Slowloris-like attack (see

[slowloris]).

A pledge that can not maintain as many connections as there are

eligible proxies will need to rotate among the various choices,

terminating connections that do not appear to be making progress. If

no connection is making progress after 5 seconds then the pledge

SHOULD drop the oldest connection and go on to a different proxy:

the proxy that has been communicated with least recently. If there

were no other proxies discovered, the pledge MAY continue to wait,

as long as it is concurrently listening for new proxy announcements.

5.2. Pledge Requests Voucher from the Registrar

When the pledge bootstraps it makes a request for a voucher from a

registrar.

This is done with an HTTPS POST using the operation path value of

"/.well-known/brski/requestvoucher".

The pledge voucher-request Content-Type is:

[RFC8366] defines a "YANG-defined JSON

document that has been signed using a CMS structure", and the

voucher-request described in Section 3 is created in the same

way. The media type is the same as defined in [RFC8366]. This is

also used for the pledge voucher-request. The pledge MUST sign

the request using the Section 2.3 credential.

Registrar implementations SHOULD anticipate future media types but

of course will simply fail the request if those types are not yet

known.

The pledge SHOULD include an [RFC7231] section 5.3.2 "Accept" header

field indicating the acceptable media type for the voucher response.

The "application/voucher-cms+json" media type is defined in

[RFC8366] but constrained voucher formats are expected in the

future. Registrars and MASA are expected to be flexible in what they

accept.

The pledge populates the voucher-request fields as follows:

Pledges that have a realtime clock are RECOMMENDED to

populate this field with the current date and time in yang:date-

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

nonce:

assertion:

proximity-registrar-cert:

serial-number

and-time format. This provides additional information to the

MASA. Pledges that have no real-time clocks MAY omit this field.

The pledge voucher-request MUST contain a cryptographically

strong random or pseudo-random number nonce (see [RFC4086]

section 6.2). As the nonce is usually generated very early in the

boot sequence there is a concern that the same nonce might

generated across multiple boots, or after a factory reset.

Different nonces MUST be generated for each bootstrapping

attempt, whether in series or concurrently. The freshness of this

nonce mitigates against the lack of real-time clock as explained

in Section 2.6.1.

The pledge indicates support for the mechanism described

in this document, by putting the value "proximity" in the

voucher-request, MUST include the "proximity-registrar-cert"

field (below).

In a pledge voucher-request this is the

first certificate in the TLS server 'certificate_list' sequence

(see [RFC5246]) presented by the registrar to the pledge. That

is, it is the end-entity certificate. This MUST be populated in a

pledge voucher-request.

The serial number of the pledge is included in the

voucher-request from the Pledge. This value is included as a

sanity check only, but it is not to be forwarded by the Registrar

as described in Section 5.5.

All other fields MAY be omitted in the pledge voucher-request.

An example JSON payload of a pledge voucher-request is in Section

3.3 Example 1.

The registrar confirms that the assertion is 'proximity' and that

pinned 'proximity-registrar-cert' is the Registrar's certificate. If

this validation fails, then there is an On-Path Attacker (MITM), and

the connection MUST be closed after the returning an HTTP 401 error

code.

5.3. Registrar Authorization of Pledge

In a fully automated network all devices must be securely identified

and authorized to join the domain.

¶

¶

¶

¶

¶

¶

¶

¶

¶

A Registrar accepts or declines a request to join the domain, based

on the authenticated identity presented. For different networks,

examples of automated acceptance may include:

allow any device of a specific type (as determined by the X.509

IDevID),

allow any device from a specific vendor (as determined by the X.

509 IDevID),

allow a specific device from a vendor (as determined by the X.509

IDevID) against a domain white list. (The mechanism for checking

a shared white list potentially used by multiple Registrars is

out of scope).

If validation fails the registrar SHOULD respond with the HTTP 404

error code. If the voucher-request is in an unknown format, then an

HTTP 406 error code is more appropriate. A situation that could be

resolved with administrative action (such as adding a vendor to a

whitelist) MAY be responded with an 403 HTTP error code.

If authorization is successful the registrar obtains a voucher from

the MASA service (see Section 5.5) and returns that MASA signed

voucher to the pledge as described in Section 5.6.

5.4. BRSKI-MASA TLS establishment details

The BRSKI-MASA TLS connection is a 'normal' TLS connection

appropriate for HTTPS REST interfaces. The registrar initiates the

connection and uses the MASA URL obtained as described in Section

2.8. The mechanisms in [RFC6125] SHOULD be used in authentication of

the MASA using a DNS-ID that matches that which is found in the

IDevID. Registrars MAY include a mechanism to override the MASA URL

on a manufacturer-by-manufacturer basis, and within that override it

is appropriate to provide alternate anchors. This will typically

used by some vendors to establish explicit (or private) trust

anchors for validating their MASA that is part of a sales channel

integration.

Use of TLS 1.3 (or newer) is encouraged. TLS 1.2 or newer is

REQUIRED. TLS 1.3 (or newer) SHOULD be available.

As described in [RFC7030], the MASA and the registrars SHOULD be

prepared to support TLS client certificate authentication and/or

HTTP Basic, Digest, or SCRAM authentication. This connection MAY

also have no client authentication at all.

Registrars SHOULD permit trust anchors to be pre-configured on a

per-vendor(MASA) basis. Registrars SHOULD include the ability to

configure a TLS ClientCertificate on a per-MASA basis, or to use no

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

client certificate. Registrars SHOULD also permit HTTP Basic and

Digest authentication to be configured.

The authentication of the BRSKI-MASA connection does not change the

voucher-request process, as voucher-requests are already signed by

the registrar. Instead, this authentication provides access control

to the audit-log as described in Section 5.8.

Implementors are advised that contacting the MASA is to establish a

secured API connection with a web service and that there are a

number of authentication models being explored within the industry.

Registrars are RECOMMENDED to fail gracefully and generate useful

administrative notifications or logs in the advent of unexpected

HTTP 401 (Unauthorized) responses from the MASA.

5.4.1. MASA authentication of customer Registrar

Providing per-customer options requires that the customer's

registrar be uniquely identified. This can be done by any stateless

method that HTTPS supports such as with HTTP Basic or Digest

authentication (that is using a password), but the use of TLS Client

Certificate authentication is RECOMMENDED.

Stateful methods involving API tokens, or HTTP Cookies, are not

recommended.

It is expected that the setup and configuration of per-customer

Client Certificates is done as part of a sales ordering process.

The use of public PKI (i.e. WebPKI) End-Entity Certificates to

identify the Registrar is reasonable, and if done universally this

would permit a MASA to identify a customers' Registrar simply by a

FQDN.

The use of DANE records in DNSSEC signed zones would also permit use

of a FQDN to identify customer Registrars.

A third (and simplest, but least flexible) mechanism would be for

the MASA to simply store the Registrar's certificate pinned in a

database.

A MASA without any supply chain integration can simply accept

Registrars without any authentication, or can accept them on a blind

Trust-on-First-Use basis as described in Section 7.4.2.

This document does not make a specific recommendation on how the

MASA authenticates the Registrar as there are likely different

tradeoffs in different environments and product values. Even within

the ANIMA ACP applicability, there is a significant difference

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

between supply chain logistics for $100 CPE devices and $100,000

core routers.

5.5. Registrar Requests Voucher from MASA

When a registrar receives a pledge voucher-request it in turn

submits a registrar voucher-request to the MASA service via an HTTPS

interface ([RFC7231]).

This is done with an HTTP POST using the operation path value of

"/.well-known/brski/requestvoucher".

The voucher media type "application/voucher-cms+json" is defined in

[RFC8366] and is also used for the registrar voucher-request. It is

a JSON document that has been signed using a CMS structure. The

registrar MUST sign the registrar voucher-request.

MASA implementations SHOULD anticipate future media ntypes but of

course will simply fail the request if those types are not yet

known.

The voucher-request CMS object includes some number of certificates

that are input to the MASA as it populates the 'pinned-domain-cert'.

As the [RFC8366] is quite flexible in what may be put into the

'pinned-domain-cert', the MASA needs some signal as to what

certificate would be effective to populate the field with: it may

range from the End Entity (EE) Certificate that the Registrar uses,

to the entire private Enterprise CA certificate. More specific

certificates result in a tighter binding of the voucher to the

domain, while less specific certificates result in more flexibility

in how the domain is represented by certificates.

A Registrar which is seeking a nonceless voucher for later offline

use benefits from a less specific certificate, as it permits the

actual keypair used by a future Registrar to be determined by the

pinned certificate authority.

In some cases, a less specific certificate, such a public WebPKI

certificate authority, could be too open, and could permit any

entity issued a certificate by that authority to assume ownership of

a device that has a voucher pinned. Future work may provide a

solution to pin both a certificate and a name that would reduce such

risk of malicious ownership assertions.

The Registrar SHOULD request a voucher with the most specificity

consistent with the mode that it is operating in. In order to do

this, when the Registrar prepares the CMS structure for the signed

voucher-request, it SHOULD include only certificates which are part

of the chain that it wishes the MASA to pin. This MAY be as small as

only the End-Entity certificate (with id-kp-cmcRA set) that it uses

¶

¶

¶

¶

¶

¶

¶

¶

created-on:

nonce:

serial-number:

idevid-issuer:

prior-signed-voucher-request:

as it's TLS Server Certificate, or it MAY be the entire chain,

including the Domain CA.

The Registrar SHOULD include an [RFC7231] section 5.3.2 "Accept"

header field indicating the response media types that are

acceptable. This list SHOULD be the entire list presented to the

Registrar in the Pledge's original request (see Section 5.2) but MAY

be a subset. The MASA is expected to be flexible in what it accepts.

The registrar populates the voucher-request fields as follows:

The Registrars SHOULD populate this field with the

current date and time when the Registrar formed this voucher

request. This field provides additional information to the MASA.

This value, if present, is copied from the pledge voucher-

request. The registrar voucher-request MAY omit the nonce as per

Section 3.1.

The serial number of the pledge the registrar would

like a voucher for. The registrar determines this value by

parsing the authenticated pledge IDevID certificate. See Section

2.3. The registrar MUST verify that the serial number field it

parsed matches the serial number field the pledge provided in its

voucher-request. This provides a sanity check useful for

detecting error conditions and logging. The registrar MUST NOT

simply copy the serial number field from a pledge voucher request

as that field is claimed but not certified.

The Issuer value from the pledge IDevID certificate

is included to ensure unique interpretation of the serial-number.

In the case of nonceless (offline) voucher-request, then an

appropriate value needs to be configured from the same out-of-

band source as the serial-number.

The signed pledge voucher-request

SHOULD be included in the registrar voucher-request. The entire

CMS signed structure is to be included, base64 encoded for

transport in the JSON structure.

A nonceless registrar voucher-request MAY be submitted to the MASA.

Doing so allows the registrar to request a voucher when the pledge

is offline, or when the registrar anticipates not being able to

connect to the MASA while the pledge is being deployed. Some use

cases require the registrar to learn the appropriate IDevID

SerialNumber field and appropriate 'Accept header field' values from

the physical device labeling or from the sales channel (out-of-scope

for this document).

All other fields MAY be omitted in the registrar voucher-request.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The "proximity-registrar-cert" field MUST NOT be present in the

registrar voucher-request.

Example JSON payloads of registrar voucher-requests are in Section

3.3 Examples 2 through 4.

The MASA verifies that the registrar voucher-request is internally

consistent but does not necessarily authenticate the registrar

certificate since the registrar MAY be unknown to the MASA in

advance. The MASA performs the actions and validation checks

described in the following sub-sections before issuing a voucher.

5.5.1. MASA renewal of expired vouchers

As described in [RFC8366] vouchers are normally short lived to avoid

revocation issues. If the request is for a previous (expired)

voucher using the same registrar (that is, a Registrar with the same

Domain CA) then the request for a renewed voucher SHOULD be

automatically authorized. The MASA has sufficient information to

determine this by examining the request, the registrar

authentication, and the existing audit-log. The issuance of a

renewed voucher is logged as detailed in Section 5.6.

To inform the MASA that existing vouchers are not to be renewed one

can update or revoke the registrar credentials used to authorize the

request (see Section 5.5.4 and Section 5.5.3). More flexible methods

will likely involve sales channel integration and authorizations

(details are out-of-scope of this document).

5.5.2. MASA pinning of registrar

A certificate chain is extracted from the Registrar's signed CMS

container. This chain may be as short as a single End-Entity

Certificate, up to the entire registrar certificate chain, including

the Domain CA certificate, as specified in Section 5.5.

If the domain's CA is unknown to the MASA, then it is to be

considered a temporary trust anchor for the rest of the steps in

this section. The intention is not to authenticate the message as

having come from a fully validated origin, but to establish the

consistency of the domain PKI.

The MASA MAY use the certificate farthest in the chain chain that it

received from the Registrar from the end-entity, as determined by

MASA policy. A MASA MAY have a local policy that it only pins the

End-Entity certificate. This is consistent with [RFC8366]. Details

of the policy will typically depend upon the degree of Supply Chain

Integration, and the mechanism used by the Registrar to

authenticate. Such a policy would also determine how the MASA will

respond to a request for a nonceless voucher.

¶

¶

¶

¶

¶

¶

¶

¶

5.5.3. MASA checking of voucher request signature

As described in Section 5.5.2, the MASA has extracted Registrar's

domain CA. This is used to validate the CMS signature ([RFC5652]) on

the voucher-request.

Normal PKIX revocation checking is assumed during voucher-request

signature validation. This CA certificate MAY have Certificate

Revocation List distribution points, or Online Certificate Status

Protocol (OCSP) information ([RFC6960]). If they are present, the

MASA MUST be able to reach the relevant servers belonging to the

Registrar's domain CA to perform the revocation checks.

The use of OCSP Stapling is preferred.

5.5.4. MASA verification of domain registrar

The MASA MUST verify that the registrar voucher-request is signed by

a registrar. This is confirmed by verifying that the id-kp-cmcRA

extended key usage extension field (as detailed in EST RFC7030

section 3.6.1) exists in the certificate of the entity that signed

the registrar voucher-request. This verification is only a

consistency check that the unauthenticated domain CA intended the

voucher-request signer to be a registrar. Performing this check

provides value to the domain PKI by assuring the domain

administrator that the MASA service will only respect claims from

authorized Registration Authorities of the domain.

Even when a domain CA is authenticated to the MASA, and there is

strong sales channel integration to understand who the legitimate

owner is, the above id-kp-cmcRA check prevents arbitrary End-Entity

certificates (such as an LDevID certificate) from having vouchers

issued against them.

Other cases of inappropriate voucher issuance are detected by

examination of the audit log.

If a nonceless voucher-request is submitted the MASA MUST

authenticate the registrar as described in either EST [RFC7030]

section 3.2.3, section 3.3.2, or by validating the registrar's

certificate used to sign the registrar voucher-request using a

configured trust anchor. Any of these methods reduce the risk of

DDoS attacks and provide an authenticated identity as an input to

sales channel integration and authorizations (details are out-of-

scope of this document).

In the nonced case, validation of the Registrar's identity (via TLS

Client Certificate or HTTP authentication) MAY be omitted if the

device policy is to accept audit-only vouchers.

¶

¶

¶

¶

¶

¶

¶

¶

5.5.5. MASA verification of pledge prior-signed-voucher-request

The MASA MAY verify that the registrar voucher-request includes the

'prior-signed-voucher-request' field. If so the prior-signed-

voucher-request MUST include a 'proximity-registrar-cert' that is

consistent with the certificate used to sign the registrar voucher-

request. Additionally the voucher-request serial-number leaf MUST

match the pledge serial-number that the MASA extracts from the

signing certificate of the prior-signed-voucher-request. The

consistency check described above is checking that the 'proximity-

registrar-cert' SPKI fingerprint exists within the registrar

voucher-request CMS signature's certificate chain. This is

substantially the same as the pin validation described in in

[RFC7469] section 2.6, paragraph three.

If these checks succeed the MASA updates the voucher and audit-log

assertion leafs with the "proximity" assertion, as defined by

[RFC8366] section 5.3.

5.5.6. MASA nonce handling

The MASA does not verify the nonce itself. If the registrar voucher-

request contains a nonce, and the prior-signed-voucher-request

exists, then the MASA MUST verify that the nonce is consistent.

(Recall from above that the voucher-request might not contain a

nonce, see Section 5.5 and Section 5.5.4).

The MASA populates the audit-log with the nonce that was verified.

If a nonceless voucher is issued, then the audit-log is to be

populated with the JSON value "null".

5.6. MASA and Registrar Voucher Response

The MASA voucher response to the registrar is forwarded without

changes to the pledge; therefore this section applies to both the

MASA and the registrar. The HTTP signaling described applies to both

the MASA and registrar responses.

When a voucher request arrives at the registrar, if it has a cached

response from the MASA for the corresponding registrar voucher-

request, that cached response can be used according to local policy;

otherwise the registrar constructs a new registrar voucher-request

and sends it to the MASA.

Registrar evaluation of the voucher itself is purely for

transparency and audit purposes to further inform log verification

(see Section 5.8.3) and therefore a registrar could accept future

voucher formats that are opaque to the registrar.

¶

¶

¶

¶

¶

¶

¶

If the voucher-request is successful, the server (MASA responding to

registrar or registrar responding to pledge) response MUST contain

an HTTP 200 response code. The server MUST answer with a suitable

4xx or 5xx HTTP [RFC7230] error code when a problem occurs. In this

case, the response data from the MASA MUST be a plaintext human-

readable (UTF-8) error message containing explanatory information

describing why the request was rejected.

The registrar MAY respond with an HTTP 202 ("the request has been

accepted for processing, but the processing has not been completed")

as described in EST [RFC7030] section 4.2.3 wherein the client "MUST

wait at least the specified 'Retry-After' time before repeating the

same request". (see [RFC7231] section 6.6.4) The pledge is

RECOMMENDED to provide local feedback (blinked LED etc) during this

wait cycle if mechanisms for this are available. To prevent an

attacker registrar from significantly delaying bootstrapping the

pledge MUST limit the 'Retry-After' time to 60 seconds. Ideally the

pledge would keep track of the appropriate Retry-After header field

values for any number of outstanding registrars but this would

involve a state table on the pledge. Instead the pledge MAY ignore

the exact Retry-After value in favor of a single hard coded value (a

registrar that is unable to complete the transaction after the first

60 seconds has another chance a minute later). A pledge SHOULD only

maintain a 202 retry-state for up to 4 days, which is longer than a

long weekend, after which time the enrollment attempt fails and the

pledge returns to discovery state.

A pledge that retries a request after receiving a 202 message MUST

resend the same voucher-request. It MUST NOT sign a new voucher-

request each time, and in particular, it MUST NOT change the nonce

value.

In order to avoid infinite redirect loops, which a malicious

registrar might do in order to keep the pledge from discovering the

correct registrar, the pledge MUST NOT follow more than one

redirection (3xx code) to another web origin. EST supports

redirection but requires user input; this change allows the pledge

to follow a single redirection without a user interaction.

A 403 (Forbidden) response is appropriate if the voucher-request is

not signed correctly, stale, or if the pledge has another

outstanding voucher that cannot be overridden.

A 404 (Not Found) response is appropriate when the request is for a

device that is not known to the MASA.

A 406 (Not Acceptable) response is appropriate if a voucher of the

desired type or using the desired algorithms (as indicated by the

Accept: header fields, and algorithms used in the signature) cannot

¶

¶

¶

¶

¶

¶

nonce:

assertion:

pinned-domain-cert:

serial-number:

domain-cert-revocation-checks:

expires-on:

be issued such as because the MASA knows the pledge cannot process

that type. The registrar SHOULD use this response if it determines

the pledge is unacceptable due to inventory control, MASA audit-

logs, or any other reason.

A 415 (Unsupported Media Type) response is appropriate for a request

that has a voucher-request or Accept: value that is not understood.

The voucher response format is as indicated in the submitted Accept

header fields or based on the MASA's prior understanding of proper

format for this Pledge. Only the [RFC8366] "application/voucher-

cms+json" media type is defined at this time. The syntactic details

of vouchers are described in detail in [RFC8366]. Figure 14 shows a

sample of the contents of a voucher.

Figure 14: An example voucher

The MASA populates the voucher fields as follows:

The nonce from the pledge if available. See Section 5.5.6.

The method used to verify the relationship between

pledge and registrar. See Section 5.5.5.

A certificate. See Section 5.5.2. This figure

is illustrative, for an example, see Appendix C.2 where an End

Entity certificate is used.

The serial-number as provided in the voucher-

request. Also see Section 5.5.5.

Set as appropriate for the pledge's

capabilities and as documented in [RFC8366]. The MASA MAY set

this field to 'false' since setting it to 'true' would require

that revocation information be available to the pledge and this

document does not make normative requirements for [RFC6961] or

equivalent integrations.

This is set for nonceless vouchers. The MASA ensures

the voucher lifetime is consistent with any revocation or pinned-

¶

¶

¶

{

 "ietf-voucher:voucher": {

 "nonce": "62a2e7693d82fcda2624de58fb6722e5",

 "assertion": "logged",

 "pinned-domain-cert": "base64encodedvalue==",

 "serial-number": "JADA123456789"

 }

}

¶

¶

¶

¶

¶

¶

domain-cert consistency checks the pledge might perform. See

section Section 2.6.1. There are three times to consider: (a) a

configured voucher lifetime in the MASA, (b) the expiry time for

the registrar's certificate, (c) any certificate revocation

information (CRL) lifetime. The expires-on field SHOULD be before

the earliest of these three values. Typically (b) will be some

significant time in the future, but (c) will typically be short

(on the order of a week or less). The RECOMMENDED period for (a)

is on the order of 20 minutes, so it will typically determine the

lifespan of the resulting voucher. 20 minutes is sufficient time

to reach the post-provisional state in the pledge, at which point

there is an established trust relationship between pledge and

registrar. The subsequent operations can take as long as required

from that point onwards. The lifetime of the voucher has no

impact on the lifespan of the ownership relationship.

Whenever a voucher is issued the MASA MUST update the audit-log

sufficiently to generate the response as described in Section 5.8.1.

The internal state requirements to maintain the audit-log are out-

of-scope.

5.6.1. Pledge voucher verification

The pledge MUST verify the voucher signature using the manufacturer-

installed trust anchor(s) associated with the manufacturer's MASA

(this is likely included in the pledge's firmware). Management of

the manufacturer-installed trust anchor(s) is out-of-scope of this

document; this protocol does not update these trust anchor(s).

The pledge MUST verify the serial-number field of the signed voucher

matches the pledge's own serial-number.

The pledge MUST verify the nonce information in the voucher. If

present, the nonce in the voucher must match the nonce the pledge

submitted to the registrar; vouchers with no nonce can also be

accepted (according to local policy, see Section 7.2)

The pledge MUST be prepared to parse and fail gracefully from a

voucher response that does not contain a 'pinned-domain-cert' field.

Such a thing indicates a failure to enroll in this domain, and the

pledge MUST attempt joining with other available Join Proxy.

The pledge MUST be prepared to ignore additional fields that it does

not recognize.

5.6.2. Pledge authentication of provisional TLS connection

Following the process described in [RFC8366], the pledge should

consider the public key from the pinned-domain-cert as the sole

temporary trust anchor.

¶

¶

¶

¶

¶

¶

¶

¶

The pledge then evaluates the TLS Server Certificate chain that it

received when the TLS connection was formed using this trust anchor.

It is possible that the pinned-domain-cert matches the End-Entity

Certificate provided in the TLS Server.

If a registrar's credentials cannot be verified using the pinned-

domain-cert trust anchor from the voucher then the TLS connection is

immediately discarded and the pledge abandons attempts to bootstrap

with this discovered registrar. The pledge SHOULD send voucher

status telemetry (described below) before closing the TLS

connection. The pledge MUST attempt to enroll using any other

proxies it has found. It SHOULD return to the same proxy again after

unsuccessful attempts with other proxies. Attempts should be made

repeated at intervals according to the backoff timer described

earlier. Attempts SHOULD be repeated as failure may be the result of

a temporary inconsistency (an inconsistently rolled registrar key,

or some other mis-configuration). The inconsistency could also be

the result an active MITM attack on the EST connection.

The registrar MUST use a certificate that chains to the pinned-

domain-cert as its TLS server certificate.

The pledge's PKIX path validation of a registrar certificate's

validity period information is as described in Section 2.6.1. Once

the PKIX path validation is successful the TLS connection is no

longer provisional.

The pinned-domain-cert MAY be installed as a trust anchor for future

operations such as enrollment (e.g. [RFC7030] as recommended) or

trust anchor management or raw protocols that do not need full PKI

based key management. It can be used to authenticate any dynamically

discovered EST server that contain the id-kp-cmcRA extended key

usage extension as detailed in EST RFC7030 section 3.6.1; but to

reduce system complexity the pledge SHOULD avoid additional

discovery operations. Instead the pledge SHOULD communicate directly

with the registrar as the EST server. The 'pinned-domain-cert' is

not a complete distribution of the [RFC7030] section 4.1.3 CA

Certificate Response, which is an additional justification for the

recommendation to proceed with EST key management operations. Once a

full CA Certificate Response is obtained it is more authoritative

for the domain than the limited 'pinned-domain-cert' response.

5.7. Pledge BRSKI Status Telemetry

The domain is expected to provide indications to the system

administrators concerning device lifecycle status. To facilitate

this it needs telemetry information concerning the device's status.

¶

¶

¶

¶

¶

¶

The pledge MUST indicate its pledge status regarding the voucher. It

does this by sending a status message to the Registrar.

The posted data media type: application/json

The client sends an HTTP POST to the server at the URI ".well-known/

brski/voucher_status".

The format and semantics described below are for version 1. A

version field is included to permit significant changes to this

feedback in the future. A Registrar that receives a status message

with a version larger than it knows about SHOULD log the contents

and alert a human.

The Status field indicates if the voucher was acceptable. Boolean

values are acceptable, where "true" indicates the voucher was

acceptable.

If the voucher was not acceptable the Reason string indicates why.

In the failure case this message may be sent to an unauthenticated,

potentially malicious registrar and therefore the Reason string

SHOULD NOT provide information beneficial to an attacker. The

operational benefit of this telemetry information is balanced

against the operational costs of not recording that an voucher was

ignored by a client the registrar expected to continue joining the

domain.

The reason-context attribute is an arbitrary JSON object (literal

value or hash of values) which provides additional information

specific to this pledge. The contents of this field are not subject

to standardization.

The version and status fields MUST be present. The Reason field

SHOULD be present whenever the status field is false. The Reason-

Context field is optional. In the case of a SUCCESS the Reason

string MAY be omitted.

The keys to this JSON object are case-sensitive and MUST be

lowercase. Figure 16 shows an example JSON.

¶

¶

¶

¶

¶

¶

¶

¶

¶

<CODE BEGINS> file "voucherstatus.cddl"

voucherstatus-post = {

 "version": uint,

 "status": bool,

 ? "reason": text,

 ? "reason-context" : { $$arbitrary-map }

 }

}

<CODE ENDS>

Figure 15: CDDL for voucher status POST

Figure 16: Example Status Telemetry

The server SHOULD respond with an HTTP 200 but MAY simply fail with

an HTTP 404 error. The client ignores any response. Within the

server logs the server SHOULD capture this telemetry information.

Additional standard JSON fields in this POST MAY be added, see

Section 8.5. A server that sees unknown fields should log them, but

otherwise ignore them.

5.8. Registrar audit-log request

After receiving the pledge status telemetry Section 5.7, the

registrar SHOULD request the MASA audit-log from the MASA service.

This is done with an HTTP POST using the operation path value of

"/.well-known/brski/requestauditlog".

The registrar SHOULD HTTP POST the same registrar voucher-request as

it did when requesting a voucher (using the same Content-Type). It

is posted to the /requestauditlog URI instead. The "idevid-issuer"

and "serial-number" informs the MASA which log is requested so the

appropriate log can be prepared for the response. Using the same

media type and message minimizes cryptographic and message

operations although it results in additional network traffic. The

relying MASA implementation MAY leverage internal state to associate

this request with the original, and by now already validated,

voucher-request so as to avoid an extra crypto validation.

{

 "version": 1,

 "status":false,

 "reason":"Informative human readable message",

 "reason-context": { "additional" : "JSON" }

}

¶

¶

¶

¶

¶

A registrar MAY request logs at future times. If the registrar

generates a new request then the MASA is forced to perform the

additional cryptographic operations to verify the new request.

A MASA that receives a request for a device that does not exist, or

for which the requesting owner was never an owner returns an HTTP

404 ("Not found") code.

It is reasonable for a Registrar, that the MASA does not believe to

be the current owner, to request the audit-log. There are probably

reasons for this which are hard to predict in advance. For instance,

such a registrar may not be aware that the device has been resold;

it may be that the device has been resold inappropriately, and this

is how the original owner will learn of the occurance. It is also

possible that the device legitimately spends time in two different

networks.

Rather than returning the audit-log as a response to the POST (with

a return code 200), the MASA MAY instead return a 201 ("Created")

response ([RFC7231] sections 6.3.2 and 7.1), with the URL to the

prepared (and idempotent, therefore cachable) audit response in the

Location: header field.

In order to avoid enumeration of device audit-logs, MASA that return

URLs SHOULD take care to make the returned URL unguessable. [W3C.WD-

capability-urls-20140218] provides very good additional guidance.

For instance, rather than returning URLs containing a database

number such as https://example.com/auditlog/1234 or the EUI of the

device such https://example.com/auditlog/10-00-00-11-22-33, the MASA

SHOULD return a randomly generated value (a "slug" in web parlance).

The value is used to find the relevant database entry.

A MASA that returns a code 200 MAY also include a Location: header

for future reference by the registrar.

5.8.1. MASA audit log response

A log data file is returned consisting of all log entries associated

with the device selected by the IDevID presented in the request. The

audit log may be abridged by removal of old or repeated values as

explained below. The returned data is in JSON format ([RFC8259]),

and the Content-Type SHOULD be "application/json".

The following CDDL ([RFC8610]) explains the structure of the JSON

format audit-log response:

¶

¶

¶

¶

¶

¶

¶

¶

<CODE BEGINS> file "auditlog.cddl"

audit-log-response = {

 "version": uint,

 "events": [+ event]

 "truncation": {

 ? "nonced duplicates": uint,

 ? "nonceless duplicates": uint,

 ? "arbitrary": uint,

 }

}

event = {

 "date": text,

 "domainID": text,

 "nonce": text / null,

 "assertion": "verified" / "logged" / "proximity",

 ? "truncated": uint,

}

<CODE ENDS>

Figure 17: CDDL for audit-log response

An example:¶

Figure 18: Example of audit-log response

The domainID is a binary SubjectKeyIdentifier value calculated

according to Section 5.8.2. It is encoded once in base64 in order to

be transported in this JSON container.

The date is in [RFC3339] format, which is consistent with typical

JavaScript usage of JSON.

The truncation structure MAY be omitted if all values are zero. Any

counter missing from the truncation structure is the be assumed to

be zero.

The nonce is a string, as provided in the voucher-request, and used

in the voucher. If no nonce was placed in the resulting voucher,

then a value of null SHOULD be used in preference to omitting the

entry. While the nonce is often created as a base64 encoded random

series of bytes, this should not be assumed.

Distribution of a large log is less than ideal. This structure can

be optimized as follows: Nonced or Nonceless entries for the same

domainID MAY be abridged from the log leaving only the single most

recent nonced or nonceless entry for that domainID. In the case of

truncation the 'event' truncation value SHOULD contain a count of

the number of events for this domainID that were omitted. The log

{

 "version":"1",

 "events":[

 {

 "date":"2019-05-15T17:25:55.644-04:00",

 "domainID":"BduJhdHPpfhQLyponf48JzXSGZ8=",

 "nonce":"VOUFT-WwrEv0NuAQEHoV7Q",

 "assertion":"proximity",

 "truncated":"0"

 },

 {

 "date":"2017-05-15T17:25:55.644-04:00",

 "domainID":"BduJhdHPpfhQLyponf48JzXSGZ8=",

 "nonce":"f4G6Vi1t8nKo/FieCVgpBg==",

 "assertion":"proximity"

 }

],

 "truncation": {

 "nonced duplicates": "0",

 "nonceless duplicates": "1",

 "arbitrary": "2"

 }

}

¶

¶

¶

¶

SHOULD NOT be further reduced but there could exist operational

situation where maintaining the full log is not possible. In such

situations the log MAY be arbitrarily abridged for length, with the

number of removed entries indicated as 'arbitrary'.

If the truncation count exceeds 1024 then the MASA MAY use this

value without further incrementing it.

A log where duplicate entries for the same domain have been omitted

("nonced duplicates" and/or "nonceless duplicates) could still be

acceptable for informed decisions. A log that has had "arbitrary"

truncations is less acceptable but manufacturer transparency is

better than hidden truncations.

A registrar that sees a version value greater than 1 indicates an

audit log format that has been enhanced with additional information.

No information will be removed in future versions; should an

incompatible change be desired in the future, then a new HTTP end

point will be used.

This document specifies a simple log format as provided by the MASA

service to the registrar. This format could be improved by

distributed consensus technologies that integrate vouchers with

technologies such as block-chain or hash trees or optimized logging

approaches. Doing so is out of the scope of this document but is an

anticipated improvement for future work. As such, the registrar

SHOULD anticipate new kinds of responses, and SHOULD provide

operator controls to indicate how to process unknown responses.

5.8.2. Calculation of domainID

The domainID is a binary value (a BIT STRING) that uniquely

identifies a Registrar by the "pinned-domain-cert".

If the "pinned-domain-cert" certificate includes the

SubjectKeyIdentifier (Section 4.2.1.2 [RFC5280]), then it is to be

used as the domainID. If not, the SPKI Fingerprint as described in

[RFC7469] section 2.4 is to be used. This value needs to be

calculated by both MASA (to populate the audit-log), and by the

Registrar (to recognize itself in the audit log).

[RFC5280] section 4.2.1.2 does not mandate that the

SubjectKeyIdentifier extension be present in non-CA certificates. It

is RECOMMENDED that Registrar certificates (even if self-signed),

always include the SubjectKeyIdentifier to be used as a domainID.

The domainID is determined from the certificate chain associated

with the pinned-domain-cert and is used to update the audit-log.

¶

¶

¶

¶

¶

¶

¶

¶

¶

date:

domainID:

nonce:

assertion:

5.8.3. Registrar audit log verification

Each time the Manufacturer Authorized Signing Authority (MASA)

issues a voucher, it appends details of the assignment to an

internal audit log for that device. The internal audit log is

processed when responding to requests for details as described in

Section 5.8. The contents of the audit log can express a variety of

trust levels, and this section explains what kind of trust a

registrar can derive from the entries.

While the audit log provides a list of vouchers that were issued by

the MASA, the vouchers are issued in response to voucher-requests,

and it is the contents of the voucher-requests which determines how

meaningful the audit log entries are.

A registrar SHOULD use the log information to make an informed

decision regarding the continued bootstrapping of the pledge. The

exact policy is out of scope of this document as it depends on the

security requirements within the registrar domain. Equipment that is

purchased pre-owned can be expected to have an extensive history.

The following discussion is provided to help explain the value of

each log element:

The date field provides the registrar an opportunity to

divide the log around known events such as the purchase date.

Depending on context known to the registrar or administrator

events before/after certain dates can have different levels of

importance. For example for equipment that is expected to be new,

and thus have no history, it would be a surprise to find prior

entries.

If the log includes an unexpected domainID then the

pledge could have imprinted on an unexpected domain. The

registrar can be expected to use a variety of techniques to

define "unexpected" ranging from white lists of prior domains to

anomaly detection (e.g. "this device was previously bound to a

different domain than any other device deployed"). Log entries

can also be compared against local history logs in search of

discrepancies (e.g. "this device was re-deployed some number of

times internally but the external audit log shows additional re-

deployments our internal logs are unaware of").

Nonceless entries mean the logged domainID could

theoretically trigger a reset of the pledge and then take over

management by using the existing nonceless voucher.

The assertion leaf in the voucher and audit log

indicates why the MASA issued the voucher. A "verified" entry

means that the MASA issued the associated voucher as a result of

¶

¶

¶

¶

¶

¶

positive verification of ownership. However, this entry does not

indicate whether the pledge was actually deployed in the prior

domain, or not. A "logged" assertion informs the registrar that

the prior vouchers were issued with minimal verification. A

"proximity" assertion assures the registrar that the pledge was

truly communicating with the prior domain and thus provides

assurance that the prior domain really has deployed the pledge.

A relatively simple policy is to white list known (internal or

external) domainIDs, and require all vouchers to have a nonce. An

alternative is to require that all nonceless vouchers be from a

subset (e.g. only internal) of domainIDs. If the policy is violated

a simple action is to revoke any locally issued credentials for the

pledge in question or to refuse to forward the voucher. The

Registrar MUST then refuse any EST actions, and SHOULD inform a

human via a log. A registrar MAY be configured to ignore (i.e.

override the above policy) the history of the device but it is

RECOMMENDED that this only be configured if hardware assisted (i.e.

TPM anchored) Network Endpoint Assessment (NEA) [RFC5209] is

supported.

5.9. EST Integration for PKI bootstrapping

The pledge SHOULD follow the BRSKI operations with EST enrollment

operations including "CA Certificates Request", "CSR Attributes" and

"Client Certificate Request" or "Server-Side Key Generation", etc.

This is a relatively seamless integration since BRSKI API calls

provide an automated alternative to the manual bootstrapping method

described in [RFC7030]. As noted above, use of HTTP persistent

connections simplifies the pledge state machine.

Although EST allows clients to obtain multiple certificates by

sending multiple Certificate Signing Requests (CSR) requests, BRSKI

does not support this mechanism directly. This is because BRSKI

pledges MUST use the CSR Attributes request ([RFC7030] section 4.5).

The registrar MUST validate the CSR against the expected attributes.

This implies that client requests will "look the same" and therefore

result in a single logical certificate being issued even if the

client were to make multiple requests. Registrars MAY contain more

complex logic but doing so is out-of-scope of this specification.

BRSKI does not signal any enhancement or restriction to this

capability.

5.9.1. EST Distribution of CA Certificates

The pledge SHOULD request the full EST Distribution of CA

Certificates message. See RFC7030, section 4.1.

¶

¶

¶

¶

¶

This ensures that the pledge has the complete set of current CA

certificates beyond the pinned-domain-cert (see Section 5.6.2 for a

discussion of the limitations inherent in having a single

certificate instead of a full CA Certificates response.) Although

these limitations are acceptable during initial bootstrapping, they

are not appropriate for ongoing PKIX end entity certificate

validation.

5.9.2. EST CSR Attributes

Automated bootstrapping occurs without local administrative

configuration of the pledge. In some deployments it is plausible

that the pledge generates a certificate request containing only

identity information known to the pledge (essentially the X.509

IDevID information) and ultimately receives a certificate containing

domain specific identity information. Conceptually the CA has

complete control over all fields issued in the end entity

certificate. Realistically this is operationally difficult with the

current status of PKI certificate authority deployments, where the

CSR is submitted to the CA via a number of non-standard protocols.

Even with all standardized protocols used, it could operationally be

problematic to expect that service specific certificate fields can

be created by a CA that is likely operated by a group that has no

insight into different network services/protocols used. For example,

the CA could even be outsourced.

To alleviate these operational difficulties, the pledge MUST request

the EST "CSR Attributes" from the EST server and the EST server

needs to be able to reply with the attributes necessary for use of

the certificate in its intended protocols/services. This approach

allows for minimal CA integrations and instead the local

infrastructure (EST server) informs the pledge of the proper fields

to include in the generated CSR (such as rfc822Name). This approach

is beneficial to automated bootstrapping in the widest number of

environments.

In networks using the BRSKI enrolled certificate to authenticate the

ACP (Autonomic Control Plane), the EST CSR attributes MUST include

the ACP Domain Information Fields defined in [I-D.ietf-anima-

autonomic-control-plane] section 6.1.1.

The registrar MUST also confirm that the resulting CSR is formatted

as indicated before forwarding the request to a CA. If the registrar

is communicating with the CA using a protocol such as full CMC,

which provides mechanisms to override the CSR attributes, then these

mechanisms MAY be used even if the client ignores CSR Attribute

guidance.

¶

¶

¶

¶

¶

5.9.3. EST Client Certificate Request

The pledge MUST request a new client certificate. See RFC7030,

section 4.2.

5.9.4. Enrollment Status Telemetry

For automated bootstrapping of devices, the administrative elements

providing bootstrapping also provide indications to the system

administrators concerning device lifecycle status. This might

include information concerning attempted bootstrapping messages seen

by the client. The MASA provides logs and status of credential

enrollment. [RFC7030] assumes an end user and therefore does not

include a final success indication back to the server. This is

insufficient for automated use cases.

The client MUST send an indicator to the Registrar about its

enrollment status. It does this by using an HTTP POST of a JSON

dictionary with the of attributes described below to the new EST

endpoint at "/.well-known/brski/enrollstatus". (XXX ?)

When indicating a successful enrollment the client SHOULD first re-

establish the EST TLS session using the newly obtained credentials.

TLS 1.2 supports doing this in-band, but TLS 1.3 does not. The

client SHOULD therefore always close the existing TLS connection,

and start a new one.

In the case of a failed enrollment, the client MUST send the

telemetry information over the same TLS connection that was used for

the enrollment attempt, with a Reason string indicating why the most

recent enrollment failed. (For failed attempts, the TLS connection

is the most reliable way to correlate server-side information with

what the client provides.)

The version and status fields MUST be present. The Reason field

SHOULD be present whenever the status field is false. In the case of

a SUCCESS the Reason string MAY be omitted.

The reason-context attribute is an arbitrary JSON object (literal

value or hash of values) which provides additional information

specific to the failure to unroll from this pledge. The contents of

this field are not subject to standardization. This is represented

by the group-socket "$$arbitrary-map" in the CDDL.

In the case of a SUCCESS the Reason string is omitted.

¶

¶

¶

¶

¶

¶

¶

¶

<CODE BEGINS> file "enrollstatus.cddl"

enrollstatus-post = {

 "version": uint,

 "status": bool,

 ? "reason": text,

 ? "reason-context" : { $$arbitrary-map }

 }

}

<CODE ENDS>

Figure 19: CDDL for enrollment status POST

An example status report can be seen below. It is sent with with the

media type: application/json

Figure 20: Example of enrollment status POST

The server SHOULD respond with an HTTP 200 but MAY simply fail with

an HTTP 404 error.

Within the server logs the server MUST capture if this message was

received over an TLS session with a matching client certificate.

5.9.5. Multiple certificates

Pledges that require multiple certificates could establish direct

EST connections to the registrar.

5.9.6. EST over CoAP

This document describes extensions to EST for the purposes of

bootstrapping of remote key infrastructures. Bootstrapping is

relevant for CoAP enrollment discussions as well. The definition of

EST and BRSKI over CoAP is not discussed within this document beyond

ensuring proxy support for CoAP operations. Instead it is

anticipated that a definition of CoAP mappings will occur in

subsequent documents such as [I-D.ietf-ace-coap-est] and that CoAP

mappings for BRSKI will be discussed either there or in future work.

¶

{

 "version": 1,

 "status":true,

 "reason":"Informative human readable message",

 "reason-context": { "additional" : "JSON" }

}

¶

¶

¶

¶

Pledge:

6. Clarification of transfer-encoding

[RFC7030] defines its endpoints to include a "Content-Transfer-

Encoding" heading, and the payloads to be [RFC4648] Base64 encoded

DER.

When used within BRSKI, the original RFC7030 EST endpoints remain

Base64 encoded, but the new BRSKI end points which send and receive

binary artifacts (specifically, "/.well-known/brski/requestvoucher")

are binary. That is, no encoding is used.

In the BRSKI context, the EST "Content-Transfer-Encoding" header

field if present, SHOULD be ignored. This header field does not need

to be included.

7. Reduced security operational modes

A common requirement of bootstrapping is to support less secure

operational modes for support specific use cases. This section

suggests a range of mechanisms that would alter the security

assurance of BRSKI to accommodate alternative deployment

architectures and mitigate lifecycle management issues identified in

Section 10. They are presented here as informative (non-normative)

design guidance for future standardization activities. Section 9

provides standardization applicability statements for the ANIMA ACP.

Other users would be expected that subsets of these mechanisms could

be profiled with an accompanying applicability statements similar to

the one described in Section 9.

This section is considered non-normative in the generality of the

protocol. Use of the suggested mechanisms here MUST be detailed in

specific profiles of BRSKI, such as in Section 9.

7.1. Trust Model

This section explains the trust relationships detailed in Section

2.4:

Figure 10

The pledge could be compromised and providing an attack

vector for malware. The entity is trusted to only imprint using

secure methods described in this document. Additional endpoint

¶

¶

¶

¶

¶

¶

+--------+ +---------+ +------------+ +------------+

| Pledge | | Join | | Domain | |Manufacturer|

| | | Proxy | | Registrar | | Service |

| | | | | | | (Internet) |

+--------+ +---------+ +------------+ +------------+

¶

¶

Join Proxy:

Registrar:

Vendor Service, MASA:

Vendor Service, Ownership Validation:

assessment techniques are RECOMMENDED but are out-of-scope of

this document.

Provides proxy functionalities but is not involved in

security considerations.

When interacting with a MASA a registrar makes all

decisions. For Ownership Audit Vouchers (see [RFC8366]) the

registrar is provided an opportunity to accept MASA decisions.

This form of manufacturer service is trusted

to accurately log all claim attempts and to provide authoritative

log information to registrars. The MASA does not know which

devices are associated with which domains. These claims could be

strengthened by using cryptographic log techniques to provide

append only, cryptographic assured, publicly auditable logs.

This form of manufacturer

service is trusted to accurately know which device is owned by

which domain.

7.2. Pledge security reductions

The following is a list of alternative behaviours that the pledge

can be programmed to implement. These behaviours are not mutually

exclusive, nor are they dependent upon each other. Some of these

methods enable offline and emergency (touch based) deployment use

cases. Normative language is used as these behaviours are referenced

in later sections in a normative fashion.

The pledge MUST accept nonceless vouchers. This allows for a

use case where the registrar can not connect to the MASA at the

deployment time. Logging and validity periods address the

security considerations of supporting these use cases.

Many devices already support "trust on first use" for physical

interfaces such as console ports. This document does not change

that reality. Devices supporting this protocol MUST NOT support

"trust on first use" on network interfaces. This is because

"trust on first use" over network interfaces would undermine

the logging based security protections provided by this

specification.

The pledge MAY have an operational mode where it skips voucher

validation one time. For example if a physical button is

depressed during the bootstrapping operation. This can be

useful if the manufacturer service is unavailable. This

behavior SHOULD be available via local configuration or

physical presence methods (such as use of a serial/craft

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

3.

console) to ensure new entities can always be deployed even

when autonomic methods fail. This allows for unsecured imprint.

A craft/serial console could include a command such as "est-

enroll [2001:db8:0:1]:443" that begins the EST process from the

point after the voucher is validated. This process SHOULD

include server certificate verification using an on-screen

fingerprint.

It is RECOMMENDED that "trust on first use" or any method of

skipping voucher validation (including use of craft serial console)

only be available if hardware assisted Network Endpoint Assessment

(NEA: [RFC5209]) is supported. This recommendation ensures that

domain network monitoring can detect inappropriate use of offline or

emergency deployment procedures when voucher-based bootstrapping is

not used.

7.3. Registrar security reductions

A registrar can choose to accept devices using less secure methods.

They MUST NOT be the default behavior. These methods may be

acceptable in situations where threat models indicate that low

security is adequate. This includes situations where security

decisions are being made by the local administrator:

A registrar MAY choose to accept all devices, or all devices of

a particular type, at the administrator's discretion. This

could occur when informing all registrars of unique identifiers

of new entities might be operationally difficult.

A registrar MAY choose to accept devices that claim a unique

identity without the benefit of authenticating that claimed

identity. This could occur when the pledge does not include an

X.509 IDevID factory installed credential. New Entities without

an X.509 IDevID credential MAY form the Section 5.2 request

using the Section 5.5 format to ensure the pledge's serial

number information is provided to the registrar (this includes

the IDevID AuthorityKeyIdentifier value, which would be

statically configured on the pledge.) The pledge MAY refuse to

provide a TLS client certificate (as one is not available.) The

pledge SHOULD support HTTP-based or certificate-less TLS

authentication as described in EST RFC7030 section 3.3.2. A

registrar MUST NOT accept unauthenticated New Entities unless

it has been configured to do so by an administrator that has

verified that only expected new entities can communicate with a

registrar (presumably via a physically secured perimeter.)

A registrar MAY submit a nonceless voucher-requests to the MASA

service (by not including a nonce in the voucher-request.) The

¶

4.

¶

¶

¶

1.

¶

2.

¶

3.

resulting vouchers can then be stored by the registrar until

they are needed during bootstrapping operations. This is for

use cases where the target network is protected by an air gap

and therefore cannot contact the MASA service during pledge

deployment.

A registrar MAY ignore unrecognized nonceless log entries. This

could occur when used equipment is purchased with a valid

history being deployed in air gap networks that required

offline vouchers.

A registrar MAY accept voucher formats of future types that can

not be parsed by the Registrar. This reduces the Registrar's

visibility into the exact voucher contents but does not change

the protocol operations.

7.4. MASA security reductions

Lower security modes chosen by the MASA service affect all device

deployments unless the lower-security behavior is tied to specific

device identities. The modes described below can be applied to

specific devices via knowledge of what devices were sold. They can

also be bound to specific customers (independent of the device

identity) by authenticating the customer's Registrar.

7.4.1. Issuing Nonceless vouchers

A MASA has the option of not including a nonce in the voucher, and/

or not requiring one to be present in the voucher-request. This

results in distribution of a voucher that may never expire and in

effect makes the specified Domain an always trusted entity to the

pledge during any subsequent bootstrapping attempts. That a

nonceless voucher was issued is captured in the log information so

that the registrar can make appropriate security decisions when a

pledge joins the Domain. Nonceless vouchers are useful to support

use cases where registrars might not be online during actual device

deployment.

While a nonceless voucher may include an expiry date, a typical use

for a nonceless voucher is for it to be long-lived. If the device

can be trusted to have an accurate clock (the MASA will know), then

a nonceless voucher CAN be issued with a limited lifetime.

A more typical case for a nonceless voucher is for use with offline

onboarding scenarios where it is not possible to pass a fresh

voucher-request to the MASA. The use of a long-lived voucher also

eliminates concern about the availability of the MASA many years in

the future. Thus many nonceless vouchers will have no expiry dates.

¶

4.

¶

5.

¶

¶

¶

¶

¶

Thus, the long lived nonceless voucher does not require the proof

that the device is online. Issuing such a thing is only accepted

when the registrar is authenticated by the MASA and the MASA is

authorized to provide this functionality to this customer. The MASA

is RECOMMENDED to use this functionality only in concert with an

enhanced level of ownership tracking, the details of which are out

of scope for this document.

If the pledge device is known to have a real-time-clock that is set

from the factory, use of a voucher validity period is RECOMMENDED.

7.4.2. Trusting Owners on First Use

A MASA has the option of not verifying ownership before responding

with a voucher. This is expected to be a common operational model

because doing so relieves the manufacturer providing MASA services

from having to track ownership during shipping and supply chain and

allows for a very low overhead MASA service. A registrar uses the

audit log information as a defense in depth strategy to ensure that

this does not occur unexpectedly (for example when purchasing new

equipment the registrar would throw an error if any audit log

information is reported.) The MASA SHOULD verify the 'prior-signed-

voucher-request' information for pledges that support that

functionality. This provides a proof-of-proximity check that reduces

the need for ownership verification. The proof-of-proximity comes

from the assumption that the pledge and Join Proxy are on the same

link-local connection.

A MASA that practices Trust-on-First-Use (TOFU) for Registrar

identity may wish to annotate the origin of the connection by IP

address or netblock, and restrict future use of that identity from

other locations. A MASA that does this SHOULD take care to not

create nuisance situations for itself when a customer has multiple

registrars, or uses outgoing IPv4 NAT44 connections that change

frequently.

7.4.3. Updating or extending voucher trust anchors

This section deals with the problem of a MASA that is no longer

available due to a failed business, or the situation where a MASA is

uncooperative to a secondary sale.

A manufacturer could offer a management mechanism that allows the

list of voucher verification trust anchors to be extended. [I-

D.ietf-netconf-keystore] is one such interface that could be

implemented using YANG. Pretty much any configuration mechanism used

today could be extended to provide the needed additional update. A

manufacturer could even decide to install the domain CA trust

anchors received during the EST "cacerts" step as voucher

¶

¶

¶

¶

¶

verification anchors. Some additional signals will be needed to

clearly identify which keys have voucher validation authority from

among those signed by the domain CA. This is future work.

With the above change to the list of anchors, vouchers can be issued

by an alternate MASA. This could be the previous owner (the seller),

or some other trusted third party who is mediating the sale. If it

was a third party, then the seller would need to have taken steps to

introduce the third party configuration to the device prior

disconnection. The third party (e.g. a wholesaler of used equipment)

could however use a mechanism described in Section 7.2 to take

control of the device after receiving it physically. This would

permit the third party to act as the MASA for future onboarding

actions. As the IDevID certificate probably can not be replaced, the

new owner's Registrar would have to support an override of the MASA

URL.

To be useful for resale or other transfers of ownership one of two

situations will need to occur. The simplest is that the device is

not put through any kind of factory default/reset before going

through onboarding again. Some other secure, physical signal would

be needed to initiate it. This is most suitable for redeploying a

device within the same Enterprise. This would entail having previous

configuration in the system until entirely replaced by the new

owner, and represents some level of risk.

The second mechanism is that there would need to be two levels of

factory reset. One would take the system back entirely to

manufacturer state, including removing any added trust anchors, and

the second (more commonly used) one would just restore the

configuration back to a known default without erasing trust anchors.

This weaker factory reset might leave valuable credentials on the

device and this may be unacceptable to some owners.

As a third option, the manufacturer's trust anchors could be

entirely overwritten with local trust anchors. A factory default

would never restore those anchors. This option comes with a lot of

power, but also a lot of responsibility: if access to the private

part of the new anchors are lost the manufacturer may be unable to

help.

8. IANA Considerations

This document requires the following IANA actions:

8.1. The IETF XML Registry

This document registers a URI in the "IETF XML Registry" [RFC3688].

IANA is asked to register the following:

¶

¶

¶

¶

¶

¶

¶

8.2. YANG Module Names Registry

This document registers a YANG module in the "YANG Module Names"

registry [RFC6020]. IANA is asked to register the following:

8.3. BRSKI well-known considerations

8.3.1. BRSKI .well-known registration

To the Well-Known URIs Registry, at: "https://www.iana.org/

assignments/well-known-uris/well-known-uris.xhtml", this document

registers the well-known name "brski" with the following filled-in

template from [RFC5785]:

IANA is asked to change the registration of "est" to now only

include RFC7030 and no longer this document. Earlier versions of

this document used "/.well-known/est" rather than "/.well-known/

brski".

8.3.2. BRSKI .well-known registry

IANA is requested to create a new Registry entitled: "BRSKI well-

known URIs". The registry shall have at least three columns: URI,

description, and reference. New items can be added using the

Specification Required process. The initial contents of this

registry shall be:

8.4. PKIX Registry

IANA is requested to register the following:

 URI: urn:ietf:params:xml:ns:yang:ietf-voucher-request

 Registrant Contact: The ANIMA WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

¶

¶

 name: ietf-voucher-request

 namespace: urn:ietf:params:xml:ns:yang:ietf-voucher-request

 prefix: vch

 reference: THIS DOCUMENT

¶

¶

 URI suffix: brski

 Change Controller: IETF

¶

¶

¶

 URI document description

 requestvoucher [THISRFC] pledge to registrar, and from registrar to MASA

 voucher_status [THISRFC] pledge to registrar

 requestauditlog [THISRFC] registrar to MASA

 enrollstatus [THISRFC] pledge to registrar

¶

¶

This document requests a number for id-mod-MASAURLExtn2016(TBD) from

the pkix(7) id-mod(0) Registry.

This document has received an early allocation from the id-pe

registry (SMI Security for PKIX Certificate Extension) for id-pe-

masa-url with the value 32, resulting in an OID of

1.3.6.1.5.5.7.1.32.

8.5. Pledge BRSKI Status Telemetry

IANA is requested to create a new Registry entitled: "BRSKI

Parameters", and within that Registry to create a table called:

"Pledge BRSKI Status Telemetry Attributes". New items can be added

using the Specification Required process. The following items are to

be in the initial registration, with this document (Section 5.7) as

the reference:

version

Status

Reason

reason-context

8.6. DNS Service Names

IANA is requested to register the following Service Names:

8.7. GRASP Objective Names

IANA is requested to register the following GRASP Objective Names:

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

Service Name: brski-proxy

Transport Protocol(s): tcp

Assignee: IESG <iesg@ietf.org>.

Contact: IESG <iesg@ietf.org>

Description: The Bootstrapping Remote Secure Key

 Infrastructures Proxy

Reference: [This document]

Service Name: brski-registrar

Transport Protocol(s): tcp

Assignee: IESG <iesg@ietf.org>.

Contact: IESG <iesg@ietf.org>

Description: The Bootstrapping Remote Secure Key

 Infrastructures Registrar

Reference: [This document]

¶

¶

The IANA is requested to register the value "AN_Proxy" (without

quotes) to the GRASP Objectives Names Table in the GRASP Parameter

Registry. The specification for this value is this document, Section

4.1.1.

The IANA is requested to register the value "AN_join_registrar"

(without quotes) to the GRASP Objectives Names Table in the GRASP

Parameter Registry. The specification for this value is this

document, Section 4.3.

9. Applicability to the Autonomic Control Plane (ACP)

This document provides a solution to the requirements for secure

bootstrap set out in Using an Autonomic Control Plane for Stable

Connectivity of Network Operations, Administration, and Maintenance

[RFC8368], A Reference Model for Autonomic Networking [I-D.ietf-

anima-reference-model] and specifically the An Autonomic Control

Plane (ACP) [I-D.ietf-anima-autonomic-control-plane], section 3.2

(Secure Bootstrap), and section 6.1 (ACP Domain, Certificate and

Network).

The protocol described in this document has appeal in a number of

other non-ANIMA use cases. Such uses of the protocol will be

deploying into other environments with different tradeoffs of

privacy, security, reliability and autonomy from manufacturers. As

such those use cases will need to provide their own applicability

statements, and will need to address unique privacy and security

considerations for the environments in which they are used.

The autonomic control plane (ACP) that is bootstrapped by the BRSKI

protocol is typically used in medium to large Internet Service

Provider organizations. Equivalent enterprises that have significant

layer-3 router connectivity also will find significant benefit,

particularly if the Enterprise has many sites. (A network consisting

of primarily layer-2 is not excluded, but the adjacencies that the

ACP will create and maintain will not reflect the topology until all

devices participate in the ACP).

In the ACP, the Join Proxy is found to be proximal because

communication between the pledge and the join proxy is exclusively

on IPv6 Link-Local addresses. The proximity of the Join Proxy to the

Registrar is validated by the Registrar using ANI ACP IPv6 Unique

Local Addresses (ULA). ULAs are not routable over the Internet, so

as long as the Join Proxy is operating correctly the proximity

asssertion is satisfied. Other uses of BRSKI will need make similar

analysis if they use proximity assertions.

As specified in the ANIMA charter, this work "..focuses on

professionally-managed networks." Such a network has an operator and

¶

¶

¶

¶

¶

¶

can do things like install, configure and operate the Registrar

function. The operator makes purchasing decisions and is aware of

what manufacturers it expects to see on its network.

Such an operator is also capable of performing bootstrapping of a

device using a serial-console (craft console). The zero-touch

mechanism presented in this and the ACP document [I-D.ietf-anima-

autonomic-control-plane] represents a significiant efficiency: in

particular it reduces the need to put senior experts on airplanes to

configure devices in person.

There is a recognition as the technology evolves that not every

situation may work out, and occasionally a human may still have to

visit. In recognition of this, some mechanisms are presented in

Section 7.2. The manufacturer MUST provide at least one of the one-

touch mechanisms described that permit enrollment to be proceed

without availability of any manufacturer server (such as the MASA).

The BRSKI protocol is going into environments where there have

already been quite a number of vendor proprietary management

systems. Those are not expected to go away quickly, but rather to

leverage the secure credentials that are provisioned by BRSKI. The

connectivity requirements of said management systems are provided by

the ACP.

9.1. Operational Requirements

This section collects operational requirements based upon the three

roles involved in BRSKI: The Manufacturer Authorized Signing

Authority (MASA), the (Domain) Owner and the Device. It should be

recognized that the manufacturer may be involved in two roles, as it

creates the software/firmware for the device, and also may be the

operator of the MASA.

The requirements in this section are presented using BCP14

([RFC2119], [RFC8174]) language. These do not represent new

normative statements, just a review of a few such things in one

place by role. They also apply specifically to the ANIMA ACP use

case. Other use cases likely have similar, but MAY have different

requirements.

9.1.1. MASA Operational Requirements

The manufacturer MUST arrange for an online service to be available

called the MASA. It MUST be available at the URL which is encoded in

the IDevID certificate extensions described in Section 2.3.2.

The online service MUST have access to a private key with which to

sign [RFC8366] format voucher artifacts. The public key,

¶

¶

¶

¶

¶

¶

¶

certificate, or certificate chain MUST be built in to the device as

part of the firmware.

It is RECOMMENDED that the manufacturer arrange for this signing key

(or keys) to be escrowed according to typical software source code

escrow practices [softwareescrow].

The MASA accepts voucher requests from Domain Owners according to an

operational practice appropriate for the device. This can range from

any domain owner (first-come first-served, on a TOFU-like basis), to

full sales channel integration where Domain Owners need to be

positively identified by TLS Client Certicate pinned, or HTTP

Authentication process. The MASA creates signed voucher artifacts

according to its internally defined policies.

The MASA MUST operate an audit log for devices that is accessible.

The audit log is designed to be easily cacheable and the MASA MAY

find it useful to put this content on a CDN.

9.1.2. Domain Owner Operational Requirements

The domain owner MUST operate an EST ([RFC7030]) server with the

extensions described in this document. This is the JRC or Registrar.

This JRC/EST server MUST announce itself using GRASP within the ACP.

This EST server will typically reside with the Network Operations

Center for the organization.

The domain owner MAY operate an internal certificate authority (CA)

that is seperate from the EST server, or it MAY combine all

activities into a single device. The determination of the

architecture depends upon the scale and resiliency requirements of

the organization. Multiple JRC instances MAY be announced into the

ACP from multiple locations to achieve an appropriate level of

redundancy.

In order to recognize which devices and which manufacturers are

welcome on the domain owner's network, the domain owner SHOULD

maintain a white list of manufacturers. This MAY extend to

integration with purchasing departments to know the serial numbers

of devices.

The domain owner SHOULD use the resulting overlay ACP network to

manage devices, replacing legacy out-of-band mechanisms.

The domain owner SHOULD operate one or more EST servers which can be

used to renew the domain certificates (LDevIDs) which are deployed

to devices. These servers MAY be the same as the JRC, or MAY be a

distinct set of devices, as approriate for resiliency.

¶

¶

¶

¶

¶

¶

¶

¶

¶

The organization MUST take appropriate precautions against loss of

access to the certificate authority private key. Hardware security

modules and/or secret splitting are appropriate.

9.1.3. Device Operational Requirements

Devices MUST come with built-in trust anchors that permit the device

to validate vouchers from the MASA.

Device MUST come with (unique, per-device) IDevID certificates that

include their serial numbers, and the MASA URL extension.

Devices are expected to find Join Proxies using GRASP, and then

connect to the JRC using the protocol described in this document.

Once a domain owner has been validated with the voucher, devices are

expected to enroll into the domain using EST. Devices are then

expected to form ACPs using IPsec over IPv6 Link-Local addresses as

described in [I-D.ietf-anima-autonomic-control-plane].

Once a device has been enrolled it SHOULD listen for the address of

the JRC using GRASP, and it SHOULD enable itself as a Join Proxy,

and announce itself on all links/interfaces using GRASP DULL.

Devices are expected to renew their certificates before they expire.

10. Privacy Considerations

10.1. MASA audit log

The MASA audit log includes the domainID for each domain a voucher

has been issued to. This information is closely related to the

actual domain identity. A MASA may need additional defenses against

Denial of Service attacks (Section 11.1), and this may involve

collecting additional (unspecified here) information. This could

provide sufficient information for the MASA service to build a

detailed understanding the devices that have been provisioned within

a domain.

There are a number of design choices that mitigate this risk. The

domain can maintain some privacy since it has not necessarily been

authenticated and is not authoritatively bound to the supply chain.

Additionally the domainID captures only the unauthenticated subject

key identifier of the domain. A privacy sensitive domain could

theoretically generate a new domainID for each device being

deployed. Similarly a privacy sensitive domain would likely purchase

devices that support proximity assertions from a manufacturer that

does not require sales channel integrations. This would result in a

¶

¶

¶

¶

¶

¶

¶

¶

¶

significant level of privacy while maintaining the security

characteristics provided by Registrar based audit log inspection.

10.2. What BRSKI-EST reveals

During the provisional phase of the BRSKI-EST connection between the

Pledge and the Registrar, each party reveals its certificates to

each other. For the Pledge, this includes the serialNumber

attribute, the MASA URL, and the identity that signed the IDevID

certificate.

TLS 1.2 reveals the certificate identities to on-path observers,

including the Join Proxy.

TLS 1.3 reveals the certificate identities only to the end parties,

but as the connection is provisional, an on-path attacker (MTIM) can

see the certificates. This includes not just malicious attackers,

but also Registrars that are visible to the Pledge, but which are

not part of the intended domain.

The certificate of the Registrar is rather arbitrary from the point

of view of the BRSKI protocol. As no [RFC6125] validations are

expected to be done, the contents could be easily pseudonymized. Any

device that can see a join proxy would be able to connect to the

Registrar and learn the identity of the network in question. Even if

the contents of the certificate are pseudonymized, it would be

possible to correlate different connections in different locations

belong to the same entity. This is unlikely to present a significant

privacy concern to ANIMA ACP uses of BRSKI, but may be a concern to

other users of BRSKI.

The certificate of the Pledge could be revealed by a malicious Join

Proxy that performed a MITM attack on the provisional TLS

connection. Such an attacker would be able to reveal the identity of

the Pledge to third parties if it chose to so.

Research into a mechanism to do multi-step, multi-party

authenticated key agreement, incorporating some kind of zero-

knowledge proof would be valuable. Such a mechanism would ideally

avoid disclosing identities until pledge, registrar and MASA agree

to the transaction. Such a mechanism would need to discover the

location of the MASA without knowing the identity of the pledge, or

the identity of the MASA. This part of the problem may be

unsolveable.

10.3. What BRSKI-MASA reveals to the manufacturer

With consumer-oriented devices, the "call-home" mechanism in IoT

devices raises significant privacy concerns. See [livingwithIoT] and

[IoTstrangeThings] for exemplars. The Autonomic Control Plane (ACP)

¶

¶

¶

¶

¶

¶

¶

usage of BRSKI is not targeted at individual usage of IoT devices,

but rather at the Enterprise and ISP creation of networks in a zero-

touch fashion where the "call-home" represents a different class of

privacy and lifecycle management concerns.

It needs to be re-iterated that the BRSKI-MASA mechanism only occurs

once during the commissioning of the device. It is well defined, and

although encrypted with TLS, it could in theory be made auditable as

the contents are well defined. This connection does not occur when

the device powers on or is restarted for normal routines. (It is

conceivable, but remarkably unusual, that a device could be forced

to go through a full factory reset during an exceptional firmware

update situation, after which enrollment would have be repeated, and

a new connection would occur)

The BRSKI call-home mechanism is mediated via the owner's Registrar,

and the information that is transmitted is directly auditable by the

device owner. This is in stark contrast to many "call-home"

protocols where the device autonomously calls home and uses an

undocumented protocol.

While the contents of the signed part of the pledge voucher request

can not be changed, they are not encrypted at the registrar. The

ability to audit the messages by the owner of the network is a

mechanism to defend against exfiltration of data by a nefarious

pledge. Both are, to re-iterate, encrypted by TLS while in transit.

The BRSKI-MASA exchange reveals the following information to the

manufacturer:

the identity of the device being enrolled. This is revealed by

transmission of a signed voucher-request containing the serial-

number. The manufacturer can usually link the serial number to a

device model.

an identity of the domain owner in the form of the domain trust

anchor. However, this is not a global PKI anchored name within

the WebPKI, so this identity could be pseudonymous. If there is

sales channel integration, then the MASA will have authenticated

the domain owner, either via pinned certificate, or perhaps

another HTTP authentication method, as per Section 5.5.4.

the time the device is activated,

the IP address of the domain Owner's Registrar. For ISPs and

Enterprises, the IP address provides very clear geolocation of

the owner. No amount of IP address privacy extensions ([RFC4941])

can do anything about this, as a simple whois lookup likely

identifies the ISP or Enterprise from the upper bits anyway. A

passive attacker who observes the connection definitely may

¶

¶

¶

¶

¶

*

¶

*

¶

* ¶

*

conclude that the given enterprise/ISP is a customer of the

particular equipment vendor. The precise model that is being

enrolled will remain private.

Based upon the above information, the manufacturer is able to track

a specific device from pseudonymous domain identity to the next

pseudonymous domain identity. If there is sales-channel integration,

then the identities are not pseudonymous.

The manufacturer knows the IP address of the Registrar, but it can

not see the IP address of the device itself. The manufacturer can

not track the device to a detailed physical or network location,

only to the location of the Registrar. That is likely to be at the

Enterprise or ISPs headquarters.

The above situation is to be distinguished from a residential/

individual person who registers a device from a manufacturer.

Individuals do not tend to have multiple offices, and their

registrar is likely on the same network as the device. A

manufacturer that sells switching/routing products to enterprises

should hardly be surprised if additional purchases switching/routing

products are made. Deviations from a historical trend or an

establish baseline would, however, be notable.

The situation is not improved by the enterprise/ISP using

anonymization services such as ToR [Dingledine2004], as a TLS 1.2

connection will reveal the ClientCertificate used, clearly

identifying the enterprise/ISP involved. TLS 1.3 is better in this

regard, but an active attacker can still discover the parties

involved by performing a Man-In-The-Middle-Attack on the first

attempt (breaking/killing it with a TCP RST), and then letting

subsequent connection pass through.

A manufacturer could attempt to mix the BRSKI-MASA traffic in with

general traffic their site by hosting the MASA behind the same (set)

of load balancers that the companies normal marketing site is hosted

behind. This makes lots of sense from a straight capacity planning

point of view as the same set of services (and the same set of

Distributed Denial of Service mitigations) may be used.

Unfortunately, as the BRSKI-MASA connections include TLS

ClientCertificate exchanges, this may easily be observed in TLS 1.2,

and a traffic analysis may reveal it even in TLS 1.3. This does not

make such a plan irrelevant. There may be other organizational

reasons to keep the marketing site (which is often subject to

frequent re-designs, outsourcing, etc.) separate from the MASA,

which may need to operate reliably for decades.

¶

¶

¶

¶

¶

¶

10.4. Manufacturers and Used or Stolen Equipment

As explained above, the manufacturer receives information each time

that a device which is in factory-default mode does a zero-touch

bootstrap, and attempts to enroll into a domain owner's registrar.

The manufacturer is therefore in a position to decline to issue a

voucher if it detects that the new owner is not the same as the

previous owner.

This can be seen as a feature if the equipment is believed to

have been stolen. If the legitimate owner notifies the

manufacturer of the theft, then when the new owner brings the

device up, if they use the zero-touch mechanism, the new

(illegitimate) owner reveals their location and identity.

In the case of Used equipment, the initial owner could inform

the manufacturer of the sale, or the manufacturer may just

permit resales unless told otherwise. In which case, the

transfer of ownership simply occurs.

A manufacturer could however decide not to issue a new voucher

in response to a transfer of ownership. This is essentially the

same as the stolen case, with the manufacturer having decided

that the sale was not legitimate.

There is a fourth case, if the manufacturer is providing

protection against stolen devices. The manufacturer then has a

responsibility to protect the legitimate owner against

fraudulent claims that the equipment was stolen. In the absence

of such manufacturer protection, such a claim would cause the

manufacturer to refuse to issue a new voucher. Should the

device go through a deep factory reset (for instance,

replacement of a damaged main board component, the device would

not bootstrap.

Finally, there is a fifth case: the manufacturer has decided to

end-of-line the device, or the owner has not paid a yearly

support amount, and the manufacturer refuses to issue new

vouchers at that point. This last case is not new to the

industry: many license systems are already deployed that have

significantly worse effect.

This section has outlined five situations in which a manufacturer

could use the voucher system to enforce what are clearly license

terms. A manufacturer that attempted to enforce license terms via

vouchers would find it rather ineffective as the terms would only be

enforced when the device is enrolled, and this is not (to repeat), a

daily or even monthly occurrence.

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

¶

10.5. Manufacturers and Grey market equipment

Manufacturers of devices often sell different products into

different regional markets. Which product is available in which

market can be driven by price differentials, support issues (some

markets may require manuals and tech-support to be done in the local

language), government export regulation (such as whether strong

crypto is permitted to be exported, or permitted to be used in a

particular market). When an domain owner obtains a device from a

different market (they can be new) and transfers it to a different

location, this is called a Grey Market.

A manufacturer could decide not to issue a voucher to an enterprise/

ISP based upon their location. There are a number of ways which this

could be determined: from the geolocation of the registrar, from

sales channel knowledge about the customer, and what products are

(un-)available in that market. If the device has a GPS the

coordinates of the device could even be placed into an extension of

the voucher.

The above actions are not illegal, and not new. Many manufacturers

have shipped crypto-weak (exportable) versions of firmware as the

default on equipment for decades. The first task of an enterprise/

ISP has always been to login to a manufacturer system, show one's

"entitlement" (country information, proof that support payments have

been made), and receive either a new updated firmware, or a license

key that will activate the correct firmware.

BRSKI permits the above process to automated (in an autonomic

fashion), and therefore perhaps encourages this kind of

differentiation by reducing the cost of doing it.

An issue that manufacturers will need to deal with in the above

automated process is when a device is shipped to one country with

one set of rules (or laws or entitlements), but the domain registry

is in another one. Which rules apply is something will have to be

worked out: the manufacturer could come to believe they are dealing

with Grey market equipment, when it is simply dealing with a global

enterprise.

10.6. Some mitigations for meddling by manufacturers

The most obvious mitigation is not to buy the product. Pick

manufacturers that are up-front about their policies, who do not

change them gratuitously.

Section 7.4.3 describes some ways in which a manufacturer could

provide a mechanism to manage the trust anchors and built-in

certificates (IDevID) as an extension. There are a variety of

mechanism, and some may take a substantial amount of work to get

¶

¶

¶

¶

¶

¶

exactly correct. These mechanisms do not change the flow of the

protocol described here, but rather allow the starting trust

assumptions to be changed. This is an area for future

standardization work.

Replacement of the voucher validation anchors (usually pointing to

the original manufacturer's MASA) with those of the new owner

permits the new owner to issue vouchers to subsequent owners. This

would be done by having the selling (old) owner to run a MASA.

The BRSKI protocol depends upon a trust anchor on the device and an

identity on the device. Management of these entities facilitates a

few new operational modes without making any changes to the BRSKI

protocol. Those modes include: offline modes where the domain owner

operates an internal MASA for all devices, resell modes where the

first domain owner becomes the MASA for the next (resold-to) domain

owner, and services where an aggregator acquires a large variety of

devices, and then acts as a pseudonymized MASA for a variety of

devices from a variety of manufacturers.

Although replacement of the IDevID is not required for all modes

described above, a manufacturers could support such a thing. Some

may wish to consider replacement of the IDevID as an indication that

the device's warrantee is terminated. For others, the privacy

requirements of some deployments might consider this a standard

operating practice.

As discussed at the end of Section 5.8.1, new work could be done to

use a distributed consensus technology for the audit log. This would

permit the audit log to continue to be useful, even when there is a

chain of MASA due to changes of ownership.

10.7. Death of a manufacturer

A common concern has been that a manufacturer could go out of

business, leaving owners of devices unable to get new vouchers for

existing products. Said products might have been previously

deployed, but need to be re-initialized, they might have been

purchased used, or they might have kept in a warehouse as long-term

spares.

The MASA was named the Manufacturer *Authorized* Signing Authority

to emphasize that it need not be the manufacturer itself that

performs this. It is anticipated that specialist service providers

will come to exist that deal with the creation of vouchers in much

the same way that many companies have outsourced email, advertising

and janitorial services.

Further, it is expected that as part of any service agreement that

the manufacturer would arrange to escrow appropriate private keys

¶

¶

¶

¶

¶

¶

¶

such that a MASA service could be provided by a third party. This

has routinely been done for source code for decades.

11. Security Considerations

This document details a protocol for bootstrapping that balances

operational concerns against security concerns. As detailed in the

introduction, and touched on again in Section 7, the protocol allows

for reduced security modes. These attempt to deliver additional

control to the local administrator and owner in cases where less

security provides operational benefits. This section goes into more

detail about a variety of specific considerations.

To facilitate logging and administrative oversight, in addition to

triggering Registrar verification of MASA logs, the pledge reports

on voucher parsing status to the registrar. In the case of a

failure, this information is informative to a potentially malicious

registrar. This is mandated anyway because of the operational

benefits of an informed administrator in cases where the failure is

indicative of a problem. The registrar is RECOMMENDED to verify MASA

logs if voucher status telemetry is not received.

To facilitate truly limited clients EST RFC7030 section 3.3.2

requirements that the client MUST support a client authentication

model have been reduced in Section 7 to a statement that the

registrar "MAY" choose to accept devices that fail cryptographic

authentication. This reflects current (poor) practices in shipping

devices without a cryptographic identity that are NOT RECOMMENDED.

During the provisional period of the connection the pledge MUST

treat all HTTP header and content data as untrusted data. HTTP

libraries are regularly exposed to non-secured HTTP traffic: mature

libraries should not have any problems.

Pledges might chose to engage in protocol operations with multiple

discovered registrars in parallel. As noted above they will only do

so with distinct nonce values, but the end result could be multiple

vouchers issued from the MASA if all registrars attempt to claim the

device. This is not a failure and the pledge choses whichever

voucher to accept based on internal logic. The registrars verifying

log information will see multiple entries and take this into account

for their analytics purposes.

11.1. Denial of Service (DoS) against MASA

There are uses cases where the MASA could be unavailable or

uncooperative to the Registrar. They include active DoS attacks,

planned and unplanned network partitions, changes to MASA policy, or

other instances where MASA policy rejects a claim. These introduce

an operational risk to the Registrar owner in that MASA behavior

¶

¶

¶

¶

¶

¶

might limit the ability to bootstrap a pledge device. For example

this might be an issue during disaster recovery. This risk can be

mitigated by Registrars that request and maintain long term copies

of "nonceless" vouchers. In that way they are guaranteed to be able

to bootstrap their devices.

The issuance of nonceless vouchers themselves creates a security

concern. If the Registrar of a previous domain can intercept

protocol communications then it can use a previously issued

nonceless voucher to establish management control of a pledge device

even after having sold it. This risk is mitigated by recording the

issuance of such vouchers in the MASA audit log that is verified by

the subsequent Registrar and by Pledges only bootstrapping when in a

factory default state. This reflects a balance between enabling MASA

independence during future bootstrapping and the security of

bootstrapping itself. Registrar control over requesting and auditing

nonceless vouchers allows device owners to choose an appropriate

balance.

The MASA is exposed to DoS attacks wherein attackers claim an

unbounded number of devices. Ensuring a registrar is representative

of a valid manufacturer customer, even without validating ownership

of specific pledge devices, helps to mitigate this. Pledge

signatures on the pledge voucher-request, as forwarded by the

registrar in the prior-signed-voucher-request field of the registrar

voucher-request, significantly reduce this risk by ensuring the MASA

can confirm proximity between the pledge and the registrar making

the request. Supply chain integration ("know your customer") is an

additional step that MASA providers and device vendors can explore.

11.2. DomainID must be resistant to second-preimage attacks

The domainID is used as the reference in the audit log to the

domain. The domainID is expected to be calculated by a hash that is

resistant to a second-preimage attack. Such an attack would allow a

second registrar to create audit log entries that are fake.

11.3. Availability of good random numbers

The nonce used by the Pledge in the voucher-request SHOULD be

generated by a Strong Cryptographic Sequence ([RFC4086] section

6.2). TLS has a similar requirement.

In particular implementations should pay attention to the advance in

[RFC4086] section 3, particularly section 3.4. The random seed used

by a device at boot MUST be unique across all devices and all

bootstraps. Resetting a device to factory default state does not

obviate this requirement.

¶

¶

¶

¶

¶

¶

11.4. Freshness in Voucher-Requests

A concern has been raised that the pledge voucher-request should

contain some content (a nonce) provided by the registrar and/or MASA

in order for those actors to verify that the pledge voucher-request

is fresh.

There are a number of operational problems with getting a nonce from

the MASA to the pledge. It is somewhat easier to collect a random

value from the registrar, but as the registrar is not yet vouched

for, such a registrar nonce has little value. There are privacy and

logistical challenges to addressing these operational issues, so if

such a thing were to be considered, it would have to provide some

clear value. This section examines the impacts of not having a fresh

pledge voucher-request.

Because the registrar authenticates the pledge, a full Man-in-the-

Middle attack is not possible, despite the provisional TLS

authentication by the pledge (see Section 5.) Instead we examine the

case of a fake registrar (Rm) that communicates with the pledge in

parallel or in close time proximity with the intended registrar.

(This scenario is intentionally supported as described in Section

4.1.)

The fake registrar (Rm) can obtain a voucher signed by the MASA

either directly or through arbitrary intermediaries. Assuming that

the MASA accepts the registrar voucher-request (either because Rm is

collaborating with a legitimate registrar according to supply chain

information, or because the MASA is in audit-log only mode), then a

voucher linking the pledge to the registrar Rm is issued.

Such a voucher, when passed back to the pledge, would link the

pledge to registrar Rm, and would permit the pledge to end the

provisional state. It now trusts Rm and, if it has any security

vulnerabilities leveragable by an Rm with full administrative

control, can be assumed to be a threat against the intended

registrar.

This flow is mitigated by the intended registrar verifying the audit

logs available from the MASA as described in Section 5.8. Rm might

chose to collect a voucher-request but wait until after the intended

registrar completes the authorization process before submitting it.

This pledge voucher-request would be 'stale' in that it has a nonce

that no longer matches the internal state of the pledge. In order to

successfully use any resulting voucher the Rm would need to remove

the stale nonce or anticipate the pledge's future nonce state.

Reducing the possibility of this is why the pledge is mandated to

generate a strong random or pseudo-random number nonce.

¶

¶

¶

¶

¶

¶

Additionally, in order to successfully use the resulting voucher the

Rm would have to attack the pledge and return it to a bootstrapping

enabled state. This would require wiping the pledge of current

configuration and triggering a re-bootstrapping of the pledge. This

is no more likely than simply taking control of the pledge directly

but if this is a consideration the target network is RECOMMENDED to

take the following steps:

Ongoing network monitoring for unexpected bootstrapping attempts

by pledges.

Retrieval and examination of MASA log information upon the

occurrence of any such unexpected events. Rm will be listed in

the logs along with nonce information for analysis.

11.5. Trusting manufacturers

The BRSKI extensions to EST permit a new pledge to be completely

configured with domain specific trust anchors. The link from built-

in manufacturer-provided trust anchors to domain-specific trust

anchors is mediated by the signed voucher artifact.

If the manufacturer's IDevID signing key is not properly validated,

then there is a risk that the network will accept a pledge that

should not be a member of the network. As the address of the

manufacturer's MASA is provided in the IDevID using the extension

from Section 2.3, the malicious pledge will have no problem

collaborating with it's MASA to produce a completely valid voucher.

BRSKI does not, however, fundamentally change the trust model from

domain owner to manufacturer. Assuming that the pledge used its

IDevID with RFC7030 EST and BRSKI, the domain (registrar) still

needs to trust the manufacturer.

Establishing this trust between domain and manufacturer is outside

the scope of BRSKI. There are a number of mechanisms that can

adopted including:

Manually configuring each manufacturer's trust anchor.

A Trust-On-First-Use (TOFU) mechanism. A human would be queried

upon seeing a manufacturer's trust anchor for the first time, and

then the trust anchor would be installed to the trusted store.

There are risks with this; even if the key to name mapping is

validated using something like the WebPKI, there remains the

possibility that the name is a look alike: e.g, dem0.example. vs

demO.example.

scanning the trust anchor from a QR code that came with the

packaging (this is really a manual TOFU mechanism)

¶

*

¶

*

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

some sales integration process where trust anchors are provided

as part of the sales process, probably included in a digital

packing "slip", or a sales invoice.

consortium membership, where all manufacturers of a particular

device category (e.g, a light bulb, or a cable-modem) are signed

by an certificate authority specifically for this. This is done

by CableLabs today. It is used for authentication and

authorization as part of TR-79: [docsisroot] and [TR069].

The existing WebPKI provides a reasonable anchor between

manufacturer name and public key. It authenticates the key. It does

not provide a reasonable authorization for the manufacturer, so it

is not directly useable on it's own.

11.6. Manufacturer Maintenance of trust anchors

BRSKI depends upon the manufacturer building in trust anchors to the

pledge device. The voucher artifact which is signed by the MASA will

be validated by the pledge using that anchor. This implies that the

manufacturer needs to maintain access to a signing key that the

pledge can validate.

The manufacturer will need to maintain the ability to make

signatures that can be validated for the lifetime that the device

could be onboarded. Whether this onboarding lifetime is less than

the device lifetime depends upon how the device is used. An

inventory of devices kept in a warehouse as spares might not be

onboarded for many decades.

There are good cryptographic hygiene reasons why a manufacturer

would not want to maintain access to a private key for many decades.

A manufacturer in that situation can leverage a long-term

certificate authority anchor, built-in to the pledge, and then a

certificate chain may be incorporated using the normal CMS

certificate set. This may increase the size of the voucher

artifacts, but that is not a significant issues in non-constrained

environments.

There are a few other operational variations that manufacturers

could consider. For instance, there is no reason that every device

need have the same set of trust anchors pre-installed. Devices built

in different factories, or on different days, or any other

consideration could have different trust anchors built in, and the

record of which batch the device is in would be recorded in the

asset database. The manufacturer would then know which anchor to

sign an artifact against.

Aside from the concern about long-term access to private keys, a

major limiting factor for the shelf-life of many devices will be the

*

¶

*

¶

¶

¶

¶

¶

¶

age of the cryptographic algorithms included. A device produced in

2019 will have hardware and software capable of validating

algorithms common in 2019, and will have no defense against attacks

(both quantum and von-neuman brute force attacks) which have not yet

been invented. This concern is orthogonal to the concern about

access to private keys, but this concern likely dominates and limits

the lifespan of a device in a warehouse. If any update to firmware

to support new cryptographic mechanism were possible (while the

device was in a warehouse), updates to trust anchors would also be

done at the same time.

The set of standard operating procedures for maintaining high value

private keys is well documented. For instance, the WebPKI provides a

number of options for audits at [cabforumaudit], and the DNSSEC root

operations are well documented at [dnssecroot].

It is not clear if Manufacturers will take this level of precaution,

or how strong the economic incentives are to maintain an appropriate

level of security.

This next section examines the risk due to a compromised

manufacturer IDevID signing key. This is followed by examination of

the risk due to a compromised MASA key. The third section sections

below examines the situation where MASA web server itself is under

attacker control, but that the MASA signing key itself is safe in a

not-directly connected hardware module.

11.6.1. Compromise of Manufacturer IDevID signing keys

An attacker that has access to the key that the manufacturer uses to

sign IDevID certificates can create counterfeit devices. Such

devices can claim to be from a particular manufacturer, but be

entirely different devices: Trojan horses in effect.

As the attacker controls the MASA URL in the certificate, the

registrar can be convinced to talk to the attackers' MASA. The

Registrar does not need to be in any kind of promiscuous mode to be

vulnerable.

In addition to creating fake devices, the attacker may also be able

to issue revocations for existing certificates if the IDevID

certificate process relies upon CRL lists that are distributed.

There does not otherwise seem to be any risk from this compromise to

devices which are already deployed, or which are sitting locally in

boxes waiting for deployment (local spares). The issue is that

operators will be unable to trust devices which have been in an

uncontrolled warehouse as they do not know if those are real

devices.

¶

¶

¶

¶

¶

¶

¶

¶

11.6.2. Compromise of MASA signing keys

There are two periods of time in which to consider: when the MASA

key has fallen into the hands of an attacker, and after the MASA

recognizes that the key has been compromised.

11.6.2.1. Attacker opportunties with compromised MASA key

An attacker that has access to the MASA signing key could create

vouchers. These vouchers could be for existing deployed devices, or

for devices which are still in a warehouse. In order to exploit

these vouchers two things need to occur: the device has to go

through a factory default boot cycle, and the registrar has to be

convinced to contact the attacker's MASA.

If the attacker controls a Registrar which is visible to the device,

then there is no difficulty in delivery of the false voucher. A

possible practical example of an attack like this would be in a data

center, at an ISP peering point (whether a public IX, or a private

peering point). In such a situation, there are already cables

attached to the equipment that lead to other devices (the peers at

the IX), and through those links, the false voucher could be

delivered. The difficult part would be get the device put through a

factory reset. This might be accomplished through social engineering

of data center staff. Most locked cages have ventilation holes, and

possibly a long "paperclip" could reach through to depress a factory

reset button. Once such a piece of ISP equipment has been

compromised, it could be used to compromise equipment that was

connected to (through long haul links even), assuming that those

pieces of equipment could also be forced through a factory reset.

The above scenario seems rather unlikely as it requires some element

of physical access; but were there a remote exploit that did not

cause a direct breach, but rather a fault that resulted in a factory

reset, this could provide a reasonable path.

The above deals with ANI uses of BRSKI. For cases where 802.11 or

802.15.4 is involved, the need to connect directly to the device is

eliminated, but the need to do a factory reset is not. Physical

possession of the device is not required as above, provided that

there is some way to force a factory reset. With some consumers

devices with low overall implementation quality, the end users might

be familiar with needing to reset the device regularly.

The authors are unable to come up with an attack scenario where a

compromised voucher signature enables an attacker to introduce a

compromised pledge into an existing operator's network. This is the

case because the operator controls the communication between

¶

¶

¶

¶

¶

Registrar and MASA, and there is no opportunity to introduce the

fake voucher through that conduit.

11.6.2.2. Risks after key compromise is known

Once the operator of the MASA realizes that the voucher signing key

has been compromised it has to do a few things.

First, it MUST issue a firmware update to all devices that had that

key as a trust anchor, such that they will no longer trust vouchers

from that key. This will affect devices in the field which are

operating, but those devices, being in operation, are not performing

onboarding operations, so this is not a critical patch.

Devices in boxes (in warehouses) are vulnerable, and remain

vulnerable until patched. An operator would be prudent to unbox the

devices, onboard them in a safe environment, and then perform

firmware updates. This does not have to be done by the end-operator;

it could be done by a distributor that stores the spares. A

recommended practice for high value devices (which typically have a

<4hr service window) may be to validate the device operation on a

regular basis anyway.

If the onboarding process includes attestations about firmware

versions, then through that process the operator would be advised to

upgrade the firmware before going into production. Unfortunately,

this does not help against situations where the attacker operates

their own Registrar (as listed above).

[RFC8366] section 6.1 explains the need for short-lived vouchers.

The nonce guarantees freshness, and the short-lived nature of the

voucher means that the window to deliver a fake voucher is very

short. A nonceless, long-lived voucher would be the only option for

the attacker, and devices in the warehouse would be vulnerable to

such a thing.

A key operational recommendation is for manufacturers to sign

nonceless, long-lived vouchers with a different key that they sign

short-lived vouchers. That key needs significantly better

protection. If both keys come from a common trust-anchor (the

manufacturer's CA), then a compromise of the manufacturer's CA would

compromise both keys. Such a compromise of the manufacturer's CA

likely compromises all keys outlined in this section.

11.6.3. Compromise of MASA web service

An attacker that takes over the MASA web service has a number of

attacks. The most obvious one is simply to take the database listing

customers and devices and to sell this data to other attackers who

will now know where to find potentially vulnerable devices.

¶

¶

¶

¶

¶

¶

¶

¶

The second most obvious thing that the attacker can do is to kill

the service, or make it operate unreliably, making customers

frustrated. This could have a serious affect on ability to deploy

new services by customers, and would be a significant issue during

disaster recovery.

While the compromise of the MASA web service may lead to the

compromise of the MASA voucher signing key, if the signing occurs

offboard (such as in a hardware signing module, HSM), then the key

may well be safe, but control over it resides with the attacker.

Such an attacker can issue vouchers for any device presently in

service. Said device still needs to be convinced to do through a

factory reset process before an attack.

If the attacker has access to a key that is trusted for long-lived

nonceless vouchers, then they could issue vouchers for devices which

are not yet in service. This attack may be very hard to verify and

as it would involve doing firmware updates on every device in

warehouses (a potentially ruinously expensive process), a

manufacturer might be reluctant to admit this possibility.

11.7. YANG Module Security Considerations

As described in the Security Considerations section of [RFC8366]

(section 7.4), the YANG module specified in this document defines

the schema for data that is subsequently encapsulated by a CMS

signed-data content type, as described in Section 5 of [RFC5652]. As

such, all of the YANG modeled data is protected from modification.

The use of YANG to define data structures, via the 'yang-data'

statement, is relatively new and distinct from the traditional use

of YANG to define an API accessed by network management protocols

such as NETCONF [RFC6241] and RESTCONF [RFC8040]. For this reason,

these guidelines do not follow template described by Section 3.7 of

[RFC8407].

12. Acknowledgements

We would like to thank the various reviewers for their input, in

particular William Atwood, Brian Carpenter, Fuyu Eleven, Eliot Lear,

Sergey Kasatkin, Anoop Kumar, Tom Petch, Markus Stenberg, Peter van

der Stok, and Thomas Werner

Significant reviews were done by Jari Arko, Christian Huitema and

Russ Housley.

Henk Birkholz contributed the CDDL for the audit log response.

¶

¶

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-anima-autonomic-control-plane]

[I-D.ietf-anima-grasp]

[IDevID]

[ITU.X690.1994]

[REST]

[RFC2119]

[RFC3339]

[RFC3688]

This document started it's life as a two-page idea from Steinthor

Bjarnason.

In addition, significant review comments were received by many IESG

members, including Adam Roach, Alexey Melnikov, Alissa Cooper,

Benjamin Kaduk, Eric Vyncke, Roman Danyliw, and Magnus Westerlund.

13. References

13.1. Normative References

Eckert, T., Behringer, M., and S. Bjarnason, "An

Autonomic Control Plane (ACP)", Work in Progress,

Internet-Draft, draft-ietf-anima-autonomic-control-

plane-30, 30 October 2020, <http://www.ietf.org/internet-

drafts/draft-ietf-anima-autonomic-control-plane-30.txt>.

Bormann, C., Carpenter, B., and B. Liu, "A

Generic Autonomic Signaling Protocol (GRASP)", Work in

Progress, Internet-Draft, draft-ietf-anima-grasp-15, 13

July 2017, <http://www.ietf.org/internet-drafts/draft-

ietf-anima-grasp-15.txt>.

"IEEE 802.1AR Secure Device Identifier", December 2009,

<http://standards.ieee.org/findstds/standard/

802.1AR-2009.html>.

International Telecommunications Union, "Information

Technology - ASN.1 encoding rules: Specification of Basic

Encoding Rules (BER), Canonical Encoding Rules (CER) and

Distinguished Encoding Rules (DER)", ITU-T Recommendation

X.690, 1994.

Fielding, R.F., "Architectural Styles and the Design of

Network-based Software Architectures", 2000, <http://

www.ics.uci.edu/~fielding/pubs/dissertation/top.htm>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Klyne, G. and C. Newman, "Date and Time on the Internet:

Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

<https://www.rfc-editor.org/info/rfc3339>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

¶

¶

http://www.ietf.org/internet-drafts/draft-ietf-anima-autonomic-control-plane-30.txt
http://www.ietf.org/internet-drafts/draft-ietf-anima-autonomic-control-plane-30.txt
http://www.ietf.org/internet-drafts/draft-ietf-anima-grasp-15.txt
http://www.ietf.org/internet-drafts/draft-ietf-anima-grasp-15.txt
http://standards.ieee.org/findstds/standard/802.1AR-2009.html
http://standards.ieee.org/findstds/standard/802.1AR-2009.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688

[RFC3748]

[RFC3927]

[RFC4086]

[RFC4519]

[RFC4648]

[RFC4862]

[RFC4941]

[RFC5272]

[RFC5280]

Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.

Levkowetz, Ed., "Extensible Authentication Protocol

(EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,

<https://www.rfc-editor.org/info/rfc3748>.

Cheshire, S., Aboba, B., and E. Guttman, "Dynamic

Configuration of IPv4 Link-Local Addresses", RFC 3927,

DOI 10.17487/RFC3927, May 2005, <https://www.rfc-

editor.org/info/rfc3927>.

Eastlake 3rd, D., Schiller, J., and S. Crocker,

"Randomness Requirements for Security", BCP 106, RFC

4086, DOI 10.17487/RFC4086, June 2005, <https://www.rfc-

editor.org/info/rfc4086>.

Sciberras, A., Ed., "Lightweight Directory Access

Protocol (LDAP): Schema for User Applications", RFC 4519,

DOI 10.17487/RFC4519, June 2006, <https://www.rfc-

editor.org/info/rfc4519>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>.

Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless

Address Autoconfiguration", RFC 4862, DOI 10.17487/

RFC4862, September 2007, <https://www.rfc-editor.org/

info/rfc4862>.

Narten, T., Draves, R., and S. Krishnan, "Privacy

Extensions for Stateless Address Autoconfiguration in

IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,

<https://www.rfc-editor.org/info/rfc4941>.

Schaad, J. and M. Myers, "Certificate Management over CMS

(CMC)", RFC 5272, DOI 10.17487/RFC5272, June 2008,

<https://www.rfc-editor.org/info/rfc5272>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

https://www.rfc-editor.org/info/rfc3748
https://www.rfc-editor.org/info/rfc3927
https://www.rfc-editor.org/info/rfc3927
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4519
https://www.rfc-editor.org/info/rfc4519
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc4862
https://www.rfc-editor.org/info/rfc4862
https://www.rfc-editor.org/info/rfc4941
https://www.rfc-editor.org/info/rfc5272

[RFC5652]

[RFC6020]

[RFC6125]

[RFC6241]

[RFC6762]

[RFC6763]

[RFC7030]

[RFC7230]

[RFC7231]

[RFC7469]

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Housley, R., "Cryptographic Message Syntax (CMS)", STD

70, RFC 5652, DOI 10.17487/RFC5652, September 2009,

<https://www.rfc-editor.org/info/rfc5652>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Saint-Andre, P. and J. Hodges, "Representation and

Verification of Domain-Based Application Service Identity

within Internet Public Key Infrastructure Using X.509

(PKIX) Certificates in the Context of Transport Layer

Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March

2011, <https://www.rfc-editor.org/info/rfc6125>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,

DOI 10.17487/RFC6762, February 2013, <https://www.rfc-

editor.org/info/rfc6762>.

Cheshire, S. and M. Krochmal, "DNS-Based Service

Discovery", RFC 6763, DOI 10.17487/RFC6763, February

2013, <https://www.rfc-editor.org/info/rfc6763>.

Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,

"Enrollment over Secure Transport", RFC 7030, DOI

10.17487/RFC7030, October 2013, <https://www.rfc-

editor.org/info/rfc7030>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning

Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469,

April 2015, <https://www.rfc-editor.org/info/rfc7469>.

https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6762
https://www.rfc-editor.org/info/rfc6762
https://www.rfc-editor.org/info/rfc6763
https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7469

[RFC7950]

[RFC7951]

[RFC8040]

[RFC8174]

[RFC8259]

[RFC8366]

[RFC8368]

[RFC8407]

[RFC8446]

[RFC8610]

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Lhotka, L., "JSON Encoding of Data Modeled with YANG",

RFC 7951, DOI 10.17487/RFC7951, August 2016, <https://

www.rfc-editor.org/info/rfc7951>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,

"A Voucher Artifact for Bootstrapping Protocols", RFC

8366, DOI 10.17487/RFC8366, May 2018, <https://www.rfc-

editor.org/info/rfc8366>.

Eckert, T., Ed. and M. Behringer, "Using an Autonomic

Control Plane for Stable Connectivity of Network

Operations, Administration, and Maintenance (OAM)", RFC

8368, DOI 10.17487/RFC8368, May 2018, <https://www.rfc-

editor.org/info/rfc8368>.

Bierman, A., "Guidelines for Authors and Reviewers of

Documents Containing YANG Data Models", BCP 216, RFC

8407, DOI 10.17487/RFC8407, October 2018, <https://

www.rfc-editor.org/info/rfc8407>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

13.2. Informative References

https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc7951
https://www.rfc-editor.org/info/rfc7951
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8366
https://www.rfc-editor.org/info/rfc8366
https://www.rfc-editor.org/info/rfc8368
https://www.rfc-editor.org/info/rfc8368
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8610

[brewski]

[cabforumaudit]

[Dingledine2004]

[dnssecroot]

[docsisroot]

[I-D.ietf-ace-coap-est]

[I-D.ietf-anima-constrained-voucher]

[I-D.ietf-anima-reference-model]

[I-D.ietf-netconf-keystore]

"Urban Dictionary: Brewski", October 2019, <https://

www.urbandictionary.com/define.php?term=brewski>.

"Information for Auditors and Assessors", August

2019, <https://cabforum.org/information-for-auditors-and-

assessors/>.

Dingledine, R., Mathewson, N., and P. Syverson,

"Tor: the second-generation onion router", 2004,

<https://spec.torproject.org/tor-spec>.

"DNSSEC Practice Statement for the Root Zone ZSK

Operator", December 2017, <https://www.iana.org/dnssec/

dps/zsk-operator/dps-zsk-operator-v2.0.pdf>.

"CableLabs Digital Certificate Issuance Service",

February 2018, <https://www.cablelabs.com/resources/

digital-certificate-issuance-service/>.

Stok, P., Kampanakis, P., Richardson, M.,

and S. Raza, "EST over secure CoAP (EST-coaps)", Work in

Progress, Internet-Draft, draft-ietf-ace-coap-est-18, 6

January 2020, <http://www.ietf.org/internet-drafts/draft-

ietf-ace-coap-est-18.txt>.

Richardson, M., Stok, P., and P. Kampanakis, "Constrained

Voucher Artifacts for Bootstrapping Protocols", Work in

Progress, Internet-Draft, draft-ietf-anima-constrained-

voucher-09, 2 November 2020, <http://www.ietf.org/

internet-drafts/draft-ietf-anima-constrained-

voucher-09.txt>.

Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,

and J. Nobre, "A Reference Model for Autonomic

Networking", Work in Progress, Internet-Draft, draft-

ietf-anima-reference-model-10, 22 November 2018, <http://

www.ietf.org/internet-drafts/draft-ietf-anima-reference-

model-10.txt>.

Watsen, K., "A YANG Data Model for a

Keystore", Work in Progress, Internet-Draft, draft-ietf-

netconf-keystore-20, 20 August 2020, <http://

https://www.urbandictionary.com/define.php?term=brewski
https://www.urbandictionary.com/define.php?term=brewski
https://cabforum.org/information-for-auditors-and-assessors/
https://cabforum.org/information-for-auditors-and-assessors/
https://spec.torproject.org/tor-spec
https://www.iana.org/dnssec/dps/zsk-operator/dps-zsk-operator-v2.0.pdf
https://www.iana.org/dnssec/dps/zsk-operator/dps-zsk-operator-v2.0.pdf
https://www.cablelabs.com/resources/digital-certificate-issuance-service/
https://www.cablelabs.com/resources/digital-certificate-issuance-service/
http://www.ietf.org/internet-drafts/draft-ietf-ace-coap-est-18.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-coap-est-18.txt
http://www.ietf.org/internet-drafts/draft-ietf-anima-constrained-voucher-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-anima-constrained-voucher-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-anima-constrained-voucher-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-anima-reference-model-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-anima-reference-model-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-anima-reference-model-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-netconf-keystore-20.txt

[I-D.richardson-anima-state-for-joinrouter]

[imprinting]

[IoTstrangeThings]

[livingwithIoT]

[minerva]

[minervagithub]

[openssl]

[RFC2663]

[RFC5209]

[RFC5785]

www.ietf.org/internet-drafts/draft-ietf-netconf-

keystore-20.txt>.

Richardson, M., "Considerations for stateful vs stateless

join router in ANIMA bootstrap", Work in Progress,

Internet-Draft, draft-richardson-anima-state-for-

joinrouter-03, 22 September 2020, <http://www.ietf.org/

internet-drafts/draft-richardson-anima-state-for-

joinrouter-03.txt>.

"Wikipedia article: Imprinting", July 2015, <https://

en.wikipedia.org/wiki/Imprinting_(psychology)>.

"IoT of toys stranger than fiction: Cybersecurity

and data privacy update (accessed 2018-12-02)", March

2017, <https://www.welivesecurity.com/2017/03/03/

internet-of-things-security-privacy-iot-update/>.

"What is it actually like to live in a house filled

with IoT devices? (accessed 2018-12-02)", February 2018,

<https://www.siliconrepublic.com/machines/iot-smart-

devices-reality>.

Richardsdon, M., "Minerva reference implementation for

BRSKI", 2020, <https://minerva.sandelman.ca/>.

Richardsdon, M., "GITHUB hosting of Minerva

reference code", 2020, <https://github.com/ANIMAgus-

minerva>.

"OpenSSL X509 utility", September 2019, <https://

www.openssl.org/docs/man1.1.1/man1/openssl-x509.html/>.

Srisuresh, P. and M. Holdrege, "IP Network Address

Translator (NAT) Terminology and Considerations", RFC

2663, DOI 10.17487/RFC2663, August 1999, <https://

www.rfc-editor.org/info/rfc2663>.

Sangster, P., Khosravi, H., Mani, M., Narayan, K., and J.

Tardo, "Network Endpoint Assessment (NEA): Overview and

Requirements", RFC 5209, DOI 10.17487/RFC5209, June 2008,

<https://www.rfc-editor.org/info/rfc5209>.

Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known

Uniform Resource Identifiers (URIs)", RFC 5785, DOI

http://www.ietf.org/internet-drafts/draft-ietf-netconf-keystore-20.txt
http://www.ietf.org/internet-drafts/draft-ietf-netconf-keystore-20.txt
http://www.ietf.org/internet-drafts/draft-richardson-anima-state-for-joinrouter-03.txt
http://www.ietf.org/internet-drafts/draft-richardson-anima-state-for-joinrouter-03.txt
http://www.ietf.org/internet-drafts/draft-richardson-anima-state-for-joinrouter-03.txt
https://en.wikipedia.org/wiki/Imprinting_(psychology)
https://en.wikipedia.org/wiki/Imprinting_(psychology)
https://www.welivesecurity.com/2017/03/03/internet-of-things-security-privacy-iot-update/
https://www.welivesecurity.com/2017/03/03/internet-of-things-security-privacy-iot-update/
https://www.siliconrepublic.com/machines/iot-smart-devices-reality
https://www.siliconrepublic.com/machines/iot-smart-devices-reality
https://minerva.sandelman.ca/
https://github.com/ANIMAgus-minerva
https://github.com/ANIMAgus-minerva
https://www.openssl.org/docs/man1.1.1/man1/openssl-x509.html/
https://www.openssl.org/docs/man1.1.1/man1/openssl-x509.html/
https://www.rfc-editor.org/info/rfc2663
https://www.rfc-editor.org/info/rfc2663
https://www.rfc-editor.org/info/rfc5209

[RFC6960]

[RFC6961]

[RFC7228]

[RFC7258]

[RFC7435]

[RFC7575]

[RFC8340]

[slowloris]

[softwareescrow]

[Stajano99theresurrecting]

10.17487/RFC5785, April 2010, <https://www.rfc-

editor.org/info/rfc5785>.

Santesson, S., Myers, M., Ankney, R., Malpani, A.,

Galperin, S., and C. Adams, "X.509 Internet Public Key

Infrastructure Online Certificate Status Protocol -

OCSP", RFC 6960, DOI 10.17487/RFC6960, June 2013,

<https://www.rfc-editor.org/info/rfc6960>.

Pettersen, Y., "The Transport Layer Security (TLS)

Multiple Certificate Status Request Extension", RFC 6961,

DOI 10.17487/RFC6961, June 2013, <https://www.rfc-

editor.org/info/rfc6961>.

Bormann, C., Ersue, M., and A. Keranen, "Terminology for

Constrained-Node Networks", RFC 7228, DOI 10.17487/

RFC7228, May 2014, <https://www.rfc-editor.org/info/

rfc7228>.

Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is

an Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May

2014, <https://www.rfc-editor.org/info/rfc7258>.

Dukhovni, V., "Opportunistic Security: Some Protection

Most of the Time", RFC 7435, DOI 10.17487/RFC7435,

December 2014, <https://www.rfc-editor.org/info/rfc7435>.

Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,

Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic

Networking: Definitions and Design Goals", RFC 7575, DOI

10.17487/RFC7575, June 2015, <https://www.rfc-editor.org/

info/rfc7575>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

"Slowloris (computer security)", February 2019,

<https://en.wikipedia.org/wiki/

Slowloris_(computer_security)/>.

"Wikipedia article: Software Escrow", October 2019,

<https://en.wikipedia.org/wiki/Source_code_escrow>.

Stajano, F. and R. Anderson, "The

resurrecting duckling: security issues for ad-hoc

https://www.rfc-editor.org/info/rfc5785
https://www.rfc-editor.org/info/rfc5785
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc6961
https://www.rfc-editor.org/info/rfc6961
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7258
https://www.rfc-editor.org/info/rfc7435
https://www.rfc-editor.org/info/rfc7575
https://www.rfc-editor.org/info/rfc7575
https://www.rfc-editor.org/info/rfc8340
https://en.wikipedia.org/wiki/Slowloris_(computer_security)/
https://en.wikipedia.org/wiki/Slowloris_(computer_security)/
https://en.wikipedia.org/wiki/Source_code_escrow

[TR069]

[W3C.WD-capability-urls-20140218]

wireless networks", 1999, <https://www.cl.cam.ac.uk/

~fms27/papers/1999-StajanoAnd-duckling.pdf>.

"TR-69: CPE WAN Management Protocol", February 2018,

<https://www.broadband-forum.org/standards-and-software/

technical-specifications/tr-069-files-tools>.

Tennison, J., "Good Practices for Capability URLs", World

Wide Web Consortium WD WD-capability-urls-20140218, 18

February 2014, <https://www.w3.org/TR/2014/WD-capability-

urls-20140218>.

Appendix A. IPv4 and non-ANI operations

The specification of BRSKI in Section 4 intentionally only covers

the mechanisms for an IPv6 pledge using Link-Local addresses. This

section describes non-normative extensions that can be used in other

environments.

A.1. IPv4 Link Local addresses

Instead of an IPv6 link-local address, an IPv4 address may be

generated using [RFC3927] Dynamic Configuration of IPv4 Link-Local

Addresses.

In the case that an IPv4 Link-Local address is formed, then the

bootstrap process would continue as in the IPv6 case by looking for

a (circuit) proxy.

A.2. Use of DHCPv4

The Pledge MAY obtain an IP address via DHCP [RFC2131]. The DHCP

provided parameters for the Domain Name System can be used to

perform DNS operations if all local discovery attempts fail.

Appendix B. mDNS / DNSSD proxy discovery options

Pledge discovery of the proxy (Section 4.1) MAY be performed with

DNS-based Service Discovery [RFC6763] over Multicast DNS [RFC6762]

to discover the proxy at "_brski-proxy._tcp.local.".

Proxy discovery of the registrar (Section 4.3) MAY be performed with

DNS-based Service Discovery over Multicast DNS to discover

registrars by searching for the service "_brski-

registrar._tcp.local.".

To prevent unaccceptable levels of network traffic, when using mDNS,

the congestion avoidance mechanisms specified in [RFC6762] section 7

MUST be followed. The pledge SHOULD listen for an unsolicited

¶

¶

¶

¶

¶

¶

https://www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-duckling.pdf
https://www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-duckling.pdf
https://www.broadband-forum.org/standards-and-software/technical-specifications/tr-069-files-tools
https://www.broadband-forum.org/standards-and-software/technical-specifications/tr-069-files-tools
https://www.w3.org/TR/2014/WD-capability-urls-20140218
https://www.w3.org/TR/2014/WD-capability-urls-20140218

broadcast response as described in [RFC6762]. This allows devices to

avoid announcing their presence via mDNS broadcasts and instead

silently join a network by watching for periodic unsolicited

broadcast responses.

Discovery of registrar MAY also be performed with DNS-based service

discovery by searching for the service "_brski-

registrar._tcp.example.com". In this case the domain "example.com"

is discovered as described in [RFC6763] section 11 (Appendix A.2

suggests the use of DHCP parameters).

If no local proxy or registrar service is located using the GRASP

mechanisms or the above mentioned DNS-based Service Discovery

methods, the pledge MAY contact a well known manufacturer provided

bootstrapping server by performing a DNS lookup using a well known

URI such as "brski-registrar.manufacturer.example.com". The details

of the URI are manufacturer specific. Manufacturers that leverage

this method on the pledge are responsible for providing the

registrar service. Also see Section 2.7.

The current DNS services returned during each query are maintained

until bootstrapping is completed. If bootstrapping fails and the

pledge returns to the Discovery state, it picks up where it left off

and continues attempting bootstrapping. For example, if the first

Multicast DNS _bootstrapks._tcp.local response doesn't work then the

second and third responses are tried. If these fail the pledge moves

on to normal DNS-based Service Discovery.

Appendix C. Example Vouchers

Three entities are involved in a voucher: the MASA issues (signs)

it, the registrar's public key is mentioned in the voucher, and the

pledge validates it. In order to provide reproduceable examples the

public and private keys for an example MASA and registrar are first

listed.

The keys come from an open source reference implementation of BRSKI,

called "Minerva" [minerva]. It is available on github

[minervagithub]. The keys presented here are used in the unit and

integration tests. The MASA code is called "highway", the Registrar

code is called "fountain", and the example client is called "reach".

The public key components of each are presented as both base64

certificates, as well as being decoded by openssl's x509 utility so

that the extensions can be seen. This was version 1.1.1c of the

[openssl] library and utility.

¶

¶

¶

¶

¶

¶

¶

C.1. Keys involved

The Manufacturer has a Certificate Authority that signs the pledge's

IDevID. In addition the Manufacturer's signing authority (the MASA)

signs the vouchers, and that certificate must distributed to the

devices at manufacturing time so that vouchers can be validated.

C.1.1. Manufacturer Certificate Authority for IDevID signatures

This private key is Certificate Authority that signs IDevID

certificates:

<CODE BEGINS> file "vendor.key"

-----BEGIN EC PRIVATE KEY-----

MIGkAgEBBDCAYkoLW1IEA5SKKhMMdkTK7sJxk5ybKqYq9Yr5aR7tNwqXyLGS7z8G

8S4w/UJ58BqgBwYFK4EEACKhZANiAAQu5/yktJbFLjMC87h7b+yTreFuF8GwewKH

L4mS0r0dVAQubqDUQcTrjvpXrXCpTojiLCzgp8fzkcUDkZ9LD/M90LDipiLNIOkP

juF8QkoAbT8pMrY83MS8y76wZ7AalNQ=

-----END EC PRIVATE KEY-----

<CODE ENDS>

This public key validates IDevID certificates:

file: examples/vendor.key

¶

¶

¶

¶

¶

<CODE BEGINS> file "vendor.cert"

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 519772114 (0x1efb17d2)

 Signature Algorithm: ecdsa-with-SHA256

 Issuer: C = Canada, ST = Ontario, OU = Sandelman, CN = highway-test.example.com CA

 Validity

 Not Before: Feb 12 22:22:21 2019 GMT

 Not After : Feb 11 22:22:21 2021 GMT

 Subject: C = Canada, ST = Ontario, OU = Sandelman, CN = highway-test.example.com CA

 Subject Public Key Info:

 Public Key Algorithm: id-ecPublicKey

 Public-Key: (384 bit)

 pub:

 04:2e:e7:fc:a4:b4:96:c5:2e:33:02:f3:b8:7b:6f:

 ec:93:ad:e1:6e:17:c1:b0:7b:02:87:2f:89:92:d2:

 bd:1d:54:04:2e:6e:a0:d4:41:c4:eb:8e:fa:57:ad:

 70:a9:4e:88:e2:2c:2c:e0:a7:c7:f3:91:c5:03:91:

 9f:4b:0f:f3:3d:d0:b0:e2:a6:22:cd:20:e9:0f:8e:

 e1:7c:42:4a:00:6d:3f:29:32:b6:3c:dc:c4:bc:cb:

 be:b0:67:b0:1a:94:d4

 ASN1 OID: secp384r1

 NIST CURVE: P-384

 X509v3 extensions:

 X509v3 Basic Constraints: critical

 CA:TRUE

 X509v3 Key Usage: critical

 Certificate Sign, CRL Sign

 X509v3 Subject Key Identifier:

 5E:0C:A9:52:5A:8C:DF:A9:0F:03:14:E9:96:F1:80:76:8C:53:8A:08

 X509v3 Authority Key Identifier:

 keyid:5E:0C:A9:52:5A:8C:DF:A9:0F:03:14:E9:96:F1:80:76:8C:53:8A:08

 Signature Algorithm: ecdsa-with-SHA256

 30:65:02:30:5f:21:fd:c6:ab:d6:94:a6:cd:ca:37:2c:81:33:

 87:fe:7b:e1:b5:1a:e8:6c:05:43:a6:8b:4e:22:b5:55:e9:48:

 0c:b5:97:f3:c9:1a:65:d9:97:4b:f0:21:86:0d:cb:26:02:31:

 00:e3:2d:0d:08:49:4d:a3:f5:dc:57:1f:a7:13:26:a4:e0:d6:

 3a:c2:d5:4a:50:83:62:26:2e:79:2b:d0:a5:ee:66:d5:bf:16:

 9a:33:75:b4:d1:8d:ba:d3:50:77:6b:92:df

-----BEGIN CERTIFICATE-----

MIICTDCCAdKgAwIBAgIEHvsX0jAKBggqhkjOPQQDAjBdMQ8wDQYDVQQGEwZDYW5h

ZGExEDAOBgNVBAgMB09udGFyaW8xEjAQBgNVBAsMCVNhbmRlbG1hbjEkMCIGA1UE

AwwbaGlnaHdheS10ZXN0LmV4YW1wbGUuY29tIENBMB4XDTE5MDIxMjIyMjIyMVoX

DTIxMDIxMTIyMjIyMVowXTEPMA0GA1UEBhMGQ2FuYWRhMRAwDgYDVQQIDAdPbnRh

cmlvMRIwEAYDVQQLDAlTYW5kZWxtYW4xJDAiBgNVBAMMG2hpZ2h3YXktdGVzdC5l

eGFtcGxlLmNvbSBDQTB2MBAGByqGSM49AgEGBSuBBAAiA2IABC7n/KS0lsUuMwLz

uHtv7JOt4W4XwbB7AocviZLSvR1UBC5uoNRBxOuO+letcKlOiOIsLOCnx/ORxQOR

n0sP8z3QsOKmIs0g6Q+O4XxCSgBtPykytjzcxLzLvrBnsBqU1KNjMGEwDwYDVR0T

AQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMCAQYwHQYDVR0OBBYEFF4MqVJajN+pDwMU

6ZbxgHaMU4oIMB8GA1UdIwQYMBaAFF4MqVJajN+pDwMU6ZbxgHaMU4oIMAoGCCqG

SM49BAMCA2gAMGUCMF8h/car1pSmzco3LIEzh/574bUa6GwFQ6aLTiK1VelIDLWX

88kaZdmXS/Ahhg3LJgIxAOMtDQhJTaP13FcfpxMmpODWOsLVSlCDYiYueSvQpe5m

1b8WmjN1tNGNutNQd2uS3w==

-----END CERTIFICATE-----

<CODE ENDS>

C.1.2. MASA key pair for voucher signatures

The MASA is the Manufacturer Authorized Signing Authority. This

keypair signs vouchers. An example TLS certificate Section 5.4 HTTP

authentication is not provided as it is a common form.

This private key signs the vouchers which are presented below:

<CODE BEGINS> file "masa.key"

-----BEGIN EC PRIVATE KEY-----

MHcCAQEEIFhdd0eDdzip67kXx72K+KHGJQYJHNy8pkiLJ6CcvxMGoAoGCCqGSM49

AwEHoUQDQgAEqgQVo0S54kT4yfkbBxumdHOcHrpsqbOpMKmiMln3oB1HAW25MJV+

gqi4tMFfSJ0iEwt8kszfWXK4rLgJS2mnpQ==

-----END EC PRIVATE KEY-----

<CODE ENDS>

This public key validates vouchers, and it has been signed by the CA

above:

file: examples/masa.key

¶

¶

¶

¶

¶

¶

<CODE BEGINS> file "masa.cert"

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 463036244 (0x1b995f54)

 Signature Algorithm: ecdsa-with-SHA256

 Issuer: C = Canada, ST = Ontario, OU = Sandelman, CN = highway-test.example.com CA

 Validity

 Not Before: Feb 12 22:22:41 2019 GMT

 Not After : Feb 11 22:22:41 2021 GMT

 Subject: C = Canada, ST = Ontario, OU = Sandelman, CN = highway-test.example.com MASA

 Subject Public Key Info:

 Public Key Algorithm: id-ecPublicKey

 Public-Key: (256 bit)

 pub:

 04:aa:04:15:a3:44:b9:e2:44:f8:c9:f9:1b:07:1b:

 a6:74:73:9c:1e:ba:6c:a9:b3:a9:30:a9:a2:32:59:

 f7:a0:1d:47:01:6d:b9:30:95:7e:82:a8:b8:b4:c1:

 5f:48:9d:22:13:0b:7c:92:cc:df:59:72:b8:ac:b8:

 09:4b:69:a7:a5

 ASN1 OID: prime256v1

 NIST CURVE: P-256

 X509v3 extensions:

 X509v3 Basic Constraints: critical

 CA:FALSE

 Signature Algorithm: ecdsa-with-SHA256

 30:66:02:31:00:bd:55:e5:9b:0e:fb:fc:5e:95:29:e3:81:b3:

 15:35:aa:93:18:a2:04:be:44:72:b2:51:7d:4d:6d:eb:d1:d5:

 c1:10:3a:b2:39:7b:57:3f:c5:cc:b0:a3:0e:e7:99:46:ba:02:

 31:00:f6:7f:44:7d:b7:14:fa:d1:67:6a:d4:11:c3:4b:ae:e6:

 fb:9a:98:56:fa:85:21:2e:5c:48:4c:f0:3f:f2:9b:3f:ae:88:

 20:a7:ae:f9:72:ff:5b:f9:78:68:cf:0f:48:c9

-----BEGIN CERTIFICATE-----

MIIB3zCCAWSgAwIBAgIEG5lfVDAKBggqhkjOPQQDAjBdMQ8wDQYDVQQGEwZDYW5h

ZGExEDAOBgNVBAgMB09udGFyaW8xEjAQBgNVBAsMCVNhbmRlbG1hbjEkMCIGA1UE

AwwbaGlnaHdheS10ZXN0LmV4YW1wbGUuY29tIENBMB4XDTE5MDIxMjIyMjI0MVoX

DTIxMDIxMTIyMjI0MVowXzEPMA0GA1UEBhMGQ2FuYWRhMRAwDgYDVQQIDAdPbnRh

cmlvMRIwEAYDVQQLDAlTYW5kZWxtYW4xJjAkBgNVBAMMHWhpZ2h3YXktdGVzdC5l

eGFtcGxlLmNvbSBNQVNBMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEqgQVo0S5

4kT4yfkbBxumdHOcHrpsqbOpMKmiMln3oB1HAW25MJV+gqi4tMFfSJ0iEwt8kszf

WXK4rLgJS2mnpaMQMA4wDAYDVR0TAQH/BAIwADAKBggqhkjOPQQDAgNpADBmAjEA

vVXlmw77/F6VKeOBsxU1qpMYogS+RHKyUX1NbevR1cEQOrI5e1c/xcywow7nmUa6

AjEA9n9EfbcU+tFnatQRw0uu5vuamFb6hSEuXEhM8D/ymz+uiCCnrvly/1v5eGjP

D0jJ

-----END CERTIFICATE-----

<CODE ENDS>

C.1.3. Registrar Certificate Authority

This Certificate Authority enrolls the pledge once it is authorized,

and it also signs the Registrar's certificate.

<CODE BEGINS> file "ownerca_secp384r1.key"

-----BEGIN EC PRIVATE KEY-----

MIGkAgEBBDCHnLI0MSOLf8XndiZqoZdqblcPR5YSoPGhPOuFxWy1gFi9HbWv8b/R

EGdRgGEVSjKgBwYFK4EEACKhZANiAAQbf1m6F8MavGaNjGzgw/oxcQ9l9iKRvbdW

gAfb37h6pUVNeYpGlxlZljGxj2l9Mr48yD5bY7VG9qjVb5v5wPPTuRQ/ckdRpHbd

0vC/9cqPMAF/+MJf0/UgA0SLi/IHbLQ=

-----END EC PRIVATE KEY-----

<CODE ENDS>

The public key is indicated in a pledge voucher-request to show

proximity.

file: examples/ownerca_secp384r1.key

¶

¶

¶

¶

¶

<CODE BEGINS> file "ownerca_secp384r1.cert"

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 694879833 (0x296b0659)

 Signature Algorithm: ecdsa-with-SHA256

 Issuer: DC = ca, DC = sandelman, CN = fountain-test.example.com Unstrung Fountain Root CA

 Validity

 Not Before: Feb 25 21:31:45 2020 GMT

 Not After : Feb 24 21:31:45 2022 GMT

 Subject: DC = ca, DC = sandelman, CN = fountain-test.example.com Unstrung Fountain Root CA

 Subject Public Key Info:

 Public Key Algorithm: id-ecPublicKey

 Public-Key: (384 bit)

 pub:

 04:1b:7f:59:ba:17:c3:1a:bc:66:8d:8c:6c:e0:c3:

 fa:31:71:0f:65:f6:22:91:bd:b7:56:80:07:db:df:

 b8:7a:a5:45:4d:79:8a:46:97:19:59:96:31:b1:8f:

 69:7d:32:be:3c:c8:3e:5b:63:b5:46:f6:a8:d5:6f:

 9b:f9:c0:f3:d3:b9:14:3f:72:47:51:a4:76:dd:d2:

 f0:bf:f5:ca:8f:30:01:7f:f8:c2:5f:d3:f5:20:03:

 44:8b:8b:f2:07:6c:b4

 ASN1 OID: secp384r1

 NIST CURVE: P-384

 X509v3 extensions:

 X509v3 Basic Constraints: critical

 CA:TRUE

 X509v3 Key Usage: critical

 Certificate Sign, CRL Sign

 X509v3 Subject Key Identifier:

 B9:A5:F6:CB:11:E1:07:A4:49:2C:A7:08:C6:7C:10:BC:87:B3:74:26

 X509v3 Authority Key Identifier:

 keyid:B9:A5:F6:CB:11:E1:07:A4:49:2C:A7:08:C6:7C:10:BC:87:B3:74:26

 Signature Algorithm: ecdsa-with-SHA256

 30:64:02:30:20:83:06:ce:8d:98:a4:54:7a:66:4c:4a:3a:70:

 c2:52:36:5a:52:8d:59:7d:20:9b:2a:69:14:58:87:38:d8:55:

 79:dd:fd:29:38:95:1e:91:93:76:b4:f5:66:29:44:b4:02:30:

 6f:38:f9:af:12:ed:30:d5:85:29:7c:b1:16:58:bd:67:91:43:

 c4:0d:30:f9:d8:1c:ac:2f:06:dd:bc:d5:06:42:2c:84:a2:04:

 ea:02:a4:5f:17:51:26:fb:d9:2f:d2:5c

-----BEGIN CERTIFICATE-----

MIICazCCAfKgAwIBAgIEKWsGWTAKBggqhkjOPQQDAjBtMRIwEAYKCZImiZPyLGQB

GRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xPDA6BgNVBAMMM2ZvdW50

YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zdHJ1bmcgRm91bnRhaW4gUm9vdCBDQTAe

Fw0yMDAyMjUyMTMxNDVaFw0yMjAyMjQyMTMxNDVaMG0xEjAQBgoJkiaJk/IsZAEZ

FgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjE8MDoGA1UEAwwzZm91bnRh

aW4tdGVzdC5leGFtcGxlLmNvbSBVbnN0cnVuZyBGb3VudGFpbiBSb290IENBMHYw

EAYHKoZIzj0CAQYFK4EEACIDYgAEG39ZuhfDGrxmjYxs4MP6MXEPZfYikb23VoAH

29+4eqVFTXmKRpcZWZYxsY9pfTK+PMg+W2O1Rvao1W+b+cDz07kUP3JHUaR23dLw

v/XKjzABf/jCX9P1IANEi4vyB2y0o2MwYTAPBgNVHRMBAf8EBTADAQH/MA4GA1Ud

DwEB/wQEAwIBBjAdBgNVHQ4EFgQUuaX2yxHhB6RJLKcIxnwQvIezdCYwHwYDVR0j

BBgwFoAUuaX2yxHhB6RJLKcIxnwQvIezdCYwCgYIKoZIzj0EAwIDZwAwZAIwIIMG

zo2YpFR6ZkxKOnDCUjZaUo1ZfSCbKmkUWIc42FV53f0pOJUekZN2tPVmKUS0AjBv

OPmvEu0w1YUpfLEWWL1nkUPEDTD52BysLwbdvNUGQiyEogTqAqRfF1Em+9kv0lw=

-----END CERTIFICATE-----

<CODE ENDS>

C.1.4. Registrar key pair

The Registrar is the representative of the domain owner. This key

signs registrar voucher-requests, and terminates the TLS connection

from the pledge.

<CODE BEGINS> file "jrc_prime256v1.key"

-----BEGIN EC PRIVATE KEY-----

MHcCAQEEIFZodk+PC5Mu24+ra0sbOjKzan+dW5rvDAR7YuJUOC1YoAoGCCqGSM49

AwEHoUQDQgAElmVQcjS6n+Xd5l/28IFv6UiegQwSBztGj5dkK2MAjQIPV8l8lH+E

jLIOYdbJiI0VtEIf1/Jqt+TOBfinTNOLOg==

-----END EC PRIVATE KEY-----

<CODE ENDS>

The public key is indicated in a pledge voucher-request to show

proximity.

¶

¶

¶

¶

<CODE BEGINS> file "jrc_prime256v1.cert"

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 1066965842 (0x3f989b52)

 Signature Algorithm: ecdsa-with-SHA256

 Issuer: DC = ca, DC = sandelman, CN = fountain-test.example.com Unstrung Fountain Root CA

 Validity

 Not Before: Feb 25 21:31:54 2020 GMT

 Not After : Feb 24 21:31:54 2022 GMT

 Subject: DC = ca, DC = sandelman, CN = fountain-test.example.com

 Subject Public Key Info:

 Public Key Algorithm: id-ecPublicKey

 Public-Key: (256 bit)

 pub:

 04:96:65:50:72:34:ba:9f:e5:dd:e6:5f:f6:f0:81:

 6f:e9:48:9e:81:0c:12:07:3b:46:8f:97:64:2b:63:

 00:8d:02:0f:57:c9:7c:94:7f:84:8c:b2:0e:61:d6:

 c9:88:8d:15:b4:42:1f:d7:f2:6a:b7:e4:ce:05:f8:

 a7:4c:d3:8b:3a

 ASN1 OID: prime256v1

 NIST CURVE: P-256

 X509v3 extensions:

 X509v3 Extended Key Usage: critical

 CMC Registration Authority

 X509v3 Key Usage: critical

 Digital Signature

 Signature Algorithm: ecdsa-with-SHA256

 30:65:02:30:66:4f:60:4c:55:48:1e:96:07:f8:dd:1f:b9:c8:

 12:8d:45:36:87:9b:23:c0:bc:bb:f1:cb:3d:26:15:56:6f:5f:

 1f:bf:d5:1c:0e:6a:09:af:1b:76:97:99:19:23:fd:7e:02:31:

 00:bc:ac:c3:41:b0:ba:0d:af:52:f9:9c:6e:7a:7f:00:1d:23:

 c8:62:01:61:bc:4b:c5:c0:47:99:35:0a:0c:77:61:44:01:4a:

 07:52:70:57:00:75:ff:be:07:0e:98:cb:e5

-----BEGIN CERTIFICATE-----

MIIB/DCCAYKgAwIBAgIEP5ibUjAKBggqhkjOPQQDAjBtMRIwEAYKCZImiZPyLGQB

GRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xPDA6BgNVBAMMM2ZvdW50

YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zdHJ1bmcgRm91bnRhaW4gUm9vdCBDQTAe

Fw0yMDAyMjUyMTMxNTRaFw0yMjAyMjQyMTMxNTRaMFMxEjAQBgoJkiaJk/IsZAEZ

FgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjEiMCAGA1UEAwwZZm91bnRh

aW4tdGVzdC5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABJZl

UHI0up/l3eZf9vCBb+lInoEMEgc7Ro+XZCtjAI0CD1fJfJR/hIyyDmHWyYiNFbRC

H9fyarfkzgX4p0zTizqjKjAoMBYGA1UdJQEB/wQMMAoGCCsGAQUFBwMcMA4GA1Ud

DwEB/wQEAwIHgDAKBggqhkjOPQQDAgNoADBlAjBmT2BMVUgelgf43R+5yBKNRTaH

myPAvLvxyz0mFVZvXx+/1RwOagmvG3aXmRkj/X4CMQC8rMNBsLoNr1L5nG56fwAd

I8hiAWG8S8XAR5k1Cgx3YUQBSgdScFcAdf++Bw6Yy+U=

-----END CERTIFICATE-----

<CODE ENDS>

C.1.5. Pledge key pair

The pledge has an IDevID key pair built in at manufacturing time:

<CODE BEGINS> file "idevid_00-D0-E5-F2-00-02.key"

-----BEGIN EC PRIVATE KEY-----

MHcCAQEEIBHNh6r8QRevRuo+tEmBJeFjQKf6bpFA/9NGoltv+9sNoAoGCCqGSM49

AwEHoUQDQgAEA6N1Q4ezfMAKmoecrfb0OBMc1AyEH+BATkF58FsTSyBxs0SbSWLx

FjDOuwB9gLGn2TsTUJumJ6VPw5Z/TP4hJw==

-----END EC PRIVATE KEY-----

<CODE ENDS>

The certificate is used by the registrar to find the MASA.

¶

¶

¶

¶

<CODE BEGINS> file "idevid_00-D0-E5-F2-00-02.cert"

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 226876461 (0xd85dc2d)

 Signature Algorithm: ecdsa-with-SHA256

 Issuer: C = Canada, ST = Ontario, OU = Sandelman, CN = highway-test.example.com CA

 Validity

 Not Before: Feb 3 06:47:20 2020 GMT

 Not After : Dec 31 00:00:00 2999 GMT

 Subject: serialNumber = 00-D0-E5-F2-00-02

 Subject Public Key Info:

 Public Key Algorithm: id-ecPublicKey

 Public-Key: (256 bit)

 pub:

 04:03:a3:75:43:87:b3:7c:c0:0a:9a:87:9c:ad:f6:

 f4:38:13:1c:d4:0c:84:1f:e0:40:4e:41:79:f0:5b:

 13:4b:20:71:b3:44:9b:49:62:f1:16:30:ce:bb:00:

 7d:80:b1:a7:d9:3b:13:50:9b:a6:27:a5:4f:c3:96:

 7f:4c:fe:21:27

 ASN1 OID: prime256v1

 NIST CURVE: P-256

 X509v3 extensions:

 X509v3 Subject Key Identifier:

 45:88:CC:96:96:00:64:37:B0:BA:23:65:64:64:54:08:06:6C:56:AD

 X509v3 Basic Constraints:

 CA:FALSE

 1.3.6.1.5.5.7.1.32:

 ..highway-test.example.com:9443

 Signature Algorithm: ecdsa-with-SHA256

 30:65:02:30:23:e1:a9:2e:ef:22:12:34:5a:a5:c2:15:d6:28:

 bd:ed:3d:96:d6:ce:04:95:ef:a7:c8:dc:18:a8:31:c7:b8:04:

 34:f2:b7:4d:79:8a:67:22:24:03:4f:c5:cd:d6:06:ba:02:31:

 00:b3:8d:5c:0a:d0:fe:04:83:90:d3:4f:6d:72:97:b3:3e:02:

 ea:f1:c8:5a:32:72:58:b7:45:02:50:78:bc:04:1d:23:5e:22:

 6f:c3:7f:8c:7c:d7:9b:70:20:91:b4:e1:7f

-----BEGIN CERTIFICATE-----

MIIB5jCCAWygAwIBAgIEDYXcLTAKBggqhkjOPQQDAjBdMQ8wDQYDVQQGEwZDYW5h

ZGExEDAOBgNVBAgMB09udGFyaW8xEjAQBgNVBAsMCVNhbmRlbG1hbjEkMCIGA1UE

AwwbaGlnaHdheS10ZXN0LmV4YW1wbGUuY29tIENBMCAXDTIwMDIwMzA2NDcyMFoY

DzI5OTkxMjMxMDAwMDAwWjAcMRowGAYDVQQFDBEwMC1EMC1FNS1GMi0wMC0wMjBZ

MBMGByqGSM49AgEGCCqGSM49AwEHA0IABAOjdUOHs3zACpqHnK329DgTHNQMhB/g

QE5BefBbE0sgcbNEm0li8RYwzrsAfYCxp9k7E1CbpielT8OWf0z+ISejWTBXMB0G

A1UdDgQWBBRFiMyWlgBkN7C6I2VkZFQIBmxWrTAJBgNVHRMEAjAAMCsGCCsGAQUF

BwEgBB8MHWhpZ2h3YXktdGVzdC5leGFtcGxlLmNvbTo5NDQzMAoGCCqGSM49BAMC

A2gAMGUCMCPhqS7vIhI0WqXCFdYove09ltbOBJXvp8jcGKgxx7gENPK3TXmKZyIk

A0/FzdYGugIxALONXArQ/gSDkNNPbXKXsz4C6vHIWjJyWLdFAlB4vAQdI14ib8N/

jHzXm3AgkbThfw==

-----END CERTIFICATE-----

<CODE ENDS>

C.2. Example process

The JSON examples below are wrapped at 60 columns. This results in

strings that have newlines in them, which makes them invalid JSON as

is. The strings would otherwise be too long, so they need to be

unwrapped before processing.

For readability, the output of the asn1parse has been truncated at

72 columns rather than wrapped.

C.2.1. Pledge to Registrar

As described in Section 5.2, the pledge will sign a pledge voucher-

request containing the registrar's public key in the proximity-

registrar-cert field. The base64 has been wrapped at 60 characters

for presentation reasons.

¶

¶

¶

¶

<CODE BEGINS> file "vr_00-D0-E5-F2-00-02.b64"

MIIG3wYJKoZIhvcNAQcCoIIG0DCCBswCAQExDTALBglghkgBZQMEAgEwggOJBgkqhkiG9w0BBwGg

ggN6BIIDdnsiaWV0Zi12b3VjaGVyLXJlcXVlc3Q6dm91Y2hlciI6eyJhc3NlcnRpb24iOiJwcm94

aW1pdHkiLCJjcmVhdGVkLW9uIjoiMjAyMC0wMi0yNVQxODowNDo0OC42NTItMDU6MDAiLCJzZXJp

YWwtbnVtYmVyIjoiMDAtRDAtRTUtRjItMDAtMDIiLCJub25jZSI6ImFNamd1ZUtVVC0yMndWaW1q

NnoyN1EiLCJwcm94aW1pdHktcmVnaXN0cmFyLWNlcnQiOiJNSUlCL0RDQ0FZS2dBd0lCQWdJRVA1

aWJVakFLQmdncWhrak9QUVFEQWpCdE1SSXdFQVlLQ1pJbWlaUHlMR1FCR1JZQ1kyRXhHVEFYQmdv

SmtpYUprL0lzWkFFWkZnbHpZVzVrWld4dFlXNHhQREE2QmdOVkJBTU1NMlp2ZFc1MFlXbHVMWFJs

YzNRdVpYaGhiWEJzWlM1amIyMGdWVzV6ZEhKMWJtY2dSbTkxYm5SaGFXNGdVbTl2ZENCRFFUQWVG

dzB5TURBeU1qVXlNVE14TlRSYUZ3MHlNakF5TWpReU1UTXhOVFJhTUZNeEVqQVFCZ29Ka2lhSmsv

SXNaQUVaRmdKallURVpNQmNHQ2dtU0pvbVQ4aXhrQVJrV0NYTmhibVJsYkcxaGJqRWlNQ0FHQTFV

RUF3d1pabTkxYm5SaGFXNHRkR1Z6ZEM1bGVHRnRjR3hsTG1OdmJUQlpNQk1HQnlxR1NNNDlBZ0VH

Q0NxR1NNNDlBd0VIQTBJQUJKWmxVSEkwdXAvbDNlWmY5dkNCYitsSW5vRU1FZ2M3Um8rWFpDdGpB

STBDRDFmSmZKUi9oSXl5RG1IV3lZaU5GYlJDSDlmeWFyZmt6Z1g0cDB6VGl6cWpLakFvTUJZR0Ex

VWRKUUVCL3dRTU1Bb0dDQ3NHQVFVRkJ3TWNNQTRHQTFVZER3RUIvd1FFQXdJSGdEQUtCZ2dxaGtq

T1BRUURBZ05vQURCbEFqQm1UMkJNVlVnZWxnZjQzUis1eUJLTlJUYUhteVBBdkx2eHl6MG1GVlp2

WHgrLzFSd09hZ212RzNhWG1Sa2ovWDRDTVFDOHJNTkJzTG9OcjFMNW5HNTZmd0FkSThoaUFXRzhT

OFhBUjVrMUNneDNZVVFCU2dkU2NGY0FkZisrQnc2WXkrVT0ifX2gggHqMIIB5jCCAWygAwIBAgIE

DYXcLTAKBggqhkjOPQQDAjBdMQ8wDQYDVQQGEwZDYW5hZGExEDAOBgNVBAgMB09udGFyaW8xEjAQ

BgNVBAsMCVNhbmRlbG1hbjEkMCIGA1UEAwwbaGlnaHdheS10ZXN0LmV4YW1wbGUuY29tIENBMCAX

DTIwMDIwMzA2NDcyMFoYDzI5OTkxMjMxMDAwMDAwWjAcMRowGAYDVQQFDBEwMC1EMC1FNS1GMi0w

MC0wMjBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABAOjdUOHs3zACpqHnK329DgTHNQMhB/gQE5B

efBbE0sgcbNEm0li8RYwzrsAfYCxp9k7E1CbpielT8OWf0z+ISejWTBXMB0GA1UdDgQWBBRFiMyW

lgBkN7C6I2VkZFQIBmxWrTAJBgNVHRMEAjAAMCsGCCsGAQUFBwEgBB8MHWhpZ2h3YXktdGVzdC5l

eGFtcGxlLmNvbTo5NDQzMAoGCCqGSM49BAMCA2gAMGUCMCPhqS7vIhI0WqXCFdYove09ltbOBJXv

p8jcGKgxx7gENPK3TXmKZyIkA0/FzdYGugIxALONXArQ/gSDkNNPbXKXsz4C6vHIWjJyWLdFAlB4

vAQdI14ib8N/jHzXm3AgkbThfzGCATswggE3AgEBMGUwXTEPMA0GA1UEBhMGQ2FuYWRhMRAwDgYD

VQQIDAdPbnRhcmlvMRIwEAYDVQQLDAlTYW5kZWxtYW4xJDAiBgNVBAMMG2hpZ2h3YXktdGVzdC5l

eGFtcGxlLmNvbSBDQQIEDYXcLTALBglghkgBZQMEAgGgaTAYBgkqhkiG9w0BCQMxCwYJKoZIhvcN

AQcBMBwGCSqGSIb3DQEJBTEPFw0yMDAyMjUyMzA0NDhaMC8GCSqGSIb3DQEJBDEiBCCx6IrwstHF

609Y0EqDK62QKby4duyyIWudvs15M16BBTAKBggqhkjOPQQDAgRHMEUCIBxwA1UlkIkuQDf/j7kZ

/MVefgr141+hKBFgrnNngjwpAiEAy8aXt0GSB9m1bmiEUpefCEhxSv2xLYurGlugv0dfr/E=

<CODE ENDS>

The ASN1 decoding of the artifact:

file: examples/vr_00-D0-E5-F2-00-02.b64

¶

¶

¶

 0:d=0 hl=4 l=1759 cons: SEQUENCE

 4:d=1 hl=2 l= 9 prim: OBJECT :pkcs7-signedData

 15:d=1 hl=4 l=1744 cons: cont [0]

 19:d=2 hl=4 l=1740 cons: SEQUENCE

 23:d=3 hl=2 l= 1 prim: INTEGER :01

 26:d=3 hl=2 l= 13 cons: SET

 28:d=4 hl=2 l= 11 cons: SEQUENCE

 30:d=5 hl=2 l= 9 prim: OBJECT :sha256

 41:d=3 hl=4 l= 905 cons: SEQUENCE

 45:d=4 hl=2 l= 9 prim: OBJECT :pkcs7-data

 56:d=4 hl=4 l= 890 cons: cont [0]

 60:d=5 hl=4 l= 886 prim: OCTET STRING :{"ietf-voucher-request:v

 950:d=3 hl=4 l= 490 cons: cont [0]

 954:d=4 hl=4 l= 486 cons: SEQUENCE

 958:d=5 hl=4 l= 364 cons: SEQUENCE

 962:d=6 hl=2 l= 3 cons: cont [0]

 964:d=7 hl=2 l= 1 prim: INTEGER :02

 967:d=6 hl=2 l= 4 prim: INTEGER :0D85DC2D

 973:d=6 hl=2 l= 10 cons: SEQUENCE

 975:d=7 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256

 985:d=6 hl=2 l= 93 cons: SEQUENCE

 987:d=7 hl=2 l= 15 cons: SET

 989:d=8 hl=2 l= 13 cons: SEQUENCE

 991:d=9 hl=2 l= 3 prim: OBJECT :countryName

 996:d=9 hl=2 l= 6 prim: PRINTABLESTRING :Canada

 1004:d=7 hl=2 l= 16 cons: SET

 1006:d=8 hl=2 l= 14 cons: SEQUENCE

 1008:d=9 hl=2 l= 3 prim: OBJECT :stateOrProvinceName

 1013:d=9 hl=2 l= 7 prim: UTF8STRING :Ontario

 1022:d=7 hl=2 l= 18 cons: SET

 1024:d=8 hl=2 l= 16 cons: SEQUENCE

 1026:d=9 hl=2 l= 3 prim: OBJECT :organizationalUnitName

 1031:d=9 hl=2 l= 9 prim: UTF8STRING :Sandelman

 1042:d=7 hl=2 l= 36 cons: SET

 1044:d=8 hl=2 l= 34 cons: SEQUENCE

 1046:d=9 hl=2 l= 3 prim: OBJECT :commonName

 1051:d=9 hl=2 l= 27 prim: UTF8STRING :highway-test.example.com

 1080:d=6 hl=2 l= 32 cons: SEQUENCE

 1082:d=7 hl=2 l= 13 prim: UTCTIME :200203064720Z

 1097:d=7 hl=2 l= 15 prim: GENERALIZEDTIME :29991231000000Z

 1114:d=6 hl=2 l= 28 cons: SEQUENCE

 1116:d=7 hl=2 l= 26 cons: SET

 1118:d=8 hl=2 l= 24 cons: SEQUENCE

 1120:d=9 hl=2 l= 3 prim: OBJECT :serialNumber

 1125:d=9 hl=2 l= 17 prim: UTF8STRING :00-D0-E5-F2-00-02

 1144:d=6 hl=2 l= 89 cons: SEQUENCE

 1146:d=7 hl=2 l= 19 cons: SEQUENCE

 1148:d=8 hl=2 l= 7 prim: OBJECT :id-ecPublicKey

 1157:d=8 hl=2 l= 8 prim: OBJECT :prime256v1

 1167:d=7 hl=2 l= 66 prim: BIT STRING

 1235:d=6 hl=2 l= 89 cons: cont [3]

 1237:d=7 hl=2 l= 87 cons: SEQUENCE

 1239:d=8 hl=2 l= 29 cons: SEQUENCE

 1241:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Subject Key Ident

 1246:d=9 hl=2 l= 22 prim: OCTET STRING [HEX DUMP]:04144588CC9696

 1270:d=8 hl=2 l= 9 cons: SEQUENCE

 1272:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Basic Constraints

 1277:d=9 hl=2 l= 2 prim: OCTET STRING [HEX DUMP]:3000

 1281:d=8 hl=2 l= 43 cons: SEQUENCE

 1283:d=9 hl=2 l= 8 prim: OBJECT :1.3.6.1.5.5.7.1.32

 1293:d=9 hl=2 l= 31 prim: OCTET STRING [HEX DUMP]:0C1D6869676877

 1326:d=5 hl=2 l= 10 cons: SEQUENCE

 1328:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256

 1338:d=5 hl=2 l= 104 prim: BIT STRING

 1444:d=3 hl=4 l= 315 cons: SET

 1448:d=4 hl=4 l= 311 cons: SEQUENCE

 1452:d=5 hl=2 l= 1 prim: INTEGER :01

 1455:d=5 hl=2 l= 101 cons: SEQUENCE

 1457:d=6 hl=2 l= 93 cons: SEQUENCE

 1459:d=7 hl=2 l= 15 cons: SET

 1461:d=8 hl=2 l= 13 cons: SEQUENCE

 1463:d=9 hl=2 l= 3 prim: OBJECT :countryName

 1468:d=9 hl=2 l= 6 prim: PRINTABLESTRING :Canada

 1476:d=7 hl=2 l= 16 cons: SET

 1478:d=8 hl=2 l= 14 cons: SEQUENCE

 1480:d=9 hl=2 l= 3 prim: OBJECT :stateOrProvinceName

 1485:d=9 hl=2 l= 7 prim: UTF8STRING :Ontario

 1494:d=7 hl=2 l= 18 cons: SET

 1496:d=8 hl=2 l= 16 cons: SEQUENCE

 1498:d=9 hl=2 l= 3 prim: OBJECT :organizationalUnitName

 1503:d=9 hl=2 l= 9 prim: UTF8STRING :Sandelman

 1514:d=7 hl=2 l= 36 cons: SET

 1516:d=8 hl=2 l= 34 cons: SEQUENCE

 1518:d=9 hl=2 l= 3 prim: OBJECT :commonName

 1523:d=9 hl=2 l= 27 prim: UTF8STRING :highway-test.example.com

 1552:d=6 hl=2 l= 4 prim: INTEGER :0D85DC2D

 1558:d=5 hl=2 l= 11 cons: SEQUENCE

 1560:d=6 hl=2 l= 9 prim: OBJECT :sha256

 1571:d=5 hl=2 l= 105 cons: cont [0]

 1573:d=6 hl=2 l= 24 cons: SEQUENCE

 1575:d=7 hl=2 l= 9 prim: OBJECT :contentType

 1586:d=7 hl=2 l= 11 cons: SET

 1588:d=8 hl=2 l= 9 prim: OBJECT :pkcs7-data

 1599:d=6 hl=2 l= 28 cons: SEQUENCE

 1601:d=7 hl=2 l= 9 prim: OBJECT :signingTime

 1612:d=7 hl=2 l= 15 cons: SET

 1614:d=8 hl=2 l= 13 prim: UTCTIME :200225230448Z

 1629:d=6 hl=2 l= 47 cons: SEQUENCE

 1631:d=7 hl=2 l= 9 prim: OBJECT :messageDigest

 1642:d=7 hl=2 l= 34 cons: SET

 1644:d=8 hl=2 l= 32 prim: OCTET STRING [HEX DUMP]:B1E88AF0B2D1C5

 1678:d=5 hl=2 l= 10 cons: SEQUENCE

 1680:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256

 1690:d=5 hl=2 l= 71 prim: OCTET STRING [HEX DUMP]:304502201C7003

¶

The JSON contained in the voucher request:

C.2.2. Registrar to MASA

As described in Section 5.5 the registrar will sign a registrar

voucher-request, and will include pledge's voucher request in the

prior-signed-voucher-request.

¶

{"ietf-voucher-request:voucher":{"assertion":"proximity","cr

eated-on":"2020-02-25T18:04:48.652-05:00","serial-number":"0

0-D0-E5-F2-00-02","nonce":"aMjgueKUT-22wVimj6z27Q","proximit

y-registrar-cert":"MIIB/DCCAYKgAwIBAgIEP5ibUjAKBggqhkjOPQQDA

jBtMRIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZ

WxtYW4xPDA6BgNVBAMMM2ZvdW50YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zd

HJ1bmcgRm91bnRhaW4gUm9vdCBDQTAeFw0yMDAyMjUyMTMxNTRaFw0yMjAyM

jQyMTMxNTRaMFMxEjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkA

RkWCXNhbmRlbG1hbjEiMCAGA1UEAwwZZm91bnRhaW4tdGVzdC5leGFtcGxlL

mNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABJZlUHI0up/l3eZf9vCBb

+lInoEMEgc7Ro+XZCtjAI0CD1fJfJR/hIyyDmHWyYiNFbRCH9fyarfkzgX4p

0zTizqjKjAoMBYGA1UdJQEB/wQMMAoGCCsGAQUFBwMcMA4GA1UdDwEB/wQEA

wIHgDAKBggqhkjOPQQDAgNoADBlAjBmT2BMVUgelgf43R+5yBKNRTaHmyPAv

Lvxyz0mFVZvXx+/1RwOagmvG3aXmRkj/X4CMQC8rMNBsLoNr1L5nG56fwAdI

8hiAWG8S8XAR5k1Cgx3YUQBSgdScFcAdf++Bw6Yy+U="}}

¶

¶

<CODE BEGINS> file "parboiled_vr_00-D0-E5-F2-00-02.b64"

MIIP9wYJKoZIhvcNAQcCoIIP6DCCD+QCAQExDTALBglghkgBZQMEAgEwggoMBgkqhkiG9w0BBwGg

ggn9BIIJ+XsiaWV0Zi12b3VjaGVyLXJlcXVlc3Q6dm91Y2hlciI6eyJhc3NlcnRpb24iOiJwcm94

aW1pdHkiLCJjcmVhdGVkLW9uIjoiMjAyMC0wMi0yNVQyMzowNDo0OS4wNTRaIiwic2VyaWFsLW51

bWJlciI6IjAwLUQwLUU1LUYyLTAwLTAyIiwibm9uY2UiOiJhTWpndWVLVVQtMjJ3VmltajZ6MjdR

IiwicHJpb3Itc2lnbmVkLXZvdWNoZXItcmVxdWVzdCI6Ik1JSUczd1lKS29aSWh2Y05BUWNDb0lJ

RzBEQ0NCc3dDQVFFeERUQUxCZ2xnaGtnQlpRTUVBZ0V3Z2dPSkJna3Foa2lHOXcwQkJ3R2dnZ042

QklJRGRuc2lhV1YwWmkxMmIzVmphR1Z5TFhKbGNYVmxjM1E2ZG05MVkyaGxjaUk2ZXlKaGMzTmxj

blJwYjI0aU9pSndjbTk0YVcxcGRIa2lMQ0pqY21WaGRHVmtMVzl1SWpvaU1qQXlNQzB3TWkweU5W

UXhPRG93TkRvME9DNDJOVEl0TURVNk1EQWlMQ0p6WlhKcFlXd3RiblZ0WW1WeUlqb2lNREF0UkRB

dFJUVXRSakl0TURBdE1ESWlMQ0p1YjI1alpTSTZJbUZOYW1kMVpVdFZWQzB5TW5kV2FXMXFObm95

TjFFaUxDSndjbTk0YVcxcGRIa3RjbVZuYVhOMGNtRnlMV05sY25RaU9pSk5TVWxDTDBSRFEwRlpT

MmRCZDBsQ1FXZEpSVkExYVdKVmFrRkxRbWRuY1docmFrOVFVVkZFUVdwQ2RFMVNTWGRGUVZsTFEx

cEpiV2xhVUhsTVIxRkNSMUpaUTFreVJYaEhWRUZZUW1kdlNtdHBZVXByTDBseldrRkZXa1puYkhw

WlZ6VnJXbGQ0ZEZsWE5IaFFSRUUyUW1kT1ZrSkJUVTFOTWxwMlpGYzFNRmxYYkhWTVdGSnNZek5S

ZFZwWWFHaGlXRUp6V2xNMWFtSXlNR2RXVnpWNlpFaEtNV0p0WTJkU2JUa3hZbTVTYUdGWE5HZFZi

VGwyWkVOQ1JGRlVRV1ZHZHpCNVRVUkJlVTFxVlhsTlZFMTRUbFJTWVVaM01IbE5ha0Y1VFdwUmVV

MVVUWGhPVkZKaFRVWk5lRVZxUVZGQ1oyOUthMmxoU21zdlNYTmFRVVZhUm1kS2FsbFVSVnBOUW1O

SFEyZHRVMHB2YlZRNGFYaHJRVkpyVjBOWVRtaGliVkpzWWtjeGFHSnFSV2xOUTBGSFFURlZSVUYz

ZDFwYWJUa3hZbTVTYUdGWE5IUmtSMVo2WkVNMWJHVkhSblJqUjNoc1RHMU9kbUpVUWxwTlFrMUhR

bmx4UjFOTk5EbEJaMFZIUTBOeFIxTk5ORGxCZDBWSVFUQkpRVUpLV214VlNFa3dkWEF2YkRObFdt

WTVka05DWWl0c1NXNXZSVTFGWjJNM1VtOHJXRnBEZEdwQlNUQkRSREZtU21aS1VpOW9TWGw1Ukcx

SVYzbFphVTVHWWxKRFNEbG1lV0Z5Wm10NloxZzBjREI2VkdsNmNXcExha0Z2VFVKWlIwRXhWV1JL

VVVWQ0wzZFJUVTFCYjBkRFEzTkhRVkZWUmtKM1RXTk5RVFJIUVRGVlpFUjNSVUl2ZDFGRlFYZEpT

R2RFUVV0Q1oyZHhhR3RxVDFCUlVVUkJaMDV2UVVSQ2JFRnFRbTFVTWtKTlZsVm5aV3huWmpRelVp

czFlVUpMVGxKVVlVaHRlVkJCZGt4MmVIbDZNRzFHVmxwMldIZ3JMekZTZDA5aFoyMTJSek5oV0cx

U2Eyb3ZXRFJEVFZGRE9ISk5Ua0p6VEc5T2NqRk1OVzVITlRabWQwRmtTVGhvYVVGWFJ6aFRPRmhC

VWpWck1VTm5lRE5aVlZGQ1UyZGtVMk5HWTBGa1ppc3JRbmMyV1hrclZUMGlmWDJnZ2dIcU1JSUI1

akNDQVd5Z0F3SUJBZ0lFRFlYY0xUQUtCZ2dxaGtqT1BRUURBakJkTVE4d0RRWURWUVFHRXdaRFlX

NWhaR0V4RURBT0JnTlZCQWdNQjA5dWRHRnlhVzh4RWpBUUJnTlZCQXNNQ1ZOaGJtUmxiRzFoYmpF

a01DSUdBMVVFQXd3YmFHbG5hSGRoZVMxMFpYTjBMbVY0WVcxd2JHVXVZMjl0SUVOQk1DQVhEVEl3

TURJd016QTJORGN5TUZvWUR6STVPVGt4TWpNeE1EQXdNREF3V2pBY01Sb3dHQVlEVlFRRkRCRXdN

QzFFTUMxRk5TMUdNaTB3TUMwd01qQlpNQk1HQnlxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VIQTBJQUJB

T2pkVU9IczN6QUNwcUhuSzMyOURnVEhOUU1oQi9nUUU1QmVmQmJFMHNnY2JORW0wbGk4Ull3enJz

QWZZQ3hwOWs3RTFDYnBpZWxUOE9XZjB6K0lTZWpXVEJYTUIwR0ExVWREZ1FXQkJSRmlNeVdsZ0Jr

TjdDNkkyVmtaRlFJQm14V3JUQUpCZ05WSFJNRUFqQUFNQ3NHQ0NzR0FRVUZCd0VnQkI4TUhXaHBa

MmgzWVhrdGRHVnpkQzVsZUdGdGNHeGxMbU52YlRvNU5EUXpNQW9HQ0NxR1NNNDlCQU1DQTJnQU1H

VUNNQ1BocVM3dkloSTBXcVhDRmRZb3ZlMDlsdGJPQkpYdnA4amNHS2d4eDdnRU5QSzNUWG1LWnlJ

a0EwL0Z6ZFlHdWdJeEFMT05YQXJRL2dTRGtOTlBiWEtYc3o0QzZ2SElXakp5V0xkRkFsQjR2QVFk

STE0aWI4Ti9qSHpYbTNBZ2tiVGhmekdDQVRzd2dnRTNBZ0VCTUdVd1hURVBNQTBHQTFVRUJoTUdR

MkZ1WVdSaE1SQXdEZ1lEVlFRSURBZFBiblJoY21sdk1SSXdFQVlEVlFRTERBbFRZVzVrWld4dFlX

NHhKREFpQmdOVkJBTU1HMmhwWjJoM1lYa3RkR1Z6ZEM1bGVHRnRjR3hsTG1OdmJTQkRRUUlFRFlY

Y0xUQUxCZ2xnaGtnQlpRTUVBZ0dnYVRBWUJna3Foa2lHOXcwQkNRTXhDd1lKS29aSWh2Y05BUWNC

TUJ3R0NTcUdTSWIzRFFFSkJURVBGdzB5TURBeU1qVXlNekEwTkRoYU1DOEdDU3FHU0liM0RRRUpC

REVpQkNDeDZJcndzdEhGNjA5WTBFcURLNjJRS2J5NGR1eXlJV3VkdnMxNU0xNkJCVEFLQmdncWhr

ak9QUVFEQWdSSE1FVUNJQnh3QTFVbGtJa3VRRGYvajdrWi9NVmVmZ3IxNDEraEtCRmdybk5uZ2p3

cEFpRUF5OGFYdDBHU0I5bTFibWlFVXBlZkNFaHhTdjJ4TFl1ckdsdWd2MGRmci9FPSJ9faCCBG8w

ggH8MIIBgqADAgECAgQ/mJtSMAoGCCqGSM49BAMCMG0xEjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcG

CgmSJomT8ixkARkWCXNhbmRlbG1hbjE8MDoGA1UEAwwzZm91bnRhaW4tdGVzdC5leGFtcGxlLmNv

bSBVbnN0cnVuZyBGb3VudGFpbiBSb290IENBMB4XDTIwMDIyNTIxMzE1NFoXDTIyMDIyNDIxMzE1

NFowUzESMBAGCgmSJomT8ixkARkWAmNhMRkwFwYKCZImiZPyLGQBGRYJc2FuZGVsbWFuMSIwIAYD

VQQDDBlmb3VudGFpbi10ZXN0LmV4YW1wbGUuY29tMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE

lmVQcjS6n+Xd5l/28IFv6UiegQwSBztGj5dkK2MAjQIPV8l8lH+EjLIOYdbJiI0VtEIf1/Jqt+TO

BfinTNOLOqMqMCgwFgYDVR0lAQH/BAwwCgYIKwYBBQUHAxwwDgYDVR0PAQH/BAQDAgeAMAoGCCqG

SM49BAMCA2gAMGUCMGZPYExVSB6WB/jdH7nIEo1FNoebI8C8u/HLPSYVVm9fH7/VHA5qCa8bdpeZ

GSP9fgIxALysw0Gwug2vUvmcbnp/AB0jyGIBYbxLxcBHmTUKDHdhRAFKB1JwVwB1/74HDpjL5TCC

AmswggHyoAMCAQICBClrBlkwCgYIKoZIzj0EAwIwbTESMBAGCgmSJomT8ixkARkWAmNhMRkwFwYK

CZImiZPyLGQBGRYJc2FuZGVsbWFuMTwwOgYDVQQDDDNmb3VudGFpbi10ZXN0LmV4YW1wbGUuY29t

IFVuc3RydW5nIEZvdW50YWluIFJvb3QgQ0EwHhcNMjAwMjI1MjEzMTQ1WhcNMjIwMjI0MjEzMTQ1

WjBtMRIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xPDA6BgNV

BAMMM2ZvdW50YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zdHJ1bmcgRm91bnRhaW4gUm9vdCBDQTB2

MBAGByqGSM49AgEGBSuBBAAiA2IABBt/WboXwxq8Zo2MbODD+jFxD2X2IpG9t1aAB9vfuHqlRU15

ikaXGVmWMbGPaX0yvjzIPltjtUb2qNVvm/nA89O5FD9yR1Gkdt3S8L/1yo8wAX/4wl/T9SADRIuL

8gdstKNjMGEwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMCAQYwHQYDVR0OBBYEFLml9ssR

4QekSSynCMZ8ELyHs3QmMB8GA1UdIwQYMBaAFLml9ssR4QekSSynCMZ8ELyHs3QmMAoGCCqGSM49

BAMCA2cAMGQCMCCDBs6NmKRUemZMSjpwwlI2WlKNWX0gmyppFFiHONhVed39KTiVHpGTdrT1ZilE

tAIwbzj5rxLtMNWFKXyxFli9Z5FDxA0w+dgcrC8G3bzVBkIshKIE6gKkXxdRJvvZL9JcMYIBSzCC

AUcCAQEwdTBtMRIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4x

PDA6BgNVBAMMM2ZvdW50YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zdHJ1bmcgRm91bnRhaW4gUm9v

dCBDQQIEP5ibUjALBglghkgBZQMEAgGgaTAYBgkqhkiG9w0BCQMxCwYJKoZIhvcNAQcBMBwGCSqG

SIb3DQEJBTEPFw0yMDAyMjUyMzA0NDlaMC8GCSqGSIb3DQEJBDEiBCA9gYxR1sS0giII3PwvOK/N

5RUBwjSL/cDcrH/Bd+E1ajAKBggqhkjOPQQDAgRHMEUCIFieXZaO7P9eZMpCVn2laB4czw7I0s0P

s9+frcJtEBTTAiEAhCcB//qmgqcEA+90mquvVNENmFH9dxCH8Ihhz6SCVDI=

<CODE ENDS>

The ASN1 decoding of the artifact:

file: examples/parboiled_vr_00_D0-E5-02-00-2D.b64

¶

¶

¶

 0:d=0 hl=4 l=4087 cons: SEQUENCE

 4:d=1 hl=2 l= 9 prim: OBJECT :pkcs7-signedData

 15:d=1 hl=4 l=4072 cons: cont [0]

 19:d=2 hl=4 l=4068 cons: SEQUENCE

 23:d=3 hl=2 l= 1 prim: INTEGER :01

 26:d=3 hl=2 l= 13 cons: SET

 28:d=4 hl=2 l= 11 cons: SEQUENCE

 30:d=5 hl=2 l= 9 prim: OBJECT :sha256

 41:d=3 hl=4 l=2572 cons: SEQUENCE

 45:d=4 hl=2 l= 9 prim: OBJECT :pkcs7-data

 56:d=4 hl=4 l=2557 cons: cont [0]

 60:d=5 hl=4 l=2553 prim: OCTET STRING :{"ietf-voucher-request:v

 2617:d=3 hl=4 l=1135 cons: cont [0]

 2621:d=4 hl=4 l= 508 cons: SEQUENCE

 2625:d=5 hl=4 l= 386 cons: SEQUENCE

 2629:d=6 hl=2 l= 3 cons: cont [0]

 2631:d=7 hl=2 l= 1 prim: INTEGER :02

 2634:d=6 hl=2 l= 4 prim: INTEGER :3F989B52

 2640:d=6 hl=2 l= 10 cons: SEQUENCE

 2642:d=7 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256

 2652:d=6 hl=2 l= 109 cons: SEQUENCE

 2654:d=7 hl=2 l= 18 cons: SET

 2656:d=8 hl=2 l= 16 cons: SEQUENCE

 2658:d=9 hl=2 l= 10 prim: OBJECT :domainComponent

 2670:d=9 hl=2 l= 2 prim: IA5STRING :ca

 2674:d=7 hl=2 l= 25 cons: SET

 2676:d=8 hl=2 l= 23 cons: SEQUENCE

 2678:d=9 hl=2 l= 10 prim: OBJECT :domainComponent

 2690:d=9 hl=2 l= 9 prim: IA5STRING :sandelman

 2701:d=7 hl=2 l= 60 cons: SET

 2703:d=8 hl=2 l= 58 cons: SEQUENCE

 2705:d=9 hl=2 l= 3 prim: OBJECT :commonName

 2710:d=9 hl=2 l= 51 prim: UTF8STRING :fountain-test.example.co

 2763:d=6 hl=2 l= 30 cons: SEQUENCE

 2765:d=7 hl=2 l= 13 prim: UTCTIME :200225213154Z

 2780:d=7 hl=2 l= 13 prim: UTCTIME :220224213154Z

 2795:d=6 hl=2 l= 83 cons: SEQUENCE

 2797:d=7 hl=2 l= 18 cons: SET

 2799:d=8 hl=2 l= 16 cons: SEQUENCE

 2801:d=9 hl=2 l= 10 prim: OBJECT :domainComponent

 2813:d=9 hl=2 l= 2 prim: IA5STRING :ca

 2817:d=7 hl=2 l= 25 cons: SET

 2819:d=8 hl=2 l= 23 cons: SEQUENCE

 2821:d=9 hl=2 l= 10 prim: OBJECT :domainComponent

 2833:d=9 hl=2 l= 9 prim: IA5STRING :sandelman

 2844:d=7 hl=2 l= 34 cons: SET

 2846:d=8 hl=2 l= 32 cons: SEQUENCE

 2848:d=9 hl=2 l= 3 prim: OBJECT :commonName

 2853:d=9 hl=2 l= 25 prim: UTF8STRING :fountain-test.example.co

 2880:d=6 hl=2 l= 89 cons: SEQUENCE

 2882:d=7 hl=2 l= 19 cons: SEQUENCE

 2884:d=8 hl=2 l= 7 prim: OBJECT :id-ecPublicKey

 2893:d=8 hl=2 l= 8 prim: OBJECT :prime256v1

 2903:d=7 hl=2 l= 66 prim: BIT STRING

 2971:d=6 hl=2 l= 42 cons: cont [3]

 2973:d=7 hl=2 l= 40 cons: SEQUENCE

 2975:d=8 hl=2 l= 22 cons: SEQUENCE

 2977:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Extended Key Usag

 2982:d=9 hl=2 l= 1 prim: BOOLEAN :255

 2985:d=9 hl=2 l= 12 prim: OCTET STRING [HEX DUMP]:300A06082B0601

 2999:d=8 hl=2 l= 14 cons: SEQUENCE

 3001:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Key Usage

 3006:d=9 hl=2 l= 1 prim: BOOLEAN :255

 3009:d=9 hl=2 l= 4 prim: OCTET STRING [HEX DUMP]:03020780

 3015:d=5 hl=2 l= 10 cons: SEQUENCE

 3017:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256

 3027:d=5 hl=2 l= 104 prim: BIT STRING

 3133:d=4 hl=4 l= 619 cons: SEQUENCE

 3137:d=5 hl=4 l= 498 cons: SEQUENCE

 3141:d=6 hl=2 l= 3 cons: cont [0]

 3143:d=7 hl=2 l= 1 prim: INTEGER :02

 3146:d=6 hl=2 l= 4 prim: INTEGER :296B0659

 3152:d=6 hl=2 l= 10 cons: SEQUENCE

 3154:d=7 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256

 3164:d=6 hl=2 l= 109 cons: SEQUENCE

 3166:d=7 hl=2 l= 18 cons: SET

 3168:d=8 hl=2 l= 16 cons: SEQUENCE

 3170:d=9 hl=2 l= 10 prim: OBJECT :domainComponent

 3182:d=9 hl=2 l= 2 prim: IA5STRING :ca

 3186:d=7 hl=2 l= 25 cons: SET

 3188:d=8 hl=2 l= 23 cons: SEQUENCE

 3190:d=9 hl=2 l= 10 prim: OBJECT :domainComponent

 3202:d=9 hl=2 l= 9 prim: IA5STRING :sandelman

 3213:d=7 hl=2 l= 60 cons: SET

 3215:d=8 hl=2 l= 58 cons: SEQUENCE

 3217:d=9 hl=2 l= 3 prim: OBJECT :commonName

 3222:d=9 hl=2 l= 51 prim: UTF8STRING :fountain-test.example.co

 3275:d=6 hl=2 l= 30 cons: SEQUENCE

 3277:d=7 hl=2 l= 13 prim: UTCTIME :200225213145Z

 3292:d=7 hl=2 l= 13 prim: UTCTIME :220224213145Z

 3307:d=6 hl=2 l= 109 cons: SEQUENCE

 3309:d=7 hl=2 l= 18 cons: SET

 3311:d=8 hl=2 l= 16 cons: SEQUENCE

 3313:d=9 hl=2 l= 10 prim: OBJECT :domainComponent

 3325:d=9 hl=2 l= 2 prim: IA5STRING :ca

 3329:d=7 hl=2 l= 25 cons: SET

 3331:d=8 hl=2 l= 23 cons: SEQUENCE

 3333:d=9 hl=2 l= 10 prim: OBJECT :domainComponent

 3345:d=9 hl=2 l= 9 prim: IA5STRING :sandelman

 3356:d=7 hl=2 l= 60 cons: SET

 3358:d=8 hl=2 l= 58 cons: SEQUENCE

 3360:d=9 hl=2 l= 3 prim: OBJECT :commonName

 3365:d=9 hl=2 l= 51 prim: UTF8STRING :fountain-test.example.co

 3418:d=6 hl=2 l= 118 cons: SEQUENCE

 3420:d=7 hl=2 l= 16 cons: SEQUENCE

 3422:d=8 hl=2 l= 7 prim: OBJECT :id-ecPublicKey

 3431:d=8 hl=2 l= 5 prim: OBJECT :secp384r1

 3438:d=7 hl=2 l= 98 prim: BIT STRING

 3538:d=6 hl=2 l= 99 cons: cont [3]

 3540:d=7 hl=2 l= 97 cons: SEQUENCE

 3542:d=8 hl=2 l= 15 cons: SEQUENCE

 3544:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Basic Constraints

 3549:d=9 hl=2 l= 1 prim: BOOLEAN :255

 3552:d=9 hl=2 l= 5 prim: OCTET STRING [HEX DUMP]:30030101FF

 3559:d=8 hl=2 l= 14 cons: SEQUENCE

 3561:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Key Usage

 3566:d=9 hl=2 l= 1 prim: BOOLEAN :255

 3569:d=9 hl=2 l= 4 prim: OCTET STRING [HEX DUMP]:03020106

 3575:d=8 hl=2 l= 29 cons: SEQUENCE

 3577:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Subject Key Ident

 3582:d=9 hl=2 l= 22 prim: OCTET STRING [HEX DUMP]:0414B9A5F6CB11

 3606:d=8 hl=2 l= 31 cons: SEQUENCE

 3608:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Authority Key Ide

 3613:d=9 hl=2 l= 24 prim: OCTET STRING [HEX DUMP]:30168014B9A5F6

 3639:d=5 hl=2 l= 10 cons: SEQUENCE

 3641:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256

 3651:d=5 hl=2 l= 103 prim: BIT STRING

 3756:d=3 hl=4 l= 331 cons: SET

 3760:d=4 hl=4 l= 327 cons: SEQUENCE

 3764:d=5 hl=2 l= 1 prim: INTEGER :01

 3767:d=5 hl=2 l= 117 cons: SEQUENCE

 3769:d=6 hl=2 l= 109 cons: SEQUENCE

 3771:d=7 hl=2 l= 18 cons: SET

 3773:d=8 hl=2 l= 16 cons: SEQUENCE

 3775:d=9 hl=2 l= 10 prim: OBJECT :domainComponent

 3787:d=9 hl=2 l= 2 prim: IA5STRING :ca

 3791:d=7 hl=2 l= 25 cons: SET

 3793:d=8 hl=2 l= 23 cons: SEQUENCE

 3795:d=9 hl=2 l= 10 prim: OBJECT :domainComponent

 3807:d=9 hl=2 l= 9 prim: IA5STRING :sandelman

 3818:d=7 hl=2 l= 60 cons: SET

 3820:d=8 hl=2 l= 58 cons: SEQUENCE

 3822:d=9 hl=2 l= 3 prim: OBJECT :commonName

 3827:d=9 hl=2 l= 51 prim: UTF8STRING :fountain-test.example.co

 3880:d=6 hl=2 l= 4 prim: INTEGER :3F989B52

 3886:d=5 hl=2 l= 11 cons: SEQUENCE

 3888:d=6 hl=2 l= 9 prim: OBJECT :sha256

 3899:d=5 hl=2 l= 105 cons: cont [0]

 3901:d=6 hl=2 l= 24 cons: SEQUENCE

 3903:d=7 hl=2 l= 9 prim: OBJECT :contentType

 3914:d=7 hl=2 l= 11 cons: SET

 3916:d=8 hl=2 l= 9 prim: OBJECT :pkcs7-data

 3927:d=6 hl=2 l= 28 cons: SEQUENCE

 3929:d=7 hl=2 l= 9 prim: OBJECT :signingTime

 3940:d=7 hl=2 l= 15 cons: SET

 3942:d=8 hl=2 l= 13 prim: UTCTIME :200225230449Z

 3957:d=6 hl=2 l= 47 cons: SEQUENCE

 3959:d=7 hl=2 l= 9 prim: OBJECT :messageDigest

 3970:d=7 hl=2 l= 34 cons: SET

 3972:d=8 hl=2 l= 32 prim: OCTET STRING [HEX DUMP]:3D818C51D6C4B4

 4006:d=5 hl=2 l= 10 cons: SEQUENCE

 4008:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256

 4018:d=5 hl=2 l= 71 prim: OCTET STRING [HEX DUMP]:30450220589E5D

¶

The JSON contained in the voucher request. Note that the previous

voucher request is in the prior-signed-voucher-request attribute.¶

{"ietf-voucher-request:voucher":{"assertion":"proximity","cr

eated-on":"2020-02-25T23:04:49.054Z","serial-number":"00-D0-

E5-F2-00-02","nonce":"aMjgueKUT-22wVimj6z27Q","prior-signed-

voucher-request":"MIIG3wYJKoZIhvcNAQcCoIIG0DCCBswCAQExDTALBg

lghkgBZQMEAgEwggOJBgkqhkiG9w0BBwGgggN6BIIDdnsiaWV0Zi12b3VjaG

VyLXJlcXVlc3Q6dm91Y2hlciI6eyJhc3NlcnRpb24iOiJwcm94aW1pdHkiLC

JjcmVhdGVkLW9uIjoiMjAyMC0wMi0yNVQxODowNDo0OC42NTItMDU6MDAiLC

JzZXJpYWwtbnVtYmVyIjoiMDAtRDAtRTUtRjItMDAtMDIiLCJub25jZSI6Im

FNamd1ZUtVVC0yMndWaW1qNnoyN1EiLCJwcm94aW1pdHktcmVnaXN0cmFyLW

NlcnQiOiJNSUlCL0RDQ0FZS2dBd0lCQWdJRVA1aWJVakFLQmdncWhrak9QUV

FEQWpCdE1SSXdFQVlLQ1pJbWlaUHlMR1FCR1JZQ1kyRXhHVEFYQmdvSmtpYU

prL0lzWkFFWkZnbHpZVzVrWld4dFlXNHhQREE2QmdOVkJBTU1NMlp2ZFc1MF

lXbHVMWFJsYzNRdVpYaGhiWEJzWlM1amIyMGdWVzV6ZEhKMWJtY2dSbTkxYm

5SaGFXNGdVbTl2ZENCRFFUQWVGdzB5TURBeU1qVXlNVE14TlRSYUZ3MHlNak

F5TWpReU1UTXhOVFJhTUZNeEVqQVFCZ29Ka2lhSmsvSXNaQUVaRmdKallURV

pNQmNHQ2dtU0pvbVQ4aXhrQVJrV0NYTmhibVJsYkcxaGJqRWlNQ0FHQTFVRU

F3d1pabTkxYm5SaGFXNHRkR1Z6ZEM1bGVHRnRjR3hsTG1OdmJUQlpNQk1HQn

lxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VIQTBJQUJKWmxVSEkwdXAvbDNlWmY5dk

NCYitsSW5vRU1FZ2M3Um8rWFpDdGpBSTBDRDFmSmZKUi9oSXl5RG1IV3lZaU

5GYlJDSDlmeWFyZmt6Z1g0cDB6VGl6cWpLakFvTUJZR0ExVWRKUUVCL3dRTU

1Bb0dDQ3NHQVFVRkJ3TWNNQTRHQTFVZER3RUIvd1FFQXdJSGdEQUtCZ2dxaG

tqT1BRUURBZ05vQURCbEFqQm1UMkJNVlVnZWxnZjQzUis1eUJLTlJUYUhteV

BBdkx2eHl6MG1GVlp2WHgrLzFSd09hZ212RzNhWG1Sa2ovWDRDTVFDOHJNTk

JzTG9OcjFMNW5HNTZmd0FkSThoaUFXRzhTOFhBUjVrMUNneDNZVVFCU2dkU2

NGY0FkZisrQnc2WXkrVT0ifX2gggHqMIIB5jCCAWygAwIBAgIEDYXcLTAKBg

gqhkjOPQQDAjBdMQ8wDQYDVQQGEwZDYW5hZGExEDAOBgNVBAgMB09udGFyaW

8xEjAQBgNVBAsMCVNhbmRlbG1hbjEkMCIGA1UEAwwbaGlnaHdheS10ZXN0Lm

V4YW1wbGUuY29tIENBMCAXDTIwMDIwMzA2NDcyMFoYDzI5OTkxMjMxMDAwMD

AwWjAcMRowGAYDVQQFDBEwMC1EMC1FNS1GMi0wMC0wMjBZMBMGByqGSM49Ag

EGCCqGSM49AwEHA0IABAOjdUOHs3zACpqHnK329DgTHNQMhB/gQE5BefBbE0

sgcbNEm0li8RYwzrsAfYCxp9k7E1CbpielT8OWf0z+ISejWTBXMB0GA1UdDg

QWBBRFiMyWlgBkN7C6I2VkZFQIBmxWrTAJBgNVHRMEAjAAMCsGCCsGAQUFBw

EgBB8MHWhpZ2h3YXktdGVzdC5leGFtcGxlLmNvbTo5NDQzMAoGCCqGSM49BA

MCA2gAMGUCMCPhqS7vIhI0WqXCFdYove09ltbOBJXvp8jcGKgxx7gENPK3TX

mKZyIkA0/FzdYGugIxALONXArQ/gSDkNNPbXKXsz4C6vHIWjJyWLdFAlB4vA

QdI14ib8N/jHzXm3AgkbThfzGCATswggE3AgEBMGUwXTEPMA0GA1UEBhMGQ2

FuYWRhMRAwDgYDVQQIDAdPbnRhcmlvMRIwEAYDVQQLDAlTYW5kZWxtYW4xJD

AiBgNVBAMMG2hpZ2h3YXktdGVzdC5leGFtcGxlLmNvbSBDQQIEDYXcLTALBg

lghkgBZQMEAgGgaTAYBgkqhkiG9w0BCQMxCwYJKoZIhvcNAQcBMBwGCSqGSI

b3DQEJBTEPFw0yMDAyMjUyMzA0NDhaMC8GCSqGSIb3DQEJBDEiBCCx6Irwst

HF609Y0EqDK62QKby4duyyIWudvs15M16BBTAKBggqhkjOPQQDAgRHMEUCIB

xwA1UlkIkuQDf/j7kZ/MVefgr141+hKBFgrnNngjwpAiEAy8aXt0GSB9m1bm

iEUpefCEhxSv2xLYurGlugv0dfr/E="}}

¶

C.2.3. MASA to Registrar

The MASA will return a voucher to the registrar, to be relayed to

the pledge.

<CODE BEGINS> file "voucher_00-D0-E5-F2-00-02.b64"

MIIGxwYJKoZIhvcNAQcCoIIGuDCCBrQCAQExDTALBglghkgBZQMEAgEwggN4BgkqhkiG9w0BBwGg

ggNpBIIDZXsiaWV0Zi12b3VjaGVyOnZvdWNoZXIiOnsiYXNzZXJ0aW9uIjoibG9nZ2VkIiwiY3Jl

YXRlZC1vbiI6IjIwMjAtMDItMjVUMTg6MDQ6NDkuMzAzLTA1OjAwIiwic2VyaWFsLW51bWJlciI6

IjAwLUQwLUU1LUYyLTAwLTAyIiwibm9uY2UiOiJhTWpndWVLVVQtMjJ3VmltajZ6MjdRIiwicGlu

bmVkLWRvbWFpbi1jZXJ0IjoiTUlJQi9EQ0NBWUtnQXdJQkFnSUVQNWliVWpBS0JnZ3Foa2pPUFFR

REFqQnRNUkl3RUFZS0NaSW1pWlB5TEdRQkdSWUNZMkV4R1RBWEJnb0praWFKay9Jc1pBRVpGZ2x6

WVc1a1pXeHRZVzR4UERBNkJnTlZCQU1NTTJadmRXNTBZV2x1TFhSbGMzUXVaWGhoYlhCc1pTNWpi

MjBnVlc1emRISjFibWNnUm05MWJuUmhhVzRnVW05dmRDQkRRVEFlRncweU1EQXlNalV5TVRNeE5U

UmFGdzB5TWpBeU1qUXlNVE14TlRSYU1GTXhFakFRQmdvSmtpYUprL0lzWkFFWkZnSmpZVEVaTUJj

R0NnbVNKb21UOGl4a0FSa1dDWE5oYm1SbGJHMWhiakVpTUNBR0ExVUVBd3daWm05MWJuUmhhVzR0

ZEdWemRDNWxlR0Z0Y0d4bExtTnZiVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUFC

SlpsVUhJMHVwL2wzZVpmOXZDQmIrbElub0VNRWdjN1JvK1haQ3RqQUkwQ0QxZkpmSlIvaEl5eURt

SFd5WWlORmJSQ0g5ZnlhcmZremdYNHAwelRpenFqS2pBb01CWUdBMVVkSlFFQi93UU1NQW9HQ0Nz

R0FRVUZCd01jTUE0R0ExVWREd0VCL3dRRUF3SUhnREFLQmdncWhrak9QUVFEQWdOb0FEQmxBakJt

VDJCTVZVZ2VsZ2Y0M1IrNXlCS05SVGFIbXlQQXZMdnh5ejBtRlZadlh4Ky8xUndPYWdtdkczYVht

UmtqL1g0Q01RQzhyTU5Cc0xvTnIxTDVuRzU2ZndBZEk4aGlBV0c4UzhYQVI1azFDZ3gzWVVRQlNn

ZFNjRmNBZGYrK0J3Nll5K1U9In19oIIB4zCCAd8wggFkoAMCAQICBBuZX1QwCgYIKoZIzj0EAwIw

XTEPMA0GA1UEBhMGQ2FuYWRhMRAwDgYDVQQIDAdPbnRhcmlvMRIwEAYDVQQLDAlTYW5kZWxtYW4x

JDAiBgNVBAMMG2hpZ2h3YXktdGVzdC5leGFtcGxlLmNvbSBDQTAeFw0xOTAyMTIyMjIyNDFaFw0y

MTAyMTEyMjIyNDFaMF8xDzANBgNVBAYTBkNhbmFkYTEQMA4GA1UECAwHT250YXJpbzESMBAGA1UE

CwwJU2FuZGVsbWFuMSYwJAYDVQQDDB1oaWdod2F5LXRlc3QuZXhhbXBsZS5jb20gTUFTQTBZMBMG

ByqGSM49AgEGCCqGSM49AwEHA0IABKoEFaNEueJE+Mn5GwcbpnRznB66bKmzqTCpojJZ96AdRwFt

uTCVfoKouLTBX0idIhMLfJLM31lyuKy4CUtpp6WjEDAOMAwGA1UdEwEB/wQCMAAwCgYIKoZIzj0E

AwIDaQAwZgIxAL1V5ZsO+/xelSnjgbMVNaqTGKIEvkRyslF9TW3r0dXBEDqyOXtXP8XMsKMO55lG

ugIxAPZ/RH23FPrRZ2rUEcNLrub7mphW+oUhLlxITPA/8ps/roggp675cv9b+Xhozw9IyTGCATsw

ggE3AgEBMGUwXTEPMA0GA1UEBhMGQ2FuYWRhMRAwDgYDVQQIDAdPbnRhcmlvMRIwEAYDVQQLDAlT

YW5kZWxtYW4xJDAiBgNVBAMMG2hpZ2h3YXktdGVzdC5leGFtcGxlLmNvbSBDQQIEG5lfVDALBglg

hkgBZQMEAgGgaTAYBgkqhkiG9w0BCQMxCwYJKoZIhvcNAQcBMBwGCSqGSIb3DQEJBTEPFw0yMDAy

MjUyMzA0NDlaMC8GCSqGSIb3DQEJBDEiBCCJQso4Z9msdaPk3bsDltTkVckX50DvOPuOR9Svi5M9

RDAKBggqhkjOPQQDAgRHMEUCIQCKESXfM3iV8hpkqcxAKA1veArA6GFpN0jzyns4El8uDgIgSRQi

9/MntuJhAM/tJCZBkfHBoAGX4PFAwwbs5LFZtAw=

<CODE ENDS>

The ASN1 decoding of the artifact:

file: examples/voucher_00-D0-E5-F2-00-02.b64

¶

¶

¶

¶

 0:d=0 hl=4 l=1735 cons: SEQUENCE

 4:d=1 hl=2 l= 9 prim: OBJECT :pkcs7-signedData

 15:d=1 hl=4 l=1720 cons: cont [0]

 19:d=2 hl=4 l=1716 cons: SEQUENCE

 23:d=3 hl=2 l= 1 prim: INTEGER :01

 26:d=3 hl=2 l= 13 cons: SET

 28:d=4 hl=2 l= 11 cons: SEQUENCE

 30:d=5 hl=2 l= 9 prim: OBJECT :sha256

 41:d=3 hl=4 l= 888 cons: SEQUENCE

 45:d=4 hl=2 l= 9 prim: OBJECT :pkcs7-data

 56:d=4 hl=4 l= 873 cons: cont [0]

 60:d=5 hl=4 l= 869 prim: OCTET STRING :{"ietf-voucher:voucher":

 933:d=3 hl=4 l= 483 cons: cont [0]

 937:d=4 hl=4 l= 479 cons: SEQUENCE

 941:d=5 hl=4 l= 356 cons: SEQUENCE

 945:d=6 hl=2 l= 3 cons: cont [0]

 947:d=7 hl=2 l= 1 prim: INTEGER :02

 950:d=6 hl=2 l= 4 prim: INTEGER :1B995F54

 956:d=6 hl=2 l= 10 cons: SEQUENCE

 958:d=7 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256

 968:d=6 hl=2 l= 93 cons: SEQUENCE

 970:d=7 hl=2 l= 15 cons: SET

 972:d=8 hl=2 l= 13 cons: SEQUENCE

 974:d=9 hl=2 l= 3 prim: OBJECT :countryName

 979:d=9 hl=2 l= 6 prim: PRINTABLESTRING :Canada

 987:d=7 hl=2 l= 16 cons: SET

 989:d=8 hl=2 l= 14 cons: SEQUENCE

 991:d=9 hl=2 l= 3 prim: OBJECT :stateOrProvinceName

 996:d=9 hl=2 l= 7 prim: UTF8STRING :Ontario

 1005:d=7 hl=2 l= 18 cons: SET

 1007:d=8 hl=2 l= 16 cons: SEQUENCE

 1009:d=9 hl=2 l= 3 prim: OBJECT :organizationalUnitName

 1014:d=9 hl=2 l= 9 prim: UTF8STRING :Sandelman

 1025:d=7 hl=2 l= 36 cons: SET

 1027:d=8 hl=2 l= 34 cons: SEQUENCE

 1029:d=9 hl=2 l= 3 prim: OBJECT :commonName

 1034:d=9 hl=2 l= 27 prim: UTF8STRING :highway-test.example.com

 1063:d=6 hl=2 l= 30 cons: SEQUENCE

 1065:d=7 hl=2 l= 13 prim: UTCTIME :190212222241Z

 1080:d=7 hl=2 l= 13 prim: UTCTIME :210211222241Z

 1095:d=6 hl=2 l= 95 cons: SEQUENCE

 1097:d=7 hl=2 l= 15 cons: SET

 1099:d=8 hl=2 l= 13 cons: SEQUENCE

 1101:d=9 hl=2 l= 3 prim: OBJECT :countryName

 1106:d=9 hl=2 l= 6 prim: PRINTABLESTRING :Canada

 1114:d=7 hl=2 l= 16 cons: SET

 1116:d=8 hl=2 l= 14 cons: SEQUENCE

 1118:d=9 hl=2 l= 3 prim: OBJECT :stateOrProvinceName

 1123:d=9 hl=2 l= 7 prim: UTF8STRING :Ontario

 1132:d=7 hl=2 l= 18 cons: SET

 1134:d=8 hl=2 l= 16 cons: SEQUENCE

 1136:d=9 hl=2 l= 3 prim: OBJECT :organizationalUnitName

 1141:d=9 hl=2 l= 9 prim: UTF8STRING :Sandelman

 1152:d=7 hl=2 l= 38 cons: SET

 1154:d=8 hl=2 l= 36 cons: SEQUENCE

 1156:d=9 hl=2 l= 3 prim: OBJECT :commonName

 1161:d=9 hl=2 l= 29 prim: UTF8STRING :highway-test.example.com

 1192:d=6 hl=2 l= 89 cons: SEQUENCE

 1194:d=7 hl=2 l= 19 cons: SEQUENCE

 1196:d=8 hl=2 l= 7 prim: OBJECT :id-ecPublicKey

 1205:d=8 hl=2 l= 8 prim: OBJECT :prime256v1

 1215:d=7 hl=2 l= 66 prim: BIT STRING

 1283:d=6 hl=2 l= 16 cons: cont [3]

 1285:d=7 hl=2 l= 14 cons: SEQUENCE

 1287:d=8 hl=2 l= 12 cons: SEQUENCE

 1289:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Basic Constraints

 1294:d=9 hl=2 l= 1 prim: BOOLEAN :255

 1297:d=9 hl=2 l= 2 prim: OCTET STRING [HEX DUMP]:3000

 1301:d=5 hl=2 l= 10 cons: SEQUENCE

 1303:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256

 1313:d=5 hl=2 l= 105 prim: BIT STRING

 1420:d=3 hl=4 l= 315 cons: SET

 1424:d=4 hl=4 l= 311 cons: SEQUENCE

 1428:d=5 hl=2 l= 1 prim: INTEGER :01

 1431:d=5 hl=2 l= 101 cons: SEQUENCE

 1433:d=6 hl=2 l= 93 cons: SEQUENCE

 1435:d=7 hl=2 l= 15 cons: SET

 1437:d=8 hl=2 l= 13 cons: SEQUENCE

 1439:d=9 hl=2 l= 3 prim: OBJECT :countryName

 1444:d=9 hl=2 l= 6 prim: PRINTABLESTRING :Canada

 1452:d=7 hl=2 l= 16 cons: SET

 1454:d=8 hl=2 l= 14 cons: SEQUENCE

 1456:d=9 hl=2 l= 3 prim: OBJECT :stateOrProvinceName

 1461:d=9 hl=2 l= 7 prim: UTF8STRING :Ontario

 1470:d=7 hl=2 l= 18 cons: SET

 1472:d=8 hl=2 l= 16 cons: SEQUENCE

 1474:d=9 hl=2 l= 3 prim: OBJECT :organizationalUnitName

 1479:d=9 hl=2 l= 9 prim: UTF8STRING :Sandelman

 1490:d=7 hl=2 l= 36 cons: SET

 1492:d=8 hl=2 l= 34 cons: SEQUENCE

 1494:d=9 hl=2 l= 3 prim: OBJECT :commonName

 1499:d=9 hl=2 l= 27 prim: UTF8STRING :highway-test.example.com

 1528:d=6 hl=2 l= 4 prim: INTEGER :1B995F54

 1534:d=5 hl=2 l= 11 cons: SEQUENCE

 1536:d=6 hl=2 l= 9 prim: OBJECT :sha256

 1547:d=5 hl=2 l= 105 cons: cont [0]

 1549:d=6 hl=2 l= 24 cons: SEQUENCE

 1551:d=7 hl=2 l= 9 prim: OBJECT :contentType

 1562:d=7 hl=2 l= 11 cons: SET

 1564:d=8 hl=2 l= 9 prim: OBJECT :pkcs7-data

 1575:d=6 hl=2 l= 28 cons: SEQUENCE

 1577:d=7 hl=2 l= 9 prim: OBJECT :signingTime

 1588:d=7 hl=2 l= 15 cons: SET

 1590:d=8 hl=2 l= 13 prim: UTCTIME :200225230449Z

 1605:d=6 hl=2 l= 47 cons: SEQUENCE

 1607:d=7 hl=2 l= 9 prim: OBJECT :messageDigest

 1618:d=7 hl=2 l= 34 cons: SET

 1620:d=8 hl=2 l= 32 prim: OCTET STRING [HEX DUMP]:8942CA3867D9AC

 1654:d=5 hl=2 l= 10 cons: SEQUENCE

 1656:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256

 1666:d=5 hl=2 l= 71 prim: OCTET STRING [HEX DUMP]:30450221008A11

¶

Appendix D. Additional References

RFC EDITOR Please remove this section before publication. It exists

just to include references to the things in the YANG descriptions

which are not otherwise referenced in the text so that xml2rfc will

not complain.

[ITU.X690.1994]

Authors' Addresses

Max Pritikin

Cisco

Email: pritikin@cisco.com

Michael C. Richardson

Sandelman Software Works

Email: mcr+ietf@sandelman.ca

URI: http://www.sandelman.ca/

Toerless Eckert

Futurewei Technologies Inc. USA

2330 Central Expy

Santa Clara, CA 95050

United States of America

Email: tte+ietf@cs.fau.de

Michael H. Behringer

Email: Michael.H.Behringer@gmail.com

Kent Watsen

Watsen Networks

Email: kent+ietf@watsen.net

¶

¶

mailto:pritikin@cisco.com
mailto:mcr+ietf@sandelman.ca
http://www.sandelman.ca/
mailto:tte+ietf@cs.fau.de
mailto:Michael.H.Behringer@gmail.com
mailto:kent+ietf@watsen.net

	Bootstrapping Remote Secure Key Infrastructures (BRSKI)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Prior Bootstrapping Approaches
	1.2. Terminology
	1.3. Scope of solution
	1.3.1. Support environment
	1.3.2. Constrained environments
	1.3.3. Network Access Controls
	1.3.4. Bootstrapping is not Booting

	1.4. Leveraging the new key infrastructure / next steps
	1.5. Requirements for Autonomic Network Infrastructure (ANI) devices

	2. Architectural Overview
	2.1. Behavior of a Pledge
	2.2. Secure Imprinting using Vouchers
	2.3. Initial Device Identifier
	2.3.1. Identification of the Pledge
	2.3.2. MASA URI extension

	2.4. Protocol Flow
	2.5. Architectural Components
	2.5.1. Pledge
	2.5.2. Join Proxy
	2.5.3. Domain Registrar
	2.5.4. Manufacturer Service
	2.5.5. Public Key Infrastructure (PKI)

	2.6. Certificate Time Validation
	2.6.1. Lack of realtime clock
	2.6.2. Infinite Lifetime of IDevID

	2.7. Cloud Registrar
	2.8. Determining the MASA to contact

	3. Voucher-Request artifact
	3.1. Nonceless Voucher Requests
	3.2. Tree Diagram
	3.3. Examples
	3.4. YANG Module

	4. Proxying details (Pledge - Proxy - Registrar)
	4.1. Pledge discovery of Proxy
	4.1.1. Proxy GRASP announcements

	4.2. CoAP connection to Registrar
	4.3. Proxy discovery and communication of Registrar

	5. Protocol Details (Pledge - Registrar - MASA)
	5.1. BRSKI-EST TLS establishment details
	5.2. Pledge Requests Voucher from the Registrar
	5.3. Registrar Authorization of Pledge
	5.4. BRSKI-MASA TLS establishment details
	5.4.1. MASA authentication of customer Registrar

	5.5. Registrar Requests Voucher from MASA
	5.5.1. MASA renewal of expired vouchers
	5.5.2. MASA pinning of registrar
	5.5.3. MASA checking of voucher request signature
	5.5.4. MASA verification of domain registrar
	5.5.5. MASA verification of pledge prior-signed-voucher-request
	5.5.6. MASA nonce handling

	5.6. MASA and Registrar Voucher Response
	5.6.1. Pledge voucher verification
	5.6.2. Pledge authentication of provisional TLS connection

	5.7. Pledge BRSKI Status Telemetry
	5.8. Registrar audit-log request
	5.8.1. MASA audit log response
	5.8.2. Calculation of domainID
	5.8.3. Registrar audit log verification

	5.9. EST Integration for PKI bootstrapping
	5.9.1. EST Distribution of CA Certificates
	5.9.2. EST CSR Attributes
	5.9.3. EST Client Certificate Request
	5.9.4. Enrollment Status Telemetry
	5.9.5. Multiple certificates
	5.9.6. EST over CoAP

	6. Clarification of transfer-encoding
	7. Reduced security operational modes
	7.1. Trust Model
	7.2. Pledge security reductions
	7.3. Registrar security reductions
	7.4. MASA security reductions
	7.4.1. Issuing Nonceless vouchers
	7.4.2. Trusting Owners on First Use
	7.4.3. Updating or extending voucher trust anchors

	8. IANA Considerations
	8.1. The IETF XML Registry
	8.2. YANG Module Names Registry
	8.3. BRSKI well-known considerations
	8.3.1. BRSKI .well-known registration
	8.3.2. BRSKI .well-known registry

	8.4. PKIX Registry
	8.5. Pledge BRSKI Status Telemetry
	8.6. DNS Service Names
	8.7. GRASP Objective Names

	9. Applicability to the Autonomic Control Plane (ACP)
	9.1. Operational Requirements
	9.1.1. MASA Operational Requirements
	9.1.2. Domain Owner Operational Requirements
	9.1.3. Device Operational Requirements

	10. Privacy Considerations
	10.1. MASA audit log
	10.2. What BRSKI-EST reveals
	10.3. What BRSKI-MASA reveals to the manufacturer
	10.4. Manufacturers and Used or Stolen Equipment
	10.5. Manufacturers and Grey market equipment
	10.6. Some mitigations for meddling by manufacturers
	10.7. Death of a manufacturer

	11. Security Considerations
	11.1. Denial of Service (DoS) against MASA
	11.2. DomainID must be resistant to second-preimage attacks
	11.3. Availability of good random numbers
	11.4. Freshness in Voucher-Requests
	11.5. Trusting manufacturers
	11.6. Manufacturer Maintenance of trust anchors
	11.6.1. Compromise of Manufacturer IDevID signing keys
	11.6.2. Compromise of MASA signing keys
	11.6.2.1. Attacker opportunties with compromised MASA key
	11.6.2.2. Risks after key compromise is known

	11.6.3. Compromise of MASA web service

	11.7. YANG Module Security Considerations

	12. Acknowledgements
	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. IPv4 and non-ANI operations
	A.1. IPv4 Link Local addresses
	A.2. Use of DHCPv4
	Appendix B. mDNS / DNSSD proxy discovery options
	Appendix C. Example Vouchers
	C.1. Keys involved
	C.1.1. Manufacturer Certificate Authority for IDevID signatures
	C.1.2. MASA key pair for voucher signatures
	C.1.3. Registrar Certificate Authority
	C.1.4. Registrar key pair
	C.1.5. Pledge key pair

	C.2. Example process
	C.2.1. Pledge to Registrar
	C.2.2. Registrar to MASA
	C.2.3. MASA to Registrar

	Appendix D. Additional References
	Authors' Addresses

