
Workgroup: ANIMA WG

Internet-Draft: draft-ietf-anima-brski-prm-02

Published: 4 March 2022

Intended Status: Standards Track

Expires: 5 September 2022

Authors: S. Fries

Siemens

T. Werner

Siemens

E. Lear

Cisco Systems

M. Richardson

Sandelman Software Works

BRSKI with Pledge in Responder Mode (BRSKI-PRM)

Abstract

This document defines enhancements to bootstrapping a remote secure

key infrastructure (BRSKI, [RFC8995]) to facilitate bootstrapping in

domains featuring no or only timely limited connectivity between a

pledge and the domain registrar. It specifically targets situations,

in which the interaction model changes from a pledge-initiator-mode,

as used in BRSKI, to a pledge-responder-mode as described in this

document. To support both, BRSKI-PRM introduces a new registrar-

agent component, which facilitates the communication between pledge

and registrar during the bootstrapping phase. For the establishment

of a trust relation between pledge and domain registrar, BRSKI-PRM

relies on the exchange of authenticated self-contained objects

(signature-wrapped objects). The defined approach is agnostic

regarding the utilized enrollment protocol, deployed by the domain

registrar to communicate with the Domain CA.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Scope of Solution

3.1. Supported Environment

3.2. Application Examples

3.2.1. Building Automation

3.2.2. Infrastructure Isolation Policy

3.2.3. Less Operational Security in the Target-Domain

3.3. Limitations

4. Requirements Discussion and Mapping to Solution-Elements

5. Architectural Overview and Communication Exchanges

5.1. Pledge-responder-mode (PRM): Registrar-agent Communication

with Pledges

5.1.1. Agent-Proximity

5.1.2. Behavior of Pledge in Pledge-Responder-Mode

5.1.3. Behavior of Registrar-Agent

5.1.4. Bootstrapping Objects and Corresponding Exchanges

6. Artifacts

6.1. Voucher Request Artifact

6.1.1. Tree Diagram

6.1.2. YANG Module

7. IANA Considerations

8. Privacy Considerations

9. Security Considerations

9.1. Exhaustion Attack on Pledge

9.2. Misuse of acquired Voucher and Enrollment responses by

Registrar-Agent

9.3. Misuse of Registrar-Agent Credentials

9.4. YANG Module Security Considerations

10. Acknowledgments

11. References

11.1. Normative References

11.2. Informative References

Appendix A. History of Changes [RFC Editor: please delete]

Authors' Addresses

¶

https://trustee.ietf.org/license-info

1. Introduction

BRSKI as defined in [RFC8995] specifies a solution for secure zero-

touch (automated) bootstrapping of devices (pledges) in a (customer)

site domain. This includes the discovery of network elements in the

target domain, time synchronization, and the exchange of security

information necessary to establish trust between a pledge and the

domain. Security information about the target domain, specifically

the target domain certificate, is exchanged utilizing voucher

objects as defined in [RFC8366]. These vouchers are signed objects,

provided via the domain registrar to the pledge and originate from a

Manufacturer's Authorized Signing Authority (MASA).

BRSKI addresses scenarios in which the pledge acts as client for the

bootstrapping and is the initiator of the bootstrapping (this

document refers to the approach as pledge-initiator-mode). In

industrial environments the pledge may behave as a server and thus

does not initiate the bootstrapping with the domain registrar. In

this scenarios it is expected that the pledge will be triggered to

generate request objects to be bootstrapped in the registrar's

domain (this document refers to the approach as pledge-responder-

mode). For this, an additional component is introduced acting as an

agent for the domain registrar (registrar-agent) towards the pledge.

This may be a functionality of a commissioning tool or it may be

even co-located with the registrar. In contrast to BRSKI the

registrar-agent performs the object exchange with the pledge and

provides/retrieves data objects to/from the domain registrar. For

the interaction with the domain registrar the registrar-agent will

use existing BRSKI [RFC8995] endpoints.

The goal is to enhance BRSKI to support pledges in responder mode.

This is addressed by

introducing the registrar-agent as new component to facilitate

the communication between the pledge and the registrar, when the

pledge is in responder mode (acting as server).

handling the security on application layer only to enable

application of arbitrary transport means between the pledge and

the domain registrar, by keeping the registrar-agent in the

communication path. Examples may be connectivity via IP based

networks (wired or wireless) but also connectivity via Bluetooth

or NFC between the pledge and the registrar-agent.

allowing to utilize credentials different from the pledge's

IDevID to establish a TLS connection to the domain registrar,

which is necessary in case of using a registrar-agent.

¶

¶

¶

*

¶

*

¶

*

¶

asynchronous communication:

authenticated self-contained object:

CA:

EE:

defining the interaction (data exchange and data objects) between

a pledge acting as server and a registrar-agent and the domain

registrar.

For the enrollment of devices BRSKI relies on EST [RFC7030] to

request and distribute target domain specific device certificates.

EST in turn relies on a binding of the certification request to an

underlying TLS connection between the EST client and the EST server.

According to BRSKI the domain registrar acts as EST server and is

also acting as registration authority (RA) for its domain. To

utilize the EST server endpoints on the domain-registrar, the

registrar-agent defined in this document will act as client towards

the domain registrar. The registrar-agent will also act as client

when communicating with the pledge in responder mode. Here, TLS with

server-side, certificate-based authentication is not directly

applicable, as the pledge only possesses an IDevID certificate,

which does not contain a subject alternative name (SAN) for the

target domain and does also not contain a TLS server flag. This is

one reason for relying on higher layer security by using signature

wrapped objects for the exchange between the pledge and the

registrar agent. A further reason is the application on different

transports, for which TLS may not be available, like Bluetooth or

NFC. As the described solution will rely on additional wrapping

signature it will require pre-processing specifically for EST, as it

currently uses PKCS#10 requests only.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document relies on the terminology defined in [RFC8995]. The

following terms are defined additionally:

Describes a timely interrupted

communication between an end entity and a PKI component.

Describes an object, which is

cryptographically bound to the EE certificate (IDevID certificate

or LDEVID certificate) of a pledge. The binding is assumed to be

provided through a digital signature of the actual object using

the corresponding private key of the EE certificate.

Certification authority, issues certificates.

End entity

*

¶

¶

¶

¶

¶

¶

¶

¶

on-site:

off-site:

PER:

POP:

POI:

PVR:

IED:

RA:

RER:

RVR:

synchronous communication:

Describes a component or service or functionality

available in the target deployment domain.

Describes a component or service or functionality

available in an operator domain different from the target

deployment domain. This may be a central site or a cloud service,

to which only a temporary connection is available, or which is in

a different administrative domain.

Pledge-enrollment-request

Prove of possession (of a private key)

Prove of identity

Pledge-voucher-request

Intelligent Electronic Device (in essence a pledge).

Registration authority, an optional system component to which a

CA delegates certificate management functions such as

authorization checks.

Registrar-enrollment-request

Registrar-voucher-request

Describes a timely uninterrupted

communication between an end entity and a PKI component.

3. Scope of Solution

3.1. Supported Environment

The described solution is applicable in domains in which pledges

have no direct connection to the domain registrar, but are expected

to be managed by this registrar. This can be motivated by pledges

featuring a different technology stack or by pledges without an

existing connection to the domain registrar during bootstrapping.

These pledges are likely to act in a server role. Therefore, the

pledge has to offer endpoints on which it can be triggered for the

generation of pledge-voucher-request objects and certification

objects as well as to provide the response objects to the pledge.

3.2. Application Examples

The following examples are intended to motivate the support of

additional bootstrapping approaches in general by introducing

industrial applications cases, which could leverage BRSKI as such

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

but also require support a pledge acting as server and only answers

requests as well as scenarios with limited connectivity to the

registrar.

3.2.1. Building Automation

In building automation, a use case can be described by a detached

building (or a cabinet) or the basement of a building equipped with

sensor, actuators, and controllers connected, but with only limited

or no connection to the centralized building management system. This

limited connectivity may be during the installation time but also

during operation time. During the installation in the basement, a

service technician collects the device specific information from the

basement network and provides them to the central building

management system, e.g., using a laptop or a mobile device to

transport the information. A domain registrar may be part of the

central building management system and already be operational in the

installation network. The central building management system can

then provide operational parameters for the specific devices in the

basement. This operational parameters may comprise values and

settings required in the operational phase of the sensors/actuators,

beyond them a certificate issued by the operator to authenticate

against other components and services. These operational parameters

are then provided to the devices in the basement facilitated by the

service technician's laptop.

3.2.2. Infrastructure Isolation Policy

This refers to any case in which network infrastructure is normally

isolated from the Internet as a matter of policy, most likely for

security reasons. In such a case, limited access to a domain

registrar may be allowed in carefully controlled short periods of

time, for example when a batch of new devices are deployed, but

impossible at other times.

3.2.3. Less Operational Security in the Target-Domain

The registration authority (RA) performing the authorization of a

certificate request is a critical PKI component and therefore

implicates higher operational security than other components

utilizing the issued certificates . CAs may also demand higher

security in the registration procedures. Especially the CA/Browser

forum currently increases the security requirements in the

certificate issuance procedures for publicly trusted certificates.

There may be the situation in which the target domain does not offer

enough security to operate a RA/CA and therefore this service is

transferred to a backend that offers a higher level of operational

security.

¶

¶

¶

¶

3.3. Limitations

The mechanisms in this draft presume the availability of the pledge

to communicate with the registrar-agent.

This may not be possible in constrained environments where, in

particular, power must be conserved.

In these situations, it is anticipated that the transceiver will be

powered down most of the time.

This presents a rendezvous problem: the pledge is unavailable for

certain periods of time, and the registrar-agent is similarly

presumed to be unavailable for certain periods of time.

4. Requirements Discussion and Mapping to Solution-Elements

Based on the intended target environment described in Section 3.1

and the motivated application examples described in Section 3.2 the

following base requirements are derived to support the communication

between a pledge and a registrar via a registrar-agent.

At least the following properties are required by the voucher

handling and the enrollment:

Proof of Possession (POP): proves that an entity possesses and

controls the private key corresponding to the public key

contained in the certification request, typically by adding a

signature using the private key.

Proof of Identity (POI): provides data-origin authentication of a

data object, e.g., a certificate request, utilizing an existing

IDevID. Certificate updates may utilize the certificate that is

to be updated.

Solution examples based on existing technology are provided with the

focus on existing IETF documents:

Voucher request and response objects as used in [RFC8995] already

provide both, POP and POI, through a digital signature to protect

the integrity of the voucher object, while the corresponding

signing certificate contains the identity of the signer.

Certification request objects: Certification requests are data

structures containing the information from a requester for a CA

to create a certificate. The certification request format in

BRSKI utilizes PKCS#10 [RFC2986]. Here, the structure is signed

to ensure integrity protection and proof of possession of the

private key of the requester that corresponds to the contained

public key. In the application examples, this POP alone is not

sufficient. POI is also required for the certification request

object and therefore needs to be additionally bound to the

existing credential of the pledge (IDevID). This binding supports

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

the authorization decision for the certification request through

a proof of identity (POI). The binding of data origin

authentication or POI to the certification request may be

delegated to the protocol used for certificate management or it

may be provided directly by the certification request object.

While BRSKI uses the binding to TLS, BRSKI-PRM aims at an

additional signature of the PCKS#10 object using the existing

credential on the pledge (IDevID). This supports independence

from the selected transport.

5. Architectural Overview and Communication Exchanges

For BRSKI with pledge in responder mode, the base system

architecture defined in BRSKI [RFC8995] is enhanced to facilitate

the new use case. The pledge-responder-mode allows delegated

bootstrapping using a registrar-agent instead of a direct connection

between the pledge and the domain registrar. The communication model

between registrar-agent and pledge in this document assumes that the

pledge is acting as server and responds to requests.

Necessary enhancements to support authenticated self-contained

objects for certificate enrollment are kept at a minimum to enable

reuse of already defined architecture elements and interactions.

For the authenticated self-contained objects used for the

certification request, BRSKI-PRM relies on the defined message

wrapping mechanisms of the enrollment protocols stated in Section 4

above.

The security used within the document for bootstrapping objects

produced or consumed by the pledge bases on JOSE. In constraint

environments it may provided based on COSE.

5.1. Pledge-responder-mode (PRM): Registrar-agent Communication with

Pledges

To support mutual trust establishment of pledges, not directly

connected to the domain registrar, this document relies on the

exchange of authenticated self-contained objects (the voucher

request/response objects as known from BRSKI and the enrollment

request/response objects as introduced by BRSKI-PRM) with the help

of a registrar-agent. This allows independence from protection

provided by the utilized transport protocol.

The registrar-agent may be an integrated functionality of a

commissioning tool or be co-located with the registrar itself. This

leads to enhancements of the logical elements in the BRSKI

architecture as shown in Figure 1. The registrar-agent interacts

with the pledge to acquire and to supply the required data objects

for bootstrapping, which are also exchanged between the registrar-

¶

¶

¶

¶

¶

¶

agent and the domain registrar. Moreover, the addition of the

registrar-agent influences the sequences of the data exchange

between the pledge and the domain registrar described in [RFC8995].

A general goal for the registrar-agent application is the reuse of

already defined endpoints of the domain registrar side. The

functionality of the already existing registrar endpoints may need

small enhancements to cope with the additional signatures.

Figure 1: Architecture overview using registrar-agent

For authentication towards the domain registrar, the registrar-agent

uses its LDevID. The provisioning of the registrar-agent LDevID may

be done by a separate BRSKI run or other means in advance. It is

recommended to use short lived registrar-agent LDevIDs in the range

of days or weeks.

If a registrar detects a request originates from a registrar-agent

it is able to switch the operational mode from BRSKI to BRSKI-PRM.

This may be supported by a specific naming in the SAN (subject

¶

 +------------------------+

 +--------------Drop Ship---------------| Vendor Service |

 | +------------------------+

 | | M anufacturer| |

 | | A uthorized |Ownership|

 | | S igning |Tracker |

 | | A uthority | |

 | +--------------+---------+

 | ^

 | | BRSKI-

 V BRSKI-PRM | MASA

+-------+ +---------+ |.........

| | | | . | .

| | | | . +-----------+ +-----v-----+ .

| | |Registrar| . | | | | .

|Pledge | |Agent | . | Join | | Domain | .

| | | | . | Proxy | | Registrar | .

| <----->.........<------>...........<-------> (PKI RA) | .

| | | | . | | | | .

| | | | . | | +-----+-----+ .

|IDevID | | LDevID | . +-----------+ | .

| | | | . +------------------+-----+ .

+-------+ +---------+ . | Key Infrastructure | .

 . | (e.g., PKI Certificate | .

 . | Authority) | .

 . +------------------------+ .

 "Domain" components

¶

alternative name) component of the LDeID(RegAgt) certificate.

Alternatively, the domain may feature an own issuing CA for

registrar agent LDevID certificates.

In addition, the domain registrar may authenticate the user

operating the registrar-agent to perform additional authorization of

a pledge bootstrapping action. Examples for such user level

authentication may be HTTP authentication or the usage of

authorization tokens or other. This is out of scope of this

document.

The following list describes the components in a (customer) site

domain:

Pledge: The pledge is expected to respond with the necessary data

objects for bootstrapping to the registrar-agent. The transport

protocol used between the pledge and the registrar-agent is

assumed to be HTTP in the context of this document. Other

transport protocols may be used like CoAP, Bluetooth, or NFC, but

are out of scope of this document. A pledge acting as a server

during bootstrapping leads to some differences to BRSKI:

Discovery of the domain registrar by the pledge is not needed

as the pledge will be triggered by the registrar-agent.

Discovery of the pledge by the registrar-agent must be

possible.

As the registrar-agent must be able to request data objects

for bootstrapping of the pledge, the pledge must offer

corresponding endpoints.

The registrar-agent may provide additional data to the pledge,

in the context of the triggering request, to make itself

visible to the domain registrar.

Order of exchanges in the call flow may be different as the

registrar-agent collects both objects, pledge-voucher-request

objects and pledge-enrollment-request objects, at once and

provides them to the registrar. This approach may also be used

to perform a bulk bootstrapping of several devices.

The data objects utilized for the data exchange between the

pledge and the registrar are self-contained authenticated

objects (signature-wrapped objects).

Registrar-agent: provides a communication path to exchange data

objects between the pledge and the domain registrar. The

registrar-agent facilitates situations, in which the domain

registrar is not directly reachable by the pledge, either due to

¶

¶

¶

*

¶

-

¶

-

¶

-

¶

-

¶

-

¶

-

¶

*

a different technology stack or due to missing connectivity. The

registrar-agent triggers a pledge to create bootstrapping

information such as voucher-request objects and enrollment-

request objects on one or multiple pledges at performs may

perform a bulk bootstrapping based on the collected data. The

registrar-agent is expected to possess information of the domain

registrar, either by configuration or by using the discovery

mechanism defined in [RFC8995]. There is no trust assumption

between the pledge and the registrar-agent as only authenticated

self-contained objects are applied, which are transported via the

registrar-agent and provided either by the pledge or the

registrar. The trust assumption between the registrar-agent and

the registrar bases on the LDevID of the registrar-agent,

provided by the PKI responsible for the domain. This allows the

registrar-agent to authenticate towards the registrar, e.g., in a

TLS handshake. Based on this, the registrar is able to

distinguish a pledge from a registrar-agent during the session

establishment.

Join Proxy: same functionality as described in [RFC8995]. Note

that it may be used by the registrar-agent instead of the pledge

to find the registrar, if not configured.

Domain Registrar: In general the domain registrar fulfills the

same functionality regarding the bootstrapping of the pledge in a

(customer) site domain by facilitating the communication of the

pledge with the MASA service and the domain PKI service. In

contrast to [RFC8995], the domain registrar does not interact

with a pledge directly but through the registrar-agent. The

registrar detects if the bootstrapping is performed by the pledge

directly or by the registrar-agent. The manufacturer provided

components/services (MASA and Ownership tracker) are used as

defined in [RFC8995]. For issuing a voucher, the MASA may perform

additional checks on voucher-request objects, to issue a voucher

indicating agent-proximity instead of (registrar-)proximity.

5.1.1. Agent-Proximity

"Agent-proximity" is a weaker assertion then "proximity". It is

defined as additional assertion type in [I-D.richardson-anima-

rfc8366bis] In case of "agent-proximity" it is a statement, that the

proximity-registrar-certificate was provided via the registrar-agent

and not directly to the pledge. This can be verified by the

registrar and also by the MASA during the voucher-request

processing. Note that at the time of creating the voucher-request,

the pledge cannot verify the registrar's LDevID(Reg) EE certificate

and has no proof-of-possession of the corresponding private key for

the certificate.

¶

*

¶

*

¶

¶

Trust handover to the domain is established via the "pinned-domain-

certificate" in the voucher.

In contrast, "proximity" provides a statement, that the pledge was

in direct contact with the registrar and was able to verify proof-

of-possession of the private key in the context of the TLS

handshake. The provisionally accepted LDevID(Reg) EE certificate can

be verified after the voucher has been processed by the pledge

through a verification of an additional signature of the returned

voucher by the registrar if contained (optional feature).

5.1.2. Behavior of Pledge in Pledge-Responder-Mode

In contrast to BRSKI the pledge acts as a server component. It is

triggered by the registrar-agent for the generation of pledge-

voucher-request and pledge-enrollment-request objects as well as for

the processing of the response objects and the generation of status

information. Due to the use of the registrar-agent, the interaction

with the domain registrar is changed as shown in Figure 4. To enable

interaction with the registrar-agent, the pledge provides endpoints

using the BRSKI interface based on the "/.well-known/brski" URI

tree.

The following endpoints are defined for the pledge in this document.

The URI path begins with "http://www.example.com/.well-known/brski"

followed by a path-suffix that indicates the intended operation.

¶

¶

¶

¶

Figure 2: Endpoints on the pledge

5.1.3. Behavior of Registrar-Agent

The registrar-agent is a new component in the BRSKI context. It

provides connectivity between the pledge and the domain registrar

and reuses the endpoints of the domain registrar side already

specified in [RFC8995]. It facilitates the exchange of data objects

between the pledge and the domain registrar, which are the voucher

request/response objects, the enrollment request/response objects,

as well as related status objects. For the communication the

registrar-agent utilizes communication endpoints provided by the

pledge. The transport in this specification is based on HTTP but may

also be done using other transport mechanisms. This new component

changes the general interaction between the pledge and the domain

registrar as shown in Figure 10.

The registrar-agent is expected to already possess an LDevID(RegAgt)

to authenticate towards the domain registrar. The registrar-agent

will use this LDevID(RegAgt) when establishing the TLS session with

the domain registrar in the context of for TLS client-side

Operations and their corresponding URIs:

+------------------------+----------------------------+---------+

| Operation |Operation path | Details |

+========================+============================+=========+

| Trigger pledge-voucher-| /pledge-voucher-request | Section |

| request creation | | 5.1.4.1 |

| Returns | | |

| pledge-voucher-request | | |

++------------------------+----------------------------+---------+

| Trigger pledge- | /pledge-enrollment-request | Section |

| enrollment-request | | 5.1.4.1 |

| Returns pledge- | | |

| enrollment-request | | |

+------------------------+----------------------------+---------+

| Provide voucher to | /pledge-voucher | Section |

| pledge | | 5.1.4.3 |

| Returns | | |

| pledge-voucher-status | | |

+------------------------+----------------------------+---------+

| Provide enrollment | /pledge-enrollment | Section |

| response to pledge | | 5.1.4.3 |

| Returns pledge- | | |

| enrollment-status | | |

+------------------------+----------------------------+---------+

| Provide CA certs to | /pledge-CACerts | |

| pledge (OPTIONAL) | | |

+------------------------+----------------------------+---------+

¶

authentication. The LDevID(RegAgt) EE certificate MUST include a

SubjectKeyIdentifier (SKID), which is used as reference in the

context of an agent-signed-data object as defined in Section

5.1.4.1. Note that this is an additional requirement for issuing the

certificate, as [IEEE-802.1AR] only requires the SKID to be included

for intermediate CA certificates. In BRSKI-PRM, the SKID is used in

favor of a certificate fingerprint to avoid additional computations.

Using an LDevID for TLS client-side authentication is a deviation

from [RFC8995], in which the pledge's IDevID credential is used to

perform TLS client authentication. The use of the LDevID(RegAgt)

allows the domain registrar to distinguish, if bootstrapping is

initiated from a pledge or from a registrar-agent and adopt the

internal handling accordingly. As BRSKI-PRM uses authenticated self-

contained data objects between the pledge and the domain registrar,

the binding of the pledge identity to the request object is provided

by the data object signature employing the pledge's IDevID. The

objects exchanged between the pledge and the domain registrar used

in the context of this specifications are JOSE objects

In addition to the LDevID(RegAgt), the registrar-agent is provided

with the product-serial-numbers of the pledges to be bootstrapped.

This is necessary to allow the discovery of pledges by the

registrar-agent using mDNS. The list may be provided by

administrative means or the registrar agent may get the information

via an interaction with the pledge, like scanning of product-serial-

number information using a QR code or similar.

According to [RFC8995] section 5.3, the domain registrar performs

the pledge authorization for bootstrapping within his domain based

on the pledge voucher-request object.

The following information must therefore be available at the

registrar-agent:

LDevID(RegAgt): own operational key pair.

LDevID(reg) certificate: certificate of the domain registrar.

Serial-number(s): product-serial-number(s) of pledge(s) to be

bootstrapped.

5.1.3.1. Discovery of Registrar by Registrar-Agent

The discovery of the domain registrar may be done as specified in

[RFC8995] with the deviation that it is done between the registrar-

agent and the domain registrar. Alternatively, the registrar-agent

may be configured with the address of the domain registrar and the

certificate of the domain registrar.

¶

¶

¶

¶

¶

* ¶

* ¶

*

¶

¶

5.1.3.2. Discovery of Pledge by Registrar-Agent

The discovery of the pledge by registrar-agent should be done by

using DNS-based Service Discovery [RFC6763] over Multicast DNS

[RFC6762] to discover the pledge at "product-serial-number.brski-

pledge._tcp.local." The pledge constructs a local host name based on

device local information (product-serial-number), which results in

"product-serial-number.brski-pledge._tcp.local." It can then be

discovered by the registrar-agent via mDNS. Note that other

mechanisms for discovery may be used.

The registrar-agent is able to build the same information based on

the provided list of product-serial-number.

5.1.4. Bootstrapping Objects and Corresponding Exchanges

The interaction of the pledge with the registrar-agent may be

accomplished using different transport means (protocols and or

network technologies). For this document the usage of HTTP is

targeted as in BRSKI. Alternatives may be CoAP, Bluetooth Low Energy

(BLE), or Nearfield Communication (NFC). This requires independence

of the exchanged data objects between the pledge and the registrar

from transport security. Therefore, authenticated self-contained

objects (here: signature-wrapped objects) are applied in the data

exchange between the pledge and the registrar.

The registrar-agent provides the domain-registrar certificate

(LDevID(Reg) EE certificate) to the pledge to be included into the

"agent-provided-proximity-registrar-certificate" leaf of the pledge-

voucher-request object. This enables the registrar to verify, that

it is the target registrar for handling the request. The registrar

certificate may be configured at the registrar-agent or may be

fetched by the registrar-agent based on a prior TLS connection

establishment with the domain registrar. In addition, the registrar-

agent provides agent-signed-data containing the product-serial-

number in the body, signed with the LDevID(RegAgt). This enables the

registrar to verify and log, which registrar-agent was in contact

with the pledge, when verifying the pledge-voucher-request.

Optionally the registrar-agent may provide its LDevID(RegAgt) EE

certificate (and optionally also the issuing CA certificate) to the

pledge to be used in the "agent-sign-cert" component of the pledge-

voucher-request. If contained, the LDevID(RegAgt) EE certificate

MUST be the first certificate in the array. Note, this may be

omitted in constraint environments to safe bandwidth between the

registrar-agent and the pledge. If not contained, the registrar-

agent MUST fetch the LDevID(RegAgt) EE certificate based on the

SubjectKeyIdentifier (SKID) in the header of the agent-signed-data

of the pledge-voucher-request. The registrar includes the

LDevID(RegAgt) EE certificate information into the registrar-

¶

¶

¶

voucher-request if the pledge-voucher-requests requests the

assertion of "agent-proximity".

The MASA in turn verifies the LDevID(Reg) EE certificate is included

in the pledge-voucher-request (prior-signed-voucher-request) in the

"agent-provided-proximity-registrar-certificate" leaf and may assert

in the voucher "verified" or "logged" instead of "proximity", as

there is no direct connection between the pledge and the registrar.

If the LDevID(RegAgt) EE certificate information is contained in the

"agent-sign-cert" component of the registrar-voucher-request, the

MASA can verify the signature of the agent-signed-data contained in

the prior-signed-voucher-request. If both can be verified

successfully, the MASA can assert "agent-proximity" in the voucher.

Otherwise, it may assert "verified" or "logged". The voucher can

then be supplied via the registrar to the registrar-agent.

Figure 3 provides an overview of the exchanges detailed in the

following sub sections.

¶

¶

¶

+--------+ +-----------+ +-----------+ +--------+ +---------+

| Pledge | | Registrar | | Domain | | Domain | | Vendor |

| | | Agent | | Registrar | | CA | | Service |

| | | (RegAgt) | | (JRC) | | | | (MASA) |

+--------+ +-----------+ +-----------+ +--------+ +---------+

 | | | | Internet |

[discovery of pledge]

 | mDNS query | | | |

 |<-------------| | | |

 |------------->| | | |

 | | | | |

[trigger pledge-voucher-request and

 pledge-enrollment-request generation]

 |<- vTrigger --| | | |

 |-Voucher-Req->| | | |

 | | | | |

 |<- eTrigger --| | | |

 |- Enroll-Req->| | | |

 ~ ~ ~ ~ ~

[provide pledge-voucher-request to infrastructure]

 | |<------ TLS ----->| | |

 | | [Reg-Agt auth+authz?] | |

 | |-- Voucher-Req -->| | |

 | | [Reg-Agt authorized?] | |

 | | [accept device?] | |

 | | [contact vendor] | |

 | | |------- Voucher-Req ------>|

 | | | [extract DomainID]

 | | | [update audit log]

 | | |<-------- Voucher ---------|

 | |<---- Voucher ----| | |

 | | | | |

[provide pledge enrollment request to infrastructure]

 | |-- Enroll-Req --->| | |

 | | |- Cert-Req -->| |

 | | |<-Certificate-| |

 | |<-- Enroll-Resp --| | |

 ~ ~ ~ ~ ~

[provide voucher and certificate

 to pledge and collect status info]

 |<-- Voucher --| | | |

 |-- vStatus -->| | | |

 |<-Enroll-Resp-| | | |

 |-- eStatus -->| | | |

 ~ ~ ~ ~ ~

[provide voucher-status and enrollment status to registrar]

 | |<------ TLS ----->| | |

 | |---- vStatus --->| | |

 | | |-- req. device audit log ->|

 | | |<---- device audit log ----|

 | | [verify audit log]

 | | | | |

 | |---- eStatus --->| | |

 | | | | |

Figure 3: Overview pledge-responder-mode exchanges

The following sub sections split the interactions between the

different components into:

Request objects acquisition targets exchanges and objects between

the registrar-agent and the pledge.

Request handling targets exchanges and objects between the

registrar-agent and the registrar and also the interaction of the

registrar with the MASA and the domain CA.

Response object supply targets the exchanges and objects between

the registrar-agent and the pledge including the status objects.

Status handling addresses the exchanges between the registrar-

agent and the registrar.

5.1.4.1. Request Objects Acquisition by Registrar-Agent from Pledge

The following description assumes that the registrar-agent already

discovered the pledge. This may be done as described in Section

5.1.3.2 based on mDNS.

The focus is on the exchange of signature-wrapped objects using

endpoints defined for the pledge in Section 5.1.2.

Preconditions:

Pledge: possesses IDevID

Registrar-agent: possesses IDevID CA certificate and an own

LDevID(RegAgt) EE credential for the registrar domain. In

addition, the registrar-agent can be configured with the product-

serial-number(s) of the pledge(s) to be bootstrapped. Note that

the product-serial-number may have been used during the pledge

discovery already.

Registrar: possesses IDevID CA certificate and an own LDevID(Reg)

credential.

MASA: possesses own credentials (voucher signing key, TLS server

certificate) as well as IDevID CA certificate of pledge vendor /

manufacturer and site-specific LDevID CA certificate.

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

Figure 4: Request collection (registrar-agent - pledge)

Triggering the pledge to create the pledge-voucher-request is done

using HTTP POST on the defined pledge endpoint "/.well-known/brski/

pledge-voucher-request".

The registrar-agent pledge-voucher-request Content-Type header is:

application/json. It defines a JSON document to provide three

parameter:

agent-provided-proximity-registrar-cert: base64-encoded

LDevID(Reg) TLS EE certificate.

agent-signed-data: base64-encoded JWS-object.

agent-sign-cert: array of base64-encoded certificate data

(optional).

The the trigger for the pledge to create a pledge-voucher-request is

depicted in the following figure:

Figure 5: Representation of trigger to create pledge-voucher-request

+--------+ +-----------+

| Pledge | | Registrar |

| | | Agent |

| | | (RegAgt) |

+--------+ +-----------+

 | |-create

 | | agent-signed-data

 |<--- trigger pledge-voucher-request ----|

 |-agent-provided-proximity-registrar-cert|

 |-agent-signed-data |

 |-agent-sign-cert (optional) |

 | |

 |----- pledge-voucher-request ---------->|-store

 | | pledge-voucher-request

 |<----- trigger enrollment request ------|

 | (empty) |

 | |

 |------ pledge-enrollment-request ------>|-store

 | | pledge-enrollment-req.

¶

¶

*

¶

* ¶

*

¶

¶

{

 "agent-provided-proximity-registrar-cert": "base64encodedvalue==",

 "agent-signed-data": "base64encodedvalue==",

 "agent-sign-cert": ["base64encodedvalue==", "base64encodedvalue==", "..."]

}

The pledge provisionally accepts the agent-provided-proximity-

registrar-cert and can verify it once it has received the voucher.

If the optionally agent-sign-cert data is included the pledge MAY

verify at least the signature of the agent-signed-data using the

first contained certificate, which is the LDevID(RegAgt) EE

certificate. If further certificates are contained in the agent-

sign-cert, they enable also the certificate chain validation. The

pledge may not verify the agent-sign-cert itself as the domain trust

has not been established at this point of the communication. It can

be done, after the voucher has been received.

The agent-signed-data is a JOSE object and contains the following

information:

The header of the agent-signed-data contains:

alg: algorithm used for creating the object signature.

kid: contains the base64-encoded SubjectKeyIdentifier of the

LDevID(RegAgt) certificate.

The body of the agent-signed-data contains an ietf-voucher-request-

prm:agent-signed-data element (defined in Section 6.1):

created-on: MUST contain the creation date and time in yang:date-

and-time format.

serial-number: MUST contain the product-serial-number as type

string as defined in [RFC8995], section 2.3.1. The serial-number

corresponds with the product-serial-number contained in the

X520SerialNumber field of the IDevID certificate of the pledge.

¶

¶

¶

* ¶

*

¶

¶

*

¶

*

¶

{

 "payload": {

 "ietf-voucher-request-prm:agent-signed-data": {

 "created-on": "2021-04-16T00:00:01.000Z",

 "serial-number": "callee4711"

 },

 "signatures": [

 {

 "protected": {

 "alg": "ES256",

 "kid": "base64encodedvalue=="

 },

 "signature": "base64encodedvalue=="

 }

]

 }

}

Figure 6: Representation of agent-signed-data

Upon receiving the voucher-request trigger, the pledge SHOULD

construct the body of the pledge-voucher-request object as defined

in [RFC8995]. It will contain additional information provided by the

registrar-agent as specified in the following. This object becomes a

JSON-in-JWS object as defined in [I-D.ietf-anima-jws-voucher]. If

the pledge is unable to construct the pledge-voucher-request it

SHOULD respond with HTTP 406 error code to the registrar-agent to

indicate that it is not able to create the pledge-voucher-request.

The header of the pledge-voucher-request SHALL contain the following

parameter as defined in [RFC7515]:

alg: algorithm used for creating the object signature.

x5c: contains the base64-encoded pledge IDevID certificate. It

may optionally contain the certificate chain for this

certificate.

The payload of the pledge-voucher-request (PVR) object MUST contain

the following parameter as part of the ietf-voucher-request-

prm:voucher as defined in [RFC8995]:

created-on: contains the current date and time in yang:date-and-

time format.

nonce: contains a cryptographically strong random or pseudo-

random number.

serial-number: contains the pledge product-serial-number.

assertion: contains the requested voucher assertion.

The ietf-voucher-request:voucher is enhanced with additional

parameters:

agent-provided-proximity-registrar-cert: MUST be included and

contains the base64-encoded LDevID(Reg) EE certificate (provided

as trigger parameter by the registrar-agent).

agent-signed-data: MUST contain the base64-encoded agent-signed-

data (as defined in Figure 6) and provided as trigger parameter.

agent-sign-cert: MAY contain the certificate or certificate chain

of the registrar-agent as array of base64encoded certificate

information. It starts from the base64-encoded LDevID(RegAgt) EE

certificate optionally followed by the issuing CA certificate and

potential further certificates. If supported, it MUST at least

¶

¶

* ¶

*

¶

¶

*

¶

*

¶

* ¶

* ¶

¶

*

¶

*

¶

*

contain the LDevID(RegAgt) EE certificate provided as trigger

parameter.

The enhancements of the YANG module for the ietf-voucher-request

with these new leafs are defined in Section 6.1.

The object is signed using the pledge's IDevID credential contained

as x5c parameter of the JOSE header.

Figure 7: Representation of pledge-voucher-request

The pledge-voucher-request Content-Type is defined in [I-D.ietf-

anima-jws-voucher] as:

application/voucher-jws+json

The pledge SHOULD include this Content-Type header field indicating

the included media type for the voucher response. Note that this is

also an indication regarding the acceptable format of the voucher

response. This format is included by the registrar as described in

Section 5.1.4.2.

¶

¶

¶

{

 "payload": {

 "ietf-voucher-request-prm:voucher": {

 "created-on": "2021-04-16T00:00:02.000Z",

 "nonce": "eDs++/FuDHGUnRxN3E14CQ==",

 "serial-number": "callee4711",

 "assertion": "agent-proximity",

 "agent-provided-proximity-registrar-cert": "base64encodedvalue==",

 "agent-signed-data": "base64encodedvalue==",

 "agent-sign-cert": [

 "base64encodedvalue==",

 "base64encodedvalue==",

 "..."

]

 },

 "signatures": [

 {

 "protected": {

 "alg": "ES256",

 "x5c": ["MIIB2jCC...dA=="]

 },

 "signature": "base64encodedvalue=="

 }

]

 }

}

¶

¶

¶

Once the registrar-agent has received the pledge-voucher-request it

can trigger the pledge to generate an enrollment-request object. As

in BRSKI the enrollment request object is a PKCS#10, but

additionally signed using the pledge's IDevID. Note, as the initial

enrollment aims to request a generic certificate, no certificate

attributes are provided to the pledge.

Triggering the pledge to create the enrollment-request is done using

HTTP POST on the defined pledge endpoint "/.well-known/brski/pledge-

enrollment-request".

The registrar-agent pledge-enrollment-request Content-Type header

is: application/json with an empty body. Note that using HTTP POST

allows for an empty body, but also to provide additional data, like

CSR attributes or information about the enroll type: initial or re-

enroll as shown in Figure 8.

Figure 8: Example of trigger to create a pledge-enrollment-request

In the following the enrollment is described as initial enrollment

with an empty body.

Upon receiving the enrollment-trigger, the pledge SHALL construct

the pledge-enrollment-request as authenticated self-contained

object. The CSR already assures proof of possession of the private

key corresponding to the contained public key. In addition, based on

the additional signature using the IDevID, proof of identity is

provided. Here, a JOSE object is being created in which the body

utilizes the YANG module ietf-ztp-types with the grouping for csr-

grouping for the CSR as defined in [I-D.ietf-netconf-sztp-csr].

Depending on the capability of the pledge, it constructs the

enrollment request as plain PKCS#10. Note that the focus in this use

case is placed on PKCS#10 as PKCS#10 can be transmitted in different

enrollment protocols in the infrastructure like EST, CMP, CMS, and

SCEP. If the pledge is already implementing an enrollment protocol,

it may leverage that functionality for the creation of the

enrollment request object. Note also that [I-D.ietf-netconf-sztp-

csr] also allows for inclusion of certification request objects such

as CMP or CMC.

The pledge SHOULD construct the pledge-enrollment-request as PKCS#10

object. In BRSKI-PRM it MUST sign it additionally with its IDevID

credential to provide proof-of-identity bound to the PKCS#10 as

described below.

¶

¶

¶

{

 "enroll-type" = "intial"

}

¶

¶

¶

¶

If the pledge is unable to construct the enrollment-request it

SHOULD respond with HTTP 406 error code to the registrar-agent to

indicate that it is not able to create the enrollment-request.

A successful enrollment will result in a generic LDevID certificate

for the pledge in the new domain, which can be used to request

further (application specific) LDevID certificates if necessary for

its operation. The registrar-agent may use the endpoints specified

in this document.

[I-D.ietf-netconf-sztp-csr] considers PKCS#10 but also CMP and CMC

as certification request format. Note that the wrapping signature is

only necessary for plain PKCS#10 as other request formats like CMP

and CMS support the signature wrapping as part of their own

certificate request format.

The registrar-agent enrollment-request Content-Type header for a

wrapped PKCS#10 is: application/jose

The header of the pledge enrollment-request SHALL contain the

following parameter as defined in [RFC7515]:

alg: algorithm used for creating the object signature.

x5c: contains the base64-encoded pledge IDevID certificate. It

may optionally contain the certificate chain for this

certificate.

The body of the pledge enrollment-request object SHOULD contain a

P10 parameter (for PKCS#10) as defined for ietf-ztp-types:p10-csr in

[I-D.ietf-netconf-sztp-csr]:

P10: contains the base64-encoded PKCS#10 of the pledge.

The JOSE object is signed using the pledge's IDevID credential,

which corresponds to the certificate signaled in the JOSE header.

¶

¶

¶

¶

¶

* ¶

*

¶

¶

* ¶

¶

Figure 9: Representation of pledge-enrollment-request

With the collected pledge-voucher-request object and the pledge-

enrollment-request object, the registrar-agent starts the

interaction with the domain registrar.

Once the registrar-agent has collected the pledge-voucher-request

and pledge-enrollment-request objects, it connects to the registrar

and sends the request objects. As the registrar-agent is intended to

work between the pledge and the domain registrar, a collection of

requests from more than one pledge is possible, allowing a bulk

bootstrapping of multiple pledges using the same connection between

the registrar-agent and the domain registrar.

5.1.4.2. Request Handling - Registrar-Agent (Infrastructure)

The BRSKI-PRM bootstrapping exchanges between registrar-agent and

domain registrar resemble the BRSKI exchanges between pledge and

domain registrar (pledge-initiator-mode) with some deviations.

Preconditions:

Registrar-agent: possesses IDevID CA certificate and it's own

LDevID(RegAgt) credentials of site domain. It has the address of

the domain registrar through configuration or by discovery, e.g.,

mDNS/DNSSD. The registrar-agent has acquired pledge-voucher-

request and pledge-enrollment-request objects(s).

Registrar: possesses IDevID CA certificate of pledge vendor/

manufacturer and an it's own LDevID(Reg) credentials.

{

 "payload": {

 "ietf-ztp-types": {

 "p10-csr": "base64encodedvalue=="

 },

 "signatures": [

 {

 "protected": {

 "alg": "ES256",

 "x5c": ["MIIB2jCC...dA=="]

 },

 "signature": "base64encodedvalue=="

 }

]

 }

}

¶

¶

¶

¶

*

¶

*

¶

MASA: possesses it's own vendor/manufacturer credentials (voucher

signing key, TLS server certificate) related to pledges IDevID

and site-specific LDevID CA certificate.

Figure 10: Request processing between registrar-agent and

infrastructure bootstrapping services

The registrar-agent establishes a TLS connection with the registrar.

As already stated in [RFC8995], the use of TLS 1.3 (or newer) is

encouraged. TLS 1.2 or newer is REQUIRED on the registrar-agent

side. TLS 1.3 (or newer) SHOULD be available on the registrar, but

*

¶

+-----------+ +-----------+ +--------+ +---------+

| Registrar-| | Domain | | Domain | | Vendor |

| agent | | Registrar | | CA | | Service |

| (RegAgt) | | (JRC) | | | | (MASA) |

+-----------+ +-----------+ +--------+ +---------+

 | | | Internet |

[exchange between pledge and] | |

[registrar-agent done.] | |

 | | | |

 |<------ TLS ----->| | |

 | [Reg-Agt auth+authz?] | |

 | | | |

 |-- Voucher-Req -->| | |

 | (PVR) | | |

 | [Reg-Agt authorized?] | |

 | [accept device?] | |

 | [contact vendor] | |

 | |------------ TLS --------->|

 | |-- Voucher-Req ----------->|

 | | (RVR) |

 | | [extract DomainID]

 | | [update audit log]

 | |<-------- Voucher ---------|

 |<---- Voucher ----| |

 | | |

[certification request handling registrar-agent] |

[and site infrastructure] |

 |--- Enroll-Req -->| | |

 | (PER) | | |

 | |---- TLS ---->| |

 | |- Enroll-Req->| |

 | | (RER) | |

 | |<-Enroll-Resp-| |

 |<-- Enroll-Resp---| | |

 | | | |

TLS 1.2 MAY be used. TLS 1.3 (or newer) SHOULD be available on the

MASA, but TLS 1.2 MAY be used.

In contrast to [RFC8995] TLS client authentication is achieved by

using registrar-agent LDevID(RegAgt) credentials instead of pledge

IDevID credentials. This allows the registrar to distinguish between

BRSKI (pledge-initiator-mode) and BRSKI-PRM (pledge-responder-mode).

The registrar SHOULD verify that the registrar-agent is authorized

to connect to the registrar based on the LDevID(RegAgt). Note, the

authorization will be verified based on the agent-signed-data

carried in the pledge-voucher-request. As short-lived certificates

are recommended for the registrar-agent, the LDevID(RegAgt) EE

certificate used in the TLS handshake may be newer than the one of

in the pledge-voucher-request.

The registrar can received request objects in different forms as

defined in [RFC8995]. Specifically, the registrar will receive JSON-

in-JWS objects generated by the pledge for voucher-request and

enrollment-request (instead of BRSKI voucher-request as CMS-signed

JSON and enrollment-request as PKCS#10 objects).

The registrar-agent sends the pledge-voucher-request to the

registrar by HTTP POST to the endpoint: "/.well-known/brski/

requestvoucher"

The pledge-voucher-request Content-Type header field used for

pledge-responder-mode is defined in [I-D.ietf-anima-jws-voucher] as:

application/voucher-jws+json (see Figure 7 for the content

definition).

The registrar-agent SHOULD include the Accept request-header field

indicating the pledge acceptable Content-Type for the voucher-

response. The voucher-response Content-Type header field

"application/voucher-jws+json" is defined in [I-D.ietf-anima-jws-

voucher].

Upon reception of the pledge-voucher-request, the registrar SHALL

perform the verification of the voucher-request parameter as defined

in section 5.3 of [RFC8995]. In addition, the registrar shall verify

the following parameters from the pledge-voucher-request:

agent-provided-proximity-registrar-cert: MUST contain registrars

own LDevID(Reg) EE certificate to ensure the registrar in

proximity is the target registrar for the request.

agent-signed-data: The registrar MUST verify that the agent

provided data has been signed with the LDevID(RegAgt) credential

indicated in the "kid" JOSE header parameter. If the certificate

is not included in the agent-sign-cert properties of the pledge-

¶

¶

¶

¶

¶

¶

¶

*

¶

*

voucher-request, it must be fetched from a repository by the

registrar if "agent-proximity" assertion is requested.

agent-sign-cert: MAY contain an array of base64-encoded

certificate data starting with the LDevID(RegAgt) EE certificate.

If contained the registrar MUST verify that the credentials

(LDevID(ReAgt) EE certificate and optionally the certificate

chain), used to sign the data, have been valid at signature

creation time and the corresponding registrar-agent was

authorized for involvement in the bootstrapping process. If the

agent-signed-cert is not provided, the registrar MUST fetch the

LDevID(RegAgt) EE certificate and perform this verification,

based on the provided SubjectKeyIdentifier (SKID) contained in

the kid header of the agent-signed-data. This requires, that the

registrar can fetch the LDevID(RegAgt) certificate data

(including intermediate CA certificates if existent) based on the

SKID.

If validation fails the registrar SHOULD respond with HTTP 404 error

code to the registrar-agent. HTTP 406 error code is more

appropriate, if the format of pledge-voucher-request is unknown.

If validation succeeds, the registrar will accept the pledge's

request to join the domain as defined in section 5.3 of [RFC8995].

The registrar then establishes a TLS connection with the MASA as

described in section 5.4 of [RFC8995] to obtain a voucher for the

pledge.

The registrar SHALL construct the body of the registrar-voucher-

request object as defined in [RFC8995]. The encoding SHALL be done

as JSON-in-JWS object as defined in [I-D.ietf-anima-jws-voucher].

The header of the registrar-voucher-request SHALL contain the

following parameter as defined in [RFC7515]:

alg: algorithm used to create the object signature.

x5c: contains the base64-encoded registrar LDevID certificate(s).

It may optionally contain the certificate chain for this

certificate.

The payload of the registrar-voucher-request (RVR) object MUST

contain the following parameter as part of the voucher request as

defined in [RFC8995]:

created-on: contains the current date and time in yang:date-and-

time format for the registrar-voucher-request creation time.

nonce: copied form the pledge-voucher-request

¶

*

¶

¶

¶

¶

¶

* ¶

*

¶

¶

*

¶

* ¶

serial-number: contains the pledge product-serial-number. The

registrar MUST verify that the IDevID EE certificate subject

serialNumber of the pledge (X520SerialNumber) matches the serial-

number value in the PVR. In addition, it MUST be equal to the

serial-number value contained in the agent-signed data of PVR.

assertion: contains the voucher assertion requested by the pledge

(agent-proximity). The registrar provides this information to

assure successful verification of agent proximity based on the

agent-signed-data.

prior-signed-voucher-request: contains the pledge-voucher-request

provided by the registrar-agent.

The voucher request can be enhanced optionally with the following

additional parameter as defined in Section 6.1:

agent-sign-cert: contains the certificate or the certificate

including the chain of the registrar-agent. In the context of

this document it is a JSON array of base64encoded certificate

information and handled in the same way as x5c header objects.

If only a single object is contained in the list it MUST be the

base64-encoded LDevID(RegAgt) EE certificate. If multiple

certificates are included, the first MUST be the base64-encoded

LDevID(RegAgt) EE certificate.

The MASA uses this information for the verification of agent

proximity to issue the corresponding assertion "agent-proximity". If

the agent-sign-cert is not contained in the registrar-voucher-

request, it is contained in the prior-signed-voucher from the

pledge.

The object is signed using the registrar LDevID(Reg) credential,

which corresponds to the certificate signaled in the JOSE header.

*

¶

*

¶

*

¶

¶

*

¶

¶

¶

¶

Figure 11: Representation of registrar-voucher-request

The registrar sends the registrar-voucher-request to the MASA by

HTTP POST to the endpoint "/.well-known/brski/requestvoucher".

The registrar-voucher-request Content-Type header field is defined

in [I-D.ietf-anima-jws-voucher] as: application/voucher-jws+json

The registrar SHOULD include an Accept request-header field

indicating the acceptable media type for the voucher-response. The

media type "application/voucher-jws+json" is defined in [I-D.ietf-

anima-jws-voucher].

Once the MASA receives the registrar-voucher-request it SHALL

perform the verification of the contained components as described in

section 5.5 in [RFC8995].

In addition, the following processing SHALL be performed for data

contained in the prior-signed-voucher-request:

agent-provided-proximity-registrar-cert: The MASA MAY verify that

this field contains the LDevID(Reg) certificate. If so, it MUST

{

 "payload": {

 "ietf-voucher-request-prm:voucher": {

 "created-on": "2022-01-04T02:37:39.235Z",

 "nonce": "eDs++/FuDHGUnRxN3E14CQ==",

 "serial-number": "callee4711",

 "assertion": "agent-proximity",

 "prior-signed-voucher-request": "base64encodedvalue==",

 "agent-sign-cert": [

 "base64encodedvalue==",

 "base64encodedvalue==",

 "..."

]

 },

 "signatures": [

 {

 "protected": {

 "alg": "ES256",

 "x5c": ["MIIB2jCC...dA=="]

 },

 "signature": "base64encodedvalue=="

 }

]

 }

}

¶

¶

¶

¶

¶

*

correspond to the certificate used to sign the registrar-voucher-

request.

agent-signed-data: The MASA MAY verify this field to issue

"agent-proximity" assertion. If so, the agent-signed-data MUST

contain the pledge product-serial-number, contained in the

serial-number properties of the prior-signed-voucher and also in

serial-number properties of the registrar-voucher-request. The

LDevID(RegAgt) EE certificate used to generate the signature is

identified by the "kid" parameter of the JOSE header (agent-

signed-data). If the assertion "agent-proximity" is requested,

the registrar-voucher-request MUST contain the corresponding

LDevID(RegAgt) certificate data in the agent-sign-cert. Either in

the LDevID(RegAgt) EE certificate of registrar-voucher-request or

of the prior-signed-voucher can be verified by the MASA as issued

by the same domain CA as the LDevID(Reg) EE certificate.

If the agent-sign-cert information is not provided, the MASA MAY

provide a lower level assertion, e.g.: "logged" or "verified"

Note, in case the LDevID(RegAgt) EE certificate is issued by a

sub-CA and not the domain CA known to the MASA, sub-CA

certificate(s) MUST also be presented in the agent-sign-cert. As

this field is defined as array, it can handle multiple

certificates.

If validation fails, the MASA SHOULD respond with an HTTP error code

to the registrar. The HTTP error codes are kept as defined in

section 5.6 of [RFC8995], and comprise the codes: 403, 404, 406, and

415.

The expected voucher response format is indicated by the Accept

request-header field or based on the MASA's prior understanding of

proper format for this pledge. Specifically for the pledge-

responder-mode the "application/voucher-jws+json" as defined in [I-

D.ietf-anima-jws-voucher] is applied. The voucher syntax is

described in detail by [RFC8366]. Figure 12 shows an example of the

contents of a voucher.

¶

*

¶

¶

¶

Figure 12: Representation of MASA issued voucher

The MASA responds the voucher to the registrar.

After receiving the voucher the registrar SHOULD evaluate it for

transparency and logging purposes as outlined in section 5.6 of

[RFC8995]. The registrar MAY provide an additional signature of the

voucher. This signature is done over the same content as the MASA

signature of the voucher and provides a proof of possession of the

private key corresponding to the LDevID(Reg) the pledge received in

the trigger for the PVR (see Figure 5). The registrar MUST use the

same LDevID(Reg) credential that is used for authentication in the

TLS handshake to authenticate towards the registrar-agent. This

ensures that the same LDevID(Reg) certificate can be used to verify

the signature as transmitted in the voucher request as is

transferred in the pledge-voucher-request in the agent-provided-

proximity-registrar-cert component. Figure Figure 13 below provides

an example of the voucher with two signatures.

{

 "payload": {

 "ietf-voucher:voucher": {

 "assertion": "agent-proximity",

 "serial-number": "callee4711",

 "nonce": "eDs++/FuDHGUnRxN3E14CQ==",

 "created-on": "2022-01-04T00:00:02.000Z",

 "pinned-domain-cert": "MIIBpDCCA...w=="

 },

 "signatures": [

 {

 "protected": {

 "alg": "ES256",

 "x5c": ["MIIB2jCC...dA=="]

 },

 "signature": "base64encodedvalue=="

 }

]

 }

}

¶

¶

Figure 13: Representation of MASA issued voucher with additional

registrar signature

Depending on the security policy of the operator, this signature can

also be interpreted as explicit authorization of the registrar to

install the contained trust anchor.

The registrar forwards the voucher to the registrar-agent.

After receiving the voucher, the registrar-agent sends the pledge-

enrollment-request (PER) to the registrar. Deviating from BRSKI the

pledge-enrollment-request is not a raw PKCS#10 object. As the

registrar-agent is involved in the exchange, the PKCS#10 is wrapped

in a JWS object. The JWS object is signed with the pledge's IDevID

to ensure proof-of-identity as outlined in Figure 9.

When using EST, the standard endpoint on the registrar cannot be

used. EST requires to sent a raw PKCS#10 request to the simpleenroll

endpoint. This document makes an enhancement by utilizing EST but

with the exception to transport a signature wrapped PKCS#10 request.

{

 "payload": {

 "ietf-voucher:voucher": {

 "assertion": "agent-proximity",

 "serial-number": "callee4711",

 "nonce": "eDs++/FuDHGUnRxN3E14CQ==",

 "created-on": "2022-01-04T00:00:02.000Z",

 "pinned-domain-cert": "MIIBpDCCA...w=="

 },

 "signatures": [

 {

 "protected": {

 "alg": "ES256",

 "x5c": ["MIIB2jCC...dA=="]

 },

 "signature": "base64encodedvalue=="

 },

 {

 "protected": {

 "alg": "ES256",

 "x5c": ["xURZmcWS...dA=="]

 },

 "signature": "base64encodedvalue=="

 }

]

 }

}

¶

¶

¶

Therefore a new endpoint for the registrar is defined as "/.well-

known/brski/requestenroll"

The PER Content-Type header is: application/jose.

This results in a deviation from the content types used in [RFC7030]

and in additional processing at the domain registrar as EST server

as following. Note, the registrar is already aware that the

bootstrapping is performed in a pledge-responder-mode due to the use

of the LDevID(RegAgt) EE certificate in the TLS establishment and

the provided pledge-voucher-request as JWS object.

If the registrar receives a pledge-enrollment-request with

Content-Type header field "application/jose", it MUST verify the

wrapping signature using the certificate indicated in the JOSE

header.

The registrar verifies that the pledge's IDevID certificate of

the x5c header field, is accepted to join the domain, based on

the verification of the pledge-voucher-request.

If both succeed, the registrar utilizes the PKCS#10 request

contained in the JWS object body as "P10" parameter of "ietf-

sztp-csr:csr" for further processing of the enrollment request

with the domain CA. It will construct a registrar-enrollment-

request (RER) by utilizing the enrollment protocol expected by

the domain CA. The domain registrar may either enhance the

PKCS#10 request or generate a structure containing the attributes

to be included by the CA into the requested LDevID EE certificate

and sends both (the original PKCS#10 request and the

enhancements) to the domain CA. As enhancing the PKCS#10 request

destroys the initial proof of possession of the corresponding

private key, the CA would need to accept RA-verified requests.

This handling is out of scope for this document.

The registrar-agent sends the PER to the registrar by HTTP POST to

the endpoint: "/.well-known/brski/requestenroll"

If validation of the wrapping signature fails, the registrar SHOULD

respond with HTTP 404 error code. HTTP 406 error code is more

appropriate, if the pledge-enrollment-request is in an unknown

format.

A situation that could be resolved with administrative action (such

as adding a vendor/manufacturer IDevID CA as trusted party) MAY be

responded with HTTP 403 error code.

A successful interaction with the domain CA will result in a pledge

LDevID EE certificate, which is then forwarded by the registrar to

the registrar-agent using the Content-Type header: "application/

pkcs7-mime".

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

The registrar-agent has now finished the exchanges with the domain

registrar and can supply the voucher-response (from MASA via

Registrar) and the enrollment-response (LDevID EE certificate) to

the pledge. It can close the TLS connection to the domain registrar

and provide the objects to the pledge(s). The content of the

response objects is defined through the voucher [RFC8366] and the

certificate [RFC5280].

5.1.4.3. Response Object Supply by Registrar-Agent to Pledge

The following description assumes that the registrar-agent has

obtained the response objects from the domain registrar. It will re-

start the interaction with the pledge. To contact the pledge, it may

either discover the pledge as described in Section 5.1.3.2 or use

stored information from the first contact with the pledge.

Preconditions in addition to Section 5.1.4.2:

Registrar-agent: possesses voucher and LDevID certificate.

Figure 14: Response and status handling between pledge and registrar-

agent

The registrar-agent provides the information via two distinct

endpoints to the pledge as following.

The voucher response is provided with a HTTP POST using the

operation path value of "/.well-known/brski/pledge-voucher".

The registrar-agent voucher-response Content-Type header is

"application/voucher-jws+json and contains the voucher as provided

by the MASA. An example if given in Figure 12 for a MASA only signed

voucher and in Figure Figure 13 for multiple signatures.

¶

¶

¶

* ¶

+--------+ +-----------+

| Pledge | | Registrar-|

| | | Agent |

| | | (RegAgt) |

+--------+ +-----------+

 | |

 |<------- supply voucher -----------|

 | |

 |--------- voucher-status --------->| - store

 | | pledge voucher-status

 |<--- supply enrollment response ---|

 | |

 |--------- enroll-status ---------->| - store

 | | pledge enroll-status

¶

¶

¶

If a single signature is contained, the pledge receives the voucher

and verifies it as described in section 5.6.1 in [RFC8995].

If multiple signatures are contained in the voucher, the pledge

SHALL perform the signature verification in the following order:

Verify MASA signature as described in section 5.6.1 in

[RFC8995] successfully.

Install contained trust anchor provisionally.

Verify registrar signature as described in section 5.6.1 in

[RFC8995] successfully, but take the registrar certificate

instead of the MASA certificate for verification.

Verify the registrar certificate received in the agent-

provided-proximity-registrar-cert in the voucher request

successfully.

When all verification steps stated above have been performed

successfully, the pledge SHALL end the provisional accept state for

the domain trust anchor and the LDevID(Reg). When multiple

signatures are contained in the voucher-response, the pledge MUST

verify all successfully.

When an error occurs during the verification it SHALL be signaled in

the reason field of the pledge voucher-status object.

After verification the pledge MUST reply with a status telemetry

message as defined in section 5.7 of [RFC8995].

The pledge generates the voucher-status-object and provides it as

JOSE object with the wrapping signature in the response message to

the registrar-agent.

The response has the Content-Type "application/jose" and is signed

using the IDevID of the pledge as shown in Figure 15. As the reason

field is optional (see [RFC8995]), it MAY be omitted in case of

success.

¶

¶

1.

¶

2. ¶

3.

¶

4.

¶

¶

¶

¶

¶

Figure 15: Representation of pledge voucher-status telemetry

The enrollment response is provided with a HTTP POST using the

operation path value of "/.well-known/brski/pledge-enrollment".

The registrar-agent enroll-response Content-Type header, when using

EST [RFC7030] as enrollment protocol between the registrar-agent and

the infrastructure, is:

application/pkcs7-mime: note that it only contains the LDevID

certificate for the pledge, not the certificate chain.

Upon reception, the pledge verifies the LDevID certificate. When an

error occurs during the verification it SHALL be signaled in the

reason field of the pledge enroll-status object.

The pledge MUST reply with a status telemetry message as defined in

section 5.9.4 of [RFC8995]. As for the other objects, the defined

object is provided with an additional signature using JOSE. The

pledge generates the enrollment status and provides it in the

response message to the registrar-agent.

The response has the Content-Type "application/jose", signed using

the freshly provided LDevID of the pledge as shown in Figure 16. As

the reason field is optional, it MAY be omitted in case of success.

{

 "payload": {

 "version": 1,

 "status": true,

 "reason": "Informative human readable message",

 "reason-context": {

 "additional": "JSON"

 }

 },

 "signatures": [

 {

 "protected": {

 "alg": "ES256",

 "x5c": ["MIIB2jCC...dA=="]

 },

 "signature": "base64encodedvalue=="

 }

]

}

¶

¶

¶

¶

¶

¶

Figure 16: Representation of pledge enroll-status telemetry

Once the registrar-agent has collected the information, it can

connect to the registrar agent to provide the status responses to

the registrar.

5.1.4.4. Telemetry status handling (registrar-agent - domain

registrar)

The following description assumes that the registrar-agent has

collected the status objects from the pledge. It will provide the

status objects to the registrar for further processing and audit log

information of voucher-status for MASA.

Preconditions in addition to Section 5.1.4.2:

Registrar-agent: possesses voucher-status and enroll-status

objects from pledge.

{

 "payload": {

 "version": 1,

 "status": true,

 "reason": "Informative human readable message",

 "reason-context": {

 "additional": "JSON"

 }

 },

 "signatures": [

 {

 "protected": {

 "alg": "ES256",

 "x5c": ["MIIB2jCC...dA=="]

 },

 "signature": "base64encodedvalue=="

 }

]

}

¶

¶

¶

*

¶

Figure 17: Bootstrapping status handling

The registrar-agent MUST provide the collected pledge voucher-status

to the registrar. This status indicates if the pledge could process

the voucher successfully or not.

If the TLS connection to the registrar was closed, the registrar-

agent establishes a TLS connection with the registrar as stated in

Section 5.1.4.2.

The registrar-agent sends the pledge voucher-status object without

modification to the registrar with an HTTP-over-TLS POST using the

operation path value of "/.well-known/brski/voucher_status". The

Content-Type header is kept as "application/jose" as described in

Figure 14 and depicted in the example in Figure 15.

The registrar SHALL verify the signature of the pledge voucher-

status and validate that it belongs to an accepted device in his

domain based on the contained "serial-number" in the IDevID

certificate referenced in the header of the voucher-status object.

According to [RFC8995] section 5.7, the registrar SHOULD respond

with an HTTP 200 but MAY simply fail with an HTTP 404 error. The

registrar-agent may use the response to signal success / failure to

the service technician operating the registrar agent. Within the

server logs the server SHOULD capture this telemetry information.

The registrar SHOULD proceed with collecting and logging status

information by requesting the MASA audit-log from the MASA service

as described in section 5.8 of [RFC8995].

+-----------+ +-----------+ +--------+ +---------+

| Registrar | | Domain | | Domain | | Vendor |

| Agent | | Registrar | | CA | | Service |

| RegAgt) | | (JRC) | | | | (MASA) |

+-----------+ +-----------+ +--------+ +---------+

 | | | Internet |

 | | | |

 |<------ TLS ----->| | |

 | | | |

 |--Voucher-Status->| | |

 | |<---- device audit log ----|

 | [verify audit log]

 | | | |

 |--Enroll-Status-->| | |

 | | | |

 | | | |

¶

¶

¶

¶

¶

¶

The registrar-agent MUST provide the pledge's enroll-status object

to the registrar. The status indicates the pledge could process the

enroll-response object and holds the corresponding private key.

The registrar-agent sends the pledge enroll-status object without

modification to the registrar with an HTTP-over-TLS POST using the

operation path value of "/.well-known/brski/enrollstatus". The

Content-Type header is kept as "application/jose" as described in

Figure 14 and depicted in the example in Figure 16.

The registrar SHALL verify the signature of the pledge enroll-status

object and validate that it belongs to an accepted device in his

domain based on the contained product-serial-number in the LDevID EE

certificate referenced in the header of the enroll-status object.

Note that the verification of a signature of the object is a

deviation form the described handling in section 5.9.4 of [RFC8995].

According to [RFC8995] section 5.9.4, the registrar SHOULD respond

with an HTTP 200 but MAY simply fail with an HTTP 404 error. The

registrar-agent may use the response to signal success / failure to

the service technician operating the registrar agent. Within the

server log the registrar SHOULD capture this telemetry information.

6. Artifacts

6.1. Voucher Request Artifact

The following enhancement extends the voucher-request as defined in

[RFC8995] to include additional fields necessary for handling

bootstrapping in the pledge-responder-mode.

6.1.1. Tree Diagram

The following tree diagram is mostly a duplicate of the contents of

[RFC8995], with the addition of the fields agent-signed-data, the

registrar-proximity-certificate, and agent-signing certificate. The

tree diagram is described in [RFC8340]. Each node in the diagram is

fully described by the YANG module in Section Section 6.1.2.

¶

¶

¶

¶

¶

¶

6.1.2. YANG Module

The following YANG module extends the [RFC8995] Voucher Request to

include a signed artifact from the registrar-agent (agent-signed-

data) as well as the registrar-proximity-certificate and the agent-

signing certificate.

module: ietf-voucher-request-prm

 grouping voucher-request-prm-grouping

 +-- voucher

 +-- created-on? yang:date-and-time

 +-- expires-on? yang:date-and-time

 +-- assertion? enumeration

 +-- serial-number string

 +-- idevid-issuer? binary

 +-- pinned-domain-cert? binary

 +-- domain-cert-revocation-checks? boolean

 +-- nonce? binary

 +-- last-renewal-date? yang:date-and-time

 +-- prior-signed-voucher-request? binary

 +-- proximity-registrar-cert? binary

 +-- agent-signed-data? binary

 +-- agent-provided-proximity-registrar-cert? binary

 +-- agent-sign-cert? binary

¶

¶

<CODE BEGINS> file "ietf-voucher-request-prm@2021-12-16.yang"

module ietf-voucher-request-prm {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-voucher-request-prm";

 prefix vrprm;

 import ietf-restconf {

 prefix rc;

 description

 "This import statement is only present to access

 the yang-data extension defined in RFC 8040.";

 reference "RFC 8040: RESTCONF Protocol";

 }

 import ietf-voucher-request {

 prefix vcr;

 description

 "This module defines the format for a voucher request,

 which is produced by a pledge as part of the RFC8995

 onboarding process.";

 reference

 "RFC 8995: Bootstrapping Remote Secure Key Infrastructure";

 }

 organization

 "IETF ANIMA Working Group";

 contact

 "WG Web: <http://tools.ietf.org/wg/anima/>

 WG List: <mailto:anima@ietf.org>

 Author: Steffen Fries

 <mailto:steffen.fries@siemens.com>

 Author: Eliot Lear

 <mailto: lear@cisco.com>

 Author: Thomas Werner

 <mailto: thomas-werner@siemens.com>

 Author: Michael Richardson

 <mailto: mcr+ietf@sandelman.ca>";

 description

 "This module defines the format for a voucher-request.

 It is a superset of the voucher itself.

 It provides content to the MASA for consideration

 during a voucher-request.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL

 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',

 'MAY', and 'OPTIONAL' in this document are to be interpreted as

 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

 they appear in all capitals, as shown here.

 Copyright (c) 2022 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 8995; see the

 RFC itself for full legal notices.";

 revision 2021-12-16 {

 description

 "Initial version";

 reference

 "RFC XXXX: BRSKI for Pledge in Responder Mode";

 }

 // Top-level statement

 rc:yang-data voucher-request-prm-artifact {

 // YANG data template for a voucher-request.

 uses voucher-request-prm-grouping;

 }

 // Grouping defined for future usage

 grouping voucher-request-prm-grouping {

 description

 "Grouping to allow reuse/extensions in future work.";

 uses vcr:voucher-request-grouping {

 refine "voucher/expires-on" {

 mandatory false;

 description

 "An expires-on field is not valid in a

 voucher-request, and any occurrence MUST be ignored.";

 }

 refine "voucher/pinned-domain-cert" {

 mandatory false;

 description

 "A pinned-domain-cert field is not valid in a

 voucher-request, and any occurrence MUST be ignored.";

 }

 refine "voucher/last-renewal-date" {

 description

 "A last-renewal-date field is not valid in a

 voucher-request, and any occurrence MUST be ignored.";

 }

 refine "voucher/domain-cert-revocation-checks" {

 description

 "The domain-cert-revocation-checks field is not valid in a

 voucher-request, and any occurrence MUST be ignored.";

 }

 refine "voucher/assertion" {

 mandatory false;

 description

 "Any assertion included in registrar voucher-requests

 SHOULD be ignored by the MASA.";

 }

 augment voucher {

 description "Base the voucher-request-prm upon the

 regular one";

 leaf agent-signed-data {

 type binary;

 description

 "The agent-signed-data field contains a JOSE [RFC7515]

 object provided by the Registrar-Agent to the Pledge.

 This artifact is signed by the Registrar-Agent

 and contains a copy of the pledge's serial-number.";

 }

 leaf agent-provided-proximity-registrar-cert {

 type binary;

 description

 "An X.509 v3 certificate structure, as specified by

 RFC 5280, Section 4, encoded using the ASN.1

 distinguished encoding rules (DER), as specified

 in ITU X.690.

 The first certificate in the registrar TLS server

 certificate_list sequence (the end-entity TLS

 certificate; see RFC 8446) presented by the

 registrar to the registrar-agent and provided to

 the pledge.

 This MUST be populated in a pledge's voucher-request

 when an agent-proximity assertion is requested.";

 reference

 "ITU X.690: Information Technology - ASN.1 encoding

 rules: Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER)

 RFC 5280: Internet X.509 Public Key Infrastructure

 Certificate and Certificate Revocation List (CRL)

 Profile

 RFC 8446: The Transport Layer Security (TLS)

 Protocol Version 1.3";

 }

 leaf-list agent-sign-cert {

 type binary;

 min-elements 1;

 description

 "An X.509 v3 certificate structure, as specified by

 RFC 5280, Section 4, encoded using the ASN.1

 distinguished encoding rules (DER), as specified

 in ITU X.690.

 This certificate can be used by the pledge,

 the registrar, and the MASA to verify the signature

 of agent-signed-data. It is an optional component

 for the pledge-voucher request.

 This MUST be populated in a registrar's

 voucher-request when an agent-proximity assertion

 is requested.

 It is defined as list to enable inclusion of further

 certificates along the certificate chain if different

 issuing CAs have been used for the registrar-agent

 and the registrar.";

 reference

 "ITU X.690: Information Technology - ASN.1 encoding

 rules: Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER)

 RFC 5280: Internet X.509 Public Key Infrastructure

 Certificate and Certificate Revocation List (CRL)

 Profile";

 }

 }

 }

 }

}

<CODE ENDS>

Examples for the pledge-voucher-request are provided in Section

5.1.4.2.

7. IANA Considerations

This document requires the following IANA actions:

¶

¶

¶

IANA is requested to enhance the Registry entitled: "BRSKI well-

known URIs" with the following:

8. Privacy Considerations

The credential used by the registrar-agent to sign the data for the

pledge in case of the pledge-initiator-mode should not contain

personal information. Therefore, it is recommended to use an LDevID

certificate associated with the device instead of a potential

service technician operating the device, to avoid revealing this

information to the MASA.

9. Security Considerations

9.1. Exhaustion Attack on Pledge

Exhaustion attack on pledge based on DoS attack (connection

establishment, etc.)

9.2. Misuse of acquired Voucher and Enrollment responses by Registrar-

Agent

A Registrar-agent that uses acquired voucher and enrollment response

for domain 1 in domain 2 can be detected by the pledge-voucher-

request processing on the domain registrar side. This requires the

domain registrar to verify the proximity-registrar-cert leaf in the

pledge-voucher-request against his own LDevID(Reg). In addition, the

domain registrar has to verify the association of the pledge to his

domain based on the product-serial-number contained in the pledge-

voucher-request and in the IDevID certificate of the pledge.

Moreover, the registrar verifies the authorization of the registrar

agent to deliver pledge-voucher-requests, based on the

LDevID(RegAgt) EE certificate information contained in this request.

Misbinding of a pledge by a faked domain registrar is countered as

described in BRSKI security considerations (section 11.4).

9.3. Misuse of Registrar-Agent Credentials

Concerns have been raised, that there may be opportunities to misuse

the registrar-agent with a valid LDevID. This may be addressed by

utilizing short-lived certificates (e.g., valid for a day) to

¶

 URI document description

 pledge-voucher-request [THISRFC] create pledge-voucher-request

 pledge-enrollment-request [THISRFC] create pledge-enrollment-request

 pledge-voucher [THISRFC] supply voucher response

 pledge-enrollment [THISRFC] supply enrollment response

 pledge-CACerts [THISRFC] supply CA certs to pledge

 requestenroll [THISRFC] supply PER to registrar

¶

¶

¶

¶

¶

[I-D.ietf-anima-jws-voucher]

[I-D.ietf-netconf-sztp-csr]

[I-D.richardson-anima-rfc8366bis]

authenticate the registrar-agent against the domain registrar. The

LDevID certificate for the registrar-agent may be provided by a

prior BRSKI execution based on an existing IDevID. Alternatively,

the LDevID may be acquired by a service technician after

authentication against the issuing CA.

9.4. YANG Module Security Considerations

The enhanced voucher-request described in section Section 6.1 bases

on [RFC8995], but uses a different encoding, based on [I-D.ietf-

anima-jws-voucher]. Therefore, similar considerations as described

in Section 11.7 (Security Considerations) of [RFC8995] apply. The

YANG module specified in this document defines the schema for data

that is subsequently encapsulated by a JOSE signed-data content

type, as described [I-D.ietf-anima-jws-voucher]. As such, all of the

YANG-modeled data is protected from modification. The use of YANG to

define data structures, via the "yang-data" statement, is relatively

new and distinct from the traditional use of YANG to define an API

accessed by network management protocols such as NETCONF [RFC6241]

and RESTCONF [RFC8040]. For this reason, these guidelines do not

follow the template described by Section 3.7 of [RFC8407].

10. Acknowledgments

We would like to thank the various reviewers, in particular Brian E.

Carpenter and Oskar Camenzind, for their input and discussion on use

cases and call flows.

11. References

11.1. Normative References

Richardson, M. and T. Werner, "JWS

signed Voucher Artifacts for Bootstrapping Protocols",

Work in Progress, Internet-Draft, draft-ietf-anima-jws-

voucher-02, 4 March 2022, <https://www.ietf.org/archive/

id/draft-ietf-anima-jws-voucher-02.txt>.

Watsen, K., Housley, R., and S. Turner,

"Conveying a Certificate Signing Request (CSR) in a

Secure Zero Touch Provisioning (SZTP) Bootstrapping

Request", Work in Progress, Internet-Draft, draft-ietf-

netconf-sztp-csr-14, 2 March 2022, <https://www.ietf.org/

archive/id/draft-ietf-netconf-sztp-csr-14.txt>.

Watsen, K., Richardson, M. C.,

Pritikin, M., and T. Eckert, "A Voucher Artifact for

Bootstrapping Protocols", Work in Progress, Internet-

Draft, draft-richardson-anima-rfc8366bis-04, 1 December

¶

¶

¶

https://www.ietf.org/archive/id/draft-ietf-anima-jws-voucher-02.txt
https://www.ietf.org/archive/id/draft-ietf-anima-jws-voucher-02.txt
https://www.ietf.org/archive/id/draft-ietf-netconf-sztp-csr-14.txt
https://www.ietf.org/archive/id/draft-ietf-netconf-sztp-csr-14.txt

[RFC2119]

[RFC6241]

[RFC6762]

[RFC6763]

[RFC7030]

[RFC7515]

[RFC8040]

[RFC8174]

[RFC8366]

[RFC8407]

[RFC8995]

2021, <https://www.ietf.org/archive/id/draft-richardson-

anima-rfc8366bis-04.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,

DOI 10.17487/RFC6762, February 2013, <https://www.rfc-

editor.org/info/rfc6762>.

Cheshire, S. and M. Krochmal, "DNS-Based Service

Discovery", RFC 6763, DOI 10.17487/RFC6763, February

2013, <https://www.rfc-editor.org/info/rfc6763>.

Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,

"Enrollment over Secure Transport", RFC 7030, DOI

10.17487/RFC7030, October 2013, <https://www.rfc-

editor.org/info/rfc7030>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web

Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

2015, <https://www.rfc-editor.org/info/rfc7515>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,

"A Voucher Artifact for Bootstrapping Protocols", RFC

8366, DOI 10.17487/RFC8366, May 2018, <https://www.rfc-

editor.org/info/rfc8366>.

Bierman, A., "Guidelines for Authors and Reviewers of

Documents Containing YANG Data Models", BCP 216, RFC

8407, DOI 10.17487/RFC8407, October 2018, <https://

www.rfc-editor.org/info/rfc8407>.

Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,

and K. Watsen, "Bootstrapping Remote Secure Key

https://www.ietf.org/archive/id/draft-richardson-anima-rfc8366bis-04.txt
https://www.ietf.org/archive/id/draft-richardson-anima-rfc8366bis-04.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6762
https://www.rfc-editor.org/info/rfc6762
https://www.rfc-editor.org/info/rfc6763
https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8366
https://www.rfc-editor.org/info/rfc8366
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8407

[IEEE-802.1AR]

[RFC2986]

[RFC5280]

[RFC8340]

Infrastructure (BRSKI)", RFC 8995, DOI 10.17487/RFC8995,

May 2021, <https://www.rfc-editor.org/info/rfc8995>.

11.2. Informative References

Institute of Electrical and Electronics Engineers,

"IEEE 802.1AR Secure Device Identifier", IEEE 802.1AR,

June 2018.

Nystrom, M. and B. Kaliski, "PKCS #10: Certification

Request Syntax Specification Version 1.7", RFC 2986, DOI

10.17487/RFC2986, November 2000, <https://www.rfc-

editor.org/info/rfc2986>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Appendix A. History of Changes [RFC Editor: please delete]

From IETF draft 01 -> IETF draft 02:

Issue #15 included additional signature on voucher from registrar

in section Section 5.1.4.2 and section Section 5.1.1 The

verification of multiple signatures is described in section

Section 5.1.4.3

Included representation for General JWS JSON Serialization for

examples

Included error responses from pledge if it is not able to create

a pledge-voucher request or an enrollment request in section

Section 5.1.4.1

Removed open issue regarding handling of multiple CSRs and

enrollment responses during the bootstrapping as the initial

target it the provisioning of a generic LDevID certificate. The

defined endpoint on the pledge may also be used for management of

further certificates.

From IETF draft 00 -> IETF draft 01:

Issue #15 lead to the inclusion of an option for an additional

signature of the registrar on the voucher received from the MASA

¶

*

¶

*

¶

*

¶

*

¶

¶

*

https://www.rfc-editor.org/info/rfc8995
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc8340

before forwarding to the registrar-agent to support verification

of POP of the registrars private key in section Section 5.1.4.2

and Section 5.1.4.3.

Based on issue #11, a new endpoint was defined for the registrar

to enable delivery of the wrapped enrollment request from the

pledge (in contrast to plain PKCS#10 in simple enroll).

Decision on issue #8 to not provide an additional signature on

the enrollment-response object by the registrar. As the

enrollment response will only contain the generic LDevID EE

certificate. This credential builds the base for further

configuration outside the initial enrollment.

Decision on issue #7 to not support multiple CSRs during the

bootstrapping, as based on the generic LDevID EE certificate the

pledge may enroll for further certificates.

Closed open issue #5 regarding verification of ietf-ztp-types

usage as verified via a proof-of-concept in section

{#exchanges_uc2_1}.

Housekeeping: Removed already addressed open issues stated in the

draft directly.

Reworked text in from introduction to section pledge-responder-

mode

Fixed "serial-number" encoding in PVR/RVR

Added prior-signed-voucher-request in the parameter description

of the registrar-voucher-request in Section 5.1.4.2.

Note added in Section 5.1.4.2 if sub-CAs are used, that the

corresponding information is to be provided to the MASA.

Inclusion of limitation section (pledge sleeps and needs to be

waked up. Pledge is awake but registrar-agent is not available)

(Issue #10).

Assertion-type aligned with voucher in RFC8366bis, deleted

related open issues. (Issue #4)

Included table for endpoints in Section 5.1.2 for better

readability.

Included registrar authorization check for registrar-agent during

TLS handshake in section Section 5.1.4.2. Also enhanced figure

Figure 10 with the authorization step on TLS level.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Enhanced description of registrar authorization check for

registrar-agent based on the agent-signed-data in section Section

5.1.4.2. Also enhanced figure Figure 10 with the authorization

step on pledge-voucher-request level.

Changed agent-signed-cert to an array to allow for providing

further certificate information like the issuing CA cert for the

LDevID(RegAgt) EE certificate in case the registrar and the

registrar-agent have different issuing CAs in Figure 10 (issue

#12). This also required changes in the YANG module in Section

6.1.2

Addressed YANG warning (issue #1)

Inclusion of examples for a trigger to create a pledge-voucher-

request and an enrollment-request.

From IETF draft-ietf-anima-brski-async-enroll-03 -> IETF anima-

brski-prm-00:

Moved UC2 related parts defining the pledge in responder mode

from draft-ietf-anima-brski-async-enroll-03 to this document This

required changes and adaptations in several sections to remove

the description and references to UC1.

Addressed feedback for voucher-request enhancements from YANG

doctor early review in Section 6.1 as well as in the security

considerations (formerly named ietf-async-voucher-request).

Renamed ietf-async-voucher-request to IETF-voucher-request-prm to

to allow better listing of voucher related extensions; aligned

with constraint voucher (#20)

Utilized ietf-voucher-request-async instead of ietf-voucher-

request in voucher exchanges to utilize the enhanced voucher-

request.

Included changes from draft-ietf-netconf-sztp-csr-06 regarding

the YANG definition of csr-types into the enrollment request

exchange.

From IETF draft 02 -> IETF draft 03:

Housekeeping, deleted open issue regarding YANG voucher-request

in Section 5.1.4.1 as voucher-request was enhanced with

additional leaf.

Included open issues in YANG model in Section 5.1 regarding

assertion value agent-proximity and csr encapsulation using SZTP

sub module).

*

¶

*

¶

* ¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

From IETF draft 01 -> IETF draft 02:

Defined call flow and objects for interactions in UC2. Object

format based on draft for JOSE signed voucher artifacts and

aligned the remaining objects with this approach in Section

5.1.4 .

Terminology change: issue #2 pledge-agent -> registrar-agent to

better underline agent relation.

Terminology change: issue #3 PULL/PUSH -> pledge-initiator-mode

and pledge-responder-mode to better address the pledge operation.

Communication approach between pledge and registrar-agent changed

by removing TLS-PSK (former section TLS establishment) and

associated references to other drafts in favor of relying on

higher layer exchange of signed data objects. These data objects

are included also in the pledge-voucher-request and lead to an

extension of the YANG module for the voucher-request (issue #12).

Details on trust relationship between registrar-agent and

registrar (issue #4, #5, #9) included in Section 5.1.

Recommendation regarding short-lived certificates for registrar-

agent authentication towards registrar (issue #7) in the security

considerations.

Introduction of reference to agent signing certificate using SKID

in agent signed data (issue #11).

Enhanced objects in exchanges between pledge and registrar-agent

to allow the registrar to verify agent-proximity to the pledge

(issue #1) in Section 5.1.4.

Details on trust relationship between registrar-agent and pledge

(issue #5) included in Section 5.1.

Split of use case 2 call flow into sub sections in Section 5.1.4.

From IETF draft 00 -> IETF draft 01:

Update of scope in Section 3.1 to include in which the pledge

acts as a server. This is one main motivation for use case 2.

Rework of use case 2 in Section 5.1 to consider the transport

between the pledge and the pledge-agent. Addressed is the TLS

channel establishment between the pledge-agent and the pledge as

well as the endpoint definition on the pledge.

First description of exchanged object types (needs more work)

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

*

¶

*

¶

* ¶

Clarification in discovery options for enrollment endpoints at

the domain registrar based on well-known endpoints do not result

in additional /.well-known URIs. Update of the illustrative

example. Note that the change to /brski for the voucher related

endpoints has been taken over in the BRSKI main document.

Updated references.

Included Thomas Werner as additional author for the document.

From individual version 03 -> IETF draft 00:

Inclusion of discovery options of enrollment endpoints at the

domain registrar based on well-known endpoints in new section as

replacement of section 5.1.3 in the individual draft. This is

intended to support both use cases in the document. An

illustrative example is provided.

Missing details provided for the description and call flow in

pledge-agent use case Section 5.1, e.g. to accommodate

distribution of CA certificates.

Updated CMP example in to use lightweight CMP instead of CMP, as

the draft already provides the necessary /.well-known endpoints.

Requirements discussion moved to separate section in Section 4.

Shortened description of proof of identity binding and mapping to

existing protocols.

Removal of copied call flows for voucher exchange and registrar

discovery flow from [RFC8995] in UC1 to avoid doubling or text or

inconsistencies.

Reworked abstract and introduction to be more crisp regarding the

targeted solution. Several structural changes in the document to

have a better distinction between requirements, use case

description, and solution description as separate sections.

History moved to appendix.

From individual version 02 -> 03:

Update of terminology from self-contained to authenticated self-

contained object to be consistent in the wording and to underline

the protection of the object with an existing credential. Note

that the naming of this object may be discussed. An alternative

name may be attestation object.

Simplification of the architecture approach for the initial use

case having an offsite PKI.

*

¶

* ¶

* ¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

Introduction of a new use case utilizing authenticated self-

contain objects to onboard a pledge using a commissioning tool

containing a pledge-agent. This requires additional changes in

the BRSKI call flow sequence and led to changes in the

introduction, the application example,and also in the related

BRSKI-PRM call flow.

From individual version 01 -> 02:

Update of introduction text to clearly relate to the usage of

IDevID and LDevID.

Update of description of architecture elements and changes to

BRSKI in Section 5.

Enhanced consideration of existing enrollment protocols in the

context of mapping the requirements to existing solutions in

Section 4.

From individual version 00 -> 01:

Update of examples, specifically for building automation as well

as two new application use cases in Section 3.2.

Deletion of asynchronous interaction with MASA to not complicate

the use case. Note that the voucher exchange can already be

handled in an asynchronous manner and is therefore not considered

further. This resulted in removal of the alternative path the

MASA in Figure 1 and the associated description in Section 5.

Enhancement of description of architecture elements and changes

to BRSKI in Section 5.

Consideration of existing enrollment protocols in the context of

mapping the requirements to existing solutions in Section 4.

New section starting with the mapping to existing enrollment

protocols by collecting boundary conditions.

Authors' Addresses

Steffen Fries

Siemens AG

Otto-Hahn-Ring 6

81739 Munich

Germany

Email: steffen.fries@siemens.com

URI: https://www.siemens.com/

*

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

mailto:steffen.fries@siemens.com
https://www.siemens.com/

Thomas Werner

Siemens AG

Otto-Hahn-Ring 6

81739 Munich

Germany

Email: thomas-werner@siemens.com

URI: https://www.siemens.com/

Eliot Lear

Cisco Systems

Richtistrasse 7

CH-8304 Wallisellen

Switzerland

Phone: +41 44 878 9200

Email: lear@cisco.com

Michael C. Richardson

Sandelman Software Works

Email: mcr+ietf@sandelman.ca

URI: http://www.sandelman.ca/

mailto:thomas-werner@siemens.com
https://www.siemens.com/
tel:+41%2044%20878%209200
mailto:lear@cisco.com
mailto:mcr+ietf@sandelman.ca
http://www.sandelman.ca/

	BRSKI with Pledge in Responder Mode (BRSKI-PRM)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Scope of Solution
	3.1. Supported Environment
	3.2. Application Examples
	3.2.1. Building Automation
	3.2.2. Infrastructure Isolation Policy
	3.2.3. Less Operational Security in the Target-Domain

	3.3. Limitations

	4. Requirements Discussion and Mapping to Solution-Elements
	5. Architectural Overview and Communication Exchanges
	5.1. Pledge-responder-mode (PRM): Registrar-agent Communication with Pledges
	5.1.1. Agent-Proximity
	5.1.2. Behavior of Pledge in Pledge-Responder-Mode
	5.1.3. Behavior of Registrar-Agent
	5.1.3.1. Discovery of Registrar by Registrar-Agent
	5.1.3.2. Discovery of Pledge by Registrar-Agent

	5.1.4. Bootstrapping Objects and Corresponding Exchanges
	5.1.4.1. Request Objects Acquisition by Registrar-Agent from Pledge
	5.1.4.2. Request Handling - Registrar-Agent (Infrastructure)
	5.1.4.3. Response Object Supply by Registrar-Agent to Pledge
	5.1.4.4. Telemetry status handling (registrar-agent - domain registrar)

	6. Artifacts
	6.1. Voucher Request Artifact
	6.1.1. Tree Diagram
	6.1.2. YANG Module

	7. IANA Considerations
	8. Privacy Considerations
	9. Security Considerations
	9.1. Exhaustion Attack on Pledge
	9.2. Misuse of acquired Voucher and Enrollment responses by Registrar-Agent
	9.3. Misuse of Registrar-Agent Credentials
	9.4. YANG Module Security Considerations

	10. Acknowledgments
	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. History of Changes [RFC Editor: please delete]
	Authors' Addresses

