
Workgroup: ANIMA WG

Internet-Draft: draft-ietf-anima-brski-prm-08

Published: 10 March 2023

Intended Status: Standards Track

Expires: 11 September 2023

Authors: S. Fries

Siemens

T. Werner

Siemens

E. Lear

Cisco Systems

M. Richardson

Sandelman Software Works

BRSKI with Pledge in Responder Mode (BRSKI-PRM)

Abstract

This document defines enhancements to Bootstrapping a Remote Secure

Key Infrastructure (BRSKI) [RFC8995] to enable bootstrapping in

domains featuring no or only limited connectivity between a pledge

and the domain registrar. It specifically changes the interaction

model from a pledge-initiated mode, as used in BRSKI, to a pledge-

responding mode, where the pledge is in server role. For this, BRSKI

with Pledge in Responder Mode (BRSKI-PRM) introduces a new

component, the registrar-agent, which facilitates the communication

between pledge and registrar during the bootstrapping phase. To

establish the trust relation between pledge and registrar, BRSKI-PRM

relies on object security rather than transport security. The

approach defined here is agnostic to the enrollment protocol that

connects the domain registrar to the domain CA.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-ietf-anima-brski-prm/.

Source for this draft and an issue tracker can be found at https://

github.com/anima-wg/anima-brski-prm.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-ietf-anima-brski-prm/
https://datatracker.ietf.org/doc/draft-ietf-anima-brski-prm/
https://github.com/anima-wg/anima-brski-prm
https://github.com/anima-wg/anima-brski-prm
https://datatracker.ietf.org/drafts/current/

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Scope of Solution

3.1. Supported Environments and Use Case Examples

3.1.1. Building Automation

3.1.2. Infrastructure Isolation Policy

3.1.3. Less Operational Security in the Target-Domain

3.2. Limitations

4. Requirements Discussion and Mapping to Solution-Elements

5. Architectural Overview

5.1. Agent-Proximity Assertion

5.2. Behavior of Pledge in Pledge-Responder-Mode

5.3. Behavior of Registrar-Agent

5.3.1. Discovery of Registrar by Registrar-Agent

5.3.2. Discovery of Pledge by Registrar-Agent

5.4. Behavior of Pledge with Combined Functionality

6. Bootstrapping Data Objects and Corresponding Exchanges

6.1. Request Objects Acquisition by Registrar-Agent from Pledge

6.1.1. Pledge-Voucher-Request (PVR) - Trigger

6.1.2. Pledge-Voucher-Request (PVR) - Response

6.1.3. Pledge Enrollment-Request (PER) - Trigger

6.1.4. Pledge Enrollment-Request (PER) - Response

6.2. Request Object Handling initiated by the Registrar-Agent on

Registrar, MASA and Domain CA

6.2.1. Connection Establishment (Registrar-Agent to Registrar)

6.2.2. Pledge-Voucher-Request (PVR) Processing by Registrar

¶

¶

¶

¶

https://trustee.ietf.org/license-info

6.2.3. Registrar-Voucher-Request (RVR) Processing (Registrar to

MASA)

6.2.4. Voucher Issuance by MASA

6.2.5. MASA issued Voucher Processing by Registrar

6.2.6. Pledge Enrollment-Request (PER) Processing (Registrar-

Agent to Registrar)

6.2.7. Request Wrapped-CA-certificate(s) (Registrar-Agent to

Registrar)

6.3. Response Object Supply by Registrar-Agent to Pledge

6.3.1. Pledge: Voucher-Response Processing

6.3.2. Pledge: Voucher Status Telemetry

6.3.3. Pledge: Wrapped-CA-Certificate(s) Processing

6.3.4. Pledge: Enrollment-Response Processing

6.3.5. Pledge: Enrollment-Status Telemetry

6.3.6. Telemetry Voucher Status and Enroll Status Handling

(Registrar-Agent to Domain Registrar)

6.4. Request Pledge-Status by Registrar-Agent from Pledge

6.4.1. Pledge-Status - Trigger (Registrar-Agent to Pledge)

6.4.2. Pledge-Status - Response (Pledge - Registrar-Agent)

7. Artifacts

7.1. Voucher-Request Artifact

8. IANA Considerations

8.1. BRSKI .well-known Registry

9. Privacy Considerations

10. Security Considerations

10.1. Denial of Service (DoS) Attack on Pledge

10.2. Misuse of acquired PVR and PER by Registrar-Agent

10.3. Misuse of Registrar-Agent Credentials

10.4. Misuse of mDNS to obtain list of pledges

10.5. YANG Module Security Considerations

11. Acknowledgments

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Examples

A.1. Example Pledge Voucher-Request - PVR (from Pledge to

Registrar-agent)

A.2. Example Parboiled Registrar Voucher-Request - RVR (from

Registrar to MASA)

A.3. Example Voucher-Response (from MASA to Pledge, via Registrar

and Registrar-agent)

A.4. Example Voucher-Response, MASA issued Voucher with

additional Registrar signature (from MASA to Pledge, via Registrar

and Registrar-agent)

Appendix B. History of Changes [RFC Editor: please delete]

Contributors

Authors' Addresses

1. Introduction

BRSKI as defined in [RFC8995] specifies a solution for secure zero-

touch (automated) bootstrapping of devices (pledges) in a (customer)

site domain. This includes the discovery of network elements in the

customer site/domain and the exchange of security information

necessary to establish trust between a pledge and the domain.

Security information about the customer site/domain, specifically

the customer site/domain certificate, are exchanged and

authenticated utilizing voucher-request and voucher-response

artifacts as defined in [RFC8995]. Vouchers are signed objects from

the Manufacturer's Authorized Signing Authority (MASA). The MASA

issues the voucher and provides it via the domain registrar to the

pledge. [RFC8366] specifies the format of the voucher artifacts.

[I-D.ietf-anima-rfc8366bis] further enhances the format of the

voucher artifacts and also the voucher-request.

For the certificate enrollment of devices, BRSKI relies on EST

[RFC7030] to request and distribute customer site/domain specific

device certificates. EST in turn relies relies for authentication

and authorization of the certification request on the credentials

used by the underlying TLS between the EST client and the EST

server.

BRSKI addresses scenarios in which the pledge initiates the

bootstrapping acting as client (referred to as initiator mode by

this document). BRSKI with pledge in responder mode (BRSKI-PRM)

defined in this document allows the pledge to act as server, so that

it can be triggered to generate bootstrapping requests in the

customer site/domain. For this approach, this document:

introduces the registrar-agent as new component to facilitate the

communication between the pledge and the domain registrar; the

registrar-agent may be implemented as an integrated functionality

of a commissioning tool or be co-located with the registrar

itself.

specifies the interaction (data exchange and data objects)

between a pledge acting as server, the registrar-agent acting as

client, and the domain registrar.

enables the usage of arbitrary transports between the pledge and

the domain registrar via the registrar-agent; security is

addressed at the application layer, and both IP-based and non-IP

connectivity can be used between pledge and registrar-agent.

allows the application of registrar-agent credentials to

establish TLS connections to the domain registrar; these are

different from the IDevID of the pledge.

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

authenticated self-contained object:

The term endpoint used in the context of this document is equivalent

to resource in HTTP [RFC9110] and CoAP [RFC7252]; it is not used to

describe a device. Endpoints are accessible via Well-Known URIs

[RFC8615]. For the interaction with the domain registrar, the

registrar-agent will use existing BRSKI [RFC8995] endpoints as well

as additional endpoints defined in this document. To utilize the EST

server endpoints on the domain registrar, the registrar-agent will

act as client toward the registrar.

The registrar-agent also acts as a client when communicating with a

pledge in responder mode. Here, TLS with server-side, certificate-

based authentication is not directly applicable, as the pledge only

possesses an IDevID certificate. First, the IDevID does not contain

any anchor for which any kind of [RFC6125] validation can be done.

Second, the registrar-agent may not be aware of manufacturer trust

anchors to validate the IDevIDs. Finally, IDevIDs do not typically

set Extended Key Usage (EKU) for TLS WWW Server authentication.

The inability to effectively do TLS in responder mode is one reason

for relying on object security at the application layer. Another

reason is the support for alternative transports for which TLS may

not be available, e.g., Bluetooth or NFC. Therefore, BRSKI-PRM

relies on an additional signature wrapping of the exchanged data

objects involving the registrar-agent for transport. To utilize EST

[RFC7030] for enrollment, the domain registrar must perform the pre-

processing of this wrapping signature before actually using EST as

defined in [RFC7030].

There may be pledges which can support both modes, initiator and

responder mode. In these cases BRSKI-PRM can be combined with BRSKI

as defined in [RFC8995] or BRSKI-AE [I-D.ietf-anima-brski-ae] to

allow for more bootstrapping flexibility.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document relies on the terminology defined in [RFC8995],

section 1.2. The following terms are defined additionally:

Describes an object, which is

cryptographically bound to the end entity (EE) certificate

(IDevID certificate or LDEVID certificate). The binding is

assumed to be provided through a digital signature of the actual

object using the corresponding private key of the EE certificate.

¶

¶

¶

¶

¶

¶

¶

CA:

Commissioning tool:

CSR:

EE:

endpoint:

mTLS:

on-site:

off-site:

PER:

POP:

POI:

PVR:

RA:

RER:

RVR:

Certification Authority, issues certificates.

Tool to interact with devices to provide

configuration data.

Certificate Signing Request.

End Entity.

term equivalent to resource in HTTP [RFC9110] and CoAP

[RFC7252]; not a device.

mutual Transport Layer Security.

Describes a component or service or functionality

available in the customer site/domain.

Describes a component or service or functionality not

available on-site. It may be at a central site or an internet

resident "cloud" service. The on-site to off-site connection may

also be temporary and, e.g., only available at times when workers

are present on a construction side, for instance.

Pledge Enrollment-Request is a signature wrapped CSR, signed

by the pledge that requests enrollment to a domain.

Proof-of-Possession (of a private key), as defined in

[RFC5272].

Proof-of-Identity, as defined in [RFC5272].

Pledge Voucher-Request is a request for a voucher sent to the

domain registrar. The PVR is signed by the Pledge.

Registration Authority, an optional system component to which a

CA delegates certificate management functions such as

authorization checks. In BRSKI-PRM this is a functionality of the

domain registrar, as in BRSKI [RFC8995].

Registrar Enrollment-Request is the CSR of a PER sent to the

CA by the domain registrar (RA).

Registrar Voucher-Request is a request for a voucher signed by

the domain registrar to the MASA. It may contain the PVR received

from the pledge.

This document includes many examples that would contain many long

sequences of base64 encoded objects with no content directly

comprehensible to a human reader. In order to keep those examples

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

short, they use the token "base64encodedvalue==" as a placeholder

for base64 data. The full base64 data is included in the appendices

of this document.

This protocol unavoidably has a mix of both base64 encoded data (as

is normal for many JSON encoded protocols), and also BASE64URL

encoded data, as specified by JWS. The latter is indicated by a

string like "BASE64URL(content-name)".

3. Scope of Solution

3.1. Supported Environments and Use Case Examples

BRSKI-PRM is applicable to scenarios where pledges may have no

direct connection to the domain registrar, may have no continuous

connection, or require coordination of the pledge requests to be

provided to a domain registrar.

This can be motivated by pledges deployed in environments not yet

connected to the operational customer site/domain network, e.g., at

a building construction site, or environments intentionally

disconnected from the Internet, e.g., critical industrial

facilities. Another example is the assembly of electrical cabinets,

which are prepared in advance before the installation at a customer

site/domain.

3.1.1. Building Automation

In building automation a typical use case exists where a detached

building or the basement is equipped with sensors, actuators, and

controllers, but with only limited or no connection to the central

building management system. This limited connectivity may exist

during installation time or also during operation time.

During the installation, for instance, a service technician collects

the device-specific information from the basement network and

provides them to the central building management system. This could

be done using a laptop, common mobile device, or dedicated

commissioning tool to transport the information. The service

technician may successively collect device-specific information in

different parts of the building before connecting to the domain

registrar for bulk bootstrapping.

A domain registrar may be part of the central building management

system and already be operational in the installation network. The

central building management system can then provide operational

parameters for the specific devices in the basement or other

detached areas. These operational parameters may comprise values and

settings required in the operational phase of the sensors/actuators,

among them a certificate issued by the operator to authenticate

¶

¶

¶

¶

¶

¶

against other components and services. These operational parameters

are then provided to the devices in the basement facilitated by the

service technician's laptop. The registrar-agent, defined in this

document, may be run on the technician's laptop to interact with

pledges.

3.1.2. Infrastructure Isolation Policy

This refers to any case in which the network infrastructure is

normally isolated from the Internet as a matter of policy, most

likely for security reasons. In such a case, limited access to a

domain registrar may be allowed in carefully controlled short

periods of time, for example when a batch of new devices are

deployed, but prohibited at other times.

3.1.3. Less Operational Security in the Target-Domain

The registration authority (RA) performing the authorization of a

certificate request is a critical PKI component and therefore

requires higher operational security than other components utilizing

the issued certificates. CAs may also require higher security in the

registration procedures. There may be situations in which the

customer site/domain does not offer enough security to operate a RA/

CA and therefore this service is transferred to a backend that

offers a higher level of operational security.

3.2. Limitations

The mechanism described in this document presumes the availability

of the pledge and the registrar-agent to communicate with another.

This may not be possible in constrained environments where, in

particular, power must be conserved. In these situations, it is

anticipated that the transceiver will be powered down most of the

time. This presents a rendezvous problem: the pledge is unavailable

for certain periods of time, and the registrar-agent is similarly

presumed to be unavailable for certain periods of time. To overcome

this situation, the pledges may need to be powered on, either

manually or by sending a trigger signal.

4. Requirements Discussion and Mapping to Solution-Elements

Based on the intended target environment described in Section 3.1,

the following requirements are derived to support bootstrapping of

pledges in responder mode (acting as server):

To facilitate the communication between a pledge in responder

mode and the registrar, additional functionality is needed either

on the registrar or as a stand-alone component. This new

functionality is defined as registrar-agent and acts as an agent

of the registrar to trigger the pledge to generate requests for

¶

¶

¶

¶

¶

*

voucher and enrollment. These requests are then provided by the

registrar-agent to the registrar. This requires the definition of

pledge endpoints to allow interaction with the registrar-agent.

The communication between the registrar-agent and the pledge must

not rely on Transport Layer Security (TLS) because the pledge

does not have a certificate that can easily be verified by

[RFC6125] methods. It is also more difficult to use TLS over

other technology stacks (e.g., NFC).

The use of authenticated self-contained objects provides a work

around for both the TLS challenges and the technology stack

challenge.

By contrast, the registrar-agent can be authenticated by the

registrar as a component, acting on behalf of the registrar. In

addition the registrar must be able to verify, which registrar-

agent was in direct contact with the pledge.

It would be inaccurate for the voucher-request and voucher-

response to use an assertion with value "proximity" in the

voucher, as the pledge was not in direct contact with the

registrar for bootstrapping. Therefore, a new "agent-proximity"

assertion value is necessary for distinguishing assertions the

MASA can state.

At least the following properties are required for the voucher and

enrollment processing:

POI: provides data-origin authentication of a data object, e.g.,

a voucher-request or an enrollment-request, utilizing an existing

IDevID. Certificate updates may utilize the certificate that is

to be updated.

POP: proves that an entity possesses and controls the private key

corresponding to the public key contained in the certification

request, typically by adding a signature computed using the

private key to the certification request.

Solution examples based on existing technology are provided with the

focus on existing IETF RFCs:

Voucher-requests and -responses as used in [RFC8995] already

provide both, POP and POI, through a digital signature to protect

the integrity of the voucher, while the corresponding signing

certificate contains the identity of the signer.

Certification requests are data structures containing the

information from a requester for a CA to create a certificate.

The certification request format in BRSKI is PKCS#10 [RFC2986].

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

*

¶

*

In PKCS#10, the structure is signed to ensure integrity

protection and POP of the private key of the requester that

corresponds to the contained public key. In the application

examples, this POP alone is not sufficient. A POI is also

required for the certification request and therefore the

certification request needs to be additionally bound to the

existing credential of the pledge (IDevID). This binding supports

the authorization decision for the certification request and may

be provided directly with the certification request. While BRSKI

uses the binding to TLS, BRSKI-PRM aims at an additional

signature of the PKCS#10 using existing credentials on the pledge

(IDevID). This allows the process to be independent of the

selected transport.

5. Architectural Overview

For BRSKI with pledge in responder mode, the base system

architecture defined in BRSKI [RFC8995] is enhanced to facilitate

new use cases in which the pledge acts as server. The responder mode

allows delegated bootstrapping using a registrar-agent instead of a

direct connection between the pledge and the domain registrar.

Necessary enhancements to support authenticated self-contained

objects for certificate enrollment are kept at a minimum to enable

reuse of already defined architecture elements and interactions. The

format of the bootstrapping objects produced or consumed by the

pledge is based on JOSE [RFC7515] and further specified in Section 6

to address the requirements stated in Section 4 above.

In constrained environments it may be provided based on COSE

[RFC9052] and [RFC9053].

An abstract overview of the BRSKI-PRM protocol can be found in

[BRSKI-PRM-abstract].

To support mutual trust establishment between the domain registrar

and pledges not directly connected to the customer site/domain, this

document specifies the exchange of authenticated self-contained

objects (the voucher-request/response as known from BRSKI and the

enrollment-request/response as introduced by BRSKI-PRM) with the

help of a registrar-agent.

This leads to extensions of the logical components in the BRSKI

architecture as shown in Figure 1. Note that the Join Proxy is

neglected in the figure. It MAY be used as specified in BRSKI

[RFC8995] by the registrar-agent to connect to the registrar. The

registrar-agent interacts with the pledge to transfer the required

data objects for bootstrapping, which are then also exchanged

between the registrar-agent and the domain registrar. The addition

of the registrar-agent influences the sequences of the data exchange

¶

¶

¶

¶

¶

between the pledge and the domain registrar described in [RFC8995].

To enable reuse of BRSKI defined functionality as much as possible,

BRSKI-PRM:

uses existing endpoints where the required functionality is

provided.

enhances existing endpoints with new supported media types, e.g.,

for JWS voucher.

defines new endpoints where additional functionality is required,

e.g., for wrapped certification request, CA certificates, or new

status information.

Drop Ship Vendor Service

M anufacturer
A uthorized Ownership
S igning Tracker
A uthority

BRSKI-
MASA

...............................
. .
. .
. .

Pledge BRSKI- Registrar- BRSKI- Domain .
PRM Agent EST Registrar .

(PKI RA) .
. LDevID .
. .

IDevID . .
. .
. Key Infrastructure .
. (e.g., PKI Certificate .
. Authority) .
. .
...

"Domain" Components

Figure 1: BRSKI-PRM architecture overview using registrar-agent

Figure 1 shows the relations between the following main components:

Pledge: The pledge is expected to respond with the necessary data

objects for bootstrapping to the registrar-agent. The protocol

used between the pledge and the registrar-agent is assumed to be

HTTP in the context of this document. Other protocols such as

¶

*

¶

*

¶

*

¶

¶

¶

*

CoAP, NFC, or Bluetooth may be used, but are out of scope of this

document. A pledge acting as a server during bootstrapping leads

to some differences for BRSKI:

Discovery of the pledge by the registrar-agent MUST be

possible.

As the registrar-agent MUST be able to request data objects

for bootstrapping of the pledge, the pledge MUST offer

corresponding endpoints as defined in Section 5.2.

The registrar-agent MUST provide additional data to the pledge

in the context of the voucher-request trigger, which the

pledge MUST include into the PVR as defined in Section 6.1.1

and Section 6.1.2. This allows the registrar to identify, with

which registrar-agent the pledge was in contact.

Order of exchanges in the BRSKI-PRM call flow is different

those in BRSKI [RFC8995], as the PVR and PER are collected at

once and provided to the registrar. This enables bulk

bootstrapping of several devices.

The data objects utilized for the data exchange between the

pledge and the registrar are self-contained authenticated

objects (signature-wrapped objects).

Registrar-agent: provides a communication path to exchange data

objects between the pledge and the domain registrar. The

registrar-agent brokers in situations in which the domain

registrar is not directly reachable by the pledge. This may be

due to a different technology stack or due to missing

connectivity. The registrar-agent triggers a pledge to create

bootstrapping artifacts such as the voucher-request and the

enrollment-request on one or multiple pledges and performs a

(bulk) bootstrapping based on the collected data. The registrar-

agent is expected to possess information about the domain

registrar: the registrar EE certificate, LDevID(CA) certificate,

IP address, either by configuration or by using the discovery

mechanism defined in [RFC8995]. There is no trust assumption

between the pledge and the registrar-agent as only authenticated

self-contained objects are used, which are transported via the

registrar-agent and provided either by the pledge or the

registrar. The trust assumption between the registrar-agent and

the registrar is based on the LDevID of the registrar-agent,

provided by the PKI responsible for the domain. This allows the

registrar-agent to authenticate towards the registrar, e.g., in a

TLS handshake. Based on this, the registrar is able to

distinguish a pledge from a registrar-agent during the TLS

session establishment and also to verify that the registrar-agent

¶

-

¶

-

¶

-

¶

-

¶

-

¶

*

is authorized to perform the bootstrapping of the distinct

pledge.

Join Proxy (not shown): same functionality as described in

[RFC8995] if needed. Note that a registrar-agent may use a join

proxy to facilitate the TLS connection to the registrar, in the

same way that a BRSKI pledge would use a join proxy. This is

useful in cases where the registrar-agent does not have full IP

connectivity via the domain network, or cases where it has no

other means to locate the registrar on the network.

Domain Registrar: In general, the domain registrar fulfills the

same functionality regarding the bootstrapping of the pledge in a

(customer) site domain by facilitating the communication of the

pledge with the MASA service and the domain PKI service. In

contrast to [RFC8995], the domain registrar does not interact

with a pledge directly but through the registrar-agent. The

registrar detects if the bootstrapping is performed by the pledge

directly or by the registrar-agent.

The manufacturer provided components/services (MASA and Ownership

tracker) are used as defined in [RFC8995]. For issuing a voucher,

the MASA may perform additional checks on a voucher-request, to

issue a voucher indicating agent-proximity instead of

(registrar-)proximity.

5.1. Agent-Proximity Assertion

"Agent-proximity" is a statement, that the proximity registrar

certificate was provided via the registrar-agent as defined in

Section 6 and not directly to the pledge. "Agent-proximity" is

therefore a weaker assertion then "proximity". It is defined as

additional assertion type in [I-D.ietf-anima-rfc8366bis]. This can

be verified by the registrar and also by the MASA during the

voucher-request processing. Note that at the time of creating the

voucher-request, the pledge cannot verify the registrar's registrar

EE certificate and has no proof-of-possession of the corresponding

private key for the certificate. The pledge therefore accepts the

registrar EE certificate provisionally until it receives the voucher

as described in Section 6.3. See also [RFC8995] "PROVISIONAL accept

of server cert".

Trust handover to the domain is established via the "pinned-domain-

certificate" in the voucher.

In contrast to the above, "proximity" provides a statement, that the

pledge was in direct contact with the registrar and was able to

verify proof-of-possession of the private key in the context of the

TLS handshake. The provisionally accepted registrar EE certificate

¶

*

¶

*

¶

*

¶

¶

¶

can be verified after the voucher has been processed by the pledge.

As the returned voucher includes an additional signature by the

registrar as defined in Section 6.2.5, the pledge can also verify

that the registrar possesses the corresponding private key.

5.2. Behavior of Pledge in Pledge-Responder-Mode

The pledge is triggered by the registrar-agent to generate the PVR

and PER as well as for the processing of the responses and the

generation of status information. Due to the use of the registrar-

agent, the interaction with the domain registrar is changed as shown

in Figure 3. To enable interaction with the registrar-agent, the

pledge provides endpoints using the BRSKI defined endpoints based on

the "/.well-known/brski" URI tree.

The following endpoints are defined for the pledge in this document.

The endpoints are defined with short names to also accommodate for

the constraint case. The URI path begins with "http://

www.example.com/.well-known/brski" followed by a path-suffix that

indicates the intended operation.

Operations and their corresponding URIs:

Operation
Operation

path
Details

Trigger pledge voucher-request creation -

Returns PVR
/tv Section 6.1

Trigger pledge enrollment-request -

Returns PER
/te Section 6.1

Provide voucher to pledge - Returns pledge

voucher-status
/sv Section 6.3

Provide enrollment-response to pledge -

Returns pledge enrollment-status
/se Section 6.3

Provide CA certs to pledge /cc Section 6.3

Query bootstrapping status of pledge -

Returns pledge-status
/ps Section 6.4

Table 1: Endpoints on the pledge

5.3. Behavior of Registrar-Agent

The registrar-agent as a new component provides connectivity between

the pledge and the domain registrar. It facilitates the exchange of

data between the pledge and the domain registrar, which are the

voucher-request/response, the enrollment-request/response, as well

as related telemetry and status information.

For the communication with the pledge the registrar-agent utilizes

communication endpoints provided by the pledge. The transport in

¶

¶

¶

¶

¶

this specification is based on HTTP but may also be done using other

transport mechanisms. This new component changes the general

interaction between the pledge and the domain registrar as shown in

Figure 1.

For the communication with the registrar, the registrar-agent uses

the endpoints of the domain registrar side already specified in

[RFC8995] if suitable. The EST [RFC7030] standard endpoints used by

BRSKI do not expect signature wrapped-objects, which are used b

BRSKI-PRM. This specifically applies for the enrollment-request and

the provisioning of CA certificates. To accommodate the use of

signature-wrapped object, the following additional endpoints are

defined for the registrar. Operations and their corresponding URIs:

Operation Operation path Details

Supply PER to registrar /requestenroll Section 6.2.6

Request (wrapped) CA certificates -

Returns wrapped CA Certificates

/

wrappedcacerts
Section 6.2.7

Table 2: Additional endpoints on the registrar

For authentication to the domain registrar, the registrar-agent uses

its LDevID(RegAgt). The provisioning of the registrar-agent LDevID

is out of scope for this document, but may be done in advance using

a separate BRSKI run or by other means like configuration. It is

recommended to use short lived registrar-agent LDevIDs in the range

of days or weeks as outlined in Section 10.3.

The registrar-agent will use its LDevID(RegAgt) when establishing a

TLS session with the domain registrar for TLS client authentication.

The LDevID(RegAgt) certificate MUST include a SubjectKeyIdentifier

(SKID), which is used as reference in the context of an agent-

signed-data object as defined in Section 6.1. Note that this is an

additional requirement for issuing the certificate, as

[IEEE-802.1AR] only requires the SKID to be included for

intermediate CA certificates. [RFC8995] makes a similar requirement.

In BRSKI-PRM, the SKID is used in favor of a certificate fingerprint

to avoid additional computations.

Using an LDevID for TLS client authentication of the registrar-agent

is a deviation from [RFC8995], in which the pledge's IDevID

credential is used to perform TLS client authentication. The use of

the LDevID(RegAgt) allows the domain registrar to distinguish, if

bootstrapping is initiated from a pledge or from a registrar-agent

and to adopt different internal handling accordingly. If a registrar

detects a request that originates from a registrar-agent it is able

to switch the operational mode from BRSKI to BRSKI-PRM. This may be

supported by a specific naming in the SAN (subject alternative name)

component of the LDevID(RegAgt) certificate. Alternatively, the

¶

¶

¶

¶

domain may feature a CA specifically for issuing registrar-agent

LDevID certificates. This allows the registrar to detect registrar-

agents based on the issuing CA.

As BRSKI-PRM uses authenticated self-contained data objects between

the pledge and the domain registrar, the binding of the pledge

identity to the requests is provided by the data object signature

employing the pledge's IDevID. The objects exchanged between the

pledge and the domain registrar used in the context of this

specifications are JOSE objects.

In addition to the LDevID(RegAgt), the registrar-agent is provided

with the product-serial-number(s) of the pledge(s) to be

bootstrapped. This is necessary to allow the discovery of pledge(s)

by the registrar-agent using mDNS (see Section 5.3.2) The list may

be provided by administrative means or the registrar agent may get

the information via an interaction with the pledge. For instance,

[RFC9238] describes scanning of a QR code, the product-serial-number

would be initialized from the 12N B005 Product Serial Number.

According to [RFC8995] section 5.3, the domain registrar performs

the pledge authorization for bootstrapping within his domain based

on the pledge voucher-request object.

The following information MUST be available at the registrar-agent:

LDevID(RegAgt): own operational key pair.

Registrar EE certificate: certificate of the domain registrar.

Serial-number(s): product-serial-number(s) of pledge(s) to be

bootstrapped.

5.3.1. Discovery of Registrar by Registrar-Agent

The discovery of the domain registrar may be done as specified in

[RFC8995] with the deviation that it is done between the registrar-

agent and the domain registrar. Alternatively, the registrar-agent

may be configured with the address of the domain registrar and the

certificate of the domain registrar.

5.3.2. Discovery of Pledge by Registrar-Agent

The discovery of the pledge by registrar-agent should be done by

using DNS-based Service Discovery [RFC6763] over Multicast DNS

[RFC6762] to discover the pledge. The pledge constructs a local host

name based on device local information (product-serial-number),

which results in "product-serial-number._brski-pledge._tcp.local".

¶

¶

¶

¶

¶

* ¶

* ¶

*

¶

¶

¶

The registrar-agent MAY use

"product-serial-number._brski-pledge._tcp.local", to discover a

specific pledge, e.g., when connected to a local network.

"_brski-pledge._tcp.local" to get a list of pledges to be

bootstrapped.

A manufacturer may allow the pledge to react on mDNS discovery

without his product-serial-number contained. This allows a

commissioning tool to discover pledges to be bootstrapped in the

domain. The manufacturer may opt out of this functionality as

outlined in Section 10.4.

To be able to detect the pledge using mDNS, network connectivity is

required. For Ethernet it is provided by simply connecting the

network cable. For WiFi networks, connectivity can be provided by

using a pre-agreed SSID for bootstrapping. The same approach can be

used by 6LoWPAN/mesh using a pre-agreed PAN ID. How to gain network

connectivity is out of scope of this document.

5.4. Behavior of Pledge with Combined Functionality

Pledges MAY support both initiator or responder mode.

A pledge in initiator mode should listen for announcement messages

as described in Section 4.1 of [RFC8995]. Upon discovery of a

potential registrar, it initiates the bootstrapping to that

registrar. At the same time (so as to avoid the Slowloris-attack

described in [RFC8995]), it SHOULD also respond to the triggers for

responder mode described in this document.

Once a pledge with combined functionality has been bootstrapped, it

MAY act as client for enrollment of further certificates needed,

e.g., using the enrollment protocol of choice. If it still acts as

server, the defined BRSKI-PRM endpoints to trigger a pledge

enrollment-request (PER) or to provide an enrollment-response can be

used for further certificates.

6. Bootstrapping Data Objects and Corresponding Exchanges

The interaction of the pledge with the registrar-agent may be

accomplished using different transport means (protocols and/or

network technologies). This specification describes the usage of

HTTP as in BRSKI [RFC8995]. Alternative transport channels may be

CoAP, Bluetooth Low Energy (BLE), or Nearfield Communication (NFC).

These transport means may differ from, and are independent of, the

ones used between the registrar-agent and the registrar. Transport

channel independence is realized by data objects which are not bound

to specific transport security. Therefore, authenticated self-

¶

*

¶

*

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8995#section-4.1

contained objects (here: signature-wrapped objects) are applied for

data exchanges between the pledge and the registrar.

The registrar-agent provides the domain registrar certificate

(registrar EE certificate) to the pledge to be included in the PVR

leaf "agent-provided-proximity-registrar-certificate". This enables

the registrar to verify that it is the desired registrar for

handling the request.

The registrar certificate may be configured at the registrar-agent

or may be fetched by the registrar-agent based on a prior TLS

connection with this domain registrar. In addition, the registrar-

agent provides agent-signed-data containing the pledge product-

serial-number, signed with the LDevID(RegAgt). This enables the

registrar to verify and log, which registrar-agent was in contact

with the pledge, when verifying the PVR.

The registrar MUST fetch the LDevID(RegAgt) certificate based on the

SubjectKeyIdentifier (SKID) in the header of the agent-signed-data

from the PVR. The registrar includes the LDevID(RegAgt) certificate

information into the RVR if the PVR asked for the assertion "agent-

proximity".

The MASA in turn verifies the registrar EE certificate is included

in the PVR ("prior-signed-voucher-request" of RVR) in the "agent-

provided-proximity-registrar-certificate" leaf and may assert the

PVR as "verified" or "logged" instead of "proximity", as there is no

direct connection between the pledge and the registrar.

In addition, the MASA can state the assertion "agent-proximity" as

follows: The MASA can verify the signature of the agent-signed-data

contained in the prior-signed-voucher-request, based on the provided

LDevID(RegAgt) certificate in the "agent-sign-cert" leaf of the RVR.

If both can be verified successfully, the MASA can assert "agent-

proximity" in the voucher.

Depending on the MASA verification policy, it may also respond with

a suitable 4xx or 5xx status code as described in section 5.6 of

[RFC8995]. The voucher then can be supplied via the registrar to the

registrar-agent.

Figure 2 provides an overview of the exchanges detailed in the

following sub sections.

¶

¶

¶

¶

¶

¶

¶

¶

Pledge Registrar Domain Domain Vendor
Agent Registrar CA Service
(RegAgt) (JRC) (MASA)

Internet
discover
pledge

mDNS query

trigger PVR (tPVR) and PER (tPER) generation on pledge
tPVR
PVR

tPER
PER

~ ~ ~ ~ ~

provide PVR to infrastructure
TLS |

[Reg-Agt authenticated
and authorized?]

PVR |
[Reg-Agt authorized?]
[accept device?]
[contact vendor]

RVR
[extract DomainID]
[update audit log]
Voucher

Voucher

provide PER to infrastructure
PER

CSR
Cert

Enroll-Resp

query cACerts from infrastructure
-- cACert-Req

cACert-Resp--
~ ~ ~ ~ ~

provide voucher and certificate and collect status info
Voucher
vStatus
cACerts

Enroll-Resp--
eStatus

~ ~ ~ ~ ~

provide voucher status and enroll status to registrar
TLS

vStatus
req device audit log

device audit log
[verify audit log]

eStatus

¶

Figure 2: Overview pledge-responder-mode exchanges

The following sub sections split the interactions between the

different components into:

Section 6.1 describes the request object acquisition by the

registrar-agent from pledge.

Section 6.2 describes the request object processing initiated by

the registrar-agent to the registrar and also the interaction of

the registrar with the MASA and the domain CA including the

response object processing by these entities.

Section 6.3 describes the supply of response objects between the

registrar-agent and the pledge including the status information.

Section 6.4 describes the general status handling and addresses

corresponding exchanges between the registrar-agent and the

registrar.

6.1. Request Objects Acquisition by Registrar-Agent from Pledge

The following description assumes that the registrar-agent has

already discovered the pledge. This may be done as described in

Section 5.3.2 based on mDNS or similar.

The focus is on the exchange of signature-wrapped objects using

endpoints defined for the pledge in Section 5.2.

Preconditions:

Pledge: possesses IDevID

Registrar-agent: possesses/trusts IDevID CA certificate and has

own LDevID(RegAgt) credentials for the registrar domain (site).

In addition, the registrar-agent MUST know the product-serial-

number(s) of the pledge(s) to be bootstrapped. The registrar-

agent MAY be provided with the product-serial-number(s) in

different ways:

configured, e.g., as a list of pledges to be bootstrapped via

QR code scanning

discovered by using standard approaches like mDNS as described

in Section 5.3.2

discovered by using a vendor specific approach, e.g., RF

beacons. The registrar-agent SHOULD have synchronized time.

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

* ¶

*

¶

-

¶

-

¶

-

¶

Registrar: possesses/trusts IDevID CA certificate and has own

registrar EE credentials.

Pledge Registrar
Agent
(RegAgt)

-create
agent-signed-data

trigger pledge voucher-request
-agent-provided-proximity-registrar-cert
-agent-signed-data

pledge voucher-request -store PVR

trigger enrollment-request
(empty)

pledge enrollment-request -store (PER)

Figure 3: Request collection (registrar-agent - pledge)

Note: The registrar-agent may trigger the pledge for the PVR or the

PER or both. It is expected that this will be aligned with a service

technician workflow, visiting and installing each pledge.

6.1.1. Pledge-Voucher-Request (PVR) - Trigger

Triggering the pledge to create the PVR is done using HTTP POST on

the defined pledge endpoint: "/.well-known/brski/tv"

The registrar-agent PVR trigger Content-Type header is: application/

json. Following parameters are provided in the JSON object:

agent-provided-proximity-registrar-cert: base64-encoded registrar

EE TLS certificate.

agent-signed-data: base64-encoded JSON-in-JWS object.

The trigger for the pledge to create a PVR is depicted in the

following figure:

*

¶

¶

¶

¶

¶

*

¶

* ¶

¶

{

 "agent-provided-proximity-registrar-cert": "base64encodedvalue==",

 "agent-signed-data": "base64encodedvalue=="

}

Figure 4: Representation of trigger to create PVR

The pledge provisionally accepts the agent-provided-proximity-

registrar-cert, it SHOULD verify it after a voucher is received. The

pledge will be unable to verify the agent-signed-data itself as it

does not possess the LDevID(RegAgt) certificate and the domain trust

has not been established at this point of the communication. It

SHOULD be done, after the voucher has been received.

The agent-signed-data is a JSON-in-JWS object and contains the

following information:

The header of the agent-signed-data contains:

alg: algorithm used for creating the object signature.

kid: MUST contain the base64-encoded bytes of the

SubjectKeyIdentifier (the "KeyIdentifier" OCTET STRING value),

excluding the ASN.1 encoding of "OCTET STRING" of the

LDevID(RegAgt) certificate.

The body of the agent-signed-data contains an "ietf-voucher-

request:agent-signed-data" element (defined in

[I-D.ietf-anima-rfc8366bis]):

created-on: MUST contain the creation date and time in yang:date-

and-time format.

serial-number: MUST contain the product-serial-number as type

string as defined in [RFC8995], section 2.3.1. The serial-number

corresponds with the product-serial-number contained in the

X520SerialNumber field of the IDevID certificate of the pledge.

¶

¶

¶

* ¶

*

¶

¶

*

¶

*

¶

Figure 5: Representation of agent-signed-data in General JWS

Serialization syntax

6.1.2. Pledge-Voucher-Request (PVR) - Response

Upon receiving the voucher-request trigger, the pledge SHALL

construct the body of the PVR as defined in [RFC8995]. It will

contain additional information provided by the registrar-agent as

specified in the following. This PVR becomes a JSON-in-JWS object as

defined in [I-D.ietf-anima-jws-voucher]. If the pledge is unable to

construct the PVR it SHOULD respond with a HTTP error code to the

registrar-agent to indicate that it is not able to create the PVR.

The following client error responses MAY be used:

400 Bad Request: if the pledge detected an error in the format of

the request, e.g. missing field, wrong data types, etc. or if the

request is not valid JSON even though the PVR media type was set

to application/json.

403 Forbidden: if the pledge detected that one or more security

parameters from the trigger message to create the PVR were not

valid, e.g., the LDevID (Reg) certificate.

The agent-signed-data in General JWS Serialization syntax

{

 "payload": "BASE64URL(ietf-voucher-request-prm:agent-signed-data)",

 "signatures": [

 {

 "protected": "BASE64URL(UTF8(JWS Protected Header))",

 "signature": "base64encodedvalue=="

 }

]

}

Decoded payload "ietf-voucher-request-prm:agent-signed-data"

 representation in JSON syntax

"ietf-voucher-request-prm:agent-signed-data": {

 "created-on": "2021-04-16T00:00:01.000Z",

 "serial-number": "callee4711"

}

Decoded "JWS Protected Header" representation in JSON syntax

{

 "alg": "ES256",

 "kid": "base64encodedvalue=="

}

¶

¶

*

¶

*

¶

The header of the PVR SHALL contain the following parameters as

defined in [RFC7515]:

alg: algorithm used for creating the object signature.

x5c: contains the base64-encoded pledge IDevID certificate. It

may optionally contain the certificate chain for this

certificate.

The payload of the PVR MUST contain the following parameters as part

of the ietf-voucher-request-prm:voucher as defined in [RFC8995]:

created-on: SHALL contain the current date and time in yang:date-

and-time format. If the pledge does not have synchronized time,

it SHALL use the created-on time from the agent-signed-data,

received in the trigger to create a PVR.

nonce: SHALL contain a cryptographically strong pseudo-random

number.

serial-number: SHALL contain the pledge product-serial-number as

X520SerialNumber.

assertion: SHALL contain the requested voucher assertion "agent-

proximity".

The ietf-voucher-request:voucher is enhanced with additional

parameters:

agent-provided-proximity-registrar-cert: MUST be included and

contains the base64-encoded registrar EE certificate (provided as

trigger parameter by the registrar-agent).

agent-signed-data: MUST contain the base64-encoded agent-signed-

data (as defined in Figure 5) and provided as trigger parameter.

The enhancements of the YANG module for the ietf-voucher-request

with these new leaves are defined in [I-D.ietf-anima-rfc8366bis].

The PVR is signed using the pledge's IDevID credential contained as

x5c parameter of the JOSE header.

¶

* ¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

¶

Figure 6: Representation of PVR

The PVR Content-Type is defined in [I-D.ietf-anima-jws-voucher] as

application/voucher-jws+json.

The pledge SHOULD include this Content-Type header field indicating

the included media type for the PVR. Note that this is also an

indication regarding the acceptable format of the voucher-response.

This format is included by the registrar as described in

Section 6.2.

6.1.3. Pledge Enrollment-Request (PER) - Trigger

Once the registrar-agent has received the PVR it can trigger the

pledge to generate a PER. As in BRSKI the PER contains a PKCS#10,

but additionally signed using the pledge's IDevID. Note, as the

The PVR in General JWS Serialization syntax

{

 "payload": "BASE64URL(ietf-voucher-request-prm:voucher)",

 "signatures": [

 {

 "protected": "BASE64URL(UTF8(JWS Protected Header))",

 "signature": "base64encodedvalue=="

 }

]

}

Decoded Payload "ietf-voucher-request-prm:voucher" Representation

 in JSON syntax

"ietf-voucher-request-prm:voucher": {

 "created-on": "2021-04-16T00:00:02.000Z",

 "nonce": "eDs++/FuDHGUnRxN3E14CQ==",

 "serial-number": "callee4711",

 "assertion": "agent-proximity",

 "agent-provided-proximity-registrar-cert": "base64encodedvalue==",

 "agent-signed-data": "base64encodedvalue=="

}

Decoded "JWS Protected Header" Representation in JSON syntax

{

 "alg": "ES256",

 "x5c": [

 "base64encodedvalue==",

 "base64encodedvalue=="

],

 "typ": "voucher-jws+json"

}

¶

¶

initial enrollment aims to request a generic certificate, no

certificate attributes are provided to the pledge.

Triggering the pledge to create the enrollment-request is done using

HTTP POST on the defined pledge endpoint: "/.well-known/brski/te"

The registrar-agent PER trigger Content-Type header is: application/

json with an empty body by default. Note that using HTTP POST allows

for an empty body, but also to provide additional data, like CSR

attributes or information about the enroll type "enroll-generic-

cert" or "re-enroll-generic-cert". The "enroll-generic-cert" case is

shown in Figure 7.

Figure 7: Example of trigger to create a PER

6.1.4. Pledge Enrollment-Request (PER) - Response

In the following the enrollment is described as initial enrollment

with an empty HTTP POST body.

Upon receiving the enrollment trigger, the pledge SHALL construct

the PER as authenticated self-contained object. The CSR already

assures POP of the private key corresponding to the contained public

key. In addition, based on the additional signature using the

IDevID, POI is provided. Here, a JOSE object is being created in

which the body utilizes the YANG module ietf-ztp-types with the

grouping for csr-grouping for the CSR as defined in

[I-D.ietf-netconf-sztp-csr].

Depending on the capability of the pledge, it constructs the pledge

enrollment-request (PER) as plain PKCS#10. Note, the focus in this

use case is placed on PKCS#10 as PKCS#10 can be transmitted in

different enrollment protocols in the infrastructure like EST, CMP,

CMS, and SCEP. If the pledge has already implemented an enrollment

protocol, it may leverage that functionality for the creation of the

CSR. Note, [I-D.ietf-netconf-sztp-csr] also allows for inclusion of

certification requests in different formats used by CMP or CMC.

The pledge SHOULD construct the PER as PKCS#10. In BRSKI-PRM it MUST

sign it additionally with its IDevID credentials to provide proof-

of-identity bound to the PKCS#10 as described below.

If the pledge is unable to construct the PER it SHOULD respond with

a HTTP 4xx/5xx error code to the registrar-agent to indicate that it

is not able to create the PER.

¶

¶

¶

{

 "enroll-type" : "enroll-generic-cert"

}

¶

¶

¶

¶

¶

The following 4xx client error codes MAY be used:

400 Bad Request: if the pledge detected an error in the format of

the request or detected invalid JSON even though the PER media

type was set to application/json.

403 Forbidden: if the pledge detected that one or more security

parameters (if provided) from the trigger message to create the

PER are not valid.

406 Not Acceptable: if the request's Accept header indicates a

type that is unknown or unsupported. For example, a type other

than application/jose+json.

415 Unsupported Media Type: if the request's Content-Type header

indicates a type that is unknown or unsupported. For example, a

type other than 'application/json'.

A successful enrollment will result in a generic LDevID certificate

for the pledge in the new domain, which can be used to request

further (application specific) LDevID certificates if necessary for

operation. The registrar-agent SHALL use the endpoints specified in

this document.

[I-D.ietf-netconf-sztp-csr] considers PKCS#10 but also CMP and CMC

as certification request format. Note that the wrapping signature is

only necessary for plain PKCS#10 as other request formats like CMP

and CMS support the signature wrapping as part of their own

certificate request format.

The registrar-agent enrollment-request Content-Type header for a

signature-wrapped PKCS#10 is: application/jose+json

The header of the pledge enrollment-request SHALL contain the

following parameter as defined in [RFC7515]:

alg: algorithm used for creating the object signature.

x5c: contains the base64-encoded pledge IDevID certificate. It

may optionally contain the certificate chain for this

certificate.

The body of the pledge enrollment-request SHOULD contain a P10

parameter (for PKCS#10) as defined for ietf-ztp-types:p10-csr in

[I-D.ietf-netconf-sztp-csr]:

P10: contains the base64-encoded PKCS#10 of the pledge.

The JOSE object is signed using the pledge's IDevID credential,

which corresponds to the certificate signaled in the JOSE header.

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

* ¶

*

¶

¶

* ¶

¶

Figure 8: Representation of PER

With the collected PVR and PER, the registrar-agent starts the

interaction with the domain registrar.

The new protected header field "created-on" is introduced to reflect

freshness of the PER. The field is marked critical "crit" to ensure

that it must be understood and validated by the receiver (here the

domain registrar) according to section 4.1.11 of [RFC7515]. It

allows the registrar to verify the timely correlation between the

PER and previously exchanged messages, i.e., created-on of PER >=

created-on of PVR >= created-on of PVR trigger.

As the registrar-agent is intended to facilitate communication

between the pledge and the domain registrar, a collection of

requests from more than one pledge is possible. This allows bulk

bootstrapping of several pledges using the same connection between

the registrar-agent and the domain registrar.

The PER in General JWS Serialization syntax

{

 "payload": "BASE64URL(ietf-ztp-types)",

 "signatures": [

 {

 "protected": "BASE64URL(UTF8(JWS Protected Header))",

 "signature": "base64encodedvalue=="

 }

]

}

Decoded Payload "ietf-ztp-types" Representation in JSON Syntax

"ietf-ztp-types": {

 "p10-csr": "base64encodedvalue=="

}

Decoded "JWS Protected Header" Representation in JSON Syntax

{

 "alg": "ES256",

 "x5c": [

 "base64encodedvalue==",

 "base64encodedvalue=="

],

 "crit":["created-on"],

 "created-on": "2022-09-13T00:00:02.000Z"

}

¶

¶

¶

6.2. Request Object Handling initiated by the Registrar-Agent on

Registrar, MASA and Domain CA

The BRSKI-PRM bootstrapping exchanges between registrar-agent and

domain registrar resemble the BRSKI exchanges between pledge and

domain registrar (pledge-initiator-mode) with some deviations.

Preconditions:

Registrar-agent: possesses its own LDevID(RegAgt) credentials of

the site domain. In addition, it MAY possess the IDevID CA

certificate of the pledge vendor/manufacturer to verify the

pledge certificate in the received request messages. It has the

address of the domain registrar through configuration or by

discovery, e.g., mDNS/DNSSD. The registrar-agent has acquired one

or more PVR and PER objects.

Registrar: possesses the IDevID CA certificate of the pledge

vendor/manufacturer and its own registrar EE credentials of the

site domain.

MASA: possesses its own vendor/manufacturer credentials (voucher

signing key, TLS server certificate) related to pledges IDevID

and MAY possess the site-specific domain CA certificate. The

latter is only necessary if the MASA needs to verify that the

domain of the Registrar is a-priori authorized to enroll a

particular pledge, or a particular type of pledge. In such case

is out of scope of this document how the MASA will obtain the

domain CA certificate. In other cases, a MASA may allow the

pledge to enroll into an anonymous and/or yet-unknown domain and

then the a-priori possession of the domain CA certificate is not

needed.

¶

¶

*

¶

*

¶

*

¶

Registrar- Domain Domain Vendor
agent Registrar CA Service
(RegAgt) (JRC) (MASA)

| Internet
[voucher + enrollment]
[PVR PER available]

mTLS
[Reg-Agt authenticated
and authorized?]

Voucher-Req
(PVR)

[Reg-Agt authorized?]
[accept device?]
[contact vendor]

mTLS
Voucher-Req

(RVR)
[extract DomainID]
[update audit log]

Voucher
Voucher

Enroll-Req
(PER)

mTLS
Enroll-Req
(RER)
Enroll-Resp

Enroll-Resp

caCerts-Req
caCerts-Res

Figure 9: Request processing between registrar-agent and bootstrapping

services

The registrar-agent establishes a TLS connection to the registrar.

As already stated in [RFC8995], the use of TLS 1.3 (or newer) is

encouraged. TLS 1.2 or newer is REQUIRED on the registrar-agent

side. TLS 1.3 (or newer) SHOULD be available on the registrar, but

TLS 1.2 MAY be used. TLS 1.3 (or newer) SHOULD be available on the

MASA, but TLS 1.2 MAY be used.

6.2.1. Connection Establishment (Registrar-Agent to Registrar)

In contrast to BRSKI [RFC8995] TLS client authentication to the

registrar is achieved by using registrar-agent LDevID(RegAgt)

¶

¶

credentials instead of pledge IDevID credentials. Consequently BRSKI

(pledge-initiator-mode) is distinguishable from BRSKI-PRM (pledge-

responder-mode) by the registrar. The registrar SHOULD verify that

the registrar-agent is authorized to establish a connection to the

registrar by TLS client authentication using LDevID(RegAgt)

credentials. If the connection from registrar-agent to registrar is

established, the authorization SHALL be verified again based on

agent-signed-data contained in the PVR. This ensures that the pledge

has been triggered by an authorized registrar-agent.

The registrar can receive request objects in different formats as

defined in [RFC8995]. Specifically, the registrar will receive JSON-

in-JWS objects generated by the pledge for voucher-request and

enrollment-request (instead of BRSKI voucher-request as CMS-signed

JSON and enrollment-request as PKCS#10).

The registrar-agent SHALL send the PVR by HTTP POST to the registrar

endpoint: "/.well-known/brski/requestvoucher"

The Content-Type header field for JSON-in-JWS PVR is: application/

voucher-jws+json (see Figure 6 for the content definition), as

defined in [I-D.ietf-anima-jws-voucher].

The registrar-agent SHOULD set the Accept field in the request-

header indicating the acceptable Content-Type for the voucher-

response. The voucher-response Content-Type header field SHOULD be

set to application/voucher-jws+json as defined in

[I-D.ietf-anima-jws-voucher].

6.2.2. Pledge-Voucher-Request (PVR) Processing by Registrar

After receiving the PVR from registrar-agent, the registrar SHALL

perform the verification as defined in section 5.3 of [RFC8995]. In

addition, the registrar SHALL verify the following parameters from

the PVR:

agent-provided-proximity-registrar-cert: MUST contain registrar's

own registrar EE certificate to ensure the registrar in proximity

of the registrar-agent is the desired registrar for this PVR.

agent-signed-data: The registrar MUST verify that the agent

provided data has been signed with the LDevID(RegAgt) credentials

indicated in the "kid" JOSE header parameter. The registrar MUST

verify that the LDevID(ReAgt) certificate, corresponding to the

signature, is still valid. If the certificate is already expired,

the registrar SHALL reject the request. Validity of used signing

certificates at the time of signing the agent-signed-data is

necessary to avoid that a rogue registrar-agent generates agent-

signed-data objects to onboard arbitrary pledges at a later point

in time, see also Section 10.3. The registrar MUST fetch the

¶

¶

¶

¶

¶

¶

*

¶

*

LDevID(RegAgt) certificate, based on the provided

SubjectKeyIdentifier (SKID) contained in the "kid" header

parameter of the agent-signed-data, and perform this

verification. This requires, that the registrar can fetch the

LDevID(RegAgt) certificate data (including intermediate CA

certificates if existent) based on the SKID.

If the registrar is unable to validate the PVR it SHOULD respond

with a HTTP 4xx/5xx error code to the registrar-agent.

The following 4xx client error codes SHOULD be used:

403 Forbidden: if the registrar detected that one or more

security related parameters are not valid.

404 Not Found status code if the pledge provided information

could not be used with automated allowance, as described in

section 5.3 of [RFC8995].

406 Not Acceptable: if the Content-Type indicated by the Accept

header is unknown or unsupported.

If the validation succeeds, the registrar SHOULD accept the PVR to

join the domain as defined in section 5.3 of [RFC8995]. The

registrar then establishes a TLS connection to MASA as described in

section 5.4 of [RFC8995] to obtain a voucher for the pledge.

6.2.3. Registrar-Voucher-Request (RVR) Processing (Registrar to MASA)

The registrar SHALL construct the payload of the RVR as defined in

[RFC8995]. The RVR encoding SHALL be JSON-in-JWS as defined in

[I-D.ietf-anima-jws-voucher].

The header of the RVR SHALL contain the following parameter as

defined for JWS [RFC7515]:

alg: algorithm used to create the object signature

x5c: base64-encoded registrar LDevID certificate(s) (It

optionally contains the certificate chain for this certificate)

The payload of the RVR MUST contain the following parameter as part

of the voucher-request as defined in [RFC8995]:

created-on: current date and time in yang:date-and-time format of

RVR creation

nonce: copied from the PVR

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

* ¶

*

¶

¶

*

¶

* ¶

serial-number: product-serial-number of pledge. The registrar

MUST verify that the IDevID certificate subject serialNumber of

the pledge (X520SerialNumber) matches the serial-number value in

the PVR. In addition, it MUST be equal to the serial-number value

contained in the agent-signed data of PVR.

assertion: voucher assertion requested by the pledge (agent-

proximity). The registrar provides this information to assure

successful verification of agent proximity based on the agent-

signed-data.

prior-signed-voucher-request: PVR as in [RFC8995]

The RVR MUST be enhanced with the following parameter, when the

assertion "agent-proximity" is requested, as defined in

[I-D.ietf-anima-rfc8366bis]:

agent-sign-cert: LDevID(RegAgt) certificate or the LDevID(RegAgt)

certificate including certificate chain. In the context of this

document it is a JSON array of base64encoded certificate

information and handled in the same way as x5c header objects.

If only a single object is contained in the x5c it MUST be the

base64-encoded LDevID(RegAgt) certificate. If multiple certificates

are included in the x5c, the first MUST be the base64-encoded

LDevID(RegAgt) certificate.

The MASA uses this information for verification that the registrar-

agent is in proximity to the registrar to state the corresponding

assertion "agent-proximity".

The object is signed using the registrar EE credentials, which

corresponds to the certificate referenced in the JOSE header.

*

¶

*

¶

* ¶

¶

*

¶

¶

¶

¶

Figure 10: Representation of RVR

The registrar SHALL send the RVR to the MASA endpoint by HTTP POST:

"/.well-known/brski/requestvoucher"

The RVR Content-Type header field is defined in

[I-D.ietf-anima-jws-voucher] as: application/voucher-jws+json

The registrar SHOULD set the Accept header of the RVR indicating the

desired media type for the voucher-response. The media type is

application/voucher-jws+json as defined in

[I-D.ietf-anima-jws-voucher].

The RVR in General JWS Serialization syntax

{

 "payload": "BASE64URL(ietf-voucher-request-prm:voucher)",

 "signatures": [

 {

 "protected": "BASE64URL(UTF8(JWS Protected Header))",

 "signature": "base64encodedvalue=="

 }

]

}

Decoded payload "ietf-voucher-request-prm:voucher" representation

 in JSON syntax

"ietf-voucher-request-prm:voucher": {

 "created-on": "2022-01-04T02:37:39.235Z",

 "nonce": "eDs++/FuDHGUnRxN3E14CQ==",

 "serial-number": "callee4711",

 "assertion": "agent-proximity",

 "prior-signed-voucher-request": "base64encodedvalue==",

 "agent-sign-cert": [

 "base64encodedvalue==",

 "base64encodedvalue==",

 "..."

]

}

Decoded "JWS Protected Header" representation in JSON syntax

{

 "alg": "ES256",

 "x5c": [

 "base64encodedvalue==",

 "base64encodedvalue=="

],

 "typ": "voucher-jws+json"

}

¶

¶

¶

Once the MASA receives the RVR it SHALL perform the verification as

described in section 5.5 in [RFC8995].

In addition, the following processing SHALL be performed for PVR

contained in RVR "prior-signed-voucher-request" field:

agent-provided-proximity-registrar-cert: The MASA MAY verify that

this field contains the registrar EE certificate. If so, it MUST

correspond to the registrar EE credentials used to sign the RVR.

Note: Correspond here relates to the case that a single registrar

EE certificate is used or that different registrar EE

certificates are used, which are issued by the same CA.

agent-signed-data: The MASA MAY verify this data to issue "agent-

proximity" assertion. If so, the agent-signed-data MUST contain

the pledge product-serial-number, contained in the "serial-

number" field of the PVR (from "prior-signed-voucher-request"

field) and also in "serial-number" field of the RVR. The

LDevID(RegAgt) certificate to be used for signature verification

is identified by the "kid" parameter of the JOSE header. If the

assertion "agent-proximity" is requested, the RVR MUST contain

the corresponding LDevID(RegAgt) certificate data in the "agent-

sign-cert" field of the RVR. It MUST be verified by the MASA to

the same domain CA as the registrar EE certificate. If the

"agent-sign-cert" field is not set, the MASA MAY state a lower

level assertion value, e.g.: "logged" or "verified". Note: Sub-CA

certificate(s) MUST also be carried by "agent-sign-cert", in case

the LDevID(RegAgt) certificate is issued by a sub-CA and not the

domain CA known to the MASA. As the "agent-sign-cert" field is

defined as array (x5c), it can handle multiple certificates.

If validation fails, the MASA SHOULD respond with an HTTP 4xx client

error status code to the registrar. The HTTP error status codes are

kept the same as defined in section 5.6 of [RFC8995] and comprise

the codes: 403, 404, 406, and 415.

6.2.4. Voucher Issuance by MASA

The expected voucher-response format for BRSKI-PRM (pledge-

responder-mode) application/voucher-jws+json as defined in

[I-D.ietf-anima-jws-voucher] SHOULD be applied. If the MASA detects

that the Accept header of the PVR does not match the application/

voucher-jws+json it SHOULD respond with the HTTP status code 406 Not

Acceptable as the pledge will not be able to parse the response. The

voucher syntax is described in detail by [RFC8366]. Figure 11 shows

an example of the contents of a voucher.

¶

¶

*

¶

*

¶

¶

¶

Figure 11: Representation of MASA issued voucher

The MASA returns the voucher-response (voucher) to the registrar.

6.2.5. MASA issued Voucher Processing by Registrar

After receiving the voucher the registrar SHOULD evaluate it for

transparency and logging purposes as outlined in section 5.6 of

[RFC8995]. The registrar MUST add an additional signature to the

MASA provided voucher using its registrar credentials. The signature

is created by signing the original "JWS Payload" produced by MASA

and the registrar added "JWS Protected Header" using the registrar

EE credentials (see [RFC7515], section 5.2 point 8. The x5c

component of the "JWS Protected Header" MUST contain the registrar

EE certificate as well as potential intermediate CA certificates up

to the pinned domain certificate. The pinned domain certificate is

already contained in the voucher payload ("pinned-domain-cert").

The MASA issued voucher in General JWS Serialization syntax

{

 "payload": "BASE64URL(ietf-voucher:voucher)",

 "signatures": [

 {

 "protected": "BASE64URL(UTF8(JWS Protected Header))",

 "signature": "base64encodedvalue=="

 }

]

}

Decoded payload "ietf-voucher:voucher" representation in

 JSON syntax

"ietf-voucher:voucher": {

 "assertion": "agent-proximity",

 "serial-number": "callee4711",

 "nonce": "base64encodedvalue==",

 "created-on": "2022-01-04T00:00:02.000Z",

 "pinned-domain-cert": "base64encodedvalue=="

}

Decoded "JWS Protected Header" representation in JSON syntax

{

 "alg": "ES256",

 "x5c": [

 "base64encodedvalue==",

 "base64encodedvalue=="

],

 "typ": "voucher-jws+json"

}

¶

¶

This signature provides POP of the private key corresponding to the

registrar EE certificate the pledge received in the trigger for the

PVR (see Figure 4). The registrar MUST use the same registrar EE

credentials used for authentication in the TLS handshake to

authenticate towards the registrar-agent. This ensures that the same

registrar EE certificate can be used to verify the signature as

transmitted in the voucher-request as also transferred in the PVR in

the "agent-provided-proximity-registrar-cert". Figure 12 below

provides an example of the voucher with two signatures.¶

Figure 12: Representation of MASA issued voucher with additional

registrar signature

The MASA issued voucher with additional registrar signature in

 General JWS Serialization syntax

{

 "payload": "BASE64URL(ietf-voucher:voucher)",

 "signatures": [

 {

 "protected": "BASE64URL(UTF8(JWS Protected Header (MASA)))",

 "signature": "base64encodedvalue=="

 },

 {

 "protected": "BASE64URL(UTF8(JWS Protected Header (Reg)))",

 "signature": "base64encodedvalue=="

 }

]

}

Decoded payload "ietf-voucher:voucher" representation in

 JSON syntax

"ietf-voucher:voucher": {

 "assertion": "agent-proximity",

 "serial-number": "callee4711",

 "nonce": "base64encodedvalue==",

 "created-on": "2022-01-04T00:00:02.000Z",

 "pinned-domain-cert": "base64encodedvalue=="

}

Decoded "JWS Protected Header (MASA)" representation in JSON syntax

{

 "alg": "ES256",

 "x5c": [

 "base64encodedvalue==",

 "base64encodedvalue=="

],

 "typ": "voucher-jws+json"

}

Decoded "JWS Protected Header (Reg)" representation in JSON syntax

{

 "alg": "ES256",

 "x5c": [

 "base64encodedvalue==",

 "base64encodedvalue=="

]

}

Depending on the security policy of the operator, this signature can

also be interpreted by the pledge as explicit authorization of the

registrar to install the contained trust anchor. The registrar sends

the voucher to the registrar-agent.

6.2.6. Pledge Enrollment-Request (PER) Processing (Registrar-Agent to

Registrar)

After receiving the voucher, the registrar-agent sends the PER to

the registrar. Deviating from BRSKI the PER is not a raw PKCS#10. As

the registrar-agent is involved in the exchange, the PKCS#10 is

wrapped in a JWS object by the pledge and signed with pledge's

IDevID to ensure proof-of-identity as outlined in Figure 8.

EST [RFC7030] standard endpoints (/simpleenroll, /simplereenroll, /

serverkeygen, /cacerts) on the registrar cannot be used for BRSKI-

PRM. This is caused by the utilization of signature wrapped-objects

in BRSKI-PRM. As EST requires to sent a raw PKCS#10 request to e.g.,

"/.well-known/est/simpleenroll" endpoint, this document makes an

enhancement by utilizing EST but with the exception to transport a

signature wrapped PKCS#10 request. Therefore a new endpoint for

BRSKI-PRM on the registrar is defined as "/.well-known/brski/

requestenroll"

The Content-Type header of PER is: application/jose+json.

This is a deviation from the Content-Type header values used in

[RFC7030] and results in additional processing at the domain

registrar (as EST server). Note, the registrar is already aware that

the bootstrapping is performed in a pledge-responder-mode due to the

use of the LDevID(RegAgt) certificate for TLS and the provided PVR

as JSON-in-JWS object.

If the registrar receives a PER with Content-Type header:

application/jose+json, it MUST verify the wrapping signature

using the certificate indicated in the JOSE header.

The registrar verifies that the pledge's certificate (here

IDevID), carried in "x5c" header field, is accepted to join the

domain after successful validation of the PVR.

If both succeed, the registrar utilizes the PKCS#10 request

contained in the JWS object body as "P10" parameter of "ietf-

sztp-csr:csr" for further processing of the enrollment-request

with the corresponding domain CA. It creates a registrar

enrollment-request (RER) by utilizing the protocol expected by

the domain CA. The domain registrar may either directly forward

the provided PKCS#10 request to the CA or provide additional

information about attributes to be included by the CA into the

requested LDevID certificate. The approach of sending this

¶

¶

¶

¶

¶

*

¶

*

¶

*

information to the CA depends on the utilized certificate

management protocol between the RA and the CA and is out of scope

for this document.

The registrar-agent SHALL send the PER to the registrar by HTTP POST

to the endpoint: "/.well-known/brski/requestenroll"

The registrar SHOULD respond with an HTTP 200 OK in the success case

or fail with HTTP 4xx/5xx status codes as defined by the HTTP

standard.

A successful interaction with the domain CA will result in a pledge

LDevID certificate, which is then forwarded by the registrar to the

registrar-agent using the Content-Type header: application/pkcs7-

mime.

6.2.7. Request Wrapped-CA-certificate(s) (Registrar-Agent to

Registrar)

As the pledge will verify it own certificate LDevID certificate when

received, it also needs the corresponding CA certificates. This is

done in EST [RFC7030] using the "/.well-known/est/cacerts" endpoint,

which provides the CA certificates over a TLS protected connection.

BRSKI-PRM requires a signature wrapped CA certificate object, to

avoid that the pledge can be provided with arbitrary CA certificates

in an authorized way. The registrar signed CA certificate object

will allow the pledge to verify the authorization to install the

received CA certificate(s). As the CA certificate(s) are provided to

the pledge after the voucher, the pledge has the required

information (the domain certificate) to verify the wrapped CA

certificate object.

To support registrar-agents requesting a signature wrapped CA

certificate(s) object, a new endpoint for BRSKI-PRM is defined on

the registrar: "/.well-known/brski/wrappedcacerts"

The registrar-agent SHALL requests the EST CA trust anchor database

information (in form of CA certificates) by HTTP GET.

The Content-Type header of the response SHALL be: application/

jose+json.

This is a deviation from the Content-Type header values used in EST

[RFC7030] and results in additional processing at the domain

registrar (as EST server). The additional processing is to sign the

CA certificate(s) information using the registrar EE credentials.

This results in a signed CA certificate(s) object (JSON-in-JWS), the

CA certificates are provided as base64 encoded "x5b" in the JWS

payload.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 13: Representation of CA certificate(s) data with additional

registrar signature

6.3. Response Object Supply by Registrar-Agent to Pledge

It is assumed that the registrar-agent already obtained the

bootstrapping response objects from the domain registrar and can

supply them to the pledge:

voucher-response - Voucher (from MASA via Registrar)

wrapped-CA-certificate(s)-response - CA certificates

enrollment-response - LDevID (Pledge) certificate (from CA via

registrar)

The registrar-agent will re-connect to the pledge. To contact the

pledge, it may either discover the pledge as described in

Section 5.3.2 or use stored information from the first contact with

the pledge.

The CA certificates data with additional registrar signature in

 General JWS Serialization syntax

{

 "payload": "BASE64URL(certs)",

 "signatures": [

 {

 "protected": "BASE64URL(UTF8(JWS Protected Header))",

 "signature": "base64encodedvalue=="

 }

]

}

Decoded payload "certs" representation in JSON syntax

{

 "x5b": [

 "base64encodedvalue==",

 "base64encodedvalue=="

]

}

Decoded "JWS Protected Header" representation in JSON syntax

{

 "alg": "ES256",

 "x5c": [

 "base64encodedvalue==",

 "base64encodedvalue=="

]

}

¶

* ¶

* ¶

*

¶

¶

Preconditions in addition to Section 6.2:

Registrar-agent: possesses voucher and LDevID certificate and

optionally CA certificates.

Pledge Registrar-
Agent
(RegAgt)

[voucher and enrollment]
[responses available]

supply voucher

voucher status - store
pledge voucher status

supply CA certificates

supply enrollment-response

enroll status - store
pledge enroll status

supply CAcerts (optional)

Figure 14: Responses and status handling between pledge and registrar-

agent

The content of the response objects is defined by the voucher

[RFC8366] and the certificate [RFC5280].

The registrar-agent provides the information via distinct pledge

endpoints as following.

6.3.1. Pledge: Voucher-Response Processing

The registrar-agent SHALL send the voucher-response to the pledge by

HTTP POST to the endpoint: "/.well-known/brski/sv".

The registrar-agent voucher-response Content-Type header is

application/voucher-jws+json and contains the voucher as provided by

the MASA. An example is given in Figure 11 for a MASA signed voucher

and in Figure 12 for the voucher with the additional signature of

the registrar.

A nonceless voucher may be accepted as in [RFC8995] and may be

allowed by a manufacture's pledge implementation.

¶

*

¶

¶

¶

¶

¶

¶

¶

To perform the validation of multiple signatures on the voucher

object, the pledge SHALL perform the signature verification in the

following order:

Verify MASA signature as described in section 5.6.1 in

[RFC8995]

Install trust anchor contained in the voucher ("pinned-domain-

cert") provisionally

Verify registrar signature as described in section 5.6.1 in

[RFC8995], but take the registrar certificate instead of the

MASA certificate for the verification

Validate the registrar certificate received in the agent-

provided-proximity-registrar-cert in the pledge-voucher-request

trigger request (in the field "agent-provided-proximity-

registrar-cert").

If all steps stated above have been performed successfully, the

pledge SHALL terminate the "PROVISIONAL accept" state for the domain

trust anchor and the registrar EE certificate.

If an error occurs during the verification and validation of the

voucher, this SHALL be reported in the reason field of the pledge

voucher status.

6.3.2. Pledge: Voucher Status Telemetry

After voucher verification and validation the pledge MUST reply with

a status telemetry message as defined in section 5.7 of [RFC8995].

The pledge generates the voucher-status and provides it as signed

JSON-in-JWS object in response to the registrar-agent.

The response has the Content-Type application/jose+json and is

signed using the IDevID of the pledge as shown in Figure 15. As the

reason field is optional (see [RFC8995]), it MAY be omitted in case

of success.

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

¶

¶

¶

Figure 15: Representation of pledge voucher status telemetry

6.3.3. Pledge: Wrapped-CA-Certificate(s) Processing

The registrar-agent SHALL provide the set of CA certificates

requested from the registrar to the pledge by HTTP POST to the

endpoint: "/.well-known/brski/cc".

As the CA certificate provisioning is crucial from a security

perspective, this provisioning SHALL only be done, if the voucher-

response has been successfully processed by pledge.

The supply CA certificates message has the Content-Type application/

jose+json and is signed using the credential of the registrar pledge

as shown in Figure 13.

The "pledge-voucher-status" telemetry in general JWS

 serialization syntax

{

 "payload": "BASE64URL(pledge-voucher-status)",

 "signatures": [

 {

 "protected": "BASE64URL(UTF8(JWS Protected Header))",

 "signature": "base64encodedvalue=="

 }

]

}

Decoded payload "pledge-voucher-status" representation in JSON

 syntax

{

 "version": 1,

 "status": true,

 "reason": "Voucher successfully processed",

 "reason-context": {

 "additional": "JSON"

 }

}

Decoded "JWS Protected Header" representation in JSON syntax

{

 "alg": "ES256",

 "x5c": [

 "base64encodedvalue==",

 "base64encodedvalue=="

]

}

¶

¶

¶

The CA certificates are provided as base64 encoded "x5b". The pledge

SHALL install the received CA certificates as trust anchor after

successful verification of the registrar's signature.

The following 4xx client error codes SHOULD be used by the pledge:

403 Forbidden: if the validation of the wrapping signature or

another security check fails.

415 Unsupported Media Type: if the Content-Type of the request is

in an unknown or unsupported format.

400 Bad Request: if the pledge detects errors in the encoding of

the payload.

6.3.4. Pledge: Enrollment-Response Processing

The registrar-agent SHALL send the enroll-response to the pledge by

HTTP POST to the endpoint: "/.well-known/brski/se".

The registrar-agent enroll-response Content-Type header, when using

EST [RFC7030] as enrollment protocol between the registrar-agent and

the infrastructure is: application/pkcs7-mime. Note: It only

contains the LDevID certificate for the pledge, not the certificate

chain.

Upon reception, the pledge SHALL verify the received LDevID

certificate. The pledge SHALL generate the enroll status and provide

it in the response to the registrar-agent. If the verification of

the LDevID certificate succeeds, the status SHALL be set to true,

otherwise to FALSE.

6.3.5. Pledge: Enrollment-Status Telemetry

The pledge MUST reply with a status telemetry message as defined in

section 5.9.4 of [RFC8995]. As for the other objects, the enroll-

status is signed and results in a JSON-in-JWS object. If the pledge

verified the received LDevID certificate successfully it SHALL sign

the response using its new LDevID credentials as shown in Figure 16.

In the failure case, the pledge SHALL use the available IDevID

credentials. As the reason field is optional, it MAY be omitted in

case of success.

The response has the Content-Type application/jose+json.

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

Figure 16: Representation of pledge enroll status telemetry

Once the registrar-agent has collected the information, it can

connect to the registrar to provide it with the status responses.

6.3.6. Telemetry Voucher Status and Enroll Status Handling (Registrar-

Agent to Domain Registrar)

The following description requires that the registrar-agent has

collected the status information from the pledge. It SHALL provide

the status information to the registrar for further processing.

Preconditions in addition to Section 6.2:

Registrar-agent: possesses voucher status and enroll status from

pledge.

The "pledge-enroll-status" telemetry in General JWS Serialization

 syntax

{

 "payload": "BASE64URL(pledge-enroll-status)",

 "signatures": [

 {

 "protected": "BASE64URL(UTF8(JWS Protected Header))",

 "signature": "base64encodedvalue=="

 }

]

}

Decoded payload "pledge-enroll-status" representation in

 JSON syntax

{

 "version": 1,

 "status": true,

 "reason": "Enrollment response successfully processed",

 "reason-context": {

 "additional": "JSON"

 }

}

Decoded "JWS Protected Header" representation in JSON syntax

{

 "alg": "ES256",

 "x5c": [

 "base64encodedvalue==",

 "base64encodedvalue=="

]

}

¶

¶

¶

*

¶

Registrar Domain Domain Vendor
Agent Registrar CA Service
RegAgt) (JRC) (MASA)

| Internet
[voucher + enroll]
[status info available]

mTLS

Voucher Status
req-device audit log
device audit log

[verify audit log]

Enroll Status

Figure 17: Bootstrapping status handling

The registrar-agent MUST provide the collected pledge voucher status

to the registrar. This status indicates if the pledge could process

the voucher successfully or not.

If the TLS connection to the registrar was closed, the registrar-

agent establishes a TLS connection with the registrar as stated in

Section 6.2.

The registrar-agent sends the pledge voucher status without

modification to the registrar with an HTTP-over-TLS POST using the

registrar endpoint "/.well-known/brski/voucher_status". The Content-

Type header is kept as application/jose+json as described in

Figure 14 and depicted in the example in Figure 15.

The registrar SHALL verify the signature of the pledge voucher

status and validate that it belongs to an accepted device in his

domain based on the contained "serial-number" in the IDevID

certificate referenced in the header of the voucher status.

According to [RFC8995] section 5.7, the registrar SHOULD respond

with an HTTP 200 OK in the success case or fail with HTTP 4xx/5xx

status codes as defined by the HTTP standard. The registrar-agent

may use the response to signal success / failure to the service

technician operating the registrar agent. Within the server logs the

server SHOULD capture this telemetry information.

The registrar SHOULD proceed with collecting and logging status

information by requesting the MASA audit-log from the MASA service

as described in section 5.8 of [RFC8995].

¶

¶

¶

¶

¶

¶

¶

The registrar-agent MUST provide the pledge's enroll status to the

registrar. The status indicates the pledge could process the enroll-

response (certificate) and holds the corresponding private key.

The registrar-agent sends the pledge enroll status without

modification to the registrar with an HTTP-over-TLS POST using the

registrar endpoint "/.well-known/brski/enrollstatus". The Content-

Type header is kept as application/jose+json as described in

Figure 14 and depicted in the example in Figure 16.

The registrar MUST verify the signature of the pledge enroll status.

Also, the registrar SHALL validate that the pledge is an accepted

device in his domain based on the contained product-serial-number in

the LDevID certificate referenced in the header of the enroll

status. The registrar SHOULD log this event. In case the pledge

enroll status indicates a failure, the pledge was unable to verify

the received LDevID certificate and therefore signed the enroll

status with its IDevID credential. Note that the verification of a

signature of the status information is an addition to the described

handling in section 5.9.4 of [RFC8995].

According to [RFC8995] section 5.9.4, the registrar SHOULD respond

with an HTTP 200 OK in the success case or fail with HTTP 4xx/5xx

status codes as defined by the HTTP standard. Based on the failure

case the registrar MAY decide that for security reasons the pledge

is not allowed to reside in the domain. In this case the registrar

MUST revoke the certificate. The registrar-agent may use the

response to signal success / failure to the service technician

operating the registrar agent. Within the server log the registrar

SHOULD capture this telemetry information.

6.4. Request Pledge-Status by Registrar-Agent from Pledge

The following assumes that a registrar-agent may need to query the

status of a pledge. This information may be useful to solve errors,

when the pledge was not able to connect to the target domain during

the bootstrapping. The pledge MAY provide a dedicated endpoint to

accept status-requests.

Preconditions:

Registrar-agent: possesses LDevID (RegAgt), list of serial

numbers of pledges to be queried and a list of corresponding

manufacturer trust anchors to be able to verify signatures

performed with the IDevID credential.

Pledge: may already possess domain credentials and

LDevID(Pledge), or may not possess one or both of these.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

Pledge Registrar-
Agent
(RegAgt)

pledge-status request

pledge-status response

Figure 18: Pledge-status handling between registrar-agent and pledge

6.4.1. Pledge-Status - Trigger (Registrar-Agent to Pledge)

The registrar-agent requests the pledge-status via HTTP POST on the

defined pledge endpoint: "/.well-known/brski/ps"

The registrar-agent Content-Type header for the pledge-status

request is: application/jose+json. It contains information on the

requested status-type, the time and date the request is created, and

the product serial-number of the pledge contacted as shown in

Figure 19. The pledge-status request is signed by registrar-agent

using the LDevID(RegAgt) credential.

The following Concise Data Definition Language (CDDL) [RFC8610]

explains the structure of the format for the pledge-status request.

It is defined following the status telemetry definitions in BRSKI

[RFC8995]. Consequently, format and semantics of pledge-status

requests below are for version 1. The version field is included to

permit significant changes to the pledge-status request and response

in the future. A pledge or a registrar-agent that receives a pledge-

status request with a version larger than it knows about SHOULD log

the contents and alert a human.

Figure 19: CDDL for pledge-status request

¶

¶

¶

¶

<CODE BEGINS>

 status-request = {

 "version": uint,

 "created-on": tdate ttime,

 "serial-number": text,

 "status-type": text

 }

<CODE ENDS>

The status-type defined for BRSKI-PRM is "bootstrap". This indicates

the pledge to provide current status information regarding the

bootstrapping status (voucher processing and enrollment of the

pledge into the new domain). As the pledge-status request is defined

generic, it may be used by other specifications to request further

status information, e.g., for onboarding to get further information

about enrollment of application specific LDevIDs or other

parameters. This is out of scope for this specification.

Figure 20 below shows an example for querying pledge-status using

status-type bootstrap.

Figure 20: Example of registrar-agent request of pledge-status using

status-type bootstrap

6.4.2. Pledge-Status - Response (Pledge - Registrar-Agent)

If the pledge receives the pledge-status request with status-type

"bootstrap" it SHALL react with a status response message based on

the telemetry information described in Section 6.3.

¶

¶

The registrar-agent request of "pledge-status" in general JWS

 serialization syntax

{

 "payload": "BASE64URL(status-request)",

 "signatures": [

 {

 "protected": "BASE64URL(UTF8(JWS Protected Header))",

 "signature": "base64encodedvalue=="

 }

]

}

Decoded payload "status-request" representation in JSON syntax

{

 "version": 1,

 "created-on": "2022-08-12T02:37:39.235Z",

 "serial-number": "pledge-callee4711",

 "status-type": "bootstrap"

}

Decoded "JWS Protected Header" representation in JSON syntax

{

 "alg": "ES256",

 "x5c": [

 "base64encodedvalue==",

 "base64encodedvalue=="

]

}

¶

The pledge-status response Content-Type header is application/

jose+json.

The following CDDL explains the structure of the format for the

status response, which is:

Figure 21: CDDL for pledge-status response

Different cases for pledge bootstrapping status may occur, which

SHOULD be reflected using the status enumeration. This document

specifies the status values in the context of the bootstrapping

process and credential application. Other documents may enhance the

above enumeration to reflect further status information.

The pledge-status response message is signed with IDevID or LDevID,

depending on bootstrapping state of the pledge.

"factory-default": Pledge has not been bootstrapped. Additional

information may be provided in the reason or reason-context. The

pledge signs the response message using its IDevID(Pledge).

"voucher-success": Pledge processed the voucher exchange

successfully. Additional information may be provided in the

reason or reason-context. The pledge signs the response message

using its IDevID(Pledge).

"voucher-error": Pledge voucher processing terminated with error.

Additional information may be provided in the reason or reason-

context. The pledge signs the response message using its

IDevID(Pledge).

¶

¶

<CODE BEGINS>

 status-response = {

 "version": uint,

 "status":

 "factory-default" /

 "voucher-success" /

 "voucher-error" /

 "enroll-success" /

 "enroll-error" /

 "connect-success" /

 "connect-error",

 ?"reason" : text,

 ?"reason-context": { $$arbitrary-map }

 }

<CODE ENDS>

¶

¶

*

¶

*

¶

*

¶

"enroll-success": Pledge has processed the enrollment exchange

successfully. Additional information may be provided in the

reason or reason-context. The pledge signs the response message

using its LDevID(Pledge).

"enroll-error": Pledge enrollment-response processing terminated

with error. Additional information may be provided in the reason

or reason-context. The pledge signs the response message using

its IDevID(Pledge).

The reason and the reason-context SHOULD contain the telemetry

information as described in section Section 6.3.

As the pledge is assumed to utilize the bootstrapped credential

information in communication with other peers, additional status

information is provided for the connectivity to other peers, which

may be helpful in analyzing potential error cases.

"connect-success": Pledge could successfully establish a

connection to another peer. Additional information may be

provided in the reason or reason-context. The pledge signs the

response message using its LDevID(Pledge).

"connect-error": Pledge connection establishment terminated with

error. Additional information may be provided in the reason or

reason-context. The pledge signs the response message using its

LDevID(Pledge).

The pledge-status responses are cumulative in the sense that

connect-success implies enroll-success, which in turn implies

voucher-success.

Figure 22 provides an example for the bootstrapping-status

information.

*

¶

*

¶

¶

¶

*

¶

*

¶

¶

¶

Figure 22: Example of pledge-status response

In case "factory-default" the pledge does not possess the domain

certificate resp. the domain trust-anchor. It will not be able to

verify the signature of the registrar-agent in the bootstrapping-

status request. In cases "vouchered" and "enrolled" the pledge

already possesses the domain certificate (has domain trust-anchor)

and can therefore validate the signature of the registrar-agent. If

validation of the JWS signature fails, the pledge SHOULD respond

with the HTTP 403 Forbidden status code. The HTTP 406 Not Acceptable

status code SHOULD be used, if the Accept header in the request

indicates an unknown or unsupported format. The HTTP 415 Unsupported

Media Type status code SHOULD be used, if the Content-Type of the

request is an unknown or unsupported format. The HTTP 400 Bad

Request status code SHOULD be used, if the Accept/Content-Type

headers are correct but nevertheless the status-request cannot be

correctly parsed.

The pledge "status-response" in General JWS Serialization syntax

{

 "payload": "BASE64URL(status-response)",

 "signatures": [

 {

 "protected": "BASE64URL(UTF8(JWS Protected Header))",

 "signature": "base64encodedvalue=="

 }

]

}

Decoded payload "status-response" representation in JSON syntax

{

 "version": 1,

 "status": "enroll-success",

 "reason-context": {

 "additional" : "JSON"

 }

}

Decoded "JWS Protected Header" representation in JSON syntax

{

 "alg": "ES256",

 "x5c": [

 "base64encodedvalue==",

 "base64encodedvalue=="

],

 "typ": "jose+json

}

¶

7. Artifacts

7.1. Voucher-Request Artifact

[I-D.ietf-anima-rfc8366bis] extends the voucher-request as defined

in [RFC8995] to include additional fields necessary for handling

bootstrapping in the pledge-responder-mode. These additional fields

are defined in Section 6.1 as:

agent-signed-data to provide a JSON encoded artifact from the

involved registrar-agent, which allows the registrar to verify

the agent's involvement

agent-provided-proximity-registrar-cert to provide the registrar

certificate visible to the registrar-agent, comparable to the

registrar-proximity-certificate used in [RFC8995]

agent-signing certificate to optionally provide the registrar

agent signing certificate.

Examples for the application of these fields in the context of a PVR

are provided in Section 6.2.

8. IANA Considerations

This document requires the following IANA actions.

8.1. BRSKI .well-known Registry

IANA is requested to enhance the Registry entitled: "BRSKI Well-

Known URIs" with the following endpoints:

9. Privacy Considerations

In general, the privacy considerations of [RFC8995] apply for BRSKI-

PRM also. Further privacy aspects need to be considered for:

the introduction of the additional component registrar-agent

¶

*

¶

*

¶

*

¶

¶

¶

¶

 URI Description Reference

 tv create pledge voucher-request [THISRFC]

 te create pledge enrollment-request [THISRFC]

 sv supply voucher-response [THISRFC]

 se supply enrollment-response [THISRFC]

 cc supply CA certificates to pledge [THISRFC]

 ps query pledge status [THISRFC]

 requestenroll supply PER to registrar [THISRFC]

 wrappedcacerts request wrapped CA certificates [THISRFC]

¶

¶

* ¶

no transport layer security between registrar-agent and pledge

The credential used by the registrar-agent to sign the data for the

pledge should not contain any personal information. Therefore, it is

recommended to use an LDevID certificate associated with the

commissioning device instead of an LDevID certificate associated

with the service technician operating the device. This avoids

revealing potentially included personal information to Registrar and

MASA.

The communication between the pledge and the registrar-agent is

performed over plain HTTP. Therefore, it is subject to disclosure by

a Dolev-Yao attacker (an "oppressive observer")[onpath]. Depending

on the requests and responses, the following information is

disclosed.

the Pledge product-serial-number is contained in the trigger

message for the PVR and in all responses from the pledge. This

information reveals the identity of the devices being

bootstrapped and allows deduction of which products an operator

is using in their environment. As the communication between the

pledge and the registrar-agent may be realized over wireless

link, this information could easily be eavesdropped, if the

wireless network is unencrypted. Even if the wireless network is

encrypted, if it uses a network-wide key, then layer-2 attacks

(ARP/ND spoofing) could insert an on-path observer into the path.

the Timestamp data could reveal the activation time of the

device.

the Status data of the device could reveal information about the

current state of the device in the domain network.

10. Security Considerations

In general, the security considerations of [RFC8995] apply for

BRSKI-PRM also. Further security aspects are considered here related

to:

the introduction of the additional component registrar-agent

the reversal of the pledge communication direction (push mode,

compared to BRSKI)

no transport layer security between registrar-agent and pledge

10.1. Denial of Service (DoS) Attack on Pledge

Disrupting the pledge behavior by a DoS attack may prevent the

bootstrapping of the pledge to a new domain.

* ¶

¶

¶

*

¶

*

¶

*

¶

¶

* ¶

*

¶

* ¶

¶

A DoS attack with a faked registrar-agent may block the

bootstrapping of the pledge due to state creation on the pledge (the

pledge may produce a voucher-request, and refuse to produce another

one). One mitigation may be that the pledge does not limited the

number of voucher-requests it creates until at least one has

finished, or a single onboarding state may expire after a certain

time.

10.2. Misuse of acquired PVR and PER by Registrar-Agent

A registrar-agent that uses previously requested PVR and PER for

domain-A, may attempt to onboard the device into domain-B. This can

be detected by the domain registrar while PVR processing. The domain

registrar needs to verify that the "proximity-registrar-cert" field

in the PVR matches its own registrar EE certificate. In addition,

the domain registrar needs to verify the association of the pledge

to its domain based on the product-serial-number contained in the

PVR and in the IDevID certificate of the pledge. (This is just part

of the supply chain integration) Moreover, the domain registrar

verifies if the registrar-agent is authorized to interact with the

pledge for voucher-requests and enroll-requests, based on the

LDevID(RegAgt) certificate data contained in the PVR.

Misbinding of a pledge by a faked domain registrar is countered as

described in BRSKI security considerations [RFC8995] (section 11.4).

10.3. Misuse of Registrar-Agent Credentials

Concerns of misusage of a registrar-agent with a valid

LDevID(RegAgt), may be addressed by utilizing short-lived

certificates (e.g., valid for a day) to authenticate the registrar-

agent against the domain registrar. The LDevID(RegAgt) certificate

may be acquired by a prior BRSKI run for the registrar-agent, if an

IDevID is available on registrar-agent. Alternatively, the LDevID

may be acquired by a service technician from the domain PKI system

in an authenticated way.

In addition it is required that the LDevID(RegAgt) certificate is

valid for the complete bootstrapping phase. This avoids that a

registrar-agent could be misused to create arbitrary "agent-signed-

data" objects to perform an authorized bootstrapping of a rogue

pledge at a later point in time. In this misuse "agent-signed-data"

could be dated after the validity time of the LDevID(RegAgt)

certificate, due to missing trusted timestamp in the registrar-

agents signature. To address this, the registrar SHOULD verify the

certificate used to create the signature on "agent-signed-data".

Furthermore the registrar also verifies the LDevID(RegAgt)

certificate used in the TLS handshake with the registrar-agent. If

¶

¶

¶

¶

both certificates are verified successfully, the registrar-agent's

signature can be considered as valid.

10.4. Misuse of mDNS to obtain list of pledges

To discover a specific pledge a registrar-agent may request the

service name in combination with the product-serial-number of a

specific pledge. The pledge reacts on this if its product-serial-

number is part of the request message.

If the registrar-agent performs DNS-based Service Discovery without

a specific product-serial-number, all pledges in the domain react if

the functionality is supported. This functionality enumerates and

reveals the information of devices available in the domain. The

information about this is provided here as a feature to support the

commissioning of devices. A manufacturer may decide to support this

feature only for devices not possessing a LDevID or to not support

this feature at all, to avoid an enumeration in an operative domain.

10.5. YANG Module Security Considerations

The enhanced voucher-request described in

[I-D.ietf-anima-rfc8366bis] is based on [RFC8995], but uses a

different encoding based on [I-D.ietf-anima-jws-voucher]. The

security considerations as described in [RFC8995] section 11.7

(Security Considerations) apply.

The YANG module specified in [I-D.ietf-anima-rfc8366bis] defines the

schema for data that is subsequently encapsulated by a JOSE signed-

data Content-type as described in [I-D.ietf-anima-jws-voucher]. As

such, all of the YANG-modeled data is protected against

modification.

The use of YANG to define data structures via the [RFC8971]

"structure" statement, is relatively new and distinct from the

traditional use of YANG to define an API accessed by network

management protocols such as NETCONF [RFC6241] and RESTCONF

[RFC8040]. For this reason, these guidelines do not follow the

template described by [RFC8407] section 3.7 (Security Considerations

Section).

11. Acknowledgments

We would like to thank the various reviewers, in particular Brian E.

Carpenter, Oskar Camenzind, Hendrik Brockhaus, and Ingo Wenda for

their input and discussion on use cases and call flows. Further

review input was provided by Jesser Bouzid, Dominik Tacke, and

Christian Spindler. Special thanks to Esko Dijk for the in deep

review and the improving proposals. Support in PoC implementations

¶

¶

¶

¶

¶

¶

[I-D.ietf-anima-jws-voucher]

[I-D.ietf-anima-rfc8366bis]

[I-D.ietf-netconf-sztp-csr]

[RFC2119]

[RFC5280]

[RFC6762]

[RFC6763]

[RFC7030]

and comments resulting from the implementation was provided by Hong

Rui Li and He Peng Jia.

12. References

12.1. Normative References

Werner, T. and M. Richardson, "JWS

signed Voucher Artifacts for Bootstrapping Protocols",

Work in Progress, Internet-Draft, draft-ietf-anima-jws-

voucher-06, 22 February 2023, <https://

datatracker.ietf.org/doc/html/draft-ietf-anima-jws-

voucher-06>.

Watsen, K., Richardson, M., Pritikin,

M., Eckert, T. T., and Q. Ma, "A Voucher Artifact for

Bootstrapping Protocols", Work in Progress, Internet-

Draft, draft-ietf-anima-rfc8366bis-07, 7 February 2023,

<https://datatracker.ietf.org/doc/html/draft-ietf-anima-

rfc8366bis-07>.

Watsen, K., Housley, R., and S. Turner,

"Conveying a Certificate Signing Request (CSR) in a

Secure Zero Touch Provisioning (SZTP) Bootstrapping

Request", Work in Progress, Internet-Draft, draft-ietf-

netconf-sztp-csr-14, 2 March 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-netconf-sztp-

csr-14>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/rfc/rfc5280>.

Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,

DOI 10.17487/RFC6762, February 2013, <https://www.rfc-

editor.org/rfc/rfc6762>.

Cheshire, S. and M. Krochmal, "DNS-Based Service

Discovery", RFC 6763, DOI 10.17487/RFC6763, February

2013, <https://www.rfc-editor.org/rfc/rfc6763>.

Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,

"Enrollment over Secure Transport", RFC 7030, DOI

¶

https://datatracker.ietf.org/doc/html/draft-ietf-anima-jws-voucher-06
https://datatracker.ietf.org/doc/html/draft-ietf-anima-jws-voucher-06
https://datatracker.ietf.org/doc/html/draft-ietf-anima-jws-voucher-06
https://datatracker.ietf.org/doc/html/draft-ietf-anima-rfc8366bis-07
https://datatracker.ietf.org/doc/html/draft-ietf-anima-rfc8366bis-07
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-sztp-csr-14
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-sztp-csr-14
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-sztp-csr-14
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc6762
https://www.rfc-editor.org/rfc/rfc6762
https://www.rfc-editor.org/rfc/rfc6763

[RFC7515]

[RFC8040]

[RFC8174]

[RFC8366]

[RFC8610]

[RFC8615]

[RFC8995]

[BRSKI-PRM-abstract]

[I-D.ietf-anima-brski-ae]

10.17487/RFC7030, October 2013, <https://www.rfc-

editor.org/rfc/rfc7030>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web

Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

2015, <https://www.rfc-editor.org/rfc/rfc7515>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/rfc/rfc8040>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,

"A Voucher Artifact for Bootstrapping Protocols", RFC

8366, DOI 10.17487/RFC8366, May 2018, <https://www.rfc-

editor.org/rfc/rfc8366>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

Nottingham, M., "Well-Known Uniform Resource Identifiers

(URIs)", RFC 8615, DOI 10.17487/RFC8615, May 2019,

<https://www.rfc-editor.org/rfc/rfc8615>.

Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,

and K. Watsen, "Bootstrapping Remote Secure Key

Infrastructure (BRSKI)", RFC 8995, DOI 10.17487/RFC8995,

May 2021, <https://www.rfc-editor.org/rfc/rfc8995>.

12.2. Informative References

"Abstract BRSKI-PRM Protocol Overview", April

2022, <https://raw.githubusercontent.com/anima-wg/anima-

brski-prm/main/pics/brski_prm_overview.png>.

von Oheimb, D., Fries, S., and H.

Brockhaus, "BRSKI-AE: Alternative Enrollment Protocols in

BRSKI", Work in Progress, Internet-Draft, draft-ietf-

anima-brski-ae-03, 24 October 2022, <https://

https://www.rfc-editor.org/rfc/rfc7030
https://www.rfc-editor.org/rfc/rfc7030
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc8040
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8366
https://www.rfc-editor.org/rfc/rfc8366
https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/rfc/rfc8615
https://www.rfc-editor.org/rfc/rfc8995
https://raw.githubusercontent.com/anima-wg/anima-brski-prm/main/pics/brski_prm_overview.png
https://raw.githubusercontent.com/anima-wg/anima-brski-prm/main/pics/brski_prm_overview.png
https://datatracker.ietf.org/doc/html/draft-ietf-anima-brski-ae-03

[IEEE-802.1AR]

[onpath]

[RFC2986]

[RFC5272]

[RFC6125]

[RFC6241]

[RFC7252]

[RFC8407]

[RFC8792]

[RFC8971]

datatracker.ietf.org/doc/html/draft-ietf-anima-brski-

ae-03>.

Institute of Electrical and Electronics Engineers,

"IEEE 802.1AR Secure Device Identifier", IEEE 802.1AR,

June 2018.

"can an on-path attacker drop traffic?", n.d., <https://

mailarchive.ietf.org/arch/msg/saag/

m1r9uo4xYznOcf85Eyk0Rhut598/>.

Nystrom, M. and B. Kaliski, "PKCS #10: Certification

Request Syntax Specification Version 1.7", RFC 2986, DOI

10.17487/RFC2986, November 2000, <https://www.rfc-

editor.org/rfc/rfc2986>.

Schaad, J. and M. Myers, "Certificate Management over CMS

(CMC)", RFC 5272, DOI 10.17487/RFC5272, June 2008,

<https://www.rfc-editor.org/rfc/rfc5272>.

Saint-Andre, P. and J. Hodges, "Representation and

Verification of Domain-Based Application Service Identity

within Internet Public Key Infrastructure Using X.509

(PKIX) Certificates in the Context of Transport Layer

Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March

2011, <https://www.rfc-editor.org/rfc/rfc6125>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/rfc/rfc6241>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/rfc/

rfc7252>.

Bierman, A., "Guidelines for Authors and Reviewers of

Documents Containing YANG Data Models", BCP 216, RFC

8407, DOI 10.17487/RFC8407, October 2018, <https://

www.rfc-editor.org/rfc/rfc8407>.

Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,

"Handling Long Lines in Content of Internet-Drafts and

RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,

<https://www.rfc-editor.org/rfc/rfc8792>.

Pallagatti, S., Ed., Mirsky, G., Ed., Paragiri, S.,

Govindan, V., and M. Mudigonda, "Bidirectional Forwarding

Detection (BFD) for Virtual eXtensible Local Area Network

https://datatracker.ietf.org/doc/html/draft-ietf-anima-brski-ae-03
https://datatracker.ietf.org/doc/html/draft-ietf-anima-brski-ae-03
https://mailarchive.ietf.org/arch/msg/saag/m1r9uo4xYznOcf85Eyk0Rhut598/
https://mailarchive.ietf.org/arch/msg/saag/m1r9uo4xYznOcf85Eyk0Rhut598/
https://mailarchive.ietf.org/arch/msg/saag/m1r9uo4xYznOcf85Eyk0Rhut598/
https://www.rfc-editor.org/rfc/rfc2986
https://www.rfc-editor.org/rfc/rfc2986
https://www.rfc-editor.org/rfc/rfc5272
https://www.rfc-editor.org/rfc/rfc6125
https://www.rfc-editor.org/rfc/rfc6241
https://www.rfc-editor.org/rfc/rfc7252
https://www.rfc-editor.org/rfc/rfc7252
https://www.rfc-editor.org/rfc/rfc8407
https://www.rfc-editor.org/rfc/rfc8407
https://www.rfc-editor.org/rfc/rfc8792

[RFC9052]

[RFC9053]

[RFC9110]

[RFC9238]

(VXLAN)", RFC 8971, DOI 10.17487/RFC8971, December 2020,

<https://www.rfc-editor.org/rfc/rfc8971>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Structures and Process", STD 96, RFC 9052, DOI 10.17487/

RFC9052, August 2022, <https://www.rfc-editor.org/rfc/

rfc9052>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Initial Algorithms", RFC 9053, DOI 10.17487/RFC9053,

August 2022, <https://www.rfc-editor.org/rfc/rfc9053>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>.

Richardson, M., Latour, J., and H. Habibi Gharakheili,

"Loading Manufacturer Usage Description (MUD) URLs from

QR Codes", RFC 9238, DOI 10.17487/RFC9238, May 2022,

<https://www.rfc-editor.org/rfc/rfc9238>.

Appendix A. Examples

These examples are folded according to [RFC8792] Single Backslash

rule.

A.1. Example Pledge Voucher-Request - PVR (from Pledge to Registrar-

agent)

The following is an example request sent from a Pledge to the

Registrar-agent, in "General JWS JSON Serialization". The message

size of this PVR is: 4649 bytes

¶

¶

https://www.rfc-editor.org/rfc/rfc8971
https://www.rfc-editor.org/rfc/rfc9052
https://www.rfc-editor.org/rfc/rfc9052
https://www.rfc-editor.org/rfc/rfc9053
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9238

=============== NOTE: '\' line wrapping per RFC 8792 ================

{

 "payload":

 "eyJpZXRmLXZvdWNoZXItcmVxdWVzdC1wcm06dm91Y2hlciI6eyJhc3NlcnRpb24\

iOiJhZ2VudC1wcm94aW1pdHkiLCJzZXJpYWwtbnVtYmVyIjoiMDEyMzQ1Njc4OSIsIm5\

vbmNlIjoiTDNJSjZocHRIQ0lRb054YWFiOUhXQT09IiwiY3JlYXRlZC1vbiI6IjIwMjI\

tMDQtMjZUMDU6MTY6MTcuNzA5WiIsImFnZW50LXByb3ZpZGVkLXByb3hpbWl0eS1yZWd\

pc3RyYXItY2VydCI6Ik1JSUI0akNDQVlpZ0F3SUJBZ0lHQVhZNzJiYlpNQW9HQ0NxR1N\

NNDlCQU1DTURVeEV6QVJCZ05WQkFvTUNrMTVRblZ6YVc1bGMzTXhEVEFMQmdOVkJBY01\

CRk5wZEdVeER6QU5CZ05WQkFNTUJsUmxjM1JEUVRBZUZ3MHlNREV5TURjd05qRTRNVEp\

hRncwek1ERXlNRGN3TmpFNE1USmFNRDR4RXpBUkJnTlZCQW9NQ2sxNVFuVnphVzVsYzN\

NeERUQUxCZ05WQkFjTUJGTnBkR1V4R0RBV0JnTlZCQU1NRDBSdmJXRnBibEpsWjJsemR\

ISmhjakJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUFCQmsxNksvaTc5b1J\

rSzVZYmVQZzhVU1I4L3VzMWRQVWlaSE10b2tTZHFLVzVmbldzQmQrcVJMN1dSZmZlV2t\

5Z2Vib0pmSWxsdXJjaTI1d25oaU9WQ0dqZXpCNU1CMEdBMVVkSlFRV01CUUdDQ3NHQVF\

VRkJ3TUJCZ2dyQmdFRkJRY0RIREFPQmdOVkhROEJBZjhFQkFNQ0I0QXdTQVlEVlIwUkJ\

FRXdQNElkY21WbmFYTjBjbUZ5TFhSbGMzUXVjMmxsYldWdWN5MWlkQzV1WlhTQ0huSmx\

aMmx6ZEhKaGNpMTBaWE4wTmk1emFXVnRaVzV6TFdKMExtNWxkREFLQmdncWhrak9QUVF\

EQWdOSUFEQkZBaUJ4bGRCaFpxMEV2NUpMMlByV0N0eVM2aERZVzF5Q08vUmF1YnBDN01\

hSURnSWhBTFNKYmdMbmdoYmJBZzBkY1dGVVZvL2dHTjAvand6SlowU2wyaDR4SVhrMSI\

sImFnZW50LXNpZ25lZC1kYXRhIjoiZXlKd1lYbHNiMkZrSWpvaVpYbEtjRnBZVW0xTVd\

GcDJaRmRPYjFwWVNYUmpiVlo0WkZkV2VtUkRNWGRqYlRBMldWZGtiR0p1VVhSak1teHV\

ZbTFXYTB4WFVtaGtSMFZwVDI1emFWa3pTbXhaV0ZKc1drTXhkbUpwU1RaSmFrbDNUV3B\

KZEUxRVVYUk5hbHBWVFVSVk5rMUVZelpPUkVWMVRrUlJORmRwU1hOSmJrNXNZMjFzYUd\

KRE1YVmtWekZwV2xoSmFVOXBTWGROVkVsNlRrUlZNazU2WnpWSmJqRTVJaXdpYzJsbmJ\

tRjBkWEpsY3lJNlczc2ljSEp2ZEdWamRHVmtJam9pWlhsS2NtRlhVV2xQYVVwWlkwaHd\

jMVJWZERSaVNFSkNUbXBvYWxaVVZrZFZWVEZaVmxoYWRWTldVVEpWV0dNNVNXbDNhVmx\

YZUc1SmFtOXBVbFpOZVU1VVdXbG1VU0lzSW5OcFoyNWhkSFZ5WlNJNklrY3pWM2hHU0d\

WMFdGQTRiR3hTVmkwNWRXSnlURmxxU25aUllUWmZlUzFRYWxGWk5FNWhkMW81Y0ZKaGI\

yeE9TbTlFTm1SbFpXdHVTVjlGV0daemVWWlRZbmM0VTBONlRWcE1iakJoUVhWb2FVZFp\

UakJSSW4xZGZRPT0iLCJhZ2VudC1zaWduLWNlcnQiOlsiTUlJQjFEQ0NBWHFnQXdJQkF\

nSUVZbWQ0T1RBS0JnZ3Foa2pPUFFRREFqQStNUk13RVFZRFZRUUtEQXBOZVVKMWMybHV\

aWE56TVEwd0N3WURWUVFIREFSVGFYUmxNUmd3RmdZRFZRUUREQTlVWlhOMFVIVnphRTF\

2WkdWc1EwRXdIaGNOTWpJd05ESTJNRFEwTWpNeldoY05Nekl3TkRJMk1EUTBNak16V2p\

BOU1STXdFUVlEVlFRS0RBcE5lVUoxYzJsdVpYTnpNUTB3Q3dZRFZRUUhEQVJUYVhSbE1\

SY3dGUVlEVlFRRERBNVNaV2RwYzNSeVlYSkJaMlZ1ZERCWk1CTUdCeXFHU000OUFnRUd\

DQ3FHU000OUF3RUhBMElBQkd4bHJOZmozaVJiNy9CUW9kVys1WWlvT3poK2pJdHlxdVJ\

JTy9XejdZb1czaXdEYzNGeGV3TFZmekNyNU52RDEzWmFGYjdmcmFuK3Q5b3RZNVdMaEo\

2alp6QmxNQTRHQTFVZER3RUIvd1FFQXdJSGdEQWZCZ05WSFNNRUdEQVdnQlJ2b1QxdWR\

lMmY2TEVRaFU3SEhqK3ZKL2Q3SXpBZEJnTlZIUTRFRmdRVVhwemxNS3hscEE2OGNVNUZ\

RTVhVdm5JVDZRd3dFd1lEVlIwbEJBd3dDZ1lJS3dZQkJRVUhBd0l3Q2dZSUtvWkl6ajB\

FQXdJRFNBQXdSUUlnYzJ5NnhvT3RvUUJsSnNnbE9MMVZ4SEdvc1R5cEVxUmZ6MFF2NFp\

FUHY0d0NJUUNWeWIyRjl6VjNuOTUrb2xnZkZKZ1pUV0V6NGRTYUYzaHpSUWIzWnVCMjl\

RPT0iLCJNSUlCekRDQ0FYR2dBd0lCQWdJRVhYakhwREFLQmdncWhrak9QUVFEQWpBMU1\

STXdFUVlEVlFRS0RBcE5lVUoxYzJsdVpYTnpNUTB3Q3dZRFZRUUhEQVJUYVhSbE1ROHd\

EUVlEVlFRRERBWlVaWE4wUTBFd0hoY05NVGt3T1RFeE1UQXdPRE0yV2hjTk1qa3dPVEV\

4TVRBd09ETTJXakErTVJNd0VRWURWUVFLREFwTmVVSjFjMmx1WlhOek1RMHdDd1lEVlF\

RSERBUlRhWFJsTVJnd0ZnWURWUVFEREE5VVpYTjBVSFZ6YUUxdlpHVnNRMEV3V1RBVEJ\

nY3Foa2pPUFFJQkJnZ3Foa2pPUFFNQkJ3TkNBQVRsRzBmd1QzM29leloxdmtIUWJldGV\

ibWorQm9WK1pGc2pjZlF3MlRPa0pQaE9rT2ZBYnU5YlMxcVppOHlhRVY4b2VyS2wvNlp\

YYmZ4T21CanJScmNYbzJZd1pEQVNCZ05WSFJNQkFmOEVDREFHQVFIL0FnRUFNQTRHQTF\

VZER3RUIvd1FFQXdJQ0JEQWZCZ05WSFNNRUdEQVdnQlRvWklNelFkc0Qvai8rZ1gvN2N\

CSnVjSC9YbWpBZEJnTlZIUTRFRmdRVWI2RTliblh0bitpeEVJVk94eDQvcnlmM2V5TXd\

DZ1lJS29aSXpqMEVBd0lEU1FBd1JnSWhBUG5CMHcxTkN1cmhNeEp3d2ZqejdnRGlpeGt\

VWUxQU1o5ZU45a29oTlFVakFpRUF3NFk3bHR4V2lQd0t0MUo5bmp5ZkRObDVNdUVEQml\

teFIzQ1hvWktHUXJVPSJdfX0",

 "signatures":[{

 "protected":"eyJ4NWMiOlsiTUlJQitUQ0NBYUNnQXdJQkFnSUdBWG5WanNVN\

U1Bb0dDQ3FHU000OUJBTUNNRDB4Q3pBSkJnTlZCQVlUQWtGUk1SVXdFd1lEVlFRS0RBe\

EthVzVuU21sdVowTnZjbkF4RnpBVkJnTlZCQU1NRGtwcGJtZEthVzVuVkdWemRFTkJNQ\

0FYRFRJeE1EWXdOREExTkRZeE5Gb1lEems1T1RreE1qTXhNak0xT1RVNVdqQlNNUXN3Q\

1FZRFZRUUdFd0pCVVRFVk1CTUdBMVVFQ2d3TVNtbHVaMHBwYm1kRGIzSndNUk13RVFZR\

FZRUUZFd293TVRJek5EVTJOemc1TVJjd0ZRWURWUVFEREE1S2FXNW5TbWx1WjBSbGRtb\

GpaVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUFCQzc5bGlhUmNCalpjR\

UVYdzdyVWVhdnRHSkF1SDRwazRJNDJ2YUJNc1UxMWlMRENDTGtWaHRVVjIxbXZhS0N2T\

XgyWStTTWdROGZmd0wyM3ozVElWQldqZFRCek1Dc0dDQ3NHQVFVRkJ3RWdCQjhXSFcxa\

GMyRXRkR1Z6ZEM1emFXVnRaVzV6TFdKMExtNWxkRG81TkRRek1COEdBMVVkSXdRWU1CY\

UFGRlFMak56UFwvU1wva291alF3amc1RTVmdndjWWJNQk1HQTFVZEpRUU1NQW9HQ0NzR\

0FRVUZCd01DTUE0R0ExVWREd0VCXC93UUVBd0lIZ0RBS0JnZ3Foa2pPUFFRREFnTkhBR\

EJFQWlCdTN3UkJMc0pNUDVzTTA3MEgrVUZyeU5VNmdLekxPUmNGeVJST2xxcUhpZ0lnW\

ENtSkxUekVsdkQycG9LNmR4NmwxXC91eW1UbmJRRERmSmxhdHVYMlJvT0U9Il0sImFsZ\

yI6IkVTMjU2In0",

 "signature":"Y_ohapnmvbwjLuUicOB7NAmbGM7igBfpUlkKUuSNdG-eDI4BQ\

yuXZ2aw93zZId45R7XxAK-12YKIx6qLjiPjMw"

 }]

}

Figure 23: Example Pledge Voucher-Request - PVR

A.2. Example Parboiled Registrar Voucher-Request - RVR (from Registrar

to MASA)

The term parboiled refers to food which is partially cooked. In

[RFC8995], the term refers to a Pledge voucher-request (PVR) which

has been received by the Registrar, and then has been processed by

the Registrar ("cooked"), and is now being forwarded to the MASA.

The following is an example Registrar voucher-request (RVR) sent

from the Registrar to the MASA, in "General JWS JSON Serialization".

Note that the previous PVR can be seen in the payload as "prior-

signed-voucher-request". The message size of this RVR is: 13257

bytes

¶

¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

{

 "payload":

 "eyJpZXRmLXZvdWNoZXItcmVxdWVzdC1wcm06dm91Y2hlciI6eyJhc3NlcnRpb24\

iOiJhZ2VudC1wcm94aW1pdHkiLCJzZXJpYWwtbnVtYmVyIjoiY2FmZmUtOTg3NDUiLCJ\

ub25jZSI6ImM1VEVPb29NTE5hNEN4L1UrVExoQ3c9PSIsInByaW9yLXNpZ25lZC12b3V\

jaGVyLXJlcXVlc3QiOiJleUp3WVhsc2IyRmtJam9pWlhsS2NGcFlVbTFNV0ZwMlpGZE9\

iMXBZU1hSamJWWjRaRmRXZW1SRE1YZGpiVEEyWkcwNU1Wa3lhR3hqYVVrMlpYbEthR01\

6VG14amJsSndZakkwYVU5cFNtaGFNbFoxWkVNeGQyTnRPVFJoVnpGd1pFaHJhVXhEU25\

wYVdFcHdXVmQzZEdKdVZuUlpiVlo1U1dwdmFWa3lSbTFhYlZWMFQxUm5NMDVFVldsTVE\

wcDFZakkxYWxwVFNUWkpiVTB4VmtWV1VHSXlPVTVVUlRWb1RrVk9ORXd4VlhKV1JYaHZ\

VVE5qT1ZCVFNYTkpiVTU1V2xkR01GcFhVWFJpTWpScFQybEplVTFFU1hsTVZFRjVURlJ\

KZVZaRVFUTlBhazE2VDJwQk5FeHFSVFZPYkc5cFRFTkthRm95Vm5Wa1F6RjNZMjA1TW1\

GWFVteGFRekYzWTIwNU5HRlhNWEJrU0d0MFkyMVdibUZZVGpCamJVWjVURmRPYkdOdVV\

XbFBhVXBPVTFWc1JGSkdVa1JSTUVacFZESmtRbVF3YkVOUlYyUktVakJHV1ZkWVRuZFR\

WMVoyVkZWR2RsSXdUa1JqVldSVVZGUlJOVkZyUms1Uk1ERkhaRE5vUkdWclJrdFJiV1J\

QVm10S1FsZFdVa0poTUZwVFZGWktTbVF3VmtKWFZWSlhWVlpHVEZKRlJuTlViVlpXVkc\

1YWFWZEZTbTlaYlRWeVpVVmFWVkZXVWtOYU1EVlhVV3RHZWxSVlVrWk5WRlpXVFRGYWN\

GbDZTbk5oTWtaWVVtNXNiRlpGVmxGVVZVVjNVakJGZUZaVlZrTmtNMlJJVmtab2MxWkh\

SbGxWYlhoT1ZXdFdNMUpJWkZwU1JscFNWVlZTUlZGWGFFOWFWbHBQWTBkU1NGWnJVbEp\

XUlVac1VtNWpkMlZWTVVWU1dHeE9Va1pHTTFSdWNFcE5WVFZGWVVkR1IyUjZRalpVVlZ\

KR1pWVXhSVlZZWkU5bGEydDRWR3RTYjFsVk1VaFRXR2hFWld0R1MxRnRaRTlXYTBwQ1Y\

xWlNRbUV3V2xOVVZrcEtaREJXUWxkVlVsZFZWa1pNVWtWR2MxUnRWbFpVYmxwcFYwVkt\

iMWx0TlhKbFJWcEZVVlpPUTFvd05WZFJhMFo2VkZWTmQwMVVWbFpOTVZwd1dYcEtjMkV\

4YkZsVGFsWk9WVlJvTTFKR1JscFNSbHBTVlZWb1JWRldjRTlhVmxwUFkwZFNTRlpZYUV\

oU1JVWllVVzFrVDFaclNrSlVWVEZGVFVSRk1WWlVTbk5OUm5CWFUyMTRZVTF0ZURaYVJ\

XaExZVWRPY1ZGc2NFNVJhekZJVVc1c2VGSXhUazVPUkd4Q1dqQldTRkV3VG5oU01VNU9\

Ua1JzUW1Rd1ZrbFJWRUpLVVZWS1NsVklhRmhrVlRGSlVucG9TMVJIV2taVlJVVTFUMWh\

hZDAxdVZrbFNWVFZxVlROc2JWa3pWVE5VUjJSYVRraEJlRTVGUmtOT01GSk9XbFJGTkU\

xSVRrWmxSV1J4VkZOME0yTnJOVFJPTURVMVdWaE9lRXQ2Um5CTlJXUlVVVEZKTlU1VVV\

UTk5SRVp0VWpKV1dGUldSbWxqVjNCWVpXdEtZVlJWU1hkU01FVjRWbGRTUzFWV1JsaFV\

WVXBTVWpCT1JHTXdaRUpWVmxaSFVXNWtUbEZyU201YU0wcERXakJXUjFGc1JtcFNSV2h\

GVVZVNVExb3dOVmRUUmtVMFVXdEdiVTlGVmtOUlZURkVVV3BTUW1Rd2RFSlhWVkpYVld\

wQ1UxRnJUa1prTUdjd1UxZFNhVmRIZURaWlZtaFRZa2RPZEZadE5XaFhSVFIzV1RJeFI\

yVlZlSFJOVkZaYVRXcHNNRmt3WkVka1YxWlVUbGR3YVUxcVFqTlJNbVJhVTFWMGRsZHJ\

iRFpoYWtKR1VWaGtTbEpHVGtKUldHUlRWVlZzYjFGV1FqVlBXRnBOVTFkR01WVnJWbEp\

qYlhnMVlteGtNRlI2VmxOaVZYQXdZVmhTVW1GNlpFOVhSRkpMVlVoV2RWVklRazlVYXp\

BeFZWUnNRbUZWUm5sa1JVNTBWRVprWVZSVmJFMVdiRTEyVFZWc1JWbFhjR2xqTVU1Sll\

tNXdkbUpYYjNkV1F6a3paVmhKY21Nd2RFdGpRM1IxVFhwU1VsQlVNR2xNUTBwb1dqSld\

kV1JETVhwaFYyUjFXbGRSZEZwSFJqQlpVMGsyU1cxV05WTnVaRnBYUjNoNldXcEtSMkV\

3YkhGaU1teGhWMGQ0VEZrd1duZFhWbFowVFZVeFdGSnVRWGxYYTFwclZESkplR05HYkZ\

SWFJrcHhXV3hhWVU1R2NFZGFSbVJzWWxaS1JWUldhR3RoYlVwVlVWUktXRlp0VW5KWmE\

yUkxaRlpXV1ZWdGNFNWlXR2d4VjFjd2VGWXlSWGRsUm1oV1lsZG9jbFZxUWxkalJsRjV\

UbGh3YUZadGREWlZNakUwVjJ4a1IxTnVUbGhoTURFMFdrY3hTMk5HVGxWWGEzQm9ZVEo\

zZWxaR1pIZFNiVkpHVFZaV1UxZEdTazlXYTFwM1ZteFNWbFZyY0U5aGVrVXlWVlpTWVZ\

Sc1NrWlNha1pWVmxaS1ExcEVSbXRqUms1WlZHdHdhV0Y2Vm5wWFZFbDRZekpHU0ZOclV\

rNVhSbHB5Vm01d1IyTkdaSE5oUlhCb1ZsUnNkMVV5TVhkWGJGbDRZMGhTV0dKRk1UTlV\

iRlUxVWxac05sRnJPVlpOUnpneFYyMTRSbUZWZUVSVGJuQm9WakpTTVZkV2FGTk5WMDU\

wVm01d1NtRnVRbWxhV0d4TFpESk9kRTlVUW1GV01EUjNWMnhrVW1GVk9YQlRiWGhzVmx\

oQ2RsZFhkR3RoYlVaV1QxaENWR0V4Y0ZkYVYzUnlaVVpTZEdKRmNHcE5SM2d3V2tWb1E\

xbFdSWGRoZWtwVVZqTm9kbFZ0ZEhwbFZsWlpVMnhTYVdKclNrcFdhMVpUVVcxV2MxSnV\

VbFJpVlZwVlZXdGFjbVZzVFhwalJ6bFhUVlpHTmxkWWNFTmhiRWw1V1ROa1ZVMUdSak5\

aVm1SaFZXdHNjR1F5YkdwTmJYaDFXVzB4UjAxSFVsbFRiWGhLWVcwNWNGZEVRazlsYXp\

sV1QxWm9VMkpyY0dGWmJHTTFaV3hOZDA5WVZsSlhSMUpUVjFSR1YyRXhiM2RqUlZaWVV\

qRndUVmxzVWt0WFZUbFhVMnhXVjFJd05URlVSazE0WXpGUmQwNVdRbWxTZWxaMlZqSjB\

SazFGT1VaWGJYUlhZa2hCZDFReFVrOWhNbEY0Vld0d1YxWlVWbGRYUkVwaFYyczVWMWR\

1UWxkaVJHdzFWWHBPVDFaV1JuSmhSa3BRVmpOQ2Vsa3haSHBsVjBsNldUSnNiVlpxUlR\

WSmFYZHBXVmRrYkdKdVVYUmpNbXh1WW1reGFscFlTakJKYW5CaVNXc3hTbE5WVGt0U1J\

VNUVVVmRPZUZvd1JqTlRWVXBDV2pCc1JsZEhlSEZSTURGRlVWVjBRMW95WkhoaFIzUnh\

WREZDVWxWVlVrSmhhMHB6VkZaR2VtUXdUbEpYVlZKWFZWWkdTRkpZWkV0UmJGWlZVbFp\

PVGxGclJraFJWRVpXVWxWT2JtUXdjRlZYUjNoRldXcEplR1F4YkZoT1ZGWk9WV3hXTTF\

KWVpGcFNSbHBTVlZWNFJWRllhRTlhVmxwUFRWWnNkVlJ1UW1GU01uaHZXVEkxY21WRlV\

qWlJWVFZEV2pBMVYxRnJSbXBVVlVweVRWUldWazF0ZDNkWGJGSkdXVlV4UTFvd1pFSk5\

WbFpHVVZoa00xVnNVbGxpUmxKb1YwWktjMVpWYUZkbGJVWkdUVmhhWVZJeFducFZWRUp\

HWkRCb2Ixa3dOVTVoYTBZelZGZHdTazVGTVVWWk0zQk9aV3RGZDFZeWFHcFVhekUyVVZ\

oa1RtRnJhekJVVlZKcVpXc3hObEZVUWxoaGEwcDBWRlpHZW1Rd1RsSlhWVkpYVlZaR1N\

GSllaRXRSYkZaVlVsWk9UbEZyUmtoUlZFWldVbFZPYm1Rd2NGVlhSM2hGV1dwSmVHUXh\

iRmhPVkZaT1ZXeFdNMUpZWkZwU1JscFNWVlY0UlZGWWFFOWFWbHBQVFZac2RWUnVRbUZ\

TTW5odldUSTFjbVZGVWpaUlZUVkRXakExVjFGclJtcFVWVXB5VFZSV1ZrMXRkM2RYYkZ\

KR1dXc3hRMkV3WkVKTlZsWkdVVmhrTTFVeFVsbGlSbEpvVjBaS2MxWlZhRmRsYlVaR1R\

WaGFZVkl4V25wVlZtaERaREF4UjJFelpFWmtNV3hKVXpJNVlWTlljSEZOUlU1Q1ZWWnN\

TbE15T1dGVFdIQnhUVVZTUWxWWFRrVlZWMlJDVWxSWmQwMVZPSEppTW5CRVlUTktSVlZ\

1WXpOYU1Hd3lWMnRWTUdGVVRUQmFSMHB2VVROR2NGSjZaSEZpTWprelYyNUJNR1ZJV2p\

aU2JsSk5XbnBhVlZaNlFtOVViVkpKWkd4Q1JWVXhVbnBrVm1oVVpWWmpOV1JJU1hwUld\

HUkVZa2RhUkdJd1VsZFVia1pRWkhwc05WUldaekpVYlRWT1VqRldNMUpIWkZwU1JscFR\

UVVpDUWxWVlozWlJhMFpTVWtWR2JscFZSazVSYW1oSVVWUkdWbHBGYkROVlZteE9VVzF\

HUWxKcmJ6TlRTRkpVWkROQ1RWUklWbEJYYW1ScVlUQkdjMVZWYUZaTk1tUkNWRmRqZGx\

Ock1VTk5SV1JDVFZaV2ExSkhaRkpXTUVwRFZXMU9WVTVVVFRCaWF6RmFaR3hTYWxKdVV\

uSmFia295VGpOb1ZrNHdVbkJpVldoeFpXdEdWVkZ0WkU5V2EyaFVWbFZXUlZKRlJreFJ\

iV1J1WTJ0S2JsSlZXa05WVjA1RlVWZHdRbE13U201YU0wWnZZVEp3VUZWR1JsSlNSVVp\

1Vkd0c1FsSkZTa2RSVjJ4R1VWaENTMDR6YUhkVWJGWXlWVlZ3U0UxRk5XOVVSMGwyV2x\

oU2FVMXFRazFTUmxWNFRtMTRkMVV3YUZCT01rWnNZbnBDVjFkWVozZGxTR1JFVTFWRmN\

sUjZWWFpYVkZwRllVTjBhVkZxU1RSTmFsSXhZVmRHVUZWWFJsWlNSRnB1VVZVMWIxZFV\

iRmRTYlZGeVlXNUtlVmt3VmpKVGJsRnBURU5LVGxOVmJFUlNNVkpFVVRCR2FVc3laRUp\

rTUd4RFVWZGtTbEpXYUhOaGEwVjJaV3RHVEZGdFpHNWpWMmh5WVdzNVVWVldSa1ZSVjN\

CRFdUQXhVbU16WkVSVlZteEZWbXhHVWxJd1ZqTlRhMHBXVmtWV1ZGUlZTa0pTTUVWNFZ\

sVldSRm96WkV0V1JtaHpVa2RKZVUxWVpGcFdlbFV4VkZaS1ZtUXdWak5YVlZKWFZWWkd\

UVkpGUmpSVWJWWlhWR3BHV21Kck5YZFhhMlJ6WVVkT2RXRXphRVZsYTBaUFVXMWtUMVp\

yU2tKWk1ERkRZWHBGTVZaVVNuTk5SbkJWVWxaS1RsRlVhRWhSVkVaV1VsVkdNMlF3YkZ\

WWFIzaFZXVlpvVTJKR1JYZFNXR1JKWVVkT1QxUlhjRUprTURGeFUxUlNUbEpIVGpWVWJ\

uQldUbFprYjFrd05VNWxhMFl6VkZkd1NrNUZNVVZaTTJ4UFpXeFZNVll5Y0VOaVJURlN\

Zek5rUkZWV2JFVldiRVpTVWpCV00xTnJTbFpXUlZaVVZGVktRbEl3UlhoV1ZWWkVXak5\

rUzFaR2FITlNSMGw1VFZoa1dsWjZWVEZVVmtwV1pEQldNMWRWVWxkVlZrWk5Va1ZHTkZ\

SdFZsZFVha1phWW1zMWQxZHJaSE5oUjA1MVlUTm9SV1ZyUms5UmJXUlBWbXRLUWxrd01\

VTmhla1V4VmxSS2MwMUdjRlZTVjBaT1VXMWtTRkZVUmxaU1ZVWXpaREZLVlZkSGVGVlp\

WbWhUWWtaV1NWWnVjR2hTVkVZeVYydGtWMk14UlhkU1dHUllWa1ZHVlZGdFpHcGpWMmh\

5WVdzNVVWVlZiRU5SYldSdVkxZG9jbUZyT1ZGVlZURkRVVzVrVDFFd1JrSlZhM0JEVm0\

wNWVscEZkRE5YVlRVMFlWWkNORk5JV25CU2JrWk1aV3RTYzA5WFdqQlVTRlpPV1ZjeGQ\

xSnNSbXBYU0dONFRXcGthRlJ0T1ZOWmJrNUpUREJhVG1OdE1UWlJNRVpKVFhwak0wMTZ\

UbXBOYlRscFZVZE9jMlJzVG5sWFZVb3lUVVZPTUZZeFJqQlpWRnBvU3pKT2RrMXNiRE5\

YYTFKQ1ZUQktibFJzV2tsVmF6RkRVVmRaTkZKVlRrVlJWV1JDVlZWbmRsRlhaRVpSVlR\

GQ1RrVmtRazFXVm10U1NHUkdVV2s1TTFWVlZrSmtNR3hFVVd0U1FscHJTbTVVYkZwSlZ\

UQXhSbEl3VWtKV01tUkRWVmh3TkdWdVpIZFZia0pOWlZNNWVWUldWbHBsYlVadlRXNU5\

lRTB5VmxaUFYyUkhaV3RHYTFGdFpFOVdhMmhTVGtWV1Ixb3hSbFppYms1c1RWVjRSR0V\

6VGpGT1JGWjFaRWhzVWxFeFdrSmFSbEpzVVZWR05WSkVhSEprTUU1dVYxVnNUR0l4Y0V\

wbGJXOTNVbFZHTTFOVlVsUlJWVVl6Vld4R1NtRkZSa3BqTVd4eldsWndUR015Y0VkVWE\

wNTZVMnQwYkZWSGVFaFVWVVpOV2xoQ1YxcFViRVpVUkdSUFlqTlJNVTFVVmpObFJ6Rlh\

aRlZ3UTFGWGJFSlpNRlpPVmxaV2IxSldUbnBVUm1SUlRsaG9WRlZXVlhkWFNFWTJWbTV\

GTkZkWVduQlNha1pwVm0wNU5sSXpjRFJPV0hCUFdqSk9lbVI2TURsSmJERTVabEVpTEN\

KemFXZHVZWFIxY21WeklqcGJleUp3Y205MFpXTjBaV1FpT2lKbGVVbzBUbGROYVU5c2M\

ybFVWV3hLVVRCb2NWRXdUa0paTVU1dVVWaGtTbEZyUm01VFZXUkNWMGRvTUUxVVVucGl\

NREZDWWpCa1JGRXpSa2hWTURBd1QxVktRbFJWVGs1U1ZtdzBVVE53UWxOclNtNVViRnB\

EVVZac1ZWRlhkRTlUVlRGVFZGaGtSbFZXYkVWV2JFWlNVekJTUW1OR1VtaFdNVm93VjJ\

4ak1XVnJiRVpTYTJoT1ZWUm9NMUpHUmxwU1JscFNWVlY0UlZGV2NFUldhMDVEVWtaV1I\

xUllhRVpXUlVaUlVXMWtUMVpyU2tKVVZURkVVbXh3YzFsdE1WTmtiVTV5Vkd0S1RsRXd\

SbGxTUmxKS1pVVXhSVlJZYkU5aGEwVXhWRmR3U21WVk5WZGlNV3hGWlcxek1WUXhVbkp\

sUlRGeFZGaG9UbUZyTUhoVU1WSldUbFprY1ZGdGFFNVZXRTR6VVRGR1dsSkdXbEpWVld\

SR1pEQndSVlV3VWtaV1JURkRVbFZrUWsxV1ZrWlJNbVF6VXpGVmVXSkhlR2xXTVZveFd\

UTnNRMUZzU2paU1ZrSk9VVlJDU0ZGVVJsWlNWVTR6WkRCa1VtSkdSbTVWVkVaRFZrVXh\

VMVZZWkVaYU1XeEZWbXhHVWxKclZqTmtSM0JhVmpGd2RGZHNUWGRPVlRsRldYcENUMVp\

GVmxoVVZVcFNVakJGZUZaVlZrSmtNMlJQVmxWYWIxSkZNVFZPVlZwUFpXeFdNRlJXVWt\

Ka01VWlZVV3h3VGxGck1VaFJibXg0VWpGT1RrNUViRUphTUZaSVVUQk9lRkl4VGs1T1J\

HeENaREJXU1ZGVVFrcFJWVXBQVFVSb2NWWXdlSHBOUjBadlV6Qm9XbGR1Vm05aVZ6Rmp\

UREpqTkdScVVsaFRNR2d5VVZoU2FGcHNSazFSVTNSS1pGVXhUMkZITVc1aFZ6RllUakJ\

HVG1OdVJtOWlWMHBWVFRCc2FGVkZUalZoUnpGaFUxWk9kMVI2V20xaVUzTXlVMWhhWTB\

3eldrcGphM1J2VlZaU01WWnRPVXhoYldSYVVWaGtiV0ZyUm5aUmJXUnVZMnRLYmxKVld\

rTlZWMDVEVTFWR1Vsa3dVa05qU0ZKYVYwVTFiMVJHYUZOaVIwMTZWVmhXYWsxdGVITlp\

iR1JYWkZkT05VNVhjR2xOYWtFeVZERlNVazFGTVRaUlZsSkRXakExVjFOR1RsWlNWVkp\

GVVZWMFExb3laSGxSYldSR1VtdEtVbGt3VWtKV1JVWlFVVzFrVDFacmFGSlBSVXBDV21\

wb1JsRnJSazVSTUVrd1VWaGtUVlZXYkVWV2JFbDNWV3RLUkZkWVpFdFRWV3h3V2tWa2I\

ySkZlSFZYYlhocFlsWktNbGt5YXpGaGJHeFlUa2hXYVdKVWEzZFVSekV3WkZkSmVsa3p\

WbXRTTW1oM1dUTnJNVTFzYkZobFJFWmhWa1ZHVEZGdFpHNWpWMmh5WVdzNVVWVldSa1Z\

SVjJSUFUxVkdSVkZyV2tKaFZVazFVVzB4ZUZRemNIRlZWR2hzV1ZkamVWTnVVblprVmx\

KdlVsWm9lVm93T1VOWFZsRjNVWHBvWVdSRGREVlBWemxKVWtad1JWbHNVbEpUVjJoQ1Z\

HMXpNbVJIT1ZOaU1sWkVXVmMxYUZSWGNFNVdSWGgwWWxaV2RXSlhTbkphYWtKNldsaGF\

jbEV3YnpSTmJXc3hWbGhHY1ZWcldsZFZVMHBrVEVOS2FHSkhZMmxQYVVwR1ZYcEpNVTV\

wU2praUxDSnphV2R1WVhSMWNtVWlPaUphWTFwa1dYbzBiMUl3UjJKc09UWnFNWGxZWm5\

kdlRYZGxVVGt6VGpCdFNVUmxjVFkyVTBacWRFdG9lR1pSWjNJMGRUWkpOVEJKWldNMmE\

xWTJhSEV3YVcxdlptTlBhVGs0VW1OSVpXUmpNVzFuZHpCWVp5SjlYWDA9IiwiY3JlYXR\

lZC1vbiI6IjIwMjItMDItMjJUMDc6MzM6MjUuMDIwWiIsImFnZW50LXNpZ24tY2VydCI\

6WyJNSUlDSkRDQ0FjcWdBd0lCQWdJRVhsakNNREFLQmdncWhrak9QUVFEQWpCbE1Rc3d\

DUVlEVlFRR0V3SkJVVEVTTUJBR0ExVUVDZ3dKVFhsRGIyMXdZVzU1TVJVd0V3WURWUVF\

MREF4TmVWTjFZbk5wWkdsaGNua3hEekFOQmdOVkJBY01CazE1VTJsMFpURWFNQmdHQTF\

VRUF3d1JUWGxUYVhSbFVIVnphRTF2WkdWc1EwRXdIaGNOTWpBd01qSTRNRGN6TXpBMFd\

oY05NekF3TWpJNE1EY3pNekEwV2pCbU1Rc3dDUVlEVlFRR0V3SkJVVEVTTUJBR0ExVUV\

DZ3dKVFhsRGIyMXdZVzU1TVJVd0V3WURWUVFMREF4TmVWTjFZbk5wWkdsaGNua3hEekF\

OQmdOVkJBY01CazE1VTJsMFpURWJNQmtHQTFVRUF3d1NUWGxUYVhSbFVIVnphRTF2Wkd\

Wc1FYQndNRmt3RXdZSEtvWkl6ajBDQVFZSUtvWkl6ajBEQVFjRFFnQUU2MDFPK29qQ2t\

yRFJ3N2dJdlpFNGkzNGRiaENxaUc3am9vd1pwNHh2ekZ0TGc2VFcwaE5kSHZQRFNUc3V\

YU3lXOXRyM0F3Q2xmQ29EVk5xT3c5eU1YNk5uTUdVd0RnWURWUjBQQVFIL0JBUURBZ2V\

BTUI4R0ExVWRJd1FZTUJhQUZKN0h0U3dwTEx1T1o3Y2tBbFFIVTNnQU1nL0pNQjBHQTF\

VZERnUVdCQlJjVDUzNG5NWXZUY0Z0a2Zydjd4VTdEaW1IanpBVEJnTlZIU1VFRERBS0J\

nZ3JCZ0VGQlFjREFqQUtCZ2dxaGtqT1BRUURBZ05JQURCRkFpRUFwSjd4cE5VdlFKRzB\

OaExiL2V0YjIwTERVMTZscFNITzdhZW8wVll4MHh3Q0lBK081L1k2RGgrYkIyODI0dWl\

hT1FhVUQ2Z0FOaFk5VkZkK2pycmNFdkp0IiwiTUlJQ0dUQ0NBYitnQXdJQkFnSUVYbGp\

BL3pBS0JnZ3Foa2pPUFFRREFqQmNNUXN3Q1FZRFZRUUdFd0pCVVRFU01CQUdBMVVFQ2d\

3SlRYbERiMjF3WVc1NU1SVXdFd1lEVlFRTERBeE5lVk4xWW5OcFpHbGhjbmt4RHpBTkJ\

nTlZCQWNNQmsxNVUybDBaVEVSTUE4R0ExVUVBd3dJVFhsVGFYUmxRMEV3SGhjTk1qQXd\

Nakk0TURjeU56VTVXaGNOTXpBd01qSTRNRGN5TnpVNVdqQmxNUXN3Q1FZRFZRUUdFd0p\

CVVRFU01CQUdBMVVFQ2d3SlRYbERiMjF3WVc1NU1SVXdFd1lEVlFRTERBeE5lVk4xWW5\

OcFpHbGhjbmt4RHpBTkJnTlZCQWNNQmsxNVUybDBaVEVhTUJnR0ExVUVBd3dSVFhsVGF\

YUmxVSFZ6YUUxdlpHVnNRMEV3V1RBVEJnY3Foa2pPUFFJQkJnZ3Foa2pPUFFNQkJ3TkN\

BQVJKQlZvc2RLd1lOeGlQeEh2aUZxS3pEbDlmdEx1TWFtcEZRY1h3MTI3YU5vUmJzSC9\

GTXJtekNBSDM3NzMzYzJvYlBjbHZTcllCdjBDdFdRdGE2YStjbzJZd1pEQVNCZ05WSFJ\

NQkFmOEVDREFHQVFIL0FnRUFNQTRHQTFVZER3RUIvd1FFQXdJQ0JEQWZCZ05WSFNNRUd\

EQVdnQlF6eHp3cFJwTHkvck1VWXphaDJzMTNlVTlnRnpBZEJnTlZIUTRFRmdRVW5zZTF\

MQ2tzdTQ1bnR5UUNWQWRUZUFBeUQ4a3dDZ1lJS29aSXpqMEVBd0lEU0FBd1JRSWhBSXN\

ZbGVaS3NqRk5Dc0pLZVBsR01BTGVwVmU5RUw3Tm90NTE1d3htVnVKQkFpQWNFTVVVaEV\

Tc0xXUDV4U1FVMFhxelZxOFl2aUYxYlZvekd6eDV6Tmdjc3c9PSJdfX0",

 "signatures":[{

 "protected":"eyJ4NWMiOlsiTUlJQjhEQ0NBWmFnQXdJQkFnSUdBWEJoTUtZSU1\

Bb0dDQ3FHU000OUJBTUNNRnd4Q3pBSkJnTlZCQVlUQWtGUk1SSXdFQVlEVlFRS0RBbE5\

lVU52YlhCaGJua3hGVEFUQmdOVkJBc01ERTE1VTNWaWMybGthV0Z5ZVRFUE1BMEdBMVV\

FQnd3R1RYbFRhWFJsTVJFd0R3WURWUVFEREFoTmVWTnBkR1ZEUVRBZUZ3MHlNREF5TWp\

Bd05qQXlNak5hRncwek1EQXlNakF3TmpBeU1qTmFNSGt4Q3pBSkJnTlZCQVlUQWtGUk1\

SSXdFQVlEVlFRS0RBbE5lVU52YlhCaGJua3hGVEFUQmdOVkJBc01ERTE1VTNWaWMybGt\

hV0Z5ZVRFUE1BMEdBMVVFQnd3R1RYbFRhWFJsTVM0d0xBWURWUVFERENWU1pXZHBjM1J\

5WVhJZ1ZtOTFZMmhsY2lCU1pYRjFaWE4wSUZOcFoyNXBibWNnUzJWNU1Ga3dFd1lIS29\

aSXpqMENBUVlJS29aSXpqMERBUWNEUWdBRUJUVFwvc1JmTDlsSnVGbVwvY24zU2pHcWp\

QXC9xdnBrNytoSTIwOE5oVkRvR2hcLzdLUCt2TXpYeVFRQStqUjZrNnJhTTI4ZlwvbHV\

FK1h1aHVwN1Vmem05Q3FNbk1DVXdFd1lEVlIwbEJBd3dDZ1lJS3dZQkJRVUhBeHd3RGd\

ZRFZSMFBBUUhcL0JBUURBZ2VBTUFvR0NDcUdTTTQ5QkFNQ0EwZ0FNRVVDSUhOK3VBbUp\

ldVhlc1wveWQxd1M0Mlo0RFhKNEptMWErZzNYa1pnZjhUaGxuQWlFQXBVdTZzZnljRWt\

veDdSWlhtZitLOHc0cDZzUldyamExUVJwWTAyNjQxSFk9IiwiTUlJQjhEQ0NBWmVnQXd\

JQkFnSUdBWEJoTUtZQk1Bb0dDQ3FHU000OUJBTUNNRnd4Q3pBSkJnTlZCQVlUQWtGUk1\

SSXdFQVlEVlFRS0RBbE5lVU52YlhCaGJua3hGVEFUQmdOVkJBc01ERTE1VTNWaWMybGt\

hV0Z5ZVRFUE1BMEdBMVVFQnd3R1RYbFRhWFJsTVJFd0R3WURWUVFEREFoTmVWTnBkR1Z\

EUVRBZUZ3MHlNREF5TWpBd05qQXlNak5hRncwek1EQXlNakF3TmpBeU1qTmFNRnd4Q3p\

BSkJnTlZCQVlUQWtGUk1SSXdFQVlEVlFRS0RBbE5lVU52YlhCaGJua3hGVEFUQmdOVkJ\

Bc01ERTE1VTNWaWMybGthV0Z5ZVRFUE1BMEdBMVVFQnd3R1RYbFRhWFJsTVJFd0R3WUR\

WUVFEREFoTmVWTnBkR1ZEUVRCWk1CTUdCeXFHU000OUFnRUdDQ3FHU000OUF3RUhBMEl\

BQkluQ3VoV1ZzZ2NONzFvWmVzMUZHXC9xZFZnTVBva01wZlMyNzFcL2V5SWNcL29EVmJ\

NRkhDYmV2SjVMTTgxOTVOYVpLTlNvSFAzS3dMeXVCaDh2MncwOVp1alJUQkRNQklHQTF\

VZEV3RUJcL3dRSU1BWUJBZjhDQVFFd0RnWURWUjBQQVFIXC9CQVFEQWdJRU1CMEdBMVV\

kRGdRV0JCUXp4endwUnBMeVwvck1VWXphaDJzMTNlVTlnRnpBS0JnZ3Foa2pPUFFRREF\

nTkhBREJFQWlCZGJIU212YW9qaDBpZWtaSUtOVzhRMGxTbGI1K0RLTlFcL05LY1I3dWx\

6dGdJZ2RwejZiUkYyREZtcGlKb3JCMkd5VmE4YVdkd2xIc0RvRVdZY0k0UEdKYmc9Il0\

sImFsZyI6IkVTMjU2In0",

 "signature":"67t3n8zyEek4IM2Ko3Y_UvE1hzp794QFNTqG-HzTrBQtE4_4-yS\

yyFd3kP6YCn35YYJ7yK35d3styo_yoiPfKA"

 }]

}

Figure 24: Example Registrar Voucher-Request - RVR

A.3. Example Voucher-Response (from MASA to Pledge, via Registrar and

Registrar-agent)

The following is an example voucher-response from MASA to Pledge via

Registrar and Registrar-agent, in "General JWS JSON Serialization".

The message size of this Voucher is: 1916 bytes

Figure 25: Example Voucher-Response from MASA

¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

{

 "payload":"eyJpZXRmLXZvdWNoZXI6dm91Y2hlciI6eyJhc3NlcnRpb24iOiJhZ2V\

udC1wcm94aW1pdHkiLCJzZXJpYWwtbnVtYmVyIjoiMDEyMzQ1Njc4OSIsIm5vbmNlIjo\

iTDNJSjZocHRIQ0lRb054YWFiOUhXQT09IiwiY3JlYXRlZC1vbiI6IjIwMjItMDQtMjZ\

UMDU6MTY6MjguNzI2WiIsInBpbm5lZC1kb21haW4tY2VydCI6Ik1JSUJwRENDQVVtZ0F\

3SUJBZ0lHQVcwZUx1SCtNQW9HQ0NxR1NNNDlCQU1DTURVeEV6QVJCZ05WQkFvTUNrMTV\

RblZ6YVc1bGMzTXhEVEFMQmdOVkJBY01CRk5wZEdVeER6QU5CZ05WQkFNTUJsUmxjM1J\

EUVRBZUZ3MHhPVEE1TVRFd01qTTNNekphRncweU9UQTVNVEV3TWpNM016SmFNRFV4RXp\

BUkJnTlZCQW9NQ2sxNVFuVnphVzVsYzNNeERUQUxCZ05WQkFjTUJGTnBkR1V4RHpBTkJ\

nTlZCQU1NQmxSbGMzUkRRVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUF\

CT2t2a1RIdThRbFQzRkhKMVVhSTcrV3NIT2IwVVMzU0FMdEc1d3VLUURqaWV4MDYvU2N\

ZNVBKaWJ2Z0hUQitGL1FUamdlbEhHeTFZS3B3Y05NY3NTeWFqUlRCRE1CSUdBMVVkRXd\

FQi93UUlNQVlCQWY4Q0FRRXdEZ1lEVlIwUEFRSC9CQVFEQWdJRU1CMEdBMVVkRGdRV0J\

CVG9aSU16UWRzRC9qLytnWC83Y0JKdWNIL1htakFLQmdncWhrak9QUVFEQWdOSkFEQkd\

BaUVBdHhRMytJTEdCUEl0U2g0YjlXWGhYTnVocVNQNkgrYi9MQy9mVllEalE2b0NJUUR\

HMnVSQ0hsVnEzeWhCNThUWE1VYnpIOCtPbGhXVXZPbFJEM1ZFcURkY1F3PT0ifX0",

 "signatures":[{

 "protected":"eyJ4NWMiOlsiTUlJQmt6Q0NBVGlnQXdJQkFnSUdBV0ZCakNrWU1\

Bb0dDQ3FHU000OUJBTUNNRDB4Q3pBSkJnTlZCQVlUQWtGUk1SVXdFd1lEVlFRS0RBeEt\

hVzVuU21sdVowTnZjbkF4RnpBVkJnTlZCQU1NRGtwcGJtZEthVzVuVkdWemRFTkJNQjR\

YRFRFNE1ERXlPVEV3TlRJME1Gb1hEVEk0TURFeU9URXdOVEkwTUZvd1R6RUxNQWtHQTF\

VRUJoTUNRVkV4RlRBVEJnTlZCQW9NREVwcGJtZEthVzVuUTI5eWNERXBNQ2NHQTFVRUF\

3d2dTbWx1WjBwcGJtZERiM0p3SUZadmRXTm9aWElnVTJsbmJtbHVaeUJMWlhrd1dUQVR\

CZ2NxaGtqT1BRSUJCZ2dxaGtqT1BRTUJCd05DQUFTQzZiZUxBbWVxMVZ3NmlRclJzOFI\

wWlcrNGIxR1d5ZG1XczJHQU1GV3diaXRmMm5JWEgzT3FIS1Z1OHMyUnZpQkdOaXZPS0d\

CSEh0QmRpRkVaWnZiN294SXdFREFPQmdOVkhROEJBZjhFQkFNQ0I0QXdDZ1lJS29aSXp\

qMEVBd0lEU1FBd1JnSWhBSTRQWWJ4dHNzSFAyVkh4XC90elVvUVwvU3N5ZEwzMERRSU5\

FdGNOOW1DVFhQQWlFQXZJYjNvK0ZPM0JUbmNMRnNhSlpSQWtkN3pPdXNuXC9cL1pLT2F\

FS2JzVkRpVT0iXSwiYWxnIjoiRVMyNTYifQ",

 "signature":"0TB5lr-cs1jqka2vNbQm3bBYWfLJd8zdVKIoV53eo2YgSITnKKY\

TvHMUw0wx9wdyuNVjNoAgLysNIgEvlcltBw"

 }]

}

A.4. Example Voucher-Response, MASA issued Voucher with additional

Registrar signature (from MASA to Pledge, via Registrar and Registrar-

agent)

The following is an example voucher-response from MASA to Pledge via

Registrar and Registrar-agent, in "General JWS JSON Serialization".

The message size of this Voucher is: 3006 bytes¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

{

 "payload":"eyJpZXRmLXZvdWNoZXI6dm91Y2hlciI6eyJhc3NlcnRpb24iOiJhZ2V\

udC1wcm94aW1pdHkiLCJzZXJpYWwtbnVtYmVyIjoiMDEyMzQ1Njc4OSIsIm5vbmNlIjo\

iUUJiSXMxNTJzbkFvVzdSeVFMWENvZz09IiwiY3JlYXRlZC1vbiI6IjIwMjItMDktMjl\

UMDM6Mzc6MjYuMzgyWiIsInBpbm5lZC1kb21haW4tY2VydCI6Ik1JSUJwRENDQVVtZ0F\

3SUJBZ0lHQVcwZUx1SCtNQW9HQ0NxR1NNNDlCQU1DTURVeEV6QVJCZ05WQkFvTUNrMTV\

RblZ6YVc1bGMzTXhEVEFMQmdOVkJBY01CRk5wZEdVeER6QU5CZ05WQkFNTUJsUmxjM1J\

EUVRBZUZ3MHhPVEE1TVRFd01qTTNNekphRncweU9UQTVNVEV3TWpNM016SmFNRFV4RXp\

BUkJnTlZCQW9NQ2sxNVFuVnphVzVsYzNNeERUQUxCZ05WQkFjTUJGTnBkR1V4RHpBTkJ\

nTlZCQU1NQmxSbGMzUkRRVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUF\

CT2t2a1RIdThRbFQzRkhKMVVhSTcrV3NIT2IwVVMzU0FMdEc1d3VLUURqaWV4MDYvU2N\

ZNVBKaWJ2Z0hUQitGL1FUamdlbEhHeTFZS3B3Y05NY3NTeWFqUlRCRE1CSUdBMVVkRXd\

FQi93UUlNQVlCQWY4Q0FRRXdEZ1lEVlIwUEFRSC9CQVFEQWdJRU1CMEdBMVVkRGdRV0J\

CVG9aSU16UWRzRC9qLytnWC83Y0JKdWNIL1htakFLQmdncWhrak9QUVFEQWdOSkFEQkd\

BaUVBdHhRMytJTEdCUEl0U2g0YjlXWGhYTnVocVNQNkgrYi9MQy9mVllEalE2b0NJUUR\

HMnVSQ0hsVnEzeWhCNThUWE1VYnpIOCtPbGhXVXZPbFJEM1ZFcURkY1F3PT0ifX0",

 "signatures":[{

 "protected":"eyJ4NWMiOlsiTUlJQmt6Q0NBVGlnQXdJQkFnSUdBV0ZCakNrWU1\

Bb0dDQ3FHU000OUJBTUNNRDB4Q3pBSkJnTlZCQVlUQWtGUk1SVXdFd1lEVlFRS0RBeEt\

hVzVuU21sdVowTnZjbkF4RnpBVkJnTlZCQU1NRGtwcGJtZEthVzVuVkdWemRFTkJNQjR\

YRFRFNE1ERXlPVEV3TlRJME1Gb1hEVEk0TURFeU9URXdOVEkwTUZvd1R6RUxNQWtHQTF\

VRUJoTUNRVkV4RlRBVEJnTlZCQW9NREVwcGJtZEthVzVuUTI5eWNERXBNQ2NHQTFVRUF\

3d2dTbWx1WjBwcGJtZERiM0p3SUZadmRXTm9aWElnVTJsbmJtbHVaeUJMWlhrd1dUQVR\

CZ2NxaGtqT1BRSUJCZ2dxaGtqT1BRTUJCd05DQUFTQzZiZUxBbWVxMVZ3NmlRclJzOFI\

wWlcrNGIxR1d5ZG1XczJHQU1GV3diaXRmMm5JWEgzT3FIS1Z1OHMyUnZpQkdOaXZPS0d\

CSEh0QmRpRkVaWnZiN294SXdFREFPQmdOVkhROEJBZjhFQkFNQ0I0QXdDZ1lJS29aSXp\

qMEVBd0lEU1FBd1JnSWhBSTRQWWJ4dHNzSFAyVkh4XC90elVvUVwvU3N5ZEwzMERRSU5\

FdGNOOW1DVFhQQWlFQXZJYjNvK0ZPM0JUbmNMRnNhSlpSQWtkN3pPdXNuXC9cL1pLT2F\

FS2JzVkRpVT0iXSwidHlwIjoidm91Y2hlci1qd3MranNvbiIsImFsZyI6IkVTMjU2In0\

",

 "signature":"ShqW8uFRkuAXIzjAhB4bolMMndcY7GYq3Kbo94yvGtjCaxEX3Hp\

6QXZUTEJ_kulQ1G7DnaU4igDPdUGtcV9Lkw"},{

 "protected":"eyJ4NWMiOlsiTUlJQjRqQ0NBWWlnQXdJQkFnSUdBWFk3MmJiWk1\

Bb0dDQ3FHU000OUJBTUNNRFV4RXpBUkJnTlZCQW9NQ2sxNVFuVnphVzVsYzNNeERUQUx\

CZ05WQkFjTUJGTnBkR1V4RHpBTkJnTlZCQU1NQmxSbGMzUkRRVEFlRncweU1ERXlNRGN\

3TmpFNE1USmFGdzB6TURFeU1EY3dOakU0TVRKYU1ENHhFekFSQmdOVkJBb01DazE1UW5\

WemFXNWxjM014RFRBTEJnTlZCQWNNQkZOcGRHVXhHREFXQmdOVkJBTU1EMFJ2YldGcGJ\

sSmxaMmx6ZEhKaGNqQlpNQk1HQnlxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VIQTBJQUJCazE\

2S1wvaTc5b1JrSzVZYmVQZzhVU1I4XC91czFkUFVpWkhNdG9rU2RxS1c1Zm5Xc0JkK3F\

STDdXUmZmZVdreWdlYm9KZklsbHVyY2kyNXduaGlPVkNHamV6QjVNQjBHQTFVZEpRUVd\

NQlFHQ0NzR0FRVUZCd01CQmdnckJnRUZCUWNESERBT0JnTlZIUThCQWY4RUJBTUNCNEF\

3U0FZRFZSMFJCRUV3UDRJZGNtVm5hWE4wY21GeUxYUmxjM1F1YzJsbGJXVnVjeTFpZEM\

1dVpYU0NIbkpsWjJsemRISmhjaTEwWlhOME5pNXphV1Z0Wlc1ekxXSjBMbTVsZERBS0J\

nZ3Foa2pPUFFRREFnTklBREJGQWlCeGxkQmhacTBFdjVKTDJQcldDdHlTNmhEWVcxeUN\

PXC9SYXVicEM3TWFJRGdJaEFMU0piZ0xuZ2hiYkFnMGRjV0ZVVm9cL2dHTjBcL2p3ekp\

aMFNsMmg0eElYazEiXSwidHlwIjoidm91Y2hlci1qd3MranNvbiIsImFsZyI6IkVTMjU\

2In0",

 "signature":"N4oXV48V6umsHMKkhdSSmJYFtVb6agjD32uXpIlGx6qVE7Dh0-b\

qhRRyjnxp80IV_Fy1RAOXIIzs3Q8CnMgBgg"

 }]

}

Figure 26: Example Voucher-Response from MASA, with additional

Registrar signature

Appendix B. History of Changes [RFC Editor: please delete]

Proof of Concept Code available

From IETF draft 07 -> IETF draft 08:

resolved editorial issues discovered after WGLC (still open

issues remaining)

resolved first comments from the Shepherd review as discussed in

PR #85 on the ANIMA github

From IETF draft 06 -> IETF draft 07:

WGLC resulted in a removal of the voucher enhancements completely

from this document to RFC 8366bis, containing all enhancements

and augmentations of the voucher, including the voucher-request

as well as the tree diagrams

smaller editorial corrections

From IETF draft 05 -> IETF draft 06:

Update of list of reviewers

Issue #67, shortened the pledge endpoints to prepare for

constraint deployments

Included table for new endpoints on the registrar in the overview

of the registrar-agent

addressed review comments from SECDIR early review (terminology

clarifications, editorial improvements)

addressed review comments from IOTDIR early review (terminology

clarifications, editorial improvements)

From IETF draft 04 -> IETF draft 05:

Restructured document to have a distinct section for the object

flow and handling and shortened introduction, issue #72

Added security considerations for using mDNS without a specific

product-serial-number, issue #75

Clarified pledge-status responses are cumulative, issue #73

¶

¶

*

¶

*

¶

¶

*

¶

* ¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

* ¶

Removed agent-sign-cert from trigger data to save bandwidth and

remove complexity through options, issue #70

Changed terminology for LDevID(Reg) certificate to registrar EE

certificate, as it does not need to be an LDevID, issue #66

Added new protected header parameter (created-on) in PER to

support freshness validation, issue #63

Removed reference to CAB Forum as not needed for BRSKI-PRM

specifically, issue #65

Enhanced error codes in section 5.5.1, issue #39, #64

Enhanced security considerations and privacy considerations,

issue #59

Issue #50 addressed by referring to the utilized enrollment

protocol

Issue #47 MASA verification of LDevID(RegAgt) to the same

registrar EE certificate domain CA

Reworked terminology of "enrollment object", "certification

object", "enrollment request object", etc., issue #27

Reworked all message representations to align with encoding

Added explanation of MASA requiring domain CA cert in section

5.5.1 and section 5.5.2, issue #36

Defined new endpoint for pledge bootstrapping status inquiry,

issue #35 in section Section 6.4, IANA considerations and

section Section 5.2

Included examples for several objects in section Appendix A

including message example sizes, issue #33

PoP for private key to registrar certificate included as

mandatory, issues #32 and #49

Issue #31, clarified that combined pledge may act as client/

server for further (re)enrollment

Issue #42, clarified that Registrar needs to verify the status

responses with and ensure that they match the audit log response

from the MASA, otherwise it needs drop the pledge and revoke the

certificate

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Issue #43, clarified that the pledge shall use the create time

from the trigger message if the time has not been synchronized,

yet.

Several editorial changes and enhancements to increasing

readability.

From IETF draft 03 -> IETF draft 04:

In deep Review by Esko Dijk lead to issues #22-#61, which are

bein stepwise integrated

Simplified YANG definition by augmenting the voucher-request from

RFC 8995 instead of redefining it.

Added explanation for terminology "endpoint" used in this

document, issue #16

Added clarification that registrar-agent may collect PVR or PER

or both in one run, issue #17

Added a statement that nonceless voucher may be accepted, issue

#18

Simplified structure in section Section 3.1, issue #19

Removed join proxy in Figure 1 and added explanatory text, issue

#20

Added description of pledge-CAcerts endpoint plus further

handling of providing a wrapped CA certs response to the pledge

in section Section 6.3; also added new required registrar

endpoint (section Section 6.2 and IANA considerations) for the

registrar to provide a wrapped CA certs response, issue #21

utilized defined abbreviations in the document consistently,

issue #22

Reworked text on discovery according to issue #23 to clarify

scope and handling

Added several clarifications based on review comments

From IETF draft 02 -> IETF draft 03:

Updated examples to state "base64encodedvalue==" for x5c

occurrences

Include link to SVG graphic as general overview

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

*

¶

* ¶

Restructuring of section 5 to flatten hierarchy

Enhanced requirements and motivation in Section 4

Several editorial improvements based on review comments

From IETF draft 01 -> IETF draft 02:

Issue #15 included additional signature on voucher from registrar

in section Section 6.2 and section Section 5.1 The verification

of multiple signatures is described in section Section 6.3

Included representation for General JWS JSON Serialization for

examples

Included error responses from pledge if it is not able to create

a pledge voucher-request or an enrollment request in section

Section 6.1

Removed open issue regarding handling of multiple CSRs and

enrollment responses during the bootstrapping as the initial

target it the provisioning of a generic LDevID certificate. The

defined endpoint on the pledge may also be used for management of

further certificates.

From IETF draft 00 -> IETF draft 01:

Issue #15 lead to the inclusion of an option for an additional

signature of the registrar on the voucher received from the MASA

before forwarding to the registrar-agent to support verification

of POP of the registrars private key in section Section 6.2 and

Section 6.3.

Based on issue #11, a new endpoint was defined for the registrar

to enable delivery of the wrapped enrollment request from the

pledge (in contrast to plain PKCS#10 in simple enroll).

Decision on issue #8 to not provide an additional signature on

the enrollment-response object by the registrar. As the

enrollment response will only contain the generic LDevID

certificate. This credential builds the base for further

configuration outside the initial enrollment.

Decision on issue #7 to not support multiple CSRs during the

bootstrapping, as based on the generic LDevID certificate the

pledge may enroll for further certificates.

Closed open issue #5 regarding verification of ietf-ztp-types

usage as verified via a proof-of-concept in section

{#exchanges_uc2_1}.

* ¶

* ¶

* ¶

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Housekeeping: Removed already addressed open issues stated in the

draft directly.

Reworked text in from introduction to section pledge-responder-

mode

Fixed "serial-number" encoding in PVR/RVR

Added prior-signed-voucher-request in the parameter description

of the registrar-voucher-request in Section 6.2.

Note added in Section 6.2 if sub-CAs are used, that the

corresponding information is to be provided to the MASA.

Inclusion of limitation section (pledge sleeps and needs to be

waked up. Pledge is awake but registrar-agent is not available)

(Issue #10).

Assertion-type aligned with voucher in RFC8366bis, deleted

related open issues. (Issue #4)

Included table for endpoints in Section 5.2 for better

readability.

Included registrar authorization check for registrar-agent during

TLS handshake in section Section 6.2. Also enhanced figure

Figure 9 with the authorization step on TLS level.

Enhanced description of registrar authorization check for

registrar-agent based on the agent-signed-data in section

Section 6.2. Also enhanced figure Figure 9 with the authorization

step on pledge-voucher-request level.

Changed agent-signed-cert to an array to allow for providing

further certificate information like the issuing CA cert for the

LDevID(RegAgt) certificate in case the registrar and the

registrar-agent have different issuing CAs in Figure 9 (issue

#12). This also required changes in the YANG module in

[I-D.ietf-anima-rfc8366bis]

Addressed YANG warning (issue #1)

Inclusion of examples for a trigger to create a pledge-voucher-

request and an enrollment-request.

From IETF draft-ietf-anima-brski-async-enroll-03 -> IETF anima-

brski-prm-00:

Moved UC2 related parts defining the pledge in responder mode

from draft-ietf-anima-brski-async-enroll-03 to this document This

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

¶

*

required changes and adaptations in several sections to remove

the description and references to UC1.

Addressed feedback for voucher-request enhancements from YANG

doctor early review in Section 7.1 as well as in the security

considerations (formerly named ietf-async-voucher-request).

Renamed ietf-async-voucher-request to IETF-voucher-request-prm to

to allow better listing of voucher related extensions; aligned

with constraint voucher (#20)

Utilized ietf-voucher-request-async instead of ietf-voucher-

request in voucher exchanges to utilize the enhanced voucher-

request.

Included changes from draft-ietf-netconf-sztp-csr-06 regarding

the YANG definition of csr-types into the enrollment request

exchange.

From IETF draft 02 -> IETF draft 03:

Housekeeping, deleted open issue regarding YANG voucher-request

in Section 6.1 as voucher-request was enhanced with additional

leaf.

Included open issues in YANG model in Section 5 regarding

assertion value agent-proximity and csr encapsulation using SZTP

sub module).

From IETF draft 01 -> IETF draft 02:

Defined call flow and objects for interactions in UC2. Object

format based on draft for JOSE signed voucher artifacts and

aligned the remaining objects with this approach in Section 6.

Terminology change: issue #2 pledge-agent -> registrar-agent to

better underline agent relation.

Terminology change: issue #3 PULL/PUSH -> pledge-initiator-mode

and pledge-responder-mode to better address the pledge operation.

Communication approach between pledge and registrar-agent changed

by removing TLS-PSK (former section TLS establishment) and

associated references to other drafts in favor of relying on

higher layer exchange of signed data objects. These data objects

are included also in the pledge-voucher-request and lead to an

extension of the YANG module for the voucher-request (issue #12).

Details on trust relationship between registrar-agent and

registrar (issue #4, #5, #9) included in Section 5.

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Recommendation regarding short-lived certificates for registrar-

agent authentication towards registrar (issue #7) in the security

considerations.

Introduction of reference to agent signing certificate using SKID

in agent signed data (issue #37).

Enhanced objects in exchanges between pledge and registrar-agent

to allow the registrar to verify agent-proximity to the pledge

(issue #1) in Section 6.

Details on trust relationship between registrar-agent and pledge

(issue #5) included in Section 5.

Split of use case 2 call flow into sub sections in Section 6.

From IETF draft 00 -> IETF draft 01:

Update of scope in Section 3.1 to include in which the pledge

acts as a server. This is one main motivation for use case 2.

Rework of use case 2 in Section 5 to consider the transport

between the pledge and the pledge-agent. Addressed is the TLS

channel establishment between the pledge-agent and the pledge as

well as the endpoint definition on the pledge.

First description of exchanged object types (needs more work)

Clarification in discovery options for enrollment endpoints at

the domain registrar based on well-known endpoints do not result

in additional /.well-known URIs. Update of the illustrative

example. Note that the change to /brski for the voucher related

endpoints has been taken over in the BRSKI main document.

Updated references.

Included Thomas Werner as additional author for the document.

From individual version 03 -> IETF draft 00:

Inclusion of discovery options of enrollment endpoints at the

domain registrar based on well-known endpoints in new section as

replacement of section 5.1.3 in the individual draft. This is

intended to support both use cases in the document. An

illustrative example is provided.

Missing details provided for the description and call flow in

pledge-agent use case Section 5, e.g. to accommodate distribution

of CA certificates.

*

¶

*

¶

*

¶

*

¶

* ¶

¶

*

¶

*

¶

* ¶

*

¶

* ¶

* ¶

¶

*

¶

*

¶

Updated CMP example in to use lightweight CMP instead of CMP, as

the draft already provides the necessary /.well-known endpoints.

Requirements discussion moved to separate section in Section 4.

Shortened description of proof of identity binding and mapping to

existing protocols.

Removal of copied call flows for voucher exchange and registrar

discovery flow from [RFC8995] in UC1 to avoid doubling or text or

inconsistencies.

Reworked abstract and introduction to be more crisp regarding the

targeted solution. Several structural changes in the document to

have a better distinction between requirements, use case

description, and solution description as separate sections.

History moved to appendix.

From individual version 02 -> 03:

Update of terminology from self-contained to authenticated self-

contained object to be consistent in the wording and to underline

the protection of the object with an existing credential. Note

that the naming of this object may be discussed. An alternative

name may be attestation object.

Simplification of the architecture approach for the initial use

case having an offsite PKI.

Introduction of a new use case utilizing authenticated self-

contain objects to onboard a pledge using a commissioning tool

containing a pledge-agent. This requires additional changes in

the BRSKI call flow sequence and led to changes in the

introduction, the application example,and also in the related

BRSKI-PRM call flow.

From individual version 01 -> 02:

Update of introduction text to clearly relate to the usage of

IDevID and LDevID.

Update of description of architecture elements and changes to

BRSKI in Section 5.

Enhanced consideration of existing enrollment protocols in the

context of mapping the requirements to existing solutions in

Section 4.

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

From individual version 00 -> 01:

Update of examples, specifically for building automation as well

as two new application use cases in Section 3.1.

Deletion of asynchronous interaction with MASA to not complicate

the use case. Note that the voucher exchange can already be

handled in an asynchronous manner and is therefore not considered

further. This resulted in removal of the alternative path the

MASA in Figure 1 and the associated description in Section 5.

Enhancement of description of architecture elements and changes

to BRSKI in Section 5.

Consideration of existing enrollment protocols in the context of

mapping the requirements to existing solutions in Section 4.

New section starting with the mapping to existing enrollment

protocols by collecting boundary conditions.

Contributors

Esko Dijk

IoTconsultancy.nl

Email: esko.dijk@iotconsultancy.nl

Toerless Eckert

Futurewei

Email: tte@cs.fau.de

Matthias Kovatsch

Email: ietf@kovatsch.net

Authors' Addresses

Steffen Fries

Siemens AG

Otto-Hahn-Ring 6

81739 Munich

Germany

Email: steffen.fries@siemens.com

URI: https://www.siemens.com/

Thomas Werner

Siemens AG

Otto-Hahn-Ring 6

¶

*

¶

*

¶

*

¶

*

¶

*

¶

mailto:esko.dijk@iotconsultancy.nl
mailto:tte@cs.fau.de
mailto:ietf@kovatsch.net
mailto:steffen.fries@siemens.com
https://www.siemens.com/

81739 Munich

Germany

Email: thomas-werner@siemens.com

URI: https://www.siemens.com/

Eliot Lear

Cisco Systems

Richtistrasse 7

CH-8304 Wallisellen

Switzerland

Phone: +41 44 878 9200

Email: lear@cisco.com

Michael C. Richardson

Sandelman Software Works

Email: mcr+ietf@sandelman.ca

URI: http://www.sandelman.ca/

mailto:thomas-werner@siemens.com
https://www.siemens.com/
tel:+41%2044%20878%209200
mailto:lear@cisco.com
mailto:mcr+ietf@sandelman.ca
http://www.sandelman.ca/

	BRSKI with Pledge in Responder Mode (BRSKI-PRM)
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Scope of Solution
	3.1. Supported Environments and Use Case Examples
	3.1.1. Building Automation
	3.1.2. Infrastructure Isolation Policy
	3.1.3. Less Operational Security in the Target-Domain

	3.2. Limitations

	4. Requirements Discussion and Mapping to Solution-Elements
	5. Architectural Overview
	5.1. Agent-Proximity Assertion
	5.2. Behavior of Pledge in Pledge-Responder-Mode
	5.3. Behavior of Registrar-Agent
	5.3.1. Discovery of Registrar by Registrar-Agent
	5.3.2. Discovery of Pledge by Registrar-Agent

	5.4. Behavior of Pledge with Combined Functionality

	6. Bootstrapping Data Objects and Corresponding Exchanges
	6.1. Request Objects Acquisition by Registrar-Agent from Pledge
	6.1.1. Pledge-Voucher-Request (PVR) - Trigger
	6.1.2. Pledge-Voucher-Request (PVR) - Response
	6.1.3. Pledge Enrollment-Request (PER) - Trigger
	6.1.4. Pledge Enrollment-Request (PER) - Response

	6.2. Request Object Handling initiated by the Registrar-Agent on Registrar, MASA and Domain CA
	6.2.1. Connection Establishment (Registrar-Agent to Registrar)
	6.2.2. Pledge-Voucher-Request (PVR) Processing by Registrar
	6.2.3. Registrar-Voucher-Request (RVR) Processing (Registrar to MASA)
	6.2.4. Voucher Issuance by MASA
	6.2.5. MASA issued Voucher Processing by Registrar
	6.2.6. Pledge Enrollment-Request (PER) Processing (Registrar-Agent to Registrar)
	6.2.7. Request Wrapped-CA-certificate(s) (Registrar-Agent to Registrar)

	6.3. Response Object Supply by Registrar-Agent to Pledge
	6.3.1. Pledge: Voucher-Response Processing
	6.3.2. Pledge: Voucher Status Telemetry
	6.3.3. Pledge: Wrapped-CA-Certificate(s) Processing
	6.3.4. Pledge: Enrollment-Response Processing
	6.3.5. Pledge: Enrollment-Status Telemetry
	6.3.6. Telemetry Voucher Status and Enroll Status Handling (Registrar-Agent to Domain Registrar)

	6.4. Request Pledge-Status by Registrar-Agent from Pledge
	6.4.1. Pledge-Status - Trigger (Registrar-Agent to Pledge)
	6.4.2. Pledge-Status - Response (Pledge - Registrar-Agent)

	7. Artifacts
	7.1. Voucher-Request Artifact

	8. IANA Considerations
	8.1. BRSKI .well-known Registry

	9. Privacy Considerations
	10. Security Considerations
	10.1. Denial of Service (DoS) Attack on Pledge
	10.2. Misuse of acquired PVR and PER by Registrar-Agent
	10.3. Misuse of Registrar-Agent Credentials
	10.4. Misuse of mDNS to obtain list of pledges
	10.5. YANG Module Security Considerations

	11. Acknowledgments
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Examples
	A.1. Example Pledge Voucher-Request - PVR (from Pledge to Registrar-agent)
	A.2. Example Parboiled Registrar Voucher-Request - RVR (from Registrar to MASA)
	A.3. Example Voucher-Response (from MASA to Pledge, via Registrar and Registrar-agent)
	A.4. Example Voucher-Response, MASA issued Voucher with additional Registrar signature (from MASA to Pledge, via Registrar and Registrar-agent)

	Appendix B. History of Changes [RFC Editor: please delete]
	Contributors
	Authors' Addresses

