
Workgroup: anima Working Group

Internet-Draft:

draft-ietf-anima-constrained-join-proxy-09

Published: 25 March 2022

Intended Status: Standards Track

Expires: 26 September 2022

Authors: M. Richardson

Sandelman Software Works

P. van der Stok

vanderstok consultancy

P. Kampanakis

Cisco Systems

Constrained Join Proxy for Bootstrapping Protocols

Abstract

This document defines a protocol to securely assign a Pledge to a

domain, represented by a Registrar, using an intermediary node

between Pledge and Registrar. This intermediary node is known as a

"constrained Join Proxy". An enrolled Pledge can act as a

constrained Join Proxy.

This document extends the work of Bootstrapping Remote Secure Key

Infrastructures (BRSKI) by replacing the Circuit-proxy between

Pledge and Registrar by a stateless/stateful constrained Join Proxy.

It relays join traffic from the Pledge to the Registrar.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 26 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Requirements Language

4. Join Proxy functionality

5. Join Proxy specification

5.1. Stateful Join Proxy

5.2. Stateless Join Proxy

5.3. Stateless Message structure

6. Discovery

6.1. Join Proxy discovers Registrar

6.1.1. CoAP discovery

6.1.2. GRASP discovery

6.1.3. 6tisch discovery

6.2. Pledge discovers Registrar

6.2.1. CoAP discovery

6.2.2. GRASP discovery

6.2.3. 6tisch discovery

6.3. Pledge discovers Join Proxy

6.3.1. CoAP discovery

6.3.2. GRASP discovery

6.3.3. 6tisch discovery

7. Comparison of stateless and stateful modes

8. Security Considerations

9. IANA Considerations

9.1. Resource Type Attributes registry

9.2. service name and port number registry

10. Acknowledgements

11. Contributors

12. Changelog

12.1. 06 to 07

12.2. 05 to 06

12.3. 04 to 05

12.4. 03 to 04

12.5. 02 to 03

12.6. 01 to 02

12.7. 00 to 01

12.8. 00 to 00

13. References

13.1. Normative References

¶

https://trustee.ietf.org/license-info

13.2. Informative References

Appendix A. Stateless Proxy payload examples

Authors' Addresses

1. Introduction

The Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol

described in [RFC8995] provides a solution for a secure zero-touch

(automated) bootstrap of new (unconfigured) devices. In the context

of BRSKI, new devices, called "Pledges", are equipped with a

factory-installed Initial Device Identifier (IDevID) (see

[ieee802-1AR]), and are enrolled into a network. BRSKI makes use of

Enrollment over Secure Transport (EST) [RFC7030] with [RFC8366]

vouchers to securely enroll devices. A Registrar provides the

security anchor of the network to which a Pledge enrolls. In this

document, BRSKI is extended such that a Pledge connects to

"Registrars" via a Join Proxy.

A complete specification of the terminology is pointed at in Section

2.

The specified solutions in [RFC8995] and [RFC7030] are based on POST

or GET requests to the EST resources (/cacerts, /simpleenroll, /

simplereenroll, /serverkeygen, and /csrattrs), and the brski

resources (/requestvoucher, /voucher_status, and /enrollstatus).

These requests use https and may be too large in terms of code space

or bandwidth required for constrained devices. Constrained devices

which may be part of constrained networks [RFC7228], typically

implement the IPv6 over Low-Power Wireless personal Area Networks

(6LoWPAN) [RFC4944] and Constrained Application Protocol (CoAP)

[RFC7252].

CoAP can be run with the Datagram Transport Layer Security (DTLS)

[RFC6347] as a security protocol for authenticity and

confidentiality of the messages. This is known as the "coaps"

scheme. A constrained version of EST, using Coap and DTLS, is

described in [I-D.ietf-ace-coap-est]. The [I-D.ietf-anima-

constrained-voucher] extends [I-D.ietf-ace-coap-est] with BRSKI

artifacts such as voucher, request voucher, and the protocol

extensions for constrained Pledges.

DTLS is a client-server protocol relying on the underlying IP layer

to perform the routing between the DTLS Client and the DTLS Server.

However, the Pledge will not be IP routable until it is

authenticated to the network. A new Pledge can only initially use a

link-local IPv6 address to communicate with a neighbor on the same

link [RFC6775] until it receives the necessary network configuration

parameters. However, before the Pledge can receive these

¶

¶

¶

¶

configuration parameters, it needs to authenticate itself to the

network to which it connects.

During enrollment, a DTLS connection is required between Pledge and

Registrar.

Once a Pledge is enrolled, it can act as Join Proxy between other

Pledges and the enrolling Registrar.

This document specifies a new form of Join Proxy and protocol to act

as intermediary between Pledge and Registrar to relay DTLS messages

between Pledge and Registrar. Two versions of the Join Proxy are

specified:

This document is very much inspired by text published earlier in [I-

D.kumar-dice-dtls-relay]. [I-D.richardson-anima-state-for-

joinrouter] outlined the various options for building a Join Proxy.

[RFC8995] adopted only the Circuit Proxy method (1), leaving the

other methods as future work. This document standardizes the CoAP/

DTLS (method 4).

2. Terminology

The following terms are defined in [RFC8366], and are used

identically as in that document: artifact, imprint, domain, Join

Registrar/Coordinator (JRC), Manufacturer Authorized Signing

Authority (MASA), Pledge, Trust of First Use (TOFU), and Voucher.

The term "installation network" refers to all devices in the

installation and the network connections between them. The term

"installation IP_address" refers to an address out of the set of

addresses which are routable over the whole installation network.

3. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

¶

1 A stateful Join Proxy that locally stores IP addresses

 during the connection.

2 A stateless Join Proxy that where the connection state

 is stored in the messages.

¶

¶

¶

¶

¶

4. Join Proxy functionality

As depicted in the Figure 1, the Pledge (P), in a Low-Power and

Lossy Network (LLN) mesh [RFC7102] can be more than one hop away

from the Registrar (R) and not yet authenticated into the network.

In this situation, the Pledge can only communicate one-hop to its

nearest neighbor, the Join Proxy (J) using their link-local IPv6

addresses. However, the Pledge (P) needs to communicate with end-to-

end security with a Registrar to authenticate and get the relevant

system/network parameters. If the Pledge (P), knowing the IP-address

of the Registrar, initiates a DTLS connection to the Registrar, then

the packets are dropped at the Join Proxy (J) since the Pledge (P)

is not yet admitted to the network or there is no IP routability to

Pledge (P) for any returned messages from the Registrar.

Figure 1: multi-hop enrollment.

Without routing the Pledge (P) cannot establish a secure connection

to the Registrar (R) over multiple hops in the network.

Furthermore, the Pledge (P) cannot discover the IP address of the

Registrar (R) over multiple hops to initiate a DTLS connection and

perform authentication.

To overcome the problems with non-routability of DTLS packets and/or

discovery of the destination address of the Registrar, the Join

Proxy is introduced. This Join Proxy functionality is configured

into all authenticated devices in the network which may act as a

Join Proxy for Pledges. The Join Proxy allows for routing of the

packets from the Pledge using IP routing to the intended Registrar.

An authenticated Join Proxy can discover the routable IP address of

the Registrar over multiple hops. The following Section 5 specifies

the two Join Proxy modes. A comparison is presented in Section 7.

5. Join Proxy specification

A Join Proxy can operate in two modes:

Stateful mode

¶

¶

 ++++ multi-hop

 |R |---- mesh +--+ +--+

 | | \ |J |........|P |

 ++++ \-----| | | |

 +--+ +--+

 Registrar Join Proxy Pledge

¶

¶

¶

¶

* ¶

Stateless mode

A Join Proxy MUST implement one of the two modes. A Join Proxy MAY

implement both, with an unspecified mechanism to switch between the

two modes.

5.1. Stateful Join Proxy

In stateful mode, the Join Proxy forwards the DTLS messages to the

Registrar.

Assume that the Pledge does not know the IP address of the Registrar

it needs to contact. The Join Proxy has been enrolled via the

Registrar and learns the IP address and port of the Registrar, for

example by using the discovery mechanism described in Section 6. The

Pledge first discovers (see Section 6) and selects the most

appropriate Join Proxy. (Discovery can also be based upon [RFC8995]

section 4.1). For service discovery via DNS-SD [RFC6763], this

document specifies the service names in Section 9.2. The Pledge

initiates its request as if the Join Proxy is the intended

Registrar. The Join Proxy receives the message at a discoverable

join-port. The Join Proxy constructs an IP packet by copying the

DTLS payload from the message received from the Pledge, and provides

source and destination addresses to forward the message to the

intended Registrar. The Join Proxy maintains a 4-tuple array to

translate the DTLS messages received from the Registrar and forwards

it back to the Pledge.

In Figure 2 the various steps of the message flow are shown, with

5684 being the standard coaps port:

* ¶

¶

¶

¶

¶

Figure 2: constrained stateful joining message flow with Registrar

address known to Join Proxy.

5.2. Stateless Join Proxy

The stateless Join Proxy aims to minimize the requirements on the

constrained Join Proxy device. Stateless operation requires no

memory in the Join Proxy device, but may also reduce the CPU impact

as the device does not need to search through a state table.

If an untrusted Pledge that can only use link-local addressing wants

to contact a trusted Registrar, and the Registrar is more than one

hop away, it sends its DTLS messages to the Join Proxy.

When a Pledge attempts a DTLS connection to the Join Proxy, it uses

its link-local IP address as its IP source address. This message is

transmitted one-hop to a neighboring (Join Proxy) node. Under normal

circumstances, this message would be dropped at the neighbor node

since the Pledge is not yet IP routable or is not yet authenticated

to send messages through the network. However, if the neighbor

device has the Join Proxy functionality enabled; it routes the DTLS

message to its Registrar of choice.

+------------+------------+-------------+--------------------------+

| Pledge | Join Proxy | Registrar | Message |

| (P) | (J) | (R) | Src_IP:port | Dst_IP:port|

+------------+------------+-------------+-------------+------------+

| --ClientHello--> | IP_P:p_P | IP_Jl:p_Jl |

| --ClientHello--> | IP_Jr:p_Jr| IP_R:5684 |

| | | |

| <--ServerHello-- | IP_R:5684 | IP_Jr:p_Jr |

| : | | |

| <--ServerHello-- : | IP_Jl:p_Jl| IP_P:p_P |

| : : | | |

| [DTLS messages] | : | : |

| : : | : | : |

| --Finished--> : | IP_P:p_P | IP_Jl:p_Jl |

| --Finished--> | IP_Jr:p_Jr| IP_R:5684 |

| | | |

| <--Finished-- | IP_R:5684 | IP_Jr:p_Jr |

| <--Finished-- | IP_Jl:p_Jl| IP_P:p_P |

| : : | : | : |

+---------------------------------------+-------------+------------+

IP_P:p_P = Link-local IP address and port of Pledge (DTLS Client)

IP_R:5684 = Routable IP address and coaps port of Registrar

IP_Jl:p_Jl = Link-local IP address and join-port of Join Proxy

IP_Jr:p_Jr = Routable IP address and client port of Join Proxy

¶

¶

¶

The Join Proxy transforms the DTLS message to a JPY message which

includes the DTLS data as payload, and sends the JPY message to the

join-port of the Registrar.

The JPY message payload consists of two parts:

Header (H) field: consisting of the source link-local address and

port of the Pledge (P), and

Contents (C) field: containing the original DTLS payload.

On receiving the JPY message, the Registrar (or proxy) retrieves the

two parts.

The Registrar transiently stores the Header field information. The

Registrar uses the Contents field to execute the Registrar

functionality. However, when the Registrar replies, it also extends

its DTLS message with the header field in a JPY message and sends it

back to the Join Proxy. The Registrar SHOULD NOT assume that it can

decode the Header Field, it should simply repeat it when responding.

The Header contains the original source link-local address and port

of the Pledge from the transient state stored earlier and the

Contents field contains the DTLS payload.

On receiving the JPY message, the Join Proxy retrieves the two

parts. It uses the Header field to route the DTLS message containing

the DTLS payload retrieved from the Contents field to the Pledge.

In this scenario, both the Registrar and the Join Proxy use

discoverable join-ports, for the Join Proxy this may be a default

CoAP port.

The Figure 3 depicts the message flow diagram:

¶

¶

*

¶

* ¶

¶

¶

¶

¶

¶

Figure 3: constrained stateless joining message flow.

5.3. Stateless Message structure

The JPY message is constructed as a payload with media-type

application/cbor

Header and Contents fields together are one CBOR array of 5

elements:

header field: containing a CBOR array [RFC8949] with the Pledge

IPv6 Link Local address as a CBOR byte string, the Pledge's UDP

port number as a CBOR integer, the IP address family (IPv4/

IPv6) as a CBOR integer, and the proxy's ifindex or other

identifier for the physical port as CBOR integer. The header

field is not DTLS encrypted.

Content field: containing the DTLS payload as a CBOR byte

string.

The address family integer is defined in [family] with:

+--------------+------------+---------------+-----------------------+

| Pledge | Join Proxy | Registrar | Message |

| (P) | (J) | (R) |Src_IP:port|Dst_IP:port|

+--------------+------------+---------------+-----------+-----------+

| --ClientHello--> | IP_P:p_P |IP_Jl:p_Jl |

| --JPY[H(IP_P:p_P),--> | IP_Jr:p_Jr|IP_R:p_Ra |

| C(ClientHello)] | | |

| <--JPY[H(IP_P:p_P),-- | IP_R:p_Ra |IP_Jr:p_Jr |

| C(ServerHello)] | | |

| <--ServerHello-- | IP_Jl:p_Jl|IP_P:p_P |

| : | | |

| [DTLS messages] | : | : |

| : | : | : |

| --Finished--> | IP_P:p_P |IP_Jr:p_Jr |

| --JPY[H(IP_P:p_P),--> | IP_Jl:p_Jl|IP_R:p_Ra |

| C(Finished)] | | |

| <--JPY[H(IP_P:p_P),-- | IP_R:p_Ra |IP_Jr:p_Jr |

| C(Finished)] | | |

| <--Finished-- | IP_Jl:p_Jl|IP_P:p_P |

| : | : | : |

+---+-----------+-----------+

IP_P:p_P = Link-local IP address and port of the Pledge

IP_R:p_Ra = Routable IP address and join-port of Registrar

IP_Jl:p_Jl = Link-local IP address and join-port of Join Proxy

IP_Jr:p_Jr = Routable IP address and port of Join Proxy

JPY[H(),C()] = Join Proxy message with header H and content C

¶

¶

1.

¶

2.

¶

¶

The Join Proxy cannot decrypt the DTLS payload and has no knowledge

of the transported media type.

Figure 4: CDDL representation of JPY message

The contents are DTLS encrypted. In CBOR diagnostic notation the

payload JPY[H(IP_P:p_P)], will look like:

On reception by the Registrar, the Registrar MUST verify that the

number of array elements is larger than or equal to 5, and reject

the message when the number of array elements is smaller than 5.

After replacing the 5th "content" element with the DTLS payload of

the response message and leaving all other array elements unchanged,

the Registrar returns the response message.

Examples are shown in Appendix A.

When additions are added to the array in later versions of this

protocol, any additional array elements (i.e., not specified by

current document) MUST be ignored by a receiver if it doesn't know

these elements. This approach allows evolution of the protocol while

maintaining backwards-compatibility. A version number isn't needed;

that number is defined by the length of the array. However, this

means that message elements are consistently added to earlier

defined elements to avoid ambiguities.

6. Discovery

It is assumed that Join Proxy seamlessly provides a coaps connection

between Pledge and Registrar. In particular this section extends

section 4.1 of [RFC8995] for the constrained case.

1 IP (IP version 4)

2 IP6 (IP version 6)

¶

¶

 JPY_message =

 [

 ip : bstr,

 port : int,

 family : int,

 index : int

 content : bstr

]

¶

 [h'IP_p', p_P, family, ident, h'DTLS-payload']¶

¶

¶

¶

¶

The discovery follows two steps with two alternatives for step 1:

Step 1. Two alternatives exist (near and remote):

Near: the Pledge is one hop away from the Registrar. The

Pledge discovers the link-local address of the Registrar as

described in [I-D.ietf-ace-coap-est]. From then on, it follows

the BRSKI process as described in [I-D.ietf-ace-coap-est] and

[I-D.ietf-anima-constrained-voucher], using link-local

addresses.

Remote: the Pledge is more than one hop away from a relevant

Registrar, and discovers the link-local address and join-port

of a Join Proxy. The Pledge then follows the BRSKI procedure

using the link-local address of the Join Proxy.

Step 2. The enrolled Join Proxy discovers the join-port of the

Registrar.

The order in which the two alternatives of step 1 are tried is

installation dependent. The trigger for discovery in Step 2 in

implementation dependent.

Once a Pledge is enrolled, it may function as Join Proxy. The Join

Proxy functions are advertised as described below. In principle, the

Join Proxy functions are offered via a join-port, and not the

standard coaps port. Also, the Registrar offers a join-port to which

the stateless Join Proxy sends the JPY message. The Join Proxy and

Registrar show the extra join-port number when responding to a

/.well-known/core discovery request addressed to the standard coap/

coaps port.

Three discovery cases are discussed: Join Proxy discovers Registrar,

Pledge discovers Registrar, and Pledge discovers Join Proxy. Each

discovery case considers three alternatives: CoAP based discovery,

GRASP Based discovery, and 6tisch based discovery. The choice of

discovery mechanism depends on the type of installation, and

manufacturers can provide the pledge/join-proxy with support for

more than one discovery mechanism. The pledge/join-proxy can be

designed to dynamically try different discovery mechanisms until a

successful discovery mechanism is found, or the choice of discovery

mechanism could be configured during device installation.

6.1. Join Proxy discovers Registrar

In this section, the Join Proxy and Registrar are assumed to

communicate via Link-Local addresses. This section describes the

discovery of the Registrar by the Join Proxy.

¶

* ¶

-

¶

-

¶

*

¶

¶

¶

¶

¶

6.1.1. CoAP discovery

The discovery of the coaps Registrar, using coap discovery, by the

Join Proxy follows sections 6.3 and 6.5.1 of [I-D.ietf-anima-

constrained-voucher]. The stateless Join Proxy can discover the

join-port of the Registrar by sending a GET request to "/.well-

known/core" including a resource type (rt) parameter with the value

"brski.rjp" [RFC6690]. Upon success, the return payload will contain

the join-port of the Registrar.

The discoverable port numbers are usually returned for Join Proxy

resources in the <URI-Reference> of the payload (see section 5.1 of

[I-D.ietf-ace-coap-est]).

6.1.2. GRASP discovery

This section is normative for uses with an ANIMA ACP. In the context

of autonomic networks, the Join Proxy uses the DULL GRASP M_FLOOD

mechanism to announce itself. Section 4.1.1 of [RFC8995] discusses

this in more detail. The Registrar announces itself using ACP

instance of GRASP using M_FLOOD messages. Autonomic Network Join

Proxies MUST support GRASP discovery of Registrar as described in

section 4.3 of [RFC8995].

6.1.3. 6tisch discovery

The discovery of the Registrar by the Join Proxy uses the enhanced

beacons as discussed in [I-D.ietf-6tisch-enrollment-enhanced-

beacon].

6.2. Pledge discovers Registrar

In this section, the Pledge and Registrar are assumed to communicate

via Link-Local addresses. This section describes the discovery of

the Registrar by the Pledge.

6.2.1. CoAP discovery

The discovery of the coaps Registrar, using coap discovery, by the

Pledge follows sections 6.3 and 6.5.1 of [I-D.ietf-anima-

constrained-voucher].

¶

 REQ: GET coap://[IP_address]/.well-known/core?rt=brski.rjp

 RES: 2.05 Content

 <coaps://[IP_address]:join-port>; rt="brski.rjp"

¶

¶

¶

¶

¶

¶

6.2.2. GRASP discovery

This section is normative for uses with an ANIMA ACP. In the context

of autonomic networks, the Pledge uses the DULL GRASP M_FLOOD

mechanism to announce itself. Section 4.1.1 of [RFC8995] discusses

this in more detail. The Registrar announces itself using ACP

instance of GRASP using M_FLOOD messages. Autonomic Network Join

Proxies MUST support GRASP discovery of Registrar as described in

section 4.3 of [RFC8995] .

6.2.3. 6tisch discovery

The discovery of Registrar by the Pledge uses the enhanced beacons

as discussed in [I-D.ietf-6tisch-enrollment-enhanced-beacon].

6.3. Pledge discovers Join Proxy

In this section, the Pledge and Join Proxy are assumed to

communicate via Link-Local addresses. This section describes the

discovery of the Join Proxy by the Pledge.

6.3.1. CoAP discovery

In the context of a coap network without Autonomic Network support,

discovery follows the standard coap policy. The Pledge can discover

a Join Proxy by sending a link-local multicast message to ALL CoAP

Nodes with address FF02::FD. Multiple or no nodes may respond. The

handling of multiple responses and the absence of responses follow

section 4 of [RFC8995].

The join-port of the Join Proxy is discovered by sending a GET

request to "/.well-known/core" including a resource type (rt)

parameter with the value "brski.jp" [RFC6690]. Upon success, the

return payload will contain the join-port.

The example below shows the discovery of the join-port of the Join

Proxy.

Port numbers are assumed to be the default numbers 5683 and 5684 for

coap and coaps respectively (sections 12.6 and 12.7 of [RFC7252])

when not shown in the response. Discoverable port numbers are

usually returned for Join Proxy resources in the <URI-Reference> of

the payload (see section 5.1 of [I-D.ietf-ace-coap-est]).

¶

¶

¶

¶

¶

¶

 REQ: GET coap://[FF02::FD]/.well-known/core?rt=brski.jp

 RES: 2.05 Content

 <coaps://[IP_address]:join-port>; rt="brski.jp"

¶

¶

6.3.2. GRASP discovery

This section is normative for uses with an ANIMA ACP. The Pledge

MUST listen for GRASP M_FLOOD [RFC8990] announcements of the

objective: "AN_Proxy". See section 4.1.1 [RFC8995] for the details

of the objective.

6.3.3. 6tisch discovery

The discovery of the Join Proxy by the Pledge uses the enhanced

beacons as discussed in [I-D.ietf-6tisch-enrollment-enhanced-

beacon].

7. Comparison of stateless and stateful modes

The stateful and stateless mode of operation for the Join Proxy have

their advantages and disadvantages. This section should enable to

make a choice between the two modes based on the available device

resources and network bandwidth.

¶

¶

¶

+-------------+----------------------------+------------------------+

| Properties | Stateful mode | Stateless mode |

+-------------+----------------------------+------------------------+

| State |The Join Proxy needs | No information is |

| Information |additional storage to | maintained by the Join |

| |maintain mapping between | Proxy. Registrar needs |

| |the address and port number | to store the packet |

| |of the Pledge and those | header. |

| |of the Registrar. | |

+-------------+----------------------------+------------------------+

|Packet size |The size of the forwarded |Size of the forwarded |

| |message is the same as the |message is bigger than |

| |original message. |the original,it includes|

| | |additional information |

+-------------+----------------------------+------------------------+

|Specification|The Join Proxy needs |New JPY message to |

|complexity |additional functionality |encapsulate DTLS payload|

| |to maintain state |The Registrar |

| |information, and specify |and the Join Proxy |

| |the source and destination |have to understand the |

| |addresses of the DTLS |JPY message in order |

| |handshake messages |to process it. |

+-------------+----------------------------+------------------------+

| Ports | Join Proxy needs |Join Proxy and Registrar|

| | discoverable join-port |need discoverable |

| | | join-ports |

+-------------+----------------------------+------------------------+

Figure 5: Comparison between stateful and stateless mode

8. Security Considerations

All the concerns in [RFC8995] section 4.1 apply. The Pledge can be

deceived by malicious Join Proxy announcements. The Pledge will only

join a network to which it receives a valid [RFC8366] voucher [I-

D.ietf-anima-constrained-voucher]. Once the Pledge joined, the

payload between Pledge and Registrar is protected by DTLS.

It should be noted here that the contents of the CBOR map used to

convey return address information is not DTLS protected. When the

communication between JOIN Proxy and Registrar passes over an

unsecure network, an attacker can change the CBOR array, causing the

Registrar to deviate traffic from the intended Pledge. If such

scenario needs to be avoided, then it is reasonable for the Join

Proxy to encrypt the CBOR array using a locally generated symmetric

key. The Registrar would not be able to examine the result, but it

does not need to do so. This is a topic for future work.

In some installations, level 2 protection is provided between all

member pairs of the mesh. In such an enviroment encryption of the

CBOR array is unnecessay because the level 2 protection already

provide it.

9. IANA Considerations

9.1. Resource Type Attributes registry

This specification registers two new Resource Type (rt=) Link Target

Attributes in the "Resource Type (rt=) Link Target Attribute Values"

subregistry under the "Constrained RESTful Environments (CoRE)

Parameters" registry per the [RFC6690] procedure.

9.2. service name and port number registry

This specification registers two service names under the "Service

Name and Transport Protocol Port Number" registry.

¶

¶

¶

¶

Attribute Value: brski.jp

Description: This BRSKI resource type is used to query and return the

 supported BRSKI (CoAP over DTLS) port of the constrained

 Join Proxy.

Reference: [this document]

Attribute Value: brski.rjp

Description: This BRSKI resource type is used to query and return the

 supported BRSKI JPY protocol port of the Registrar.

Reference: [this document]

¶

¶

10. Acknowledgements

Many thanks for the comments by Brian Carpenter, Esko Dijk, Russ

Housley, and Rob Wilton.

11. Contributors

Sandeep Kumar, Sye loong Keoh, and Oscar Garcia-Morchon are the co-

authors of the draft-kumar-dice-dtls-relay-02. Their draft has

served as a basis for this document. Much text from their draft is

copied over to this draft.

12. Changelog

12.1. 06 to 07

12.2. 05 to 06

12.3. 04 to 05

Service Name: brski-jp

Transport Protocol(s): udp

Assignee: IESG <iesg@ietf.org>

Contact: IESG <iesg@ietf.org>

Description: Bootstrapping Remote Secure Key Infrastructure

 constrained Join Proxy

Reference: [this document]

Service Name: brski-rjp

Transport Protocol(s): udp

Assignee: IESG <iesg@ietf.org>

Contact: IESG <iesg@ietf.org>

Description: Bootstrapping Remote Secure Key Infrastructure

 Registrar join-port used by stateless constrained

 Join Proxy

Reference: [this document]

¶

¶

¶

 * AD review changes¶

 * RT value change to brski.jp and brski.rjp

 * new registry values for IANA

 * improved handling of jpy header array

¶

 * Join Proxy and join-port consistent spelling

 * some nits removed

 * restructured discovery

 * section

 * rephrased parts of security section

¶

[family]

[I-D.ietf-ace-coap-est]

[I-D.ietf-anima-constrained-voucher]

12.4. 03 to 04

12.5. 02 to 03

12.6. 01 to 02

Discovery of Join Proxy and Registrar ports

12.7. 00 to 01

Registrar used throughout instead of EST server

Emphasized additional Join Proxy port for Join Proxy and

Registrar

updated discovery accordingly

updated stateless Join Proxy JPY header

JPY header described with CDDL

Example simplified and corrected

12.8. 00 to 00

copied from vanderstok-anima-constrained-join-proxy-05

13. References

13.1. Normative References

"Address Family Numbers", 19 October 2021, <https://

www.iana.org/assignments/address-family-numbers/address-

family-numbers.xhtml>.

Stok, P. V. D., Kampanakis, P., Richardson,

M. C., and S. Raza, "EST over secure CoAP (EST-coaps)",

Work in Progress, Internet-Draft, draft-ietf-ace-coap-

est-18, 6 January 2020, <https://www.ietf.org/archive/id/

draft-ietf-ace-coap-est-18.txt>.

Richardson, M., Stok, P. V. D.,

Kampanakis, P., and E. Dijk, "Constrained Bootstrapping

Remote Secure Key Infrastructure (BRSKI)", Work in

* mail address and reference¶

* Terminology updated

* Several clarifications on discovery and routability

* DTLS payload introduced

¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

https://www.iana.org/assignments/address-family-numbers/address-family-numbers.xhtml
https://www.iana.org/assignments/address-family-numbers/address-family-numbers.xhtml
https://www.iana.org/assignments/address-family-numbers/address-family-numbers.xhtml
https://www.ietf.org/archive/id/draft-ietf-ace-coap-est-18.txt
https://www.ietf.org/archive/id/draft-ietf-ace-coap-est-18.txt

[ieee802-1AR]

[RFC2119]

[RFC6347]

[RFC8174]

[RFC8366]

[RFC8949]

[RFC8990]

[RFC8995]

[I-D.ietf-6tisch-enrollment-enhanced-beacon]

Progress, Internet-Draft, draft-ietf-anima-constrained-

voucher-16, 14 February 2022, <https://www.ietf.org/

archive/id/draft-ietf-anima-constrained-voucher-16.txt>.

"IEEE 802.1AR Secure Device Identifier", 2009,

<https://standards.ieee.org/standard/802.1AR-2009.html>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,

January 2012, <https://www.rfc-editor.org/info/rfc6347>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,

"A Voucher Artifact for Bootstrapping Protocols", RFC

8366, DOI 10.17487/RFC8366, May 2018, <https://www.rfc-

editor.org/info/rfc8366>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

Bormann, C., Carpenter, B., Ed., and B. Liu, Ed.,

"GeneRic Autonomic Signaling Protocol (GRASP)", RFC 8990,

DOI 10.17487/RFC8990, May 2021, <https://www.rfc-

editor.org/info/rfc8990>.

Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,

and K. Watsen, "Bootstrapping Remote Secure Key

Infrastructure (BRSKI)", RFC 8995, DOI 10.17487/RFC8995,

May 2021, <https://www.rfc-editor.org/info/rfc8995>.

13.2. Informative References

(editor), D. D. and M.

Richardson, "Encapsulation of 6TiSCH Join and Enrollment

Information Elements", Work in Progress, Internet-Draft,

draft-ietf-6tisch-enrollment-enhanced-beacon-14, 21

https://www.ietf.org/archive/id/draft-ietf-anima-constrained-voucher-16.txt
https://www.ietf.org/archive/id/draft-ietf-anima-constrained-voucher-16.txt
https://standards.ieee.org/standard/802.1AR-2009.html
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8366
https://www.rfc-editor.org/info/rfc8366
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8990
https://www.rfc-editor.org/info/rfc8990
https://www.rfc-editor.org/info/rfc8995

[I-D.kumar-dice-dtls-relay]

[I-D.richardson-anima-state-for-joinrouter]

[RFC4944]

[RFC6690]

[RFC6763]

[RFC6775]

[RFC7030]

[RFC7102]

[RFC7228]

February 2020, <https://www.ietf.org/archive/id/draft-

ietf-6tisch-enrollment-enhanced-beacon-14.txt>.

Kumar, S. S., Keoh, S. L., and O.

Garcia-Morchon, "DTLS Relay for Constrained

Environments", Work in Progress, Internet-Draft, draft-

kumar-dice-dtls-relay-02, 20 October 2014, <https://

www.ietf.org/archive/id/draft-kumar-dice-dtls-

relay-02.txt>.

Richardson, M. C., "Considerations for stateful vs

stateless join router in ANIMA bootstrap", Work in

Progress, Internet-Draft, draft-richardson-anima-state-

for-joinrouter-03, 22 September 2020, <https://

www.ietf.org/archive/id/draft-richardson-anima-state-for-

joinrouter-03.txt>.

Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,

"Transmission of IPv6 Packets over IEEE 802.15.4

Networks", RFC 4944, DOI 10.17487/RFC4944, September

2007, <https://www.rfc-editor.org/info/rfc4944>.

Shelby, Z., "Constrained RESTful Environments (CoRE) Link

Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,

<https://www.rfc-editor.org/info/rfc6690>.

Cheshire, S. and M. Krochmal, "DNS-Based Service

Discovery", RFC 6763, DOI 10.17487/RFC6763, February

2013, <https://www.rfc-editor.org/info/rfc6763>.

Shelby, Z., Ed., Chakrabarti, S., Nordmark, E., and C.

Bormann, "Neighbor Discovery Optimization for IPv6 over

Low-Power Wireless Personal Area Networks (6LoWPANs)",

RFC 6775, DOI 10.17487/RFC6775, November 2012, <https://

www.rfc-editor.org/info/rfc6775>.

Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,

"Enrollment over Secure Transport", RFC 7030, DOI

10.17487/RFC7030, October 2013, <https://www.rfc-

editor.org/info/rfc7030>.

Vasseur, JP., "Terms Used in Routing for Low-Power and

Lossy Networks", RFC 7102, DOI 10.17487/RFC7102, January

2014, <https://www.rfc-editor.org/info/rfc7102>.

Bormann, C., Ersue, M., and A. Keranen, "Terminology for

Constrained-Node Networks", RFC 7228, DOI 10.17487/

RFC7228, May 2014, <https://www.rfc-editor.org/info/

rfc7228>.

https://www.ietf.org/archive/id/draft-ietf-6tisch-enrollment-enhanced-beacon-14.txt
https://www.ietf.org/archive/id/draft-ietf-6tisch-enrollment-enhanced-beacon-14.txt
https://www.ietf.org/archive/id/draft-kumar-dice-dtls-relay-02.txt
https://www.ietf.org/archive/id/draft-kumar-dice-dtls-relay-02.txt
https://www.ietf.org/archive/id/draft-kumar-dice-dtls-relay-02.txt
https://www.ietf.org/archive/id/draft-richardson-anima-state-for-joinrouter-03.txt
https://www.ietf.org/archive/id/draft-richardson-anima-state-for-joinrouter-03.txt
https://www.ietf.org/archive/id/draft-richardson-anima-state-for-joinrouter-03.txt
https://www.rfc-editor.org/info/rfc4944
https://www.rfc-editor.org/info/rfc6690
https://www.rfc-editor.org/info/rfc6763
https://www.rfc-editor.org/info/rfc6775
https://www.rfc-editor.org/info/rfc6775
https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc7102
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228

[RFC7252]
Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Appendix A. Stateless Proxy payload examples

The examples show the request "GET coaps://192.168.1.200:5965/est/

crts" to a Registrar. The header generated between Join Proxy and

Registrar and from Registrar to Join Proxy are shown in detail. The

DTLS payload is not shown.

The request from Join Proxy to Registrar looks like:

In CBOR Diagnostic:

The response is:

In CBOR diagnostic:

Authors' Addresses

Michael Richardson

Sandelman Software Works

¶

¶

 85 # array(5)

 50 # bytes(16)

 FE800000000000000000FFFFC0A801C8 #

 19 BDA7 # unsigned(48551)

 01 # unsigned(1) IP

 00 # unsigned(0)

 58 2D # bytes(45)

 <cacrts DTLS encrypted request>

¶

¶

 [h'FE800000000000000000FFFFC0A801C8', 48551, 1, 0,

 h'<cacrts DTLS encrypted request>']

¶

¶

 85 # array(5)

 50 # bytes(16)

 FE800000000000000000FFFFC0A801C8 #

 19 BDA7 # unsigned(48551)

 01 # unsigned(1) IP

 00 # unsigned(0)

 59 026A # bytes(618)

 <cacrts DTLS encrypted response>

¶

¶

 [h'FE800000000000000000FFFFC0A801C8', 48551, 1, 0,

 h'<cacrts DTLS encrypted response>']

¶

https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252

Email: mcr+ietf@sandelman.ca

Peter van der Stok

vanderstok consultancy

Email: stokcons@bbhmail.nl

Panos Kampanakis

Cisco Systems

Email: pkampana@cisco.com

mailto:mcr+ietf@sandelman.ca
mailto:stokcons@bbhmail.nl
mailto:pkampana@cisco.com

	Constrained Join Proxy for Bootstrapping Protocols
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Requirements Language
	4. Join Proxy functionality
	5. Join Proxy specification
	5.1. Stateful Join Proxy
	5.2. Stateless Join Proxy
	5.3. Stateless Message structure

	6. Discovery
	6.1. Join Proxy discovers Registrar
	6.1.1. CoAP discovery
	6.1.2. GRASP discovery
	6.1.3. 6tisch discovery

	6.2. Pledge discovers Registrar
	6.2.1. CoAP discovery
	6.2.2. GRASP discovery
	6.2.3. 6tisch discovery

	6.3. Pledge discovers Join Proxy
	6.3.1. CoAP discovery
	6.3.2. GRASP discovery
	6.3.3. 6tisch discovery

	7. Comparison of stateless and stateful modes
	8. Security Considerations
	9. IANA Considerations
	9.1. Resource Type Attributes registry
	9.2. service name and port number registry

	10. Acknowledgements
	11. Contributors
	12. Changelog
	12.1. 06 to 07
	12.2. 05 to 06
	12.3. 04 to 05
	12.4. 03 to 04
	12.5. 02 to 03
	12.6. 01 to 02
	12.7. 00 to 01
	12.8. 00 to 00

	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. Stateless Proxy payload examples
	Authors' Addresses

