
Workgroup: anima Working Group

Internet-Draft:

draft-ietf-anima-constrained-join-proxy-13

Published: 24 October 2022

Intended Status: Standards Track

Expires: 27 April 2023

Authors: M. Richardson

Sandelman Software Works

P. van der Stok

vanderstok consultancy

P. Kampanakis

Cisco Systems

Constrained Join Proxy for Bootstrapping Protocols

Abstract

This document extends the work of Bootstrapping Remote Secure Key

Infrastructures (BRSKI) by replacing the (stateful) TLS Circuit

proxy between Pledge and Registrar with a stateless or stateful

Circuit proxy using CoAP which is called the constrained Join Proxy.

The constrained Join Proxy is a mesh neighbor of the Pledge and can

relay a DTLS session originating from a Pledge with only link-local

addresses to a Registrar which is not a mesh neighbor of the Pledge.

Like the BRSKI Circuit proxy, this constrained Join Proxy eliminates

the need of Pledges to have routeable IP addresses before enrolment

by utilizing link-local addresses. Use of the constrained Join Proxy

also eliminates the need of the Pledge to authenticate to the

network or perform network-wide Registrar discover before enrolment.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-ietf-anima-constrained-join-proxy/.

Discussion of this document takes place on the anima Working Group

mailing list (mailto:anima@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/anima/.

Source for this draft and an issue tracker can be found at https://

github.com/anima-wg/constrained-join-proxy.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-ietf-anima-constrained-join-proxy/
https://datatracker.ietf.org/doc/draft-ietf-anima-constrained-join-proxy/
mailto:anima@ietf.org
https://mailarchive.ietf.org/arch/browse/anima/
https://mailarchive.ietf.org/arch/browse/anima/
https://github.com/anima-wg/constrained-join-proxy
https://github.com/anima-wg/constrained-join-proxy

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. constrained Join Proxy functionality

4. constrained Join Proxy specification

4.1. Stateful Join Proxy

4.2. Stateless Join Proxy

4.3. Constraucting the extended token

4.3.1. Processing by Registrar

5. Discovery

5.1. Discovery operations by Join-Proxy

5.1.1. CoAP discovery

5.1.2. GRASP discovery

5.2. Pledge discovers Join-Proxy

5.2.1. CoAP discovery

5.2.2. GRASP discovery

5.2.3. 6tisch discovery

6. Comparison of stateless and stateful modes

7. Security Considerations

8. IANA Considerations

8.1. Resource Type Attributes registry

8.2. service name and port number registry

9. Acknowledgements

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

10. Contributors

11. Changelog

11.1. 14 to 13

11.2. 13 to 12

11.3. 12 to 11

11.4. 11 to 10

11.5. 10 to 09

11.6. 09 to 07

11.7. 06 to 07

11.8. 05 to 06

11.9. 04 to 05

11.10. 03 to 04

11.11. 02 to 03

11.12. 01 to 02

11.13. 00 to 01

11.14. 00 to 00

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Stateless CoAP payload examples

Appendix B. Stateless Proxy payload examples

Authors' Addresses

1. Introduction

The Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol

described in [RFC8995] provides a solution for a secure zero-touch

(automated) bootstrap of new (unconfigured) devices. In the context

of BRSKI, new devices, called "Pledges", are equipped with a

factory-installed Initial Device Identifier (IDevID) (see

[ieee802-1AR]), and are enrolled into a network. BRSKI makes use of

Enrollment over Secure Transport (EST) [RFC7030] with [RFC8366]

vouchers to securely enroll devices. A Registrar provides the

security anchor of the network to which a Pledge enrolls.

In this document, BRSKI is extended such that a Pledge connects to

"Registrars" via a constrained Join Proxy. In particular, this

solution is intended to support mesh networks as described in

[RFC4944].

The constrained Join Proxy as specified in this document is one of

the Join Proxy options referred to in [RFC8995] section 2.5.2 as

future work.

A complete specification of the terminology is pointed at in

Section 2.

The specified solutions in [RFC8995] and [RFC7030] are based on POST

or GET requests to the EST resources (/cacerts, /simpleenroll, /

¶

¶

¶

¶

simplereenroll, /serverkeygen, and /csrattrs), and the brski

resources (/requestvoucher, /voucher_status, and /enrollstatus).

These requests use https and may be too large in terms of code space

or bandwidth required for constrained devices. Constrained devices

which may be part of constrained networks [RFC7228], typically

implement the IPv6 over Low-Power Wireless personal Area Networks

(6LoWPAN) [RFC4944] and Constrained Application Protocol (CoAP)

[RFC7252].

CoAP can be run with the Datagram Transport Layer Security (DTLS)

[RFC6347] as a security protocol for authenticity and

confidentiality of the messages. This is known as the "coaps"

scheme. A constrained version of EST, using CoAP and DTLS, is

described in [RFC9148].

The [I-D.ietf-anima-constrained-voucher] extends [RFC9148] with

BRSKI artifacts such as voucher, request voucher, and the protocol

extensions for constrained Pledges that use CoAP.

However, in networks that require authentication, such as those

using [RFC4944], the Pledge will not be IP routable over the mesh

network until it is authenticated to the mesh network. A new Pledge

can only initially use a link-local IPv6 address to communicate with

a mesh neighbor [RFC6775] until it receives the necessary network

configuration parameters. The Pledge receives these configuration

parameters from the Registrar. When the Registrar is not a direct

neighbor of the Registrar but several hops away, the Pledge

discovers a neighbor that is operating the constrained Join Proxy,

which forwards DTLS protected messages between Pledge and Registrar.

The constrained Join Proxy must be enrolled previously such that the

message from constrained Join Proxy to Registrar can be routed over

one or more hops.

An enrolled Pledge can act as constrained Join Proxy between other

Pledges and the enrolling Registrar.

Two modes of the constrained Join Proxy are specified:

This document is very much inspired by text published earlier in

[I-D.kumar-dice-dtls-relay].

[I-D.richardson-anima-state-for-joinrouter] outlined the various

options for building a constrained Join Proxy. [RFC8995] adopted

¶

¶

¶

¶

¶

¶

1 A stateful Join Proxy that locally stores UDP connection state:

 IP addresses (link-local with interface and non-link-local and UDP port-numbers)

 during the connection.

2 A stateless Join Proxy where the connection state

 is replaced by a second layer of CoAP header in the

 UDP messages between constrained Join Proxy and Registrar.

¶

only the Circuit Proxy method (1), leaving the other methods as

future work.

Similar to the difference between storing and non-storing Modes of

Operations (MOP) in RPL [RFC6550], the stateful and stateless modes

differ in the way that they store the state required to forward the

return packet to the Pledge. In the stateful method, the return

forward state is stored in the Join Proxy. In the stateless method,

the return forward state is stored in the network using the CoAP

extended token in a way identical to that described in [RFC9031].

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terms are defined in [RFC8366], and are used

identically as in that document: artifact, imprint, domain, Join

Registrar/Coordinator (JRC), Pledge, and Voucher.

In this document, the term "Registrar" is used throughout instead of

"Join Registrar/Coordinator (JRC)".

The "Constrained Join Proxy" enables a Pledge that is multiple hops

away from the Registrar, to execute the BRSKI protocol [RFC8995]

using a secure channel.

The term "Join Proxy" is used interchangeably with the term

"constrained Join Proxy" throughout this document.

The [RFC8995] Circuit Proxy is referred to as a TCP circuit Join

Proxy.

3. constrained Join Proxy functionality

As depicted in the Figure 1, the Pledge (P), in a network such as a

Low-Power and Lossy Network (LLN) mesh [RFC7102] can be more than

one hop away from the Registrar (R) and not yet authenticated into

the network.

In this situation, the Pledge can only communicate one-hop to its

nearest neighbor, the constrained Join Proxy (J) using link-local

IPv6 addresses. However, the Pledge needs to communicate using end-

to-end security with a Registrar in order to onboard, authenticate

and get the relevant system/network parameters. If the Pledge,

knowing the IP-address of the Registrar, initiates a DTLS connection

to the Registrar, then the packets are dropped at the constrained

¶

¶

¶

¶

¶

¶

¶

¶

¶

Join Proxy since the Pledge is not yet admitted to the network or

there is no IP routability to the Pledge for any returned messages

from the Registrar.

multi-hop mesh
IPv6

R subnet
6LR J P

clear

Registrar Join Proxy Pledge

Figure 1: multi-hop enrollment.

Without a routeable IPv6 address, the Pledge (P) cannot exchange

IPv6/UDP/DTLS traffic with the Registrar (R), over multiple hops in

the network.

Furthermore, the Pledge may not even be able to discover the IP

address of the Registrar over multiple hops to initiate a DTLS

connection and perform authentication.

To overcome the problems with non-routability of DTLS packets and

the discovery of the destination address of the Registrar, the

constrained Join Proxy is introduced. This constrained Join Proxy

functionality is also (auto) configured into all authenticated

devices in the network which may act as a constrained Join Proxy for

Pledges.

The constrained Join Proxy allows for routing of the packets from

the Pledge using IP routing to the intended Registrar. An

authenticated constrained Join Proxy can discover the routable IP

address of the Registrar over multiple hops. The following Section 4

specifies the two constrained Join Proxy modes. A comparison is

presented in Section 6.

When a mesh network is set up, it consists of a Registrar and a set

of connected Pledges. No constrained Join Proxies are present. Only

some of these Pledges may be neighbors of the Registrar. Others

would need for their traffic to be routed across one or more

enrolled devices to reach the Registrar.

The desired state of the installation is a network with a Registrar

and all Pledges becoming enrolled devices. Some of these enrolled

devices can act as constrained Join Proxies. Pledges can only employ

¶

¶

¶

¶

¶

¶

¶

link-local communication until they are enrolled. A Pledge will

regularly try to discover a constrained Join Proxy or a Registrar

with link-local discovery requests. The Pledges which are neighbors

of the Registrar will discover the Registrar and be enrolled

following the constrained BRSKI protocol. An enrolled device can act

as constrained Join Proxy. The Pledges which are not a neighbor of

the Registrar will eventually discover a constrained Join Proxy and

follow the constrained BRSKI protocol to be enrolled. While this

goes on, more and more constrained Join Proxies with a larger hop

distance to the Registrar will emerge. The network should be

configured such that at the end of the enrollment process, all

Pledges have discovered a neighboring constrained Join Proxy or the

Registrar, and all Pledges are enrolled.

The constrained Join Proxy is as a packet-by-packet proxy for UDP

packets between Pledge and Registrar. The constrained BRSKI protocol

between Pledge and Registrar described in

[I-D.ietf-anima-constrained-voucher] which this Join Proxy supports

uses UDP messages with DTLS payload, but the Join Proxy as described

here is unaware of this payload. It can therefore potentially also

work for other UDP based protocols as long as they are agnostic to

(or can be made to work with) the change of IP header by the

constrained Join Proxy.

In both Stateless and Stateful mode, the Join Proxy needs to be

configured with or dynamically discover a Registrar to perform its

service. This specification does not discuss how a constrained Join

Proxy selects a Registrar when it discovers 2 or more.

4. constrained Join Proxy specification

A Join Proxy can operate in two modes:

Stateful mode

Stateless mode

The advantages and disadvantages of the two modes are presented in

Section 6.

A Registrar MUST implement both the stateful mode and the Stateless

mode, but an operator MAY configure it to announce only one. A Join

Proxy MUST implement the stateless mode, but SHOULD implement the

stateful mode if it has sufficient memory.

For a Join Proxy to be operational, the node on which it is running

has to be able to talk to a Registrar (exchange UDP messages with

it). This can happen fully automatically by the Join Proxy node

first enrolling itself as a Pledge, and then learning the IP

address, the UDP port and the mode(s) (Stateful and/or Stateless) of

¶

¶

¶

¶

* ¶

* ¶

¶

¶

the Registrar, through a discovery mechanism such as those described

in Section 6.

In mesh LLN networks like those based upon RPL ([RFC6550]), it would

not be unusual for the 6LBR (the DODAG root) to have a wired network

interface on which the Registrar can be found. Or the Registrar may

in fact be co-located with the 6LBR. This 6LBR then becomes the

first Join Proxy, and additional nodes attach to it in a concentric

fashion.

Other methods, such as provisioning the Join Proxy are out of scope

of this document but equally feasible.

Once the Join Proxy is operational, its mode is determined by the

mode of the Registrar. If the Registrar offers both Stateful and

Stateless mode, the Join Proxy MUST use the stateless mode.

Independent of the mode of the Join Proxy, the Pledge first

discovers (see Section 6) and selects the most appropriate Join

Proxy. From the discovery, the Pledge learns the Join Proxies link-

local scope IP address and UDP (join) port. This discovery can also

be based upon [RFC8995] section 4.1. If the discovery method does

not support discovery of the join-port, then the Pledge assumes the

default CoAP over DTLS UDP port (5683).

4.1. Stateful Join Proxy

In stateful mode, the Join Proxy acts as a UDP "circuit" proxy that

does not change the UDP payload (data octets according to [RFC768])

but only rewrites the IP and UDP headers of each packet it receives

from Pledge and Registrar.

The stateful Join Proxy operates as a 'pseudo' UDP circuit proxy

creating and utilizing connection mapping state to rewrite the IP

address and UDP port number packet header fields of UDP packets that

it forwards between Pledge and Registrar. Figure 2 depiects how this

state is used.

¶

¶

¶

¶

¶

¶

¶

Figure 2: constrained stateful joining message flow with Registrar

address known to Join Proxy.

Because UDP does not have the notion of a connection, this document

calls this a 'pseudo' connection, whose establishment is solely

triggered by receipt of a packet from a Pledge with an IP_p%IF:p_P

source for which no mapping state exists, and that is termined by a

connection expiry timer E.

If an untrusted Pledge that can only use link-local addressing wants

to contact a trusted Registrar, and the Registrar is more than one

hop away, it sends its DTLS messages to the Join Proxy.

When a proxy receives an ICMP error message from the Registrar or

Plege, for which mapping state exist, the proxy SHOULD map the ICMP

message as it would map a UDP message and forward the ICMP message

to the Registrar / Pledge. Processing of ICMP messages SHOULD NOT

reset the connection expiry timer.

To protect itself and the Registrar against malfunctioning Pledges

and or denial of service attacks, the join proxy SHOULD limit the

number of simultaneous mapping states on per ip address to 2 and the

number of simultaneous mapping states per interface to 10. When

mapping state can not be built due to exhausted state, the proxy

+------------+------------+-------------+--------------------------+

| Pledge | Join Proxy | Registrar | Message |

| (P) | (J) | (R) | Src_IP:port | Dst_IP:port|

+------------+------------+-------------+-------------+------------+

| --ClientHello--> | IP_P:p_P | IP_Jl:p_Jl |

| --ClientHello--> | IP_Jr:p_Jr| IP_R:5684 |

| | | |

| <--ServerHello-- | IP_R:5684 | IP_Jr:p_Jr |

| : | | |

| <--ServerHello-- : | IP_Jl:p_Jl| IP_P:p_P |

| : : | | |

| [DTLS messages] | : | : |

| : : | : | : |

| --Finished--> : | IP_P:p_P | IP_Jl:p_Jl |

| --Finished--> | IP_Jr:p_Jr| IP_R:5684 |

| | | |

| <--Finished-- | IP_R:5684 | IP_Jr:p_Jr |

| <--Finished-- | IP_Jl:p_Jl| IP_P:p_P |

| : : | : | : |

+---------------------------------------+-------------+------------+

IP_P:p_P = Link-local IP address and port of Pledge (DTLS Client)

IP_R:5684 = Routable IP address and coaps port of Registrar

IP_Jl:p_Jl = Link-local IP address and join-port of Join Proxy

IP_Jr:p_Jr = Routable IP address and client port of Join Proxy

¶

¶

¶

SHOULD return an ICMP error (1), "Destination Port Unreachable"

message with code (1), "Communication with destination

administratively prohibited".

4.2. Stateless Join Proxy

Stateless Join Proxy operation eliminates the need and complexity to

maintain per UDP connection mapping state on the proxy and the state

machinery to build, maintain and remove this mapping state. It also

removes the need to protect this mapping state against DoS attacks

and may also reduce memory and CPU requirements on the proxy.

Stateless Join Proxy operations works by encapsulating the DTLS

messages into a new CoAP header [RFC7252]. This new CoAP header is

designed to be as minimalistic as possible. The use of CoAP here

costs a XXX bytes more than a custom encapsulation, but simplies

much of the operation, as well as permitting the result to pass

through CoAP proxies, CoAP to HTTP proxies, and other mechanisms

that might be introduced into a network. This also eliminates custom

code that is only rarely used, which may reduce bugs.

The CoAP payload is configured much as [RFC9031], Section 8.1.1

specifies:

The request method is POST.

The type is Confirmable (CON).

The Proxy-Scheme option is set to "coap".

No Uri_Host option is included, as none is technically required.

No Uri-Path option is included.

The payload is the DTLS payload as received from the Pledge.

An extended token [RFC8974] is included to contain some encrypted

state that allows replies to be returned to the Pledge.

Appendix A shows an example CoAP header, assuming a 16-byte extended

token, with the resulting overhead of 28 bytes.

When the Join Proxy receives a UDP message from a Pledge, it encodes

the Pledges link-local IP address, interface and UDP (source) port

of the packet into the extended token. The result is sent to the

Registrar from a fixed source UDP port.

As described in [RFC7252], Section 5.3.1, when the Registrar sends

packets for the Pledge, it MUST return the token field unchanged.

This allows the Join Proxy to decode the saved Pledge state, and

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

¶

¶

https://rfc-editor.org/rfc/rfc9031#section-8.1.1
https://rfc-editor.org/rfc/rfc7252#section-5.3.1

reconstruct the Pledges link-local IP address, interace and UDP

(destination) port for the return packet. Figure 3 shows this per-

packet mapping on the Join Proxy.

The Registrar transiently stores the extended token field

information in case it needs to generate additional messages as a

result of DTLS processing.

The Registrar uses the payload field to execute the Registrar

functionality.

The Registrar SHOULD NOT assume that it can decode the Header Field,

it should simply repeat it when responding. The Header contains the

original source link-local address and port of the Pledge from the

transient state stored earlier and the Contents field contains the

DTLS payload.

On receiving the CoAP message, the Join Proxy processes the CoAP

header. It uses the extended token field to route the payload as a

DTLS message to the Pledge.

In the stateless Join Proxy mode, both the Registrar and the Join

Proxy use discoverable UDP join-ports. For the Join Proxy this may

be a default CoAP port.

¶

¶

¶

¶

¶

¶

Figure 3: constrained stateless joining message flow.

4.3. Constraucting the extended token

The Join Proxy cannot decrypt the DTLS payload and has no knowledge

of the transported media type. The contents are DTLS encrypted.

The extended token payload is to be reflected by the Registrar when

sending reply packets to the Join Proxy. The extended token content

is not standardized, but this section provides an non-normative

example.

As explained in [RFC8974], Section 5.2, the Join Proxy SHOULD

encrypt the extended token with a symmetric key known only to the

Join Proxy. This key need not persist on a long term basis, and MAY

be changed periodically.

This is intended to be identical to the mechanism described in

Section 7.1 of [RFC9031]. However, since the CoAP layer is inside of

the DTLS layer (which is between the Pledge and the Registrar), it

is not possible for the Join Proxy to act as an actual CoAP proxy.

+--------------+------------+---------------+-----------------------+

| Pledge | Join Proxy | Registrar | Message |

| (P) | (J) | (R) |Src_IP:port|Dst_IP:port|

+--------------+------------+---------------+-----------+-----------+

| --ClientHello--> | IP_P:p_P |IP_Jl:p_Jl |

| --JPY[H(IP_P:p_P),--> | IP_Jr:p_Jr|IP_R:p_Ra |

| C(ClientHello)] | | |

| <--JPY[H(IP_P:p_P),-- | IP_R:p_Ra |IP_Jr:p_Jr |

| C(ServerHello)] | | |

| <--ServerHello-- | IP_Jl:p_Jl|IP_P:p_P |

| : | | |

| [DTLS messages] | : | : |

| : | : | : |

| --Finished--> | IP_P:p_P |IP_Jr:p_Jr |

| --JPY[H(IP_P:p_P),--> | IP_Jl:p_Jl|IP_R:p_Ra |

| C(Finished)] | | |

| <--JPY[H(IP_P:p_P),-- | IP_R:p_Ra |IP_Jr:p_Jr |

| C(Finished)] | | |

| <--Finished-- | IP_Jl:p_Jl|IP_P:p_P |

| : | : | : |

+---+-----------+-----------+

IP_P:p_P = Link-local IP address and port of the Pledge

IP_R:p_Ra = Routable IP address and join-port of Registrar

IP_Jl:p_Jl = Link-local IP address and join-port of Join Proxy

IP_Jr:p_Jr = Routable IP address and port of Join Proxy

JPY[H(),C()] = Join Proxy message with header H and content C

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8974#section-5.2
https://rfc-editor.org/rfc/rfc9031#section-7.1

The context that is stored into the extended token might be

constructed with the following CDDL grammar: (This is illustrative

only: the contents are not subject to standardization)

This results in a total of 96 bits, or 12 bytes. The structure

stores the srcport, the originating IPv6 Link-Local address, the

IPv4/IPv6 family (as a single bit) and an ifindex to provide the

link-local scope. This fits nicely into a single AES128 CBC block

for instance, resulting in a 16 byte token. The Join Proxy MUST

maintain the same context block for all communications from the same

Pledge. This implies that any encryption key either does not change

during the communication, or that when it does, it is acceptable to

break any onboarding connections which have not yet completed. If

using a context parameter like defined above, it should be easy for

the Join Proxy to meet this requirement without maintaining any

local state about the Pledge.

Note: when IPv6 is used only the lower 64-bits of the origin IP need

to be recorded, because they are all IPv6 Link-Local addresses, so

the upper 64-bits are just "fe80::". For IPv4, a Link-Local IPv4

address [RFC3927] would be used, and it would fit into 64-bits. On

media where the IID is not 64-bits, a different arrangement will be

necessary.

For the join messages relayed to a particular Registrar, the Join

Proxy SHOULD use the same UDP source port for all messages related

to all Pledges. A Join Proxy MAY change the UDP source port, but

doing so creates more local state. But, a Join Proxy with multiple

CPUs (unlikely in a constrained system, but possible in some future)

could, for instance, use different source port numbers to

demultiplex connections across CPUs.

4.3.1. Processing by Registrar

On reception of a CoAP encapsulated join message by the Registrar,

the Registrar processes the CoAP header and extracts the extended

token. The extended token will need to be provided as input to a

DTLS library [RFC9147], as the 5-tuple of the UDP connection alone

does not provide enough context for the Registrar to pick an

appropriate context. Note that the socket will need to be used for

multiple DTLS flows, which is atypical for how DTLS usually uses

sockets.

¶

 pledge_context_message = [

 family: uint .bits 1,

 ifindex: uint .bits 8,

 srcport: uint .bits 16,

 iid: bstr .bits 64,

]

¶

¶

¶

¶

¶

As an alternative, the Registrar could split out the state

processing from the DTLS processing, creating new sockets that it

maintains, but this just duplicates state across many places. It may

still be an advantage for some architectures.

Examples are shown in Appendix B.

At the CoAP level, within the Constrained BRSKI and the EST-COAP

[RFC9148] level, the block option [RFC7959] is often used. The

Registrar and the Pledge MUST select a block size that would allow

the addition of the additional CoAP header without violating MTU

sizes.

5. Discovery

5.1. Discovery operations by Join-Proxy

In order to accomodate automatic configuration of the Join-Proxy, it

must discover the location and a capabilities of the Registar.

Section 10.2 of [I-D.ietf-anima-constrained-voucher] explains the

basic mechanism, and this section explains the extensions required

to discover if stateless operation is supported.

5.1.1. CoAP discovery

Section 10.2.2 of [I-D.ietf-anima-constrained-voucher] describes how

to use CoAP Discovery. The stateless Join Proxy requires a different

end point that can accept the second CoAP header encapsulation and

extended token.

The stateless Join Proxy can discover the join-port of the Registrar

by sending a GET request to "/.well-known/core" including a resource

type (rt) parameter with the value "brski.rjp" [RFC6690]. Upon

success, the return payload will contain a port that contain process

the CoAP encalsulated DTLS messages.

In the [RFC6690] link format, and [RFC3986], Section 3.2, the

authority attribute can not include a port number unless it also

includes the IP address.

The returned join-port is expected to process the CoAP encapsulated

DTLS messages described in section Section 4.3. The scheme is now

CoAP, as the outside protocol is CoAP and could be subject to

further CoAP operations.

¶

¶

¶

¶

¶

¶

 REQ: GET /.well-known/core?rt=brski.rjp

 RES: 2.05 Content

 <coap://[IP_address]:join-port>;rt=brski.rjp

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-anima-constrained-voucher-18#section-10.2
https://datatracker.ietf.org/doc/html/draft-ietf-anima-constrained-voucher-18#section-10.2.2
https://rfc-editor.org/rfc/rfc3986#section-3.2

An EST/Registrar server running at address 2001:db8:0:abcd::52, with

the CoAP processing on port 7634, and the stateful Registrar on port

5683 could reply to a multicast query as follows:

5.1.2. GRASP discovery

Section 10.2.1 of [I-D.ietf-anima-constrained-voucher] describes how

to use GRASP [RFC8990] discovery within the ACP to locate the

stateful port of the Registrar.

A Join Proxy which supports a stateless mode of operation using the

mechanism described in Section 4.3 must know where to send the

encoded content from the Pledge. The Registrar announces its

willingness to use the stateless mechanism by including an

additional objective in it's M_FLOOD'ed AN_join_registrar

announcements, but with a different objective value.

The following changes are necessary with respect to figure 10 of

[RFC8995]:

The transport-proto is IPPROTO_UDP

the objective is AN_join_registrar, identical to [RFC8995].

the objective name is "BRSKI_RJP".

Here is an example M_FLOOD announcing the Registrar on example port

5685, which is a port number chosen by the Registrar.

Figure 4: Example of Registrar announcement message

Most Registrars will announce both a CoAP-stateless and stateful

ports, and may also announce an HTTPS/TLS service:

¶

 REQ: GET /.well-known/core?rt=brski*

 RES: 2.05 Content

 <coap://[2001:db8:0:abcd::52]:7634>;rt=brski.rjp,

 <coaps://[2001:db8:0:abcd::52]/.well-known/brski>;rt=brski,

 <coaps://[2001:db8:0:abcd::52]/.well-known/brski/rv>;rt=brski.rv;ct=836,

 <coaps://[2001:db8:0:abcd::52]/.well-known/brski/vs>;rt=brski.vs;ct="50 60",

 <coaps://[2001:db8:0:abcd::52]/.well-known/brski/es>;rt=brski.es;ct="50 60",

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

 [M_FLOOD, 51804231, h'fda379a6f6ee00000200000064000001', 180000,

 [["AN_join_registrar", 4, 255, "BRSKI_RJP"],

 [O_IPv6_LOCATOR,

 h'fda379a6f6ee00000200000064000001', IPPROTO_UDP, 5685]]]

¶

https://datatracker.ietf.org/doc/html/draft-ietf-anima-constrained-voucher-18#section-10.2.1

Figure 5: Example of Registrar announcing three services

5.2. Pledge discovers Join-Proxy

Regardless of whether the Join Proxy operates in stateful or

stateless mode, the Join Proxy is discovered by the Pledge

identically. When doing constrained onboarding with DTLS as

security, the Pledge will always see an IPv6 Link-Local destination,

with a single UDP port to which DTLS messages are to be sent.

5.2.1. CoAP discovery

In the context of a CoAP network without Autonomic Network support,

discovery follows the standard CoAP policy. The Pledge can discover

a Join Proxy by sending a link-local multicast message to ALL CoAP

Nodes with address FF02::FD. Multiple or no nodes may respond. The

handling of multiple responses and the absence of responses follow

section 4 of [RFC8995].

The join-port of the Join Proxy is discovered by sending a GET

request to "/.well-known/core" including a resource type (rt)

parameter with the value "brski.jp" [RFC6690]. Upon success, the

return payload will contain the join-port.

The example below shows the discovery of the join-port of the Join

Proxy.

Port numbers are assumed to be the default numbers 5683 and 5684 for

coap and coaps respectively (sections 12.6 and 12.7 of [RFC7252])

when not shown in the response. Discoverable port numbers are

usually returned for Join Proxy resources in the <URI-Reference> of

the payload (see section 4.1 of [RFC9148]).

 [M_FLOOD, 51840231, h'fda379a6f6ee00000200000064000001', 180000,

 [["AN_join_registrar", 4, 255, ""],

 [O_IPv6_LOCATOR,

 h'fda379a6f6ee00000200000064000001', IPPROTO_TCP, 8443],

 ["AN_join_registrar", 4, 255, "BRSKI_JP"],

 [O_IPv6_LOCATOR,

 h'fda379a6f6ee00000200000064000001', IPPROTO_UDP, 5684],

 ["AN_join_registrar", 4, 255, "BRSKI_RJP"],

 [O_IPv6_LOCATOR,

 h'fda379a6f6ee00000200000064000001', IPPROTO_UDP, 5685]]]

¶

¶

¶

¶

 REQ: GET coap://[FF02::FD]/.well-known/core?rt=brski.jp

 RES: 2.05 Content

 <coaps://[IP_address]:join-port>; rt="brski.jp"

¶

¶

5.2.2. GRASP discovery

This section is normative for uses with an ANIMA ACP. In the context

of autonomic networks, the Join-Proxy uses the DULL GRASP M_FLOOD

mechanism to announce itself. Section 4.1.1 of [RFC8995] discusses

this in more detail.

The following changes are necessary with respect to figure 10 of

[RFC8995]:

The transport-proto is IPPROTO_UDP

the objective is AN_Proxy

The Registrar announces itself using ACP instance of GRASP using

M_FLOOD messages. Autonomic Network Join Proxies MUST support GRASP

discovery of Registrar as described in section 4.3 of [RFC8995] .

Here is an example M_FLOOD announcing the Join-Proxy at fe80::1, on

standard coaps port 5684.

Figure 6: Example of Registrar announcement message

5.2.3. 6tisch discovery

The discovery of Join-Proxy by the Pledge uses the enhanced beacons

as discussed in [RFC9032]. 6tisch does not use DTLS and so this

specification does not apply to it.

6. Comparison of stateless and stateful modes

The stateful and stateless mode of operation for the Join Proxy have

their advantages and disadvantages. This section should enable

operators to make a choice between the two modes based on the

available device resources and network bandwidth.

Properties Stateful mode Stateless mode

State

Information

The Join Proxy needs

additional storage to

maintain mapping between

the address and port number

of the Pledge and those of

the Registrar.

No information is

maintained by the Join

Proxy. Registrar needs

to store the packet

header.

Packet size

¶

¶

* ¶

* ¶

¶

¶

 [M_FLOOD, 12340815, h'fe800000000000000000000000000001', 180000,

 [["AN_Proxy", 4, 1, ""],

 [O_IPv6_LOCATOR,

 h'fe800000000000000000000000000001', IPPROTO_UDP, 5684]]]

¶

¶

Properties Stateful mode Stateless mode

The size of the forwarded

message is the same as the

original message.

Size of the forwarded

message is bigger than

the original, it

includes additional

information

Specification

complexity

The Join Proxy needs

additional functionality to

maintain state information,

and specify the source and

destination addresses of

the DTLS handshake messages

CoAP message to

encapsulate DTLS

payload. The Registrar

and the Join Proxy have

to understand the CoAP

header in order to

process it.

Ports
Join Proxy needs

discoverable join-port

Join Proxy and Registrar

need discoverable join-

ports

Table 1

7. Security Considerations

All the concerns in [RFC8995] section 4.1 apply. The Pledge can be

deceived by malicious Join Proxy announcements. The Pledge will only

join a network to which it receives a valid [RFC8366] voucher

[I-D.ietf-anima-constrained-voucher]. Once the Pledge joined, the

payload between Pledge and Registrar is protected by DTLS.

A malicious constrained Join Proxy has a number of routing

possibilities:

It sends the message on to a malicious Registrar. This is the

same case as the presence of a malicious Registrar discussed in

RFC 8995.

It does not send on the request or does not return the response

from the Registrar. This is the case of the not responding or

crashing Registrar discussed in RFC 8995.

It uses the returned response of the Registrar to enroll itself

in the network. With very low probability it can decrypt the

response because successful enrollment is deemed unlikely.

It uses the request from the Pledge to appropriate the Pledge

certificate, but then it still needs to acquire the private key

of the Pledge. This, too, is assumed to be highly unlikely.

A malicious node can construct an invalid Join Proxy message.

Suppose, the destination port is the coaps port. In that case, a

Join Proxy can accept the message and add the routing addresses

without checking the payload. The Join Proxy then routes it to

¶

¶

*

¶

*

¶

*

¶

*

¶

*

the Registrar. In all cases, the Registrar needs to receive the

message at the join-port, checks that the message consists of two

parts and uses the DTLS payload to start the BRSKI procedure. It

is highly unlikely that this malicious payload will lead to node

acceptance.

A malicious node can sniff the messages routed by the constrained

Join Proxy. It is very unlikely that the malicious node can

decrypt the DTLS payload. A malicious node can read the header

field of the message sent by the stateless Join Proxy. This

ability does not yield much more information than the visible

addresses transported in the network packets.

It should be noted here that the contents of the CBOR array used to

convey return address information is not DTLS protected. When the

communication between Join Proxy and Registrar passes over an

unsecure network, an attacker can change the CBOR array, causing the

Registrar to deviate traffic from the intended Pledge. These

concerns are also expressed in [RFC8974]. It is also pointed out

that the encryption by the Join Proxy is a local matter. Similarly

to [RFC8974], the use of AES-CCM [RFC3610] with a 64-bit tag is

recommended, combined with a sequence number and a replay window.

If such scenario needs to be avoided, the constrained Join Proxy

MUST encrypt the CBOR array using a locally generated symmetric key.

The Registrar is not able to examine the encrypted result, but does

not need to. The Registrar stores the encrypted header in the return

packet without modifications. The constrained Join Proxy can decrypt

the contents to route the message to the right destination.

8. IANA Considerations

8.1. Resource Type Attributes registry

This specification registers two new Resource Type (rt=) Link Target

Attributes in the "Resource Type (rt=) Link Target Attribute Values"

subregistry under the "Constrained RESTful Environments (CoRE)

Parameters" registry per the [RFC6690] procedure.

¶

*

¶

¶

¶

¶

Attribute Value: brski.jp

Description: This BRSKI resource type is used to query and return

 the supported BRSKI resources of the constrained

 Join Proxy.

Reference: [this document]

Attribute Value: brski.rjp

Description: This BRSKI resource type is used for the constrained

 Join Proxy to query and return Join Proxy specific

 BRSKI resources of a Registrar.

Reference: [this document]

¶

8.2. service name and port number registry

This specification registers two service names under the "Service

Name and Transport Protocol Port Number" registry.

9. Acknowledgements

Many thanks for the comments by Carsten Bormann, Brian Carpenter,

Spencer Dawkins, Esko Dijk, Toerless Eckert, Russ Housley, Ines

Robles, Rich Salz, Jürgen Schönwälder, Mališa Vučinić, and Rob

Wilton.

10. Contributors

Sandeep Kumar, Sye loong Keoh, and Oscar Garcia-Morchon are the co-

authors of the draft-kumar-dice-dtls-relay-02. Their draft has

served as a basis for this document.

11. Changelog

11.1. 14 to 13

incorporated review comments from TTE

jpy message changed to CoAP header

11.2. 13 to 12

¶

Service Name: brski-jp

Transport Protocol(s): udp

Assignee: IESG <iesg@ietf.org>

Contact: IESG <iesg@ietf.org>

Description: Bootstrapping Remote Secure Key Infrastructure

 constrained Join Proxy

Reference: [this document]

Service Name: brski-rjp

Transport Protocol(s): udp

Assignee: IESG <iesg@ietf.org>

Contact: IESG <iesg@ietf.org>

Description: Bootstrapping Remote Secure Key Infrastructure

 Registrar join-port used by stateless constrained

 Join Proxy

Reference: [this document]

¶

¶

¶

* ¶

* ¶

* jpy message encrypted and no longer standardized¶

11.3. 12 to 11

11.4. 11 to 10

11.5. 10 to 09

11.6. 09 to 07

11.7. 06 to 07

11.8. 05 to 06

11.9. 04 to 05

11.10. 03 to 04

11.11. 02 to 03

* many typos fixes and text re-organized

* core of GRASP and CoAP discovery moved to contrained-voucher document, only stateless extensions remain

¶

* Join-Proxy and Registrar discovery merged

* GRASP discovery updated

* ARTART review

* TSVART review

¶

* OPSDIR review

* IANA review

* SECDIR review

* GENART review

¶

 * typos¶

 * AD review changes¶

 * RT value change to brski.jp and brski.rjp

 * new registry values for IANA

 * improved handling of jpy header array

¶

 * Join Proxy and join-port consistent spelling

 * some nits removed

 * restructured discovery

 * section

 * rephrased parts of security section

¶

* mail address and reference¶

* Terminology updated

* Several clarifications on discovery and routability

* DTLS payload introduced

¶

[family]

[I-D.ietf-anima-constrained-voucher]

[ieee802-1AR]

[RFC2119]

11.12. 01 to 02

Discovery of Join Proxy and Registrar ports

11.13. 00 to 01

Registrar used throughout instead of EST server

Emphasized additional Join Proxy port for Join Proxy and

Registrar

updated discovery accordingly

updated stateless Join Proxy JPY header

JPY header described with CDDL

Example simplified and corrected

11.14. 00 to 00

copied from vanderstok-anima-constrained-join-proxy-05

12. References

12.1. Normative References

"Address Family Numbers", IANA, 19 October 2021,

<https://www.iana.org/assignments/address-family-numbers/

address-family-numbers.xhtml>.

Richardson, M., Van der Stok,

P., Kampanakis, P., and E. Dijk, "Constrained

Bootstrapping Remote Secure Key Infrastructure (BRSKI)",

Work in Progress, Internet-Draft, draft-ietf-anima-

constrained-voucher-18, 11 July 2022, <https://

www.ietf.org/archive/id/draft-ietf-anima-constrained-

voucher-18.txt>.

"IEEE 802.1AR Secure Device Identifier", IEEE

Standard, 2009, <https://standards.ieee.org/standard/

802.1AR-2009.html>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

https://www.iana.org/assignments/address-family-numbers/address-family-numbers.xhtml
https://www.iana.org/assignments/address-family-numbers/address-family-numbers.xhtml
https://www.ietf.org/archive/id/draft-ietf-anima-constrained-voucher-18.txt
https://www.ietf.org/archive/id/draft-ietf-anima-constrained-voucher-18.txt
https://www.ietf.org/archive/id/draft-ietf-anima-constrained-voucher-18.txt
https://standards.ieee.org/standard/802.1AR-2009.html
https://standards.ieee.org/standard/802.1AR-2009.html

[RFC6347]

[RFC6690]

[RFC7252]

[RFC768]

[RFC8174]

[RFC8366]

[RFC8949]

[RFC8990]

[RFC8995]

[RFC9147]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,

January 2012, <https://www.rfc-editor.org/info/rfc6347>.

Shelby, Z., "Constrained RESTful Environments (CoRE) Link

Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,

<https://www.rfc-editor.org/info/rfc6690>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI

10.17487/RFC0768, August 1980, <https://www.rfc-

editor.org/info/rfc768>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,

"A Voucher Artifact for Bootstrapping Protocols", RFC

8366, DOI 10.17487/RFC8366, May 2018, <https://www.rfc-

editor.org/info/rfc8366>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

Bormann, C., Carpenter, B., Ed., and B. Liu, Ed.,

"GeneRic Autonomic Signaling Protocol (GRASP)", RFC 8990,

DOI 10.17487/RFC8990, May 2021, <https://www.rfc-

editor.org/info/rfc8990>.

Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,

and K. Watsen, "Bootstrapping Remote Secure Key

Infrastructure (BRSKI)", RFC 8995, DOI 10.17487/RFC8995,

May 2021, <https://www.rfc-editor.org/info/rfc8995>.

Rescorla, E., Tschofenig, H., and N. Modadugu, "The

Datagram Transport Layer Security (DTLS) Protocol Version

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6690
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8366
https://www.rfc-editor.org/info/rfc8366
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8990
https://www.rfc-editor.org/info/rfc8990
https://www.rfc-editor.org/info/rfc8995

[RFC9148]

[I-D.kumar-dice-dtls-relay]

[I-D.richardson-anima-state-for-joinrouter]

[RFC3610]

[RFC3927]

[RFC3986]

[RFC4944]

[RFC6550]

1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,

<https://www.rfc-editor.org/info/rfc9147>.

van der Stok, P., Kampanakis, P., Richardson, M., and S.

Raza, "EST-coaps: Enrollment over Secure Transport with

the Secure Constrained Application Protocol", RFC 9148,

DOI 10.17487/RFC9148, April 2022, <https://www.rfc-

editor.org/info/rfc9148>.

12.2. Informative References

Kumar, S. S., Keoh, S. L., and O.

Garcia-Morchon, "DTLS Relay for Constrained

Environments", Work in Progress, Internet-Draft, draft-

kumar-dice-dtls-relay-02, 20 October 2014, <https://

www.ietf.org/archive/id/draft-kumar-dice-dtls-

relay-02.txt>.

Richardson, M., "Considerations for stateful vs stateless

join router in ANIMA bootstrap", Work in Progress,

Internet-Draft, draft-richardson-anima-state-for-

joinrouter-03, 22 September 2020, <https://www.ietf.org/

archive/id/draft-richardson-anima-state-for-

joinrouter-03.txt>.

Whiting, D., Housley, R., and N. Ferguson, "Counter with

CBC-MAC (CCM)", RFC 3610, DOI 10.17487/RFC3610, September

2003, <https://www.rfc-editor.org/info/rfc3610>.

Cheshire, S., Aboba, B., and E. Guttman, "Dynamic

Configuration of IPv4 Link-Local Addresses", RFC 3927,

DOI 10.17487/RFC3927, May 2005, <https://www.rfc-

editor.org/info/rfc3927>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,

"Transmission of IPv6 Packets over IEEE 802.15.4

Networks", RFC 4944, DOI 10.17487/RFC4944, September

2007, <https://www.rfc-editor.org/info/rfc4944>.

Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,

Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,

JP., and R. Alexander, "RPL: IPv6 Routing Protocol for

Low-Power and Lossy Networks", RFC 6550, DOI 10.17487/

https://www.rfc-editor.org/info/rfc9147
https://www.rfc-editor.org/info/rfc9148
https://www.rfc-editor.org/info/rfc9148
https://www.ietf.org/archive/id/draft-kumar-dice-dtls-relay-02.txt
https://www.ietf.org/archive/id/draft-kumar-dice-dtls-relay-02.txt
https://www.ietf.org/archive/id/draft-kumar-dice-dtls-relay-02.txt
https://www.ietf.org/archive/id/draft-richardson-anima-state-for-joinrouter-03.txt
https://www.ietf.org/archive/id/draft-richardson-anima-state-for-joinrouter-03.txt
https://www.ietf.org/archive/id/draft-richardson-anima-state-for-joinrouter-03.txt
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc3927
https://www.rfc-editor.org/info/rfc3927
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4944

[RFC6775]

[RFC7030]

[RFC7102]

[RFC7228]

[RFC7959]

[RFC8610]

[RFC8974]

[RFC9031]

[RFC9032]

RFC6550, March 2012, <https://www.rfc-editor.org/info/

rfc6550>.

Shelby, Z., Ed., Chakrabarti, S., Nordmark, E., and C.

Bormann, "Neighbor Discovery Optimization for IPv6 over

Low-Power Wireless Personal Area Networks (6LoWPANs)",

RFC 6775, DOI 10.17487/RFC6775, November 2012, <https://

www.rfc-editor.org/info/rfc6775>.

Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,

"Enrollment over Secure Transport", RFC 7030, DOI

10.17487/RFC7030, October 2013, <https://www.rfc-

editor.org/info/rfc7030>.

Vasseur, JP., "Terms Used in Routing for Low-Power and

Lossy Networks", RFC 7102, DOI 10.17487/RFC7102, January

2014, <https://www.rfc-editor.org/info/rfc7102>.

Bormann, C., Ersue, M., and A. Keranen, "Terminology for

Constrained-Node Networks", RFC 7228, DOI 10.17487/

RFC7228, May 2014, <https://www.rfc-editor.org/info/

rfc7228>.

Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in

the Constrained Application Protocol (CoAP)", RFC 7959,

DOI 10.17487/RFC7959, August 2016, <https://www.rfc-

editor.org/info/rfc7959>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Hartke, K. and M. Richardson, "Extended Tokens and

Stateless Clients in the Constrained Application Protocol

(CoAP)", RFC 8974, DOI 10.17487/RFC8974, January 2021,

<https://www.rfc-editor.org/info/rfc8974>.

Vučinić, M., Ed., Simon, J., Pister, K., and M.

Richardson, "Constrained Join Protocol (CoJP) for

6TiSCH", RFC 9031, DOI 10.17487/RFC9031, May 2021,

<https://www.rfc-editor.org/info/rfc9031>.

Dujovne, D., Ed. and M. Richardson, "Encapsulation of

6TiSCH Join and Enrollment Information Elements", RFC

9032, DOI 10.17487/RFC9032, May 2021, <https://www.rfc-

editor.org/info/rfc9032>.

https://www.rfc-editor.org/info/rfc6550
https://www.rfc-editor.org/info/rfc6550
https://www.rfc-editor.org/info/rfc6775
https://www.rfc-editor.org/info/rfc6775
https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc7102
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8974
https://www.rfc-editor.org/info/rfc9031
https://www.rfc-editor.org/info/rfc9032
https://www.rfc-editor.org/info/rfc9032

Appendix A. Stateless CoAP payload examples

This section shows how the CoAP header is arranged by the stateless

proxy.

The Option is Proxy-Scheme, with a value 39, and must be encoded as

an Option Delta of 13, followed by a single byte of (39-13=) 26.

The total size of the header is 4,1+16,6,1 is 28 bytes. A CBOR

header would have taken 4+16 bytes or 20 bytes, for a difference of

8 bytes.

Appendix B. Stateless Proxy payload examples

The examples show the request "GET coaps://192.168.1.200:5965/est/

crts" to a Registrar. The header generated between Join Proxy and

Registrar and from Registrar to Join Proxy are shown in detail. The

DTLS payload is not shown.

NOTE THESE ARE OLD.

The request from Join Proxy to Registrar looks like:

 85 # array(5)

 50 # bytes(16)

 FE800000000000000000FFFFC0A801C8 #

 19 BDA7 # unsigned(48551)

 01 # unsigned(1) IP

 00 # unsigned(0)

 58 2D # bytes(45)

 <cacrts DTLS encrypted request>

In CBOR Diagnostic:

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |Ver|T=0|TKL=13 | Code=0.02 POST| Message ID |

 +-+

 |0 0 0 0 0 0 1 1|

 | 16-bytes of extended token |

 | |

 +-+

 |1 1 0 1 0 1 0 0|0 0 0 1 1 0 1 0| four bytes: "coap" |

 +-+

 |1 1 1 1 1 1 1 1| Payload (DTLS contents)

 +-+

¶

¶

¶

¶

¶

¶

¶

¶

 [h'FE800000000000000000FFFFC0A801C8', 48551, 1, 0,

 h'<cacrts DTLS encrypted request>']

The response is:

 85 # array(5)

 50 # bytes(16)

 FE800000000000000000FFFFC0A801C8 #

 19 BDA7 # unsigned(48551)

 01 # unsigned(1) IP

 00 # unsigned(0)

 59 026A # bytes(618)

 <cacrts DTLS encrypted response>

In CBOR diagnostic:

 [h'FE800000000000000000FFFFC0A801C8', 48551, 1, 0,

 h'<cacrts DTLS encrypted response>']

Authors' Addresses

Michael Richardson

Sandelman Software Works

Email: mcr+ietf@sandelman.ca

Peter van der Stok

vanderstok consultancy

Email: stokcons@bbhmail.nl

Panos Kampanakis

Cisco Systems

Email: pkampana@cisco.com

¶

¶

¶

¶

¶

mailto:mcr+ietf@sandelman.ca
mailto:stokcons@bbhmail.nl
mailto:pkampana@cisco.com

	Constrained Join Proxy for Bootstrapping Protocols
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. constrained Join Proxy functionality
	4. constrained Join Proxy specification
	4.1. Stateful Join Proxy
	4.2. Stateless Join Proxy
	4.3. Constraucting the extended token
	4.3.1. Processing by Registrar

	5. Discovery
	5.1. Discovery operations by Join-Proxy
	5.1.1. CoAP discovery
	5.1.2. GRASP discovery

	5.2. Pledge discovers Join-Proxy
	5.2.1. CoAP discovery
	5.2.2. GRASP discovery
	5.2.3. 6tisch discovery

	6. Comparison of stateless and stateful modes
	7. Security Considerations
	8. IANA Considerations
	8.1. Resource Type Attributes registry
	8.2. service name and port number registry

	9. Acknowledgements
	10. Contributors
	11. Changelog
	11.1. 14 to 13
	11.2. 13 to 12
	11.3. 12 to 11
	11.4. 11 to 10
	11.5. 10 to 09
	11.6. 09 to 07
	11.7. 06 to 07
	11.8. 05 to 06
	11.9. 04 to 05
	11.10. 03 to 04
	11.11. 02 to 03
	11.12. 01 to 02
	11.13. 00 to 01
	11.14. 00 to 00

	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Stateless CoAP payload examples
	Appendix B. Stateless Proxy payload examples
	Authors' Addresses

