
Workgroup: anima Working Group

Internet-Draft:

draft-ietf-anima-constrained-voucher-15

Updates: 8366, 8995 (if approved)

Published: 7 December 2021

Intended Status: Standards Track

Expires: 10 June 2022

Authors: M. Richardson

Sandelman Software Works

P. van der Stok

vanderstok consultancy

P. Kampanakis

Cisco Systems

E. Dijk

IoTconsultancy.nl

Constrained Bootstrapping Remote Secure Key Infrastructure (BRSKI)

Abstract

This document defines the Constrained Bootstrapping Remote Secure

Key Infrastructure (Constrained BRSKI) protocol, which provides a

solution for secure zero-touch bootstrapping of resource-constrained

(IoT) devices into the network of a domain owner. This protocol is

designed for constrained networks, which may have limited data

throughput or may experience frequent packet loss. Constrained BRSKI

is a variant of the BRSKI protocol, which uses an artifact signed by

the device manufacturer called the "voucher" which enables a new

device and the owner's network to mutually authenticate. While the

BRSKI voucher is typically encoded in JSON, Constrained BRSKI

defines a compact CBOR-encoded voucher. The BRSKI voucher is

extended with new data types that allow for smaller voucher sizes.

The Enrollment over Secure Transport (EST) protocol, used in BRSKI,

is replaced with EST-over-CoAPS; and HTTPS used in BRSKI is replaced

with CoAPS.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 June 2022.

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8366
https://www.rfc-editor.org/rfc/rfc8995
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Requirements Language

4. Overview of Protocol

5. Updates to RFC8366 and RFC8995

6. BRSKI-EST Protocol

6.1. Registrar and the Server Name Indicator (SNI)

6.2. TLS Client Certificates: IDevID authentication

6.3. Discovery, URIs and Content Formats

6.3.1. RFC8995 Telemetry Returns

6.4. Join Proxy options

6.5. Extensions to BRSKI

6.5.1. Discovery

6.5.2. CoAP responses

6.6. Extensions to EST-coaps

6.6.1. Pledge Extensions

6.6.2. EST-client Extensions

6.6.3. Registrar Extensions

6.7. DTLS handshake fragmentation Considerations

7. BRSKI-MASA Protocol

7.1. Protocol and Formats

7.2. Registrar Voucher Request

7.3. MASA and the Server Name Indicator (SNI)

7.3.1. Registrar Certificate Requirement

8. Pinning in Voucher Artifacts

8.1. Registrar Identity Selection and Encoding

8.2. MASA Pinning Policy

8.3. Pinning of Raw Public Keys

8.4. Considerations for use of IDevID-Issuer

9. Artifacts

9.1. Voucher Request artifact

9.1.1. Tree Diagram

¶

¶

https://trustee.ietf.org/license-info

9.1.2. SID values

9.1.3. YANG Module

9.1.4. Example voucher request artifact

9.2. Voucher artifact

9.2.1. Tree Diagram

9.2.2. SID values

9.2.3. YANG Module

9.2.4. Example voucher artifacts

9.3. Signing voucher and voucher-request artifacts with COSE

10. Deployment-specific Discovery Considerations

10.1. 6TSCH Deployments

10.2. Generic networks using GRASP

10.3. Generic networks using mDNS

10.4. Thread networks using Mesh Link Establishment (MLE)

10.5. Non-mesh networks using CoAP Discovery

11. Design Considerations

12. Raw Public Key Use Considerations

12.1. The Registrar Trust Anchor

12.2. The Pledge Voucher Request

12.3. The Voucher Response

13. Use of constrained vouchers with HTTPS

14. Security Considerations

14.1. Duplicate serial-numbers

14.2. IDevID security in Pledge

14.3. Security of CoAP and UDP protocols

14.4. Registrar Certificate may be self-signed

14.5. Use of RPK alternatives to proximity-registrar-cert

14.6. MASA support of CoAPS

15. IANA Considerations

15.1. Resource Type Registry

15.2. The IETF XML Registry

15.3. The YANG Module Names Registry

15.4. The RFC SID range assignment sub-registry

15.5. Media Types Registry

15.5.1. application/voucher-cose+cbor

15.6. CoAP Content-Format Registry

16. Acknowledgements

17. Changelog

18. References

18.1. Normative References

18.2. Informative References

Appendix A. Library support for BRSKI

A.1. OpensSSL

A.2. mbedTLS

Appendix B. Constrained BRSKI-EST messages

B.1. enrollstatus

B.2. voucher_status

Appendix C. COSE examples

C.1. Pledge, Registrar and MASA keys

C.1.1. Pledge private key

C.1.2. Registrar private key

C.1.3. MASA private key

C.2. Pledge, Registrar and MASA certificates

C.2.1. Pledge IDevID certificate

C.2.2. Registrar Certificate

C.2.3. MASA Certificate

C.3. COSE signed voucher request from Pledge to Registrar

C.4. COSE signed voucher request from Registrar to MASA

C.5. COSE signed voucher from MASA to Pledge via Registrar

Appendix D. Pledge Device Class Profiles

D.1. Minimal Pledge

D.2. Typical Pledge

D.3. Full-featured Pledge

D.4. Comparison chart of Pledge Classes

Contributors

Authors' Addresses

1. Introduction

Secure enrollment of new nodes into constrained networks with

constrained nodes presents unique challenges. As explained in

[RFC7228], the networks are challenged and the nodes are constrained

by energy, memory space, and code size.

The Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol

described in [RFC8995] provides a solution for secure zero-touch

(automated) bootstrap of new (unconfigured) devices. In it, new

devices, such as IoT devices, are called "pledges", and equipped

with a factory-installed Initial Device Identifier (IDevID) (see

[ieee802-1AR]), are enrolled into a network.

The BRSKI solution described in [RFC8995] was designed to be

modular, and this document describes a version scaled to the

constraints of IoT deployments.

Therefore, this document defines a constrained version of the

voucher artifact (described in [RFC8366]), along with a constrained

version of BRSKI. This constrained-BRSKI protocol makes use of the

constrained CoAP-based version of EST (EST-coaps from [I-D.ietf-ace-

coap-est]) rather than the EST over HTTPS [RFC7030]. Constrained-

BRSKI is itself scalable to multiple resource levels through the

definition of optional functions. Appendix D illustrates this.

In BRSKI, the [RFC8366] voucher is by default serialized to JSON

with a signature in CMS [RFC5652]. This document defines a new

¶

¶

¶

¶

voucher serialization to CBOR [RFC8949] with a signature in COSE [I-

D.ietf-cose-rfc8152bis-struct].

This COSE-signed CBOR-encoded voucher is transported using both

secured CoAP and HTTPS. The CoAP connection (between Pledge and

Registrar) is to be protected by either OSCORE+EDHOC [I-D.ietf-lake-

edhoc] or DTLS (CoAPS). The HTTP connection (between Registrar and

MASA) is to be protected using TLS (HTTPS).

This document specifies a constrained voucher-request artifact based

on Section 3 of [RFC8995], and voucher(-request) transport over CoAP

based on Section 3 of [RFC8995] and on [I-D.ietf-ace-coap-est].

The CBOR definitions for the constrained voucher format are defined

using the mechanism described in [I-D.ietf-core-yang-cbor] using the

SID mechanism explained in [I-D.ietf-core-sid]. As the tooling to

convert YANG documents into a list of SID keys is still in its

infancy, the table of SID values presented here MUST be considered

normative rather than the output of the tool specified in [I-D.ietf-

core-sid].

2. Terminology

The following terms are defined in [RFC8366], and are used

identically as in that document: artifact, domain, imprint, Join

Registrar/Coordinator (JRC), Manufacturer Authorized Signing

Authority (MASA), Pledge, Registrar, Trust of First Use (TOFU), and

Voucher.

The following terms from [RFC8995] are used identically as in that

document: Domain CA, enrollment, IDevID, Join Proxy, LDevID,

manufacturer, nonced, nonceless, PKIX.

The term Pledge Voucher Request, or acronym PVR, is introduced to

refer to the voucher request between the pledge and the Registrar.

The term Registrar Voucher Request, or acronym RVR, is introduced to

refer to the voucher request between the Registrar and the MASA.

3. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8995#section-3
https://rfc-editor.org/rfc/rfc8995#section-3

4. Overview of Protocol

[RFC8366] provides for vouchers that assert proximity, authenticate

the Registrar, and can offer varying levels of anti-replay

protection.

The proximity proof provided for in [RFC8366], is an assertion that

the Pledge and the Registrar are believed to be close together, from

a network topology point of view. Like in [RFC8995], proximity is

shown by making TLS connections between the Pledge and Registrar

using IPv6 Link-Local addresses.

The TLS connection is used to make a Voucher Request. This request

is verified by an agent of the Pledge's manufacturer, which then

issues a voucher. The voucher provides an authorization statement

from the manufacturer indicating that the Registrar is the intended

owner of the device. The voucher refers to the Registrar through

pinning of the Registrar's identity.

This document does not make any extensions to the semantic meaning

of vouchers, only the encoding has been changed to optimize for

constrained devices and networks. The two main parts of the BRSKI

protocol are named separately in this document: BRSKI-EST for the

protocol between Pledge and Registrar, and BRSKI-MASA for the

protocol between the Registrar and the MASA.

Time-based vouchers are supported in this definition, but given that

constrained devices are extremely unlikely to have accurate time,

their use will be uncommon. Most Pledges using constrained vouchers

will be online during enrollment and will use live nonces to provide

anti-replay protection rather than expiry times.

[RFC8366] defines the voucher artifact, while the Voucher Request

artifact was defined in [RFC8995]. This document defines both a

constrained voucher and a constrained voucher-request. They are

presented in the order "voucher-request", followed by a "voucher"

response as this is the order that they occur in the protocol.

The constrained voucher request MUST be signed by the Pledge. It

signs using the private key associated with its IDevID X.509

certificate, or if an IDevID is not available, then the private key

associated with its manufacturer-installed raw public key (RPK).

Section 12 provides additional details on PKIX-less operations.

The constrained voucher MUST be signed by the MASA.

For the constrained voucher request this document defines two

distinct methods for the Pledge to identify the Registrar: using

either the Registrar's X.509 certificate, or using a raw public key

(RPK) of the Registrar.

¶

¶

¶

¶

¶

¶

¶

¶

¶

For the constrained voucher both methods are supported to indicate

(pin) a trusted domain identity: using either a pinned domain X.509

certificate, or a pinned raw public key (RPK).

The BRSKI architectures mandates that the MASA be aware of the

capabilities of the pledge. This is not a drawback as the pledges

are constructed by a manufacturer which also arranges for the MASA

to be aware of the inventory of devices.

The MASA therefore knows if the pledge supports PKIX operations,

PKIX format certificates, or if the pledge is limited to Raw Public

Keys (RPK). Based upon this, the MASA can select which attributes to

use in the voucher for certain operations, like the pinning of the

Registrar identity. This is described in more detail in Section

9.2.3, Section 8 and Section 8.3 (for RPK specifically).

5. Updates to RFC8366 and RFC8995

This section details the ways in which this document updates other

RFCs. The terminology for Updates is taken from [I-D.kuehlewind-

update-tag].

This document Updates [RFC8366]. It Extends [RFC8366] by creating a

new serialization format.

This document Updates [RFC8995]. It Amends [RFC8995] by clarifying

how pinning is done, and ???.

6. BRSKI-EST Protocol

This section describes the constrained BRSKI extensions to EST-coaps

[I-D.ietf-ace-coap-est] to transport the voucher between Registrar

and Pledge (optionally via a Join Proxy) over CoAP. The extensions

are targeting low-resource networks with small packets.

The constrained BRSKI-EST protocol described in this section is

between the Pledge and the Registrar only.

6.1. Registrar and the Server Name Indicator (SNI)

A DTLS connection is established between the Pledge and the

Registrar, similar to the TLS connection described in Section 5.1 of

[RFC8995]. This may occur via a Join Proxy as described in Section

6.4. Regardless of the Join Proxy mechanism, the DTLS connection

should operate identically.

The SNI issue described below affects [RFC8995] as well, and is

reported in errata: https://www.rfc-editor.org/errata/eid6648

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8995#section-5.1

As the Registrar is discovered by IP address, and typically

connected via a Join Proxy, the name of the Registrar is not known

to the Pledge. The Pledge will not know what the hostname for the

Registrar is, so it cannot do RFC6125 DNS-ID validation on the

Registrar's certificate. Instead, it must do validation using the

RFC8366 voucher.

As the Pledge does not know the name of the Registrar, the Pledge

cannot put any reasonable value into the [RFC6066] Server Name

Indicator (SNI). Threfore the Pledge SHOULD omit the SNI extension

as per Section 9.2 of [RFC8446].

In some cases, particularly while testing BRSKI, a Pledge may be

given the hostname of a particular Registrar to connect to directly.

Such a bypass of the discovery process may result in the Pledge

taking a different code branch to establish a DTLS connection, and

may result in the SNI being inserted by a library. The Registrar

MUST ignore any SNI seen.

A primary motivation for making the SNI ubiquitous in the public web

is because it allows for multi-tenant hosting of HTTPS sites on a

single (scarce) IPv4 address. This consideration does not apply to

the server function in the Registrar because:

it uses DTLS and CoAP, not HTTPS

it typically uses IPv6, often [RFC4193] Unique Local Address,

which are plentiful

the server port number is typically discovered, so multiple

tenants can be accomodated via unique port numbers.

As per Section 3.6.1 of [RFC7030], the Registrar certificate MUST

have the Extended Key Usage (EKU) id-kp-cmcRA. This certificate is

also used as a TLS Server Certificate, so it MUST also have the EKU

id-kp-serverAuth.

6.2. TLS Client Certificates: IDevID authentication

As described in Section 5.1 of [RFC8995], the Pledge makes a

connection to the Registrar using a TLS Client Certificate for

authentication.

Subsequently the Pledge will send a Pledge Voucher Request (PVR).

As explained below in Section 8.1, the "x5bag" element may be used

in the RVR to communicate identity of the Registrar to MASA. The

Pledge SHOULD NOT use the x5bag attribute in this way in the PVR. A

Registrar that processes a PVR with an x5bag attribute MUST ignore

¶

¶

¶

¶

* ¶

*

¶

*

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8446#section-9.2
https://rfc-editor.org/rfc/rfc7030#section-3.6.1
https://rfc-editor.org/rfc/rfc8995#section-5.1

it, and MUST use only the TLS Client Certificate extension for

authentication of the Pledge.

A situation where the Pledge MAY use the x5bag is for communication

of certificate chains to the MASA. This would arise in some vendor-

specific situations involving outsourcing of MASA functionality, or

rekeying of the IDevID certification authority.

6.3. Discovery, URIs and Content Formats

To keep the protocol messages small the EST-coaps and constrained-

BRSKI URIs are shorter than the respective EST and BRSKI URIs.

The EST-coaps server URIs differ from the EST URIs by replacing the

scheme https by coaps and by specifying shorter resource path names.

Below are some examples; the first two using a discovered short path

name and the last one using the well-known URI of EST which requires

no discovery.

Similarly the constrained BRSKI server URIs differ from the BRSKI

URIs by replacing the scheme https by coaps and by specifying

shorter resource path names. Below are some examples; the first two

using a discovered short path name and the last one using the well-

known URI prefix which requires no discovery. This is the same

"/.well-known/brski" prefix as defined in Section 5 of [RFC8995].

Figure 5 in Section 3.2.2 of [RFC7030] enumerates the operations

supported by EST, for which Table 1 in Section 5.1 of [I-D.ietf-ace-

coap-est] enumerates the corresponding EST-coaps short path names.

Similarly, Table 1 provides the mapping from the supported BRSKI

extension URI paths to the constrained-BRSKI URI paths.

BRSKI resource constrained-BRSKI resource

/requestvoucher /rv

/voucher_status /vs

/enrollstatus /es

Table 1: BRSKI URI paths mapping to

constrained BRSKI URI paths

Note that /requestvoucher indicated above occurs between the Pledge

and Registrar (in scope of the BRSKI-EST protocol), but it also

¶

¶

¶

¶

 coaps://server.example.com/est/<short-name>

 coaps://server.example.com/e/<short-name>

 coaps://server.example.com/.well-known/est/<short-name>

¶

¶

 coaps://server.example.com/brski/<short-name>

 coaps://server.example.com/b/<short-name>

 coaps://server.example.com/.well-known/brski/<short-name>

¶

¶

https://rfc-editor.org/rfc/rfc8995#section-5
https://rfc-editor.org/rfc/rfc7030#section-3.2.2
https://datatracker.ietf.org/doc/html/draft-ietf-ace-coap-est-18#section-5.1

occurs between Registrar and MASA. However, as described in Section

6, this section and above table addresses only the BRSKI-EST

protocol.

Pledges that wish to discover the available BRSKI bootstrap options/

formats, or reduce the size of the CoAP headers by eliminating the

"/.well-known/brski" path, can do a discovery operation using

[RFC6690] Section 4 by sending a discovery query to the Registrar.

For example, if the Registrar supports a short BRSKI URL (/b) and

supports the voucher format "application/voucher-cose+cbor" (TBD3),

and status reporting in both CBOR and JSON formats:

The Registrar is under no obligation to provide shorter URLs, and

MAY respond to this query with only the "/.well-known/brski/<short-

name>" resources for the short names as defined in Table 1.

Registrars that have implemented shorter URLs MUST also respond in

equivalent ways to the corresponding "/.well-known/brski/<short-

name>" URLs, and MUST NOT distinguish between them. In particular, a

Pledge MAY use the longer and shorter URLs in any combination.

When responding to a discovery request for BRSKI resources, the

server MAY in addition return the full resource paths and the

content types which are supported by these resources as shown in

above example. This is useful when multiple content types are

specified for a particular resource on the server. The server

responds with only the root path for the BRSKI resource (rt=brski,

resource /b in above example) and no others in case the client

queries for only rt=brski type resources. (So, a query for rt=brski,

without the wildcard character.)

Without discovery, a longer well-known URL can only be used, such

as:

while with discovery of shorter URLs, a request such as:

¶

¶

¶

 REQ: GET /.well-known/core?rt=brski*

 RES: 2.05 Content

 Content-Format: 40

 Payload:

 ;rt=brski,

 </b/rv>;rt=brski.rv;ct=TBD3,

 </b/vs>;rt=brski.vs;ct="50 60",

 </b/es>;rt=brski.es;ct="50 60"

¶

¶

¶

¶

¶

 REQ: GET /.well-known/brski/rv¶

¶

 REQ: GET /b/rv¶

is possible.

The return of multiple content-types in the "ct" attribute allows

the Pledge to choose the most appropriate one. Note that Content-

Format TBD3 ("application/voucher-cose+cbor") is defined in this

document.

Content-Format TBD3 MUST be supported by the Registrar for the /rv

resource. If the "ct" attribute is not indicated for the /rv

resource in the link format description, this implies that at least

TBD3 is supported.

Note that this specification allows for voucher-cose+cbor format

requests and vouchers to be transmitted over HTTPS, as well as for

voucher-cms+json and other formats yet to be defined over CoAP. The

burden for this flexibility is placed upon the Registrar. A Pledge

on constrained hardware is expected to support a single format only.

The Pledge and MASA need to support one or more formats (at least

TBD3) for the voucher and for the voucher request. The MASA needs to

support all formats that the Pledge supports.

Section 10 details how the Pledge discovers the Registrar and Join

Proxy in different deployment scenarios.

6.3.1. RFC8995 Telemetry Returns

[RFC8995] defines two telemetry returns from the Pledge which are

sent to the Registrar. These are the BRSKI Status Telemetry

[RFC8995], Section 5.7 and the Enrollment Status Telemetry

[RFC8995], Section 5.9.4. These are two POST operations made the by

Pledge at two key steps in the process.

[RFC8995] defines the content of these POST operations in CDDL,

which are serialized as JSON. This document extends the list of

acceptable formats to CBOR as well as JSON, using the rules from

[RFC8610].

The existing JSON format is described as CoAP Content-Format 50

("application/json"), and it MAY be supported. The new CBOR format

described as CoAP Content-Format 60 ("application/cbor"), MUST be

supported by the Registrar for both the /vs and /es resources.

6.4. Join Proxy options

[I-D.ietf-anima-constrained-join-proxy] specifies a constrained Join

Proxy that is optionally placed between Pledge and Registrar. This

includes methods for discovery of the Join Proxy by the Pledge and

discovery of the Registrar by the Join Proxy.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8995#section-5.7
https://rfc-editor.org/rfc/rfc8995#section-5.9.4

6.5. Extensions to BRSKI

6.5.1. Discovery

The Pledge discovers an IP address and port number that connects to

the Registrar (possibly via a Join Proxy), and it establishes a DTLS

connection.

No further discovery of hosts or port numbers is required, but a

pledge that can do more than one kind of enrollment (future work

offers protocols other than [I-D.ietf-ace-coap-est]), then a pledge

may need to use CoAP Discovery to determine what other protocols are

available.

A Pledge that only supports the EST-coaps enrollment method SHOULD

NOT use discovery for BRSKI resources. It is more efficient to just

try the supported enrollment method via the well-known BRSKI/EST-

coaps resources. This also avoids the Pledge doing any CoRE Link

Format parsing, which is specified in [I-D.ietf-ace-coap-est],

Section 4.1.

The Registrar MUST support all of the EST resources at their default

".well-known" locations (on the specified port) as well as any

server-specific shorter form that might also be supported.

However, when discovery is being done by the Pledge, it is possible

for the Registrar to return references to resources which are on

different port numbers. The Registrar SHOULD NOT use different ports

numbers by default, because a Pledge that is connected via a Join

Proxy can only access a single UDP port. A Registrar configured to

never use Join Proxies MAY be configured to use multiple port

numbers. Therefore a Registrar MUST host all discoverable BRSKI

resources on the same (UDP) server port that the Pledge's DTLS

connection is using. Using the same UDP server port for all

resources allows the Pledge to continue via the same DTLS connection

which is more efficient.

6.5.2. CoAP responses

[RFC8995], Section 5 defines a number of HTTP response codes that

the Registrar is to return when certain conditions occur.

The 401, 403, 404, 406 and 415 response codes map directly to CoAP

codes 4.01, 4.03, 4.04, 4.06 and 4.15.

The 202 Retry process which occurs in the voucher request, is to be

handled in the same way as Section 5.7 of [I-D.ietf-ace-coap-est]

process for Delayed Responses.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-coap-est-18#section-4.1
https://rfc-editor.org/rfc/rfc8995#section-5
https://datatracker.ietf.org/doc/html/draft-ietf-ace-coap-est-18#section-5.7

6.6. Extensions to EST-coaps

This document extends [I-D.ietf-ace-coap-est], and it inherits the

functions described in that document: specifically, the mandatory

Simple (Re-)Enrollment (/sen and /sren) and Certification Authority

certificates request (/crts). Support for CSR Attributes Request (/

att) and server-side key generation (/skg, /skc) remains optional

for the EST server.

Collecting the resource definitions from both [RFC8995], [RFC7030],

and [I-D.ietf-ace-coap-est] results in the following shorter forms

of URI paths for the commonly used resources:

6.6.1. Pledge Extensions

This section defines extensions to the BRSKI Pledge, which are

applicable during the BRSKI bootstrap procedure. A Pledge which only

supports the EST-coaps enrollment method, SHOULD NOT use discovery

for EST-coaps resources, because it is more efficient to enroll

(e.g. /sen) via the well-known EST resource on the current DTLS

connection. This avoids an additional round-trip of packets and

avoids the Pledge having to unnecessarily implement CoRE Link Format

parsing.

A constrained Pledge SHOULD NOT perform the optional EST "CSR

attributes request" (/att) to minimize network traffic. The Pledge

selects which attributes to include in the CSR.

One or more Subject Distinguished Name fields MUST be included. If

the Pledge has no specific information on what attributes/fields are

desired in the CSR, it MUST use the Subject Distinguished Name

fields from its IDevID unmodified. The Pledge can receive such

information via the voucher (encoded in a vendor-specific way) or

via some other, out-of-band means.

¶

¶

 +------------------+-------------------+----------------+

 | EST + BRSKI | Constrained-BRSKI | Well-known URI +

 | | | namespace +

 +------------------+-------------------+----------------+

 | /requestvoucher | /rv | brski +

 | /voucher_status | /vs | brski +

 | /csrattrs | /att | est +

 | /simpleenroll | /sen | est +

 | /cacerts | /crts | est +

 | /enrollstatus | /es | brski +

 | /simplereenroll | /sren | est +

 +------------------+-------------------+----------------+

¶

¶

¶

¶

A constrained Pledge MAY use the following optimized EST-coaps

procedure to minimize network traffic.

if the voucher, that validates the current Registrar, contains

a single pinned domain CA certificate, the Pledge provisionally

considers this certificate as the EST trust anchor, as if it

were the result of "CA certificates request" (/crts) to the

Registrar.

Using this CA certificate as trust anchor it proceeds with EST

simple enrollment (/sen) to obtain its provisionally trusted

LDevID certificate.

If the Pledge validates that the trust anchor CA was used to

sign its LDevID certificate, the Pledge accepts the pinned

domain CA certificate as the legitimate trust anchor CA for the

Registrar's domain and accepts the associated LDevID

certificate.

If the trust anchor CA was NOT used to sign its LDevID

certificate, the Pledge MUST perform an actual "CA certificates

request" (/crts) to the EST server to obtain the EST CA trust

anchor(s) since these can differ from the (temporary) pinned

domain CA.

When doing this /crts request, the Pledge MAY use a CoAP Accept

Option with value TBD287 ("application/pkix-cert") to limit the

number of returned EST CA trust anchors to only one. A

constrained Pledge MAY support only this format in a /crts

response, per Section 5.3 of [I-D.ietf-ace-coap-est].

If the Pledge cannot obtain the single CA certificate or the

finally validated CA certificate cannot be chained to the

LDevID certificate, then the Pledge MUST abort the enrollment

process and report the error using the enrollment status

telemetry (/es).

Note that even though the Pledge may avoid performing any /crts

request using the above EST-coaps procedure during bootstrap, it

SHOULD support retrieval of the trust anchor CA periodically as

detailed in the next section.

6.6.2. EST-client Extensions

This section defines extensions to EST-coaps clients, used after the

BRSKI bootstrap procedure is completed. (Note that such client is

not called "Pledge" in this section, since it is already enrolled

into the domain.) A constrained EST-coaps client MAY support only

the Content-Format TBD287 ("application/pkix-cert") in a /crts

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-coap-est-18#section-5.3

response, per Section 5.3 of [I-D.ietf-ace-coap-est]. In this case,

it can only store one trust anchor of the domain.

An EST-coaps client that has an idea of the current time

(internally, or via NTP) SHOULD consider the validity time of the

trust anchor CA, and MAY begin requesting a new trust anchor CA

using the /crts request when the CA has 50% of it's validity time

(notAfter - notBefore) left. A client without access to the current

time cannot decide if the trust anchor CA has expired, and SHOULD

poll periodically for a new trust anchor using the /crts request at

an interval of approximately 1 month. An EST-coaps server SHOULD

include the CoAP ETag Option in every response to a /crts request,

to enable clients to perform low-overhead validation whether their

trust anchor CA is still valid. The EST-coaps client SHOULD store

the ETag resulting from a /crts response in memory and SHOULD use

this value in an ETag Option in its next GET /crts request.

The above-mentioned limitation that an EST-coaps client may support

only one trust anchor CA is not an issue in case the domain trust

anchor remains stable. However, special consideration is needed for

cases where the domain trust anchor can change over time. Such a

change may happen due to relocation of the client device to a new

domain, or due to key update of the trust anchor as described in

[RFC4210], Section 4.4.

From the client's viewpoint, a trust anchor change typically happens

during EST re-enrollment: a change of domain CA requires all devices

operating under the old domain CA to acquire a new LDevID issued by

the new domain CA. A client's re-enrollment may be triggered by

various events, such as an instruction to re-enroll sent by a domain

entity, or an imminent expiry of its LDevID certificate. How the re-

enrollment is explicitly triggered on the client by a domain entity,

such as a commissioner or a Registrar, is out of scope of this

specification.

The mechanism described in [RFC4210], Section 4.4 for Root CA key

update requires four certificates: OldWithOld, OldWithNew,

NewWithOld, and NewWithNew. The OldWithOld certificate is already

stored in the EST client's trust store. The NewWithNew certificate

will be distributed as the single certificate in a /crts response,

during EST re-enrollment. Since the EST client can only accept a

single certificate in a /crts response it implies that the EST

client cannot obtain the certificates OldWithNew and NewWithOld in

this way, to perform the complete verification of the new domain CA.

Instead, the client only verifies the EST server (Registrar) using

its old domain CA certificate in its trust store as detailed below,

and based on this trust in the active and valid DTLS connection it

automatically trusts the new (NewWithNew) domain CA certificate that

the EST server provides in the /crts response.

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-coap-est-18#section-5.3
https://rfc-editor.org/rfc/rfc4210#section-4.4
https://rfc-editor.org/rfc/rfc4210#section-4.4

In this manner, even during rollover of trust anchors, it is

possible to have only a single trust anchor provided in a /crts

response.

During the period of the certificate renewal, it is not possible to

create new communication channels between devices with NewCA

certificates devices with OldCA certificates. One option is that

devices should avoid restarting existing DTLS or OSCORE connections

during this interval that new certificates are being deployed. The

recommended period for certificate renewal is 24 hours. For re-

enrollment, the constrained EST-coaps client MUST support the

following EST-coaps procedure, where optional re-enrollment to a new

domain is under control of the Registrar:

The client connects with DTLS to the Registrar, and

authenticates with its present domain certificate (LDevID

certificate) as usual. The Registrar authenticates itself with

its domain certificate that is trusted by the client, i.e. it

chains to the single trust anchor that the client has stored.

This is the "old" trust anchor, the one that will be eventually

replaced in case the Registrar decides to re-enroll the client

into a new domain.

The client performs the simple re-enrollment request (/sren)

and upon success it obtains a new LDevID.

The client verifies the new LDevID against its (single)

existing domain trust anchor. If it chains successfully, this

means the trust anchor did not change and the client MAY skip

retrieving the current CA certificate using the "CA

certificates request" (/crts). If it does not chain

successfully, this means the trust anchor was changed/updated

and the client then MUST retrieve the new domain trust anchor

using the "CA certificates request" (/crts).

If the client retrieved a new trust anchor in step 3, then it

MUST verify that the new trust anchor chains with the new

LDevID certificate it obtained in step 2. If it chains

successfully, the client stores both, accepts the new LDevID

certificate and stops using it prior LDevID certificate. If it

does not chain successfully, the client MUST NOT update its

LDevID certificate, it MUST NOT update its (single) domain

trust anchor, and the client MUST abort the enrollment process

and report the error to the Registrar using enrollment status

telemetry (/es).

Note that even though the EST-coaps client may skip the /crts

request in step 3, it SHOULD support retrieval of the trust anchor

CA periodically as detailed earlier in this section.

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

6.6.3. Registrar Extensions

A Registrar SHOULD host any discoverable EST-coaps resources on the

same (UDP) server port that the Pledge's DTLS initial connection is

using. This avoids the overhead of the Pledge reconnecting using

DTLS, when it performs EST enrollment after the BRSKI voucher

request.

The Content-Format 50 (application/json) MUST be supported and 60

(application/cbor) MUST be supported by the Registrar for the /vs

and /es resources.

Content-Format TBD3 MUST be supported by the Registrar for the /rv

resource.

When a Registrar receives a "CA certificates request" (/crts)

request with a CoAP Accept Option with value TBD287 ("application/

pkix-cert") it SHOULD return only the single CA certificate that is

the envisioned or actual authority for the current, authenticated

Pledge making the request.

If the Pledge included in its request an Accept Option for only the

TBD287 ("application/pkix-cert") Content Format, but the domain has

been configured to operate with multiple CA trust anchors only, then

the Registrar returns a 4.06 Not Acceptable error to signal that the

Pledge needs to use the Content Format 281 ("application/pkcs7-mime;

smime-type=certs-only") to retrieve all the certificates.

If the current authenticated client is an EST-coaps client that was

already enrolled in the domain, and the Registrar is configured to

assign this client to a new domain CA trust anchor during the next

EST re-enrollment procedure, then the Registrar MUST respond with

the new domain CA certificate in case the client performs the "CA

Certificates request" (/crts) with an Accept Option for TBD287 only.

This signals the client that a new domain is assigned to it. The

client follows the procedure as defined in Section 6.6.2.

6.7. DTLS handshake fragmentation Considerations

DTLS includes a mechanism to fragment the handshake messages. This

is described in Section 4.4 of [I-D.ietf-tls-dtls13]. The protocol

described in this document will often be used with a Join Proxy

described in [I-D.ietf-anima-constrained-join-proxy]. The Join Proxy

will need some overhead, while the maximum packet sized guaranteed

on 802.15.4 networks is 1280 bytes. It is RECOMMENDED that a PMTU of

1024 bytes be assumed for the DTLS handshake. It is unlikely that

any Packet Too Big indications [RFC4443] will be relayed by the Join

Proxy.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43#section-4.4

During the operation of the constrained BRSKI-EST protocol, the CoAP

Blockwise transfer mechanism will be used when message sizes exceed

the PMTU. A Pledge/EST-client on a constrained network MUST use the

(D)TLS maximum fragment length extension ("max_fragment_length")

defined in Section 4 of [RFC6066] with the maximum fragment length

set to a value of either 2^9 or 2^10.

7. BRSKI-MASA Protocol

This section describes extensions to and clarifications of the

BRSKI-MASA protocol between Registrar and MASA.

7.1. Protocol and Formats

Section 5.4 of [RFC8995] describes a connection between the

Registrar and the MASA as being a normal TLS connection using HTTPS.

This document does not change that. The Registrar MUST use the

format "application/voucher-cose+cbor" in its voucher request to

MASA, when the Pledge uses this format in its reauqtes to the

Registrar [RFC8995].

The MASA only needs to support formats for which there are Pledges

that use that format.

The Registrar MUST use the same format for the RVR as the Pledge

used for its PVR.

The Registrar indicates the voucher format it wants to receive from

MASA using the HTTP Accept header. This format MUST be the same as

the format of the PVR, so that the Pledge can parse it.

At the moment of writing the creation of coaps based MASAs is deemed

unrealistic. The use of CoAP for the BRSKI-MASA connection can be

the subject of another document. Some consideration was made to

specify CoAP support for consistency, but:

the Registrar is not expected to be so constrained that it cannot

support HTTPS client connections.

the technology and experience to build Internet-scale HTTPS

responders (which the MASA is) is common, while the experience

doing the same for CoAP is much less common.

a Registrar is likely to provide onboarding services to both

constrained and non-constrained devices. Such a Registrar would

need to speak HTTPS anyway.

a manufacturer is likely to offer both constrained and non-

constrained devices, so there may in practice be no situation in

which the MASA could be CoAP-only. Additionally, as the MASA is

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

https://rfc-editor.org/rfc/rfc8995#section-5.4

intended to be a function that can easily be oursourced to a

third-party service provider, reducing the complexity would also

seem to reduce the cost of that function.

security-related considerations: see Section 14.6.

7.2. Registrar Voucher Request

If the PVR contains a proximity assertion, the Registrar MUST

propagate this assertion into the RVR by including the "assertion"

field with the value "proximity". This conforms to the example in

Section 3.3 of [RFC8995] of carrying the assertion forward.

7.3. MASA and the Server Name Indicator (SNI)

A TLS/HTTPS connection is established between the Registrar and

MASA.

Section 5.4 of [RFC8995] explains this process, and there are no

externally visible changes. A MASA that supports the unconstrained

voucher formats should be able to support constrained voucher

formats equally well.

There is no requirement that a single MASA be used for both

constrained and unconstrained voucher requests: the choice of MASA

is determined by the id-mod-MASAURLExtn2016 extension contained in

the IDevID.

The Registrar MUST do [RFC6125] DNS-ID checks on the contents of the

certificate provided by the MASA.

In constrast to the Pledge/Registrar situation, the Registrar always

knows the name of the MASA, and MUST always include an [RFC6066]

Server Name Indicator. The SNI is optional in TLS1.2, but common.

The SNI it considered mandatory with TLS1.3.

The presence of the SNI is needed by the MASA, in order for the

MASA's server to host multiple tenants (for different customers).

The Registrar SHOULD use a TLS Client Certificate to authenticate to

the MASA per Section 5.4.1 of [RFC8995]. If the certificate that the

Registrar uses is marked as a id-kp-cmcRA certificate, via Extended

Key Usage, then it MUST also have the id-kp-clientAuth EKU attribute

set.

7.3.1. Registrar Certificate Requirement

In summary for typical Registrar use, where a single Registrar

certificate is used, then the certificate MUST have EKU of: id-kp-

cmcRA, id-kp-serverAuth, id-kp-clientAuth.

¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8995#section-3.3
https://rfc-editor.org/rfc/rfc8995#section-5.4
https://rfc-editor.org/rfc/rfc8995#section-5.4.1

8. Pinning in Voucher Artifacts

The voucher is a statement by the MASA for use by the Pledge that

provides the identity of the Pledge's owner. This section describes

how the owner's identity is determined and how it is specified

within the voucher.

8.1. Registrar Identity Selection and Encoding

Section 5.5 of [RFC8995] describes BRSKI policies for selection of

the owner identity. It indicates some of the flexibility that is

possible for the Registrar, and recommends the Registrar to include

only certificates in the voucher request (CMS) signing structure

that participate in the certificate chain that is to be pinned.

The MASA is expected to evaluate the certificates included by the

Registrar in its voucher request, forming them into a chain with the

Registrar's (signing) identity on one end. Then, it pins a

certificate selected from the chain. For instance, for a domain with

a two-level certification authority (see Figure 1), where the

voucher-request has been signed by "Registrar", its signing

structure includes two additional CA certificates. The arrows in the

figure indicate the issuing of a certificate, i.e. author of (1)

issued (2) and author of (2) issued (3).

Figure 1: Two-Level CA PKI

When the Registrar is using a COSE-signed constrained voucher

request towards MASA, instead of a regular CMS-signed voucher

request, the COSE_Sign1 object contains a protected and an

¶

¶

¶

 .------------------.

 | domain CA (1) |

 | trust anchor |

 '------------------'

 |

 v

 .------------.

 | domain (2) |

 | Sub-CA |

 '------------'

 |

 |

 v

 .----------------.

 | domain |

 | Registrar (3) |

 | EE certificate |

 '----------------'

https://rfc-editor.org/rfc/rfc8995#section-5.5

unprotected header. The Registrar MUST place all the certificates

needed to validate the signature chain from the Registrar on the RVR

in an "x5bag" attribute in the unprotected header [I-D.ietf-cose-

x509].

The "x5bag" attribute is very important as it provides the required

signals from the Registrar to control what identity is pinned in the

resulting voucher. This is explained in the next section.

8.2. MASA Pinning Policy

The MASA, having assembled and verified the chain in the signing

structure of the voucher request needs to select a certificate to

pin. (For the case that only the Registrar's End-Entity certificate

is included, only this certificate can be selected and this section

does not apply.) The BRSKI policy for pinning by the MASA as

described in Section 5.5.2 of [RFC8995] leaves much flexibility to

the manufacturer.

The present document adds the following rules to the MASA pinning

policy to reduce the network load:

for a voucher containing a nonce, it SHOULD select the most

specific (lowest-level) CA certificate in the chain.

for a nonceless voucher, it SHOULD select the least-specific

(highest-level) CA certificate in the chain that is allowed

under the MASA's policy for this specific domain.

The rationale for 1. is that in case of a voucher with nonce, the

voucher is valid only in scope of the present DTLS connection

between Pledge and Registrar anyway, so there is no benefit to pin a

higher-level CA. By pinning the most specific CA the constrained

Pledge can validate its DTLS connection using less crypto

operations. The rationale for pinning a CA instead of the

Registrar's End-Entity certificate directly is based on the

following benefit on constrained networks: the pinned certificate in

the voucher can in common cases be re-used as a Domain CA trust

anchor during the EST enrollment and during the operational phase

that follows after EST enrollment, as explained in Section 6.6.1.

The rationale for 2. follows from the flexible BRSKI trust model

for, and purpose of, nonceless vouchers (Sections 5.5.* and 7.4.1 of

[RFC8995]).

Refering to Figure 1 of a domain with a two-level certification

authority, the most specific CA ("Sub-CA") is the identity that is

pinned by MASA in a nonced voucher. A Registrar that wished to have

only the Registrar's End-Entity certificate pinned would omit the

"domain CA" and "Sub-CA" certificates from the voucher-request.

¶

¶

¶

¶

1.

¶

2.

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8995#section-5.5.2

In case of a nonceless voucher, depending on the trust level, the

MASA pins the "Registrar" certificate (low trust in customer), or

the "Sub-CA" certificate (in case of medium trust, implying that any

Registrar of that sub-domain is acceptable), or even the "domain CA"

certificate (in case of high trust in the customer, and possibly a

pre-agreed need of the customer to obtain flexible long-lived

vouchers).

8.3. Pinning of Raw Public Keys

Specifically for constrained use cases, the pinning of the raw

public key (RPK) of the Registrar is also supported in the

constrained voucher, instead of an X.509 certificate. If an RPK is

pinned it MUST be the RPK of the Registrar.

When the Pledge is known by MASA to support RPK but not X.509

certificates, the voucher produced by the MASA pins the RPK of the

Registrar in either the "pinned-domain-pubk" or "pinned-domain-pubk-

sha256" field of a voucher. This is described in more detail in

Section 9.2.3. A Pledge that does not support X.509 certificates

cannot use EST to enroll; it has to use another method for

enrollment without certificates and the Registrar has to support

this method also. It is possible that the Pledge will not enroll,

but instead only a network join operation will occur (See

[RFC9031]). How the Pledge discovers this method and details of the

enrollment method are out of scope of this document.

When the Pledge is known by MASA to support PKIX format

certificates, the "pinned-domain-cert" field present in a voucher

typically pins a domain certificate. That can be either the End-

Entity certificate of the Registrar, or the certificate of a domain

CA of the Registrar's domain as specified in Section 8.2. However,

if the Pledge is known to also support RPK pinning and the MASA

intends to identify the Registrar in the voucher (not the CA), then

MASA MUST pin the RPK (RPK3 in Figure 2) of the Registrar instead of

the Registrar's End-Entity certificate to save space in the voucher.

¶

¶

¶

¶

Figure 2: Raw Public Key pinning

8.4. Considerations for use of IDevID-Issuer

[RFC8366] and [RFC8995] defines the idevid-issuer attribute for

voucher and voucher-request (respectively), but they summarily

explain when to use it.

The use of idevid-issuer is provided so that the serial-number to

which the issued voucher pertains can be relative to the entity that

issued the devices' IDevID. In most cases there is a one to one

relationship between the trust anchor that signs vouchers (and is

trusted by the pledge), and the Certification Authority that signs

the IDevID. In that case, the serial-number in the voucher must

refer to the same device as the serial-number that is in IDevID

certificate.

However, there situations where the one to one relationship may be

broken. This occurs whenever a manufacturer has a common MASA, but

different products (on different assembly lines) are produced with

identical serial numbers. A system of serial numbers which is just a

simple counter is a good example of this. A system of serial numbers

where there is some prefix relating the product type does not fit

into this, even if the lower digits are a counter.

It is not possible for the Pledge or the Registrar to know which

situation applies. The question to be answered is whether or not to

include the idevid-issuer in the PVR and the RVR. A second question

arisews as to what the format of the idevid-issuer contents are.

Analysis of the situation shows that the pledge never needs to

include the idevid-issuer in it's PVR, because the pledge's IDevID

certificate is available to the Registrar, and the Authority Key

 .------------.

 | pub-CA (1) |

 '------------'

 |

 v

 .------------.

 | sub-CA (2) |

 '------------'

 |

 v

.--------------.

| Registrar(3) |

| RPK3 |

'--------------'

¶

¶

¶

¶

Identifier is contained within that. The pledge therefore has no

need to repeat this.

For the RVR, the Registrar has to examine the pledge's IDevID

certificate to discover the serial number for the Registrar's

Voucher Request (RVR). This is clear in Section 5.5 of [RFC8995].

That section also clarifies that the idevid-issuer is to be included

in the RVR.

Concerning the Authority Key Identifier, [RFC8366] specifies that

the entire object i.e. the extnValue OCTET STRING is to be included:

comprising the AuthorityKeyIdentifier, SEQUENCE, Choice as well as

the OCTET STRING that is the keyIdentifier.

9. Artifacts

This section describes for both the voucher request and the voucher

first the abstract (tree) definition as explained in [RFC8340]. This

provides a high-level view of the contents of each artifact.

Then the assigned SID values are presented. These have been assigned

using the rules in [I-D.ietf-core-sid].

9.1. Voucher Request artifact

9.1.1. Tree Diagram

The following diagram is largely a duplicate of the contents of

[RFC8366], with the addition of the fields proximity-registrar-pubk,

proximity-registrar-pubk-sha256, proximity-registrar-cert, and

prior-signed-voucher-request.

prior-signed-voucher-request is only used between the Registrar and

the MASA. proximity-registrar-pubk or proximity-registrar-pubk-

sha256 optionally replaces proximity-registrar-cert for the most

constrained cases where RPK is used by the Pledge.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8995#section-5.5

9.1.2. SID values

9.1.3. YANG Module

In the constrained-voucher-request YANG module, the voucher is

"augmented" within the "used" grouping statement such that one

continuous set of SID values is generated for the constrained-

voucher-request module name, all voucher attributes, and the

constrained-voucher-request attributes. Two attributes of the

voucher are "refined" to be optional.

module: ietf-voucher-request-constrained

 grouping voucher-request-constrained-grouping

 +-- voucher

 +-- created-on? yang:date-and-time

 +-- expires-on? yang:date-and-time

 +-- assertion enumeration

 +-- serial-number string

 +-- idevid-issuer? binary

 +-- pinned-domain-cert? binary

 +-- domain-cert-revocation-checks? boolean

 +-- nonce? binary

 +-- last-renewal-date? yang:date-and-time

 +-- proximity-registrar-pubk? binary

 +-- proximity-registrar-pubk-sha256? binary

 +-- proximity-registrar-cert? binary

 +-- prior-signed-voucher-request? binary

¶

 SID Assigned to

--------- --

 2501 data /ietf-voucher-request-constrained:voucher

 2502 data .../assertion

 2503 data .../created-on

 2504 data .../domain-cert-revocation-checks

 2505 data .../expires-on

 2506 data .../idevid-issuer

 2507 data .../last-renewal-date

 2508 data /ietf-voucher-request-constrained:voucher/nonce

 2509 data .../pinned-domain-cert

 2510 data .../prior-signed-voucher-request

 2511 data .../proximity-registrar-cert

 2513 data .../proximity-registrar-pubk

 2512 data .../proximity-registrar-pubk-sha256

 2514 data .../serial-number

 WARNING, obsolete definitions

¶

¶

<CODE BEGINS> file "ietf-voucher-request-constrained@2021-04-15.yang"

module ietf-voucher-request-constrained {

 yang-version 1.1;

 namespace

 "urn:ietf:params:xml:ns:yang:ietf-voucher-request-constrained";

 prefix "constrained";

 import ietf-restconf {

 prefix rc;

 description

 "This import statement is only present to access

 the yang-data extension defined in RFC 8040.";

 reference "RFC 8040: RESTCONF Protocol";

 }

 import ietf-voucher {

 prefix "v";

 }

 organization

 "IETF ANIMA Working Group";

 contact

 "WG Web: <http://tools.ietf.org/wg/anima/>

 WG List: <mailto:anima@ietf.org>

 Author: Michael Richardson

 <mailto:mcr+ietf@sandelman.ca>

 Author: Peter van der Stok

 <mailto: consultancy@vanderstok.org>

 Author: Panos Kampanakis

 <mailto: pkampana@cisco.com>";

 description

 "This module defines the format for a voucher request,

 which is produced by a pledge to request a voucher.

 The voucher-request is sent to the potential owner's

 Registrar, which in turn sends the voucher request to

 the manufacturer or its delegate (MASA).

 A voucher is then returned to the pledge, binding the

 pledge to the owner. This is a constrained version of the

 voucher-request present in

 {{I-D.ietf-anima-bootstrap-keyinfra}}

 This version provides a very restricted subset appropriate

 for very constrained devices.

 In particular, it assumes that nonce-ful operation is

 always required, that expiration dates are rather weak, as no

 clocks can be assumed, and that the Registrar is identified

 by either a pinned Raw Public Key of the Registrar, or by a

 pinned X.509 certificate of the Registrar or domain CA.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY',

 and 'OPTIONAL' in the module text are to be interpreted as

 described in RFC 2119.";

 revision "2021-04-15" {

 description

 "Initial version";

 reference

 "RFC XXXX: Voucher Profile for Constrained Devices";

 }

 rc:yang-data voucher-request-constrained-artifact {

 // YANG data template for a voucher.

 uses voucher-request-constrained-grouping;

 }

 // Grouping defined for future usage

 grouping voucher-request-constrained-grouping {

 description

 "Grouping to allow reuse/extensions in future work.";

 uses v:voucher-artifact-grouping {

 refine voucher/created-on {

 mandatory false;

 }

 refine voucher/pinned-domain-cert {

 mandatory false;

 }

 augment "voucher" {

 description "Base the constrained voucher-request upon the

 regular one";

 leaf proximity-registrar-pubk {

 type binary;

 description

 "The proximity-registrar-pubk replaces

 the proximity-registrar-cert in constrained uses of

 the voucher-request.

 The proximity-registrar-pubk is the

 Raw Public Key of the Registrar. This field is encoded

 as specified in RFC7250, section 3.

 The ECDSA algorithm MUST be supported.

 The EdDSA algorithm as specified in

 draft-ietf-tls-rfc4492bis-17 SHOULD be supported.

 Support for the DSA algorithm is not recommended.

 Support for the RSA algorithm is a MAY, but due to

 size is discouraged.";

 }

 leaf proximity-registrar-pubk-sha256 {

 type binary;

 description

 "The proximity-registrar-pubk-sha256

 is an alternative to both

 proximity-registrar-pubk and pinned-domain-cert.

 In many cases the public key of the domain has already

 been transmitted during the key agreement protocol,

 and it is wasteful to transmit the public key another

 two times.

 The use of a hash of public key info, at 32-bytes for

 sha256 is a significant savings compared to an RSA

 public key, but is only a minor savings compared to

 a 256-bit ECDSA public-key.

 Algorithm agility is provided by extensions to this

 specification which may define a new leaf for another

 hash type.";

 }

 leaf proximity-registrar-cert {

 type binary;

 description

 "An X.509 v3 certificate structure as specified by

 RFC 5280,

 Section 4 encoded using the ASN.1 distinguished encoding

 rules (DER), as specified in ITU-T X.690.

 The first certificate in the Registrar TLS server

 certificate_list sequence (see [RFC5246]) presented by

 the Registrar to the Pledge. This field or one of its

 alternatives MUST be populated in a

 Pledge's voucher request if the proximity assertion is

 populated.";

 }

 leaf prior-signed-voucher-request {

 type binary;

 description

 "If it is necessary to change a voucher, or re-sign and

 forward a voucher that was previously provided along a

 protocol path, then the previously signed voucher

 SHOULD be included in this field.

 For example, a pledge might sign a proximity voucher,

 which an intermediate registrar then re-signs to

 make its own proximity assertion. This is a simple

 mechanism for a chain of trusted parties to change a

 voucher, while maintaining the prior signature

 information.

 The pledge MUST ignore all prior voucher information

 when accepting a voucher for imprinting. Other

 parties MAY examine the prior signed voucher

 information for the purposes of policy decisions.

 For example, this information could be useful to a

 MASA to determine that both pledge and registrar

 agree on proximity assertions. The MASA SHOULD

 remove all prior-signed-voucher-request information when

 signing a voucher for imprinting so as to minimize the

 final voucher size.";

 }

 }

 }

 }

}

<CODE ENDS>

9.1.4. Example voucher request artifact

Below is a CBOR serialization of an example constrained voucher

request from a Pledge to a Registrar, shown in CBOR diagnostic

notation. The enum value of the assertion field is calculated to be

2 by following the algorithm described in section 9.6.4.2 of

[RFC7950]. Four dots ("....") in a CBOR byte string denotes a

sequence of bytes that are not shown for brevity.

¶

¶

9.2. Voucher artifact

The voucher's primary purpose is to securely assign a Pledge to an

owner. The voucher informs the Pledge which entity it should

consider to be its owner.

9.2.1. Tree Diagram

The following diagram is largely a duplicate of the contents of

[RFC8366], with only the addition of the fields pinned-domain-pubk

and pinned-domain-pubk-sha256.

{

 2501: {

 +2 : "2016-10-07T19:31:42Z", / SID=2503, created-on /

 +4 : "2016-10-21T19:31:42Z", / SID=2505, expires-on /

 +1 : 2, / SID=2502, assertion "proximity" /

 +13: "JADA123456789", / SID=2514, serial-number /

 +5 : h'08C2BF36....B3D2B3', / SID=2506, idevid-issuer /

 +10: h'30820275....82c35f', / SID=2511, proximity-registrar-cert/

 +3 : true, / SID=2504, domain-cert

 -revocation-checks/

 +6 : "2017-10-07T19:31:42Z" / SID=2507, last-renewal-date /

 }

}

<CODE ENDS>

¶

¶

¶

module: ietf-voucher-constrained

 grouping voucher-constrained-grouping

 +-- voucher

 +-- created-on? yang:date-and-time

 +-- expires-on? yang:date-and-time

 +-- assertion enumeration

 +-- serial-number string

 +-- idevid-issuer? binary

 +-- pinned-domain-cert? binary

 +-- domain-cert-revocation-checks? boolean

 +-- nonce? binary

 +-- last-renewal-date? yang:date-and-time

 +-- pinned-domain-pubk? binary

 +-- pinned-domain-pubk-sha256? binary

<CODE ENDS>

¶

9.2.2. SID values

9.2.3. YANG Module

In the constrained-voucher YANG module, the voucher is "augmented"

within the "used" grouping statement such that one continuous set of

SID values is generated for the constrained-voucher module name, all

voucher attributes, and the constrained-voucher attributes. Two

attributes of the voucher are "refined" to be optional.

 SID Assigned to

--------- --

 2451 data /ietf-voucher-constrained:voucher

 2452 data /ietf-voucher-constrained:voucher/assertion

 2453 data /ietf-voucher-constrained:voucher/created-on

 2454 data .../domain-cert-revocation-checks

 2455 data /ietf-voucher-constrained:voucher/expires-on

 2456 data /ietf-voucher-constrained:voucher/idevid-issuer

 2457 data .../last-renewal-date

 2458 data /ietf-voucher-constrained:voucher/nonce

 2459 data .../pinned-domain-cert

 2460 data .../pinned-domain-pubk

 2461 data .../pinned-domain-pubk-sha256

 2462 data /ietf-voucher-constrained:voucher/serial-number

 WARNING, obsolete definitions

<CODE ENDS>

¶

¶

<CODE BEGINS> file "ietf-voucher-constrained@2021-04-15.yang"

module ietf-voucher-constrained {

 yang-version 1.1;

 namespace

 "urn:ietf:params:xml:ns:yang:ietf-voucher-constrained";

 prefix "constrained";

 import ietf-restconf {

 prefix rc;

 description

 "This import statement is only present to access

 the yang-data extension defined in RFC 8040.";

 reference "RFC 8040: RESTCONF Protocol";

 }

 import ietf-voucher {

 prefix "v";

 }

 organization

 "IETF ANIMA Working Group";

 contact

 "WG Web: <http://tools.ietf.org/wg/anima/>

 WG List: <mailto:anima@ietf.org>

 Author: Michael Richardson

 <mailto:mcr+ietf@sandelman.ca>

 Author: Peter van der Stok

 <mailto: consultancy@vanderstok.org>

 Author: Panos Kampanakis

 <mailto: pkampana@cisco.com>";

description

 "This module defines the format for a voucher, which

 is produced by a pledge's manufacturer or its delegate

 (MASA) to securely assign one or more pledges to an 'owner',

 so that a pledge may establish a secure connection to the

 owner's network infrastructure.

 This version provides a very restricted subset appropriate

 for very constrained devices.

 In particular, it assumes that nonce-ful operation is

 always required, that expiration dates are rather weak, as no

 clocks can be assumed, and that the Registrar is identified

 by either a pinned Raw Public Key of the Registrar, or by a

 pinned X.509 certificate of the Registrar or domain CA.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY',

 and 'OPTIONAL' in the module text are to be interpreted as

 described in RFC 2119.";

 revision "2021-04-15" {

 description

 "Initial version";

 reference

 "RFC XXXX: Voucher Profile for Constrained Devices";

 }

 rc:yang-data voucher-constrained-artifact {

 // YANG data template for a voucher.

 uses voucher-constrained-grouping;

 }

 // Grouping defined for future usage

 grouping voucher-constrained-grouping {

 description

 "Grouping to allow reuse/extensions in future work.";

 uses v:voucher-artifact-grouping {

 refine voucher/created-on {

 mandatory false;

 }

 refine voucher/pinned-domain-cert {

 mandatory false;

 }

 augment "voucher" {

 description "Base the constrained voucher

 upon the regular one";

 leaf pinned-domain-pubk {

 type binary;

 description

 "The pinned-domain-pubk may replace the

 pinned-domain-cert in constrained uses of

 the voucher. The pinned-domain-pubk

 is the Raw Public Key of the Registrar.

 This field is encoded as a Subject Public Key Info block

 as specified in RFC7250, in section 3.

 The ECDSA algorithm MUST be supported.

 The EdDSA algorithm as specified in

 draft-ietf-tls-rfc4492bis-17 SHOULD be supported.

 Support for the DSA algorithm is not recommended.

 Support for the RSA algorithm is a MAY.";

 }

 leaf pinned-domain-pubk-sha256 {

 type binary;

 description

 "The pinned-domain-pubk-sha256 is a second

 alternative to pinned-domain-cert. In many cases the

 public key of the domain has already been transmitted

 during the key agreement process, and it is wasteful

 to transmit the public key another two times.

 The use of a hash of public key info, at 32-bytes for

 sha256 is a significant savings compared to an RSA

 public key, but is only a minor savings compared to

 a 256-bit ECDSA public-key.

 Algorithm agility is provided by extensions to this

 specification which can define a new leaf for another

 hash type.";

 }

 }

 }

 }

}

<CODE ENDS>

9.2.4. Example voucher artifacts

Below the CBOR serialization of an example constrained voucher is

shown in CBOR diagnostic notation. The enum value of the assertion

field is calculated to be zero by following the algorithm described

in section 9.6.4.2 of [RFC7950].

¶

¶

{

 2451: {

 +2 : "2016-10-07T19:31:42Z", / SID = 2453, created-on /

 +4 : "2016-10-21T19:31:42Z", / SID = 2455, expires-on /

 +1 : 0, / SID = 2452, assertion "verified" /

 +11: "JADA123456789", / SID = 2462, serial-number /

 +5 : h'E40393B4....68A3', / SID = 2456, idevid-issuer /

 +8 : h'30820275....C35F', / SID = 2459, pinned-domain-cert/

 +3 : true, / SID = 2454, domain-cert /

 / -revocation-checks /

 +6 : "2017-10-07T19:31:42Z" / SID = 2457, last-renewal-date /

 }

}

<CODE ENDS>

¶

9.3. Signing voucher and voucher-request artifacts with COSE

The COSE_Sign1 structure is discussed in Section 4.2 of [I-D.ietf-

cose-rfc8152bis-struct]. The CBOR object that carries the body, the

signature, and the information about the body and signature is

called the COSE_Sign1 structure. It is used when only one signature

is used on the body.

Support for ECDSA with SHA2-256 using curve secp256r1 (aka

prime256k1) is RECOMMENDED. Most current low power hardware has

support for acceleration of this algorithm. Future hardware designs

could omit this in favour of a newer algorithms. This is the ES256

keytype from Table 1 of [I-D.ietf-cose-rfc8152bis-algs]. Support for

curve secp256k1 is OPTIONAL.

Support for EdDSA using Curve 25519 is RECOMMENDED in new designs if

hardware support is available. This is keytype EDDSA (-8) from Table

2 of [I-D.ietf-cose-rfc8152bis-algs]. A "crv" parameter is necessary

to specify the Curve, which from Table 18. The 'kty' field MUST be

present, and it MUST be 'OKP'. (Table 17)

A transition towards EdDSA is occuring in the industry. Some

hardware can accelerate only some algorithms with specific curves,

other hardware can accelerate any curve, and still other kinds of

hardware provide a tool kit for acceleration of any eliptic curve

algorithm.

In general, the Pledge is expected to support only a single

algorithm, while the Registrar, usually not constrained, is expected

to support a wide variety of algorithms: both legacy ones and up-

and-coming ones via regular software updates.

An example of the supported COSE_Sign1 object structure is shown in

Figure 3.

Figure 3: COSE_Sign1 example in CBOR diagnostic notation

¶

¶

¶

¶

¶

¶

COSE_Sign1(

 [

 h'A101382E', # protected header encoding: {1: -47} , which means { "alg": ES256K }

 {

 4 : h'7890A03F1234' # 4 is the "kid" binary key identifier

 },

 h'1234....5678', #voucher-request binary content (CBOR)

 h'4567....1234' #voucher-request binary public signature

]

)

https://datatracker.ietf.org/doc/html/draft-ietf-cose-rfc8152bis-struct-15#section-4.2

The [COSE-registry] specifies the integers/encoding for the "alg"

and "kid" fields in Figure 3. The "alg" field restricts the key

usage for verification of this COSE object to a particular

cryptographic algorithm.

The "kid" field is optionally present: it is an unprotected field

that identifies the public key of the key pair that was used to sign

this message. The value of the key identifier "kid" parameter is an

example value. Usually a hash of the public key is used to identify

the public key, but a device serial number may also be used. The

choice of key identifier method is vendor-specific. If "kid" is not

present, then a verifying party needs to use other context

information to retrieve the right public key to verify the

COSE_Sign1 object against. For example, this context information may

be a unique serial number encoded in the binary content (CBOR)

field.

A Registrar MAY use a "kid" parameter in its RVR to identify its

signing key as used to sign the RVR. The method of generating this

"kid" is vendor-specific and SHOULD be configurable in the Registrar

to support commonly used methods. In order to support future

business cases and supply chain integrations, a Registrar MUST be

configurable, on a per-manufacturer basis, to be able to configure

the "kid" to a particular value. Both binary and string values are

to be supported, each being inserted using a CBOR bstr or tstr. By

default, a Registrar does not include a "kid" parameter in its RVR

since the signing key is already identified by the included signing

certificates in the COSE "x5bag" structure.

A Pledge normally SHOULD NOT use a "kid" parameter in its PVR,

because its signing key is already identified by the Pledge's unique

serial number that is included in the PVR. Still, where needed the

Pledge MAY use a "kid" parameter in its PVR to help the MASA

identify the right public key to verify against. This can occur for

example if a Pledge has multiple IDevID identities. A Registrar

normally SHOULD ignore a "kid" parameter used in a received PVR, as

this information is intended for the MASA. In other words, there is

no need for the Registrar to verify the contents of this field, but

it may include it in an audit log.

In Appendix C a binary COSE_Sign1 object is shown based on the

voucher-request example of Section 9.1.4.

10. Deployment-specific Discovery Considerations

This section details how discovery is done in specific deployment

scenarios.

¶

¶

¶

¶

¶

¶

10.1. 6TSCH Deployments

In 6TISCH networks, the Constrained Join Proxy (CoJP) mechanism is

described in [RFC9031]. Such networks are expected to use a [I-

D.ietf-lake-edhoc] to do key management. This is the subject of

future work. The Enhanced Beacon has been extended in [RFC9032] to

allow for discovery of the Join Proxy.

10.2. Generic networks using GRASP

[RFC8995] defines a mechanism for the Pledge to discover a Join

Proxy by listening for [RFC8990] GRASP messages. This mechanism can

be used on any network which does not have another more specific

mechanism. This mechanism supports mesh networks, and can also be

used over unencrypted WIFI.

10.3. Generic networks using mDNS

[RFC8995] also defines a non-normative mechanism for the Pledge to

discover a Join Proxy by doing mDNS queries. This mechanism can be

used on any network which does not have another recommended

mechanism. This mechanism does not easily support mesh networks. It

can be used over unencrypted WIFI.

10.4. Thread networks using Mesh Link Establishment (MLE)

Thread [Thread] is a wireless mesh network protocol based on 6LoWPAN

[RFC6282] and other IETF protocols. In Thread, a new device

discovers potential Thread networks and Thread routers to join by

using the Mesh Link Establishment (MLE) [I-D.ietf-6lo-mesh-link-

establishment] protocol. MLE uses the UDP port number 19788. The new

device sends discovery requests on different IEEE 802.15.4 radio

channels, to which routers (if any present) respond with a discovery

response containing information about their respective network. Once

a suitable router is selected the new device initiates a DTLS

transport-layer secured connection to the network's commissioning

application, over a link-local single radio hop to the selected

Thread router. This link is not yet secured at the radio level:

link-layer security will be set up once the new device is approved

by the commissioning application to join the Thread network, and it

gets provisioned with network access credentials.

The Thread router acts here as a Join Proxy. The MLE discovery

response message contains UDP port information to signal the new

device which port to use for its DTLS connection.

¶

¶

¶

¶

¶

10.5. Non-mesh networks using CoAP Discovery

On unencrypted constrained networks such as 802.15.4, CoAP discover

may be done using the mechanism detailed in [I-D.ietf-ace-coap-est]

section 5.1.

11. Design Considerations

The design considerations for the CBOR encoding of vouchers are much

the same as for JSON vouchers in [RFC8366]. One key difference is

that the names of the leaves in the YANG definition do not affect

the size of the resulting CBOR, as the SID translation process

assigns integers to the names.

Any POST request to the Registrar with resource /vs or /es returns a

2.04 Changed response with empty payload. The client should be aware

that the server may use a piggybacked CoAP response (ACK, 2.04) but

may also respond with a separate CoAP response, i.e. first an (ACK,

0.0) that is an acknowledgement of the request reception followed by

a (CON, 2.04) response in a separate CoAP message.

12. Raw Public Key Use Considerations

This section explains techniques to reduce the number of bytes that

are sent over the wire during the BRSKI bootstrap. The use of a raw

public key (RPK) in the pinning process can significantly reduce the

number of bytes and round trips, but it comes with a few significant

operational limitations.

12.1. The Registrar Trust Anchor

When the Pledge first connects to the Registrar, the connection to

the Registrar is provisional, as explained in Section 5.6.2 of

[RFC8995]. The Registrar provides its public key in a

TLSServerCertificate, and the Pledge uses that to validate that

integrity of the (D)TLS connection, but it does not validate the

identity of the provided certificate.

As the TLSServerCertificate object is never verified directly by the

pledge, sending it can be considered superfluous. Instead of using a

(TLSServer)Certificate of type X509 (see section 4.4.2 of

[RFC8446]), a RawPublicKey object is used.

A Registrar operating in a mixed environment can determine whether

to send a Certificate or a Raw Public key: this is determined by the

pledge including the server_certificate_type of RawPublicKey. This

is shown in section 5 of [RFC7250].

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8995#section-5.6.2

The Pledge continues to send a client_certificate_type of X509, so

that the Registrar can properly identify the pledge and distill the

MASA URI information from its certificate.

12.2. The Pledge Voucher Request

The Pledge puts the Registrar's public key into the proximity-

registrar-pubk field of the voucher-request. (The proximity-

registrar-pubk-sha256 can also be used if the 32-bytes of a SHA256

hash turns out to be smaller than a typical ECDSA key.)

As the format of the pubk field is identical to the TLS Certificate

RawPublicKey, no manipulation at all is needed to insert this into a

voucher-request.

12.3. The Voucher Response

A returned voucher will have a pinned-domain-subk field with the

identical key as was found in the proximity-registrar-pubk field

above, as well as in the TLS connection.

Validation of this key by the pledge is what takes the DTLS

connection out of the provisional state see Section 5.6.2 of

[RFC8995].

The voucher needs to be validated first. The Pledge needs to have a

public key to validate the signature from the MASA on the voucher.

In certain cases, the MASA's public key counterpart of the (private)

signing key is already installed in the Pledge at manufacturing

time. In other cases, if the MASA signing key is based upon a PKI

(see [I-D.richardson-anima-masa-considerations] Section 2.3), then a

certificate chain may need to be included with the voucher in order

for the pledge to validate the signature. In CMS signed artifacts,

the CMS structure has a place for such certificates.

In the COSE-signed Constrained Vouchers described in this document,

the x5bag attribute from [I-D.ietf-cose-x509] is to be used for

this.

13. Use of constrained vouchers with HTTPS

This specification contains two extensions to [RFC8995]: a

constrained voucher format (COSE), and a constrained transfer

protocol (CoAP).

On constrained networks with constrained devices, it make senses to

use both together. However, this document does not mandate that this

be the only way.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8995#section-5.6.2

A given constrained device design and software may be re-used for

multiple device models, such as a model having only an IEEE 802.15.4

radio, or a model having only an IEEE 802.11 (Wi-Fi) radio, or a

model having both these radios. A manufacturer of such device models

may wish to have code only for the use of the constrained voucher

format (COSE), and use it on all supported radios including the IEEE

802.11 radio. For this radio, the software stack to support HTTP/TLS

may be already integrated into the radio module hence it is

attractive for the manufacturer to reuse this. This type of approach

is supported by this document. In the case that HTTPS is used, the

normal [RFC8995] resource names are used, together with the media

types described in this document.

Other combinations are possible, but they are not enumerated here.

New work such as [I-D.ietf-anima-jws-voucher] provides new formats

that may be useable over a number of different transports. In

general, sending larger payloads over constrained networks makes

less sense, while sending smaller payloads over unconstrained

networks is perfectly acceptable.

The Pledge will in most cases support a single voucher format, which

it uses without negotiation i.e. without discovery of formats

supported. The Registrar, being unconstrained, is expected to

support all voucher formats. There will be cases where a Registrar

does not support a new format that a new Pledge uses, and this is an

unfortunate situation that will result in lack of interoperation.

The responsability for supporting new formats is on the Registrar.

14. Security Considerations

14.1. Duplicate serial-numbers

In the absense of correct use of idevid-issuer by the Registrar as

detailed in Section 8.4, it would be possible for a malicious

Registrar to use an unauthorized voucher for a device. This would

apply only to the case where a Manufacturer Authorized Signing

Authority (MASA) is trusted by different products from the same

manufacturer, and the manufacturer has duplicated serial numbers as

a result of a merge, acquisition or mis-management.

For example, imagine the same manufacturer makes light bulbs as well

as gas centrofuges, and said manufacturer does not uniquely allocate

product serial numbers. This attack only works for nonceless

vouchers. The attacker has obtained a light bulb which happens to

have the same serial-number as a gas centrofuge which it wishes to

obtain access. The attacker performs a normal BRSKI onboarding for

the light bulb, but then uses the resulting voucher to onboard the

gas centrofuge. The attack requires that the gas centrofuge be

¶

¶

¶

¶

¶

returned to a state where it is willing to perform a new onboarding

operation.

This attack is prevented by the mechanism of having the Registrar

include the idevid-issuer in the RVR, and the MASA including it in

the resulting voucher. The idevid-issuer is not included by default:

a MASA needs to be aware if there are parts of the organization

which duplicates serial numbers, and if so, include it.

14.2. IDevID security in Pledge

TBD.

14.3. Security of CoAP and UDP protocols

Section 7.1 explains that no CoAPS version of the BRSKI-MASA

protocol is proposed. The connection from the Registrar to the MASA

continues to be HTTPS as in [RFC8995]. This has been done to

simplify the MASA deployment for the manufacturer, because no new

protocol needs to be enabled on the server.

The use of UDP protocols across the open Internet is sometimes

fraught with security challenges. Denial-of-service attacks against

UDP based protocols are trivial as there is no three-way handshake

as done for TCP. The three-way handshake of TCP guarantees that the

node sending the connection request is reachable using the origin IP

address. While DTLS contains an option to do a stateless challenge

-- a process actually stronger than that done by TCP -- it is not

yet common for this mechanism to be available in hardware at

multigigabit speeds. It is for this reason that this document

defines using HTTPS for the Registrar to MASA connection.

14.4. Registrar Certificate may be self-signed

The provisional (D)TLS connection formed by the Pledge with the

Registrar does not authenticate the Registrar's identity. This

Registrar's identity is validated by the [RFC8366] voucher that is

issued by the MASA, signed with an anchor that was built-in to the

Pledge.

The Registrar may therefore use any certificate, including a self-

signed one. The only restrictions on the certificate is that it MUST

have EKU bits set as detailed in Section 7.3.1.

14.5. Use of RPK alternatives to proximity-registrar-cert

In Section 9.1 two compact alternative fields for proximity-

registrar-cert are defined that include an RPK: proximity-registrar-

pubk and proximity-registrar-pubk-sha256. The Pledge can use these

fields in its PVR to identify the Registrar based on its public key

¶

¶

¶

¶

¶

¶

¶

only. Since the full certificate of the proximate Registrar is not

included, use of these fields by a Pledge implies that a Registrar

could insert another certificate with the same public key identity

into the RVR. For example, an older or a newer version of its

certificate. The MASA will not be able to detect such act by the

Registrar. But since any 'other' certificate the Registrar could

insert in this way still encodes its identity the additional risk of

using the RPK alternatives is neglible.

When a Registrar sees a PVR that uses one of proximity-registrar-

pubk or proximity-registrar-pubk-sha256 fields, this implies the

Registrar must include the certificate identified by these fields

into its RVR. Otherwise, the MASA is unable to verify proximity.

This requirement is already implied by the "MUST" requirement in

Section 8.1.

14.6. MASA support of CoAPS

The use of CoAP for the BRSKI-MASA connection is not in scope of the

current document. The following security considerations have led to

this choice of scope:

the technology and experience to build secure Internet-scale

HTTPS responders (which the MASA is) is common, while the

experience in doing the same for CoAP is much less common.

in many enterprise networks, outgoing UDP connections are often

treated as suspicious, which could effectively block CoAP

connections for some firewall configurations.

reducing the complexity of MASA (i.e. less protocols supported)

would also reduce its potential attack surface, which is relevant

since the MASA is 24/7 exposed on the Internet and accepting

(untrusted) incoming connections.

15. IANA Considerations

15.1. Resource Type Registry

Additions to the sub-registry "Resource Type Link Target Attribute

Values", within the "CoRE parameters" IANA registry are specified

below.

¶

¶

¶

*

¶

*

¶

*

¶

¶

 brski needs registration with IANA

 brski.rv needs registration with IANA

 brski.vs needs registration with IANA

 brski.es needs registration with IANA

¶

15.2. The IETF XML Registry

This document registers two URIs in the IETF XML registry [RFC3688].

Following the format in [RFC3688], the following registration is

requested:

15.3. The YANG Module Names Registry

This document registers two YANG modules in the YANG Module Names

registry [RFC6020]. Following the format defined in [RFC6020], the

the following registration is requested:

15.4. The RFC SID range assignment sub-registry

Warning: These SID values are defined in [I-D.ietf-core-sid], not as

an Early Allocation.

IANA: please update the names in the Registry to match these revised

names, if they have not already been revised.

¶

 URI: urn:ietf:params:xml:ns:yang:ietf-voucher-constrained

 Registrant Contact: The ANIMA WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-voucher-request-constrained

 Registrant Contact: The ANIMA WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

¶

¶

 name: ietf-voucher-constrained

 namespace: urn:ietf:params:xml:ns:yang:ietf-voucher-constrained

 prefix: vch

 reference: RFC XXXX

 name: ietf-voucher-request-constrained

 namespace: urn:ietf:params:xml:ns:yang:ietf-voucher-

 request-constrained

 prefix: vch

 reference: RFC XXXX

¶

------------ ------ --------------------------- ------------

Entry-point | Size | Module name | RFC Number

------------ ------ --------------------------- ------------

2450 50 ietf-voucher-constrained [ThisRFC]

2500 50 ietf-voucher-request [ThisRFC}

 -constrained

----------- ------ --------------------------- ------------

¶

¶

¶

15.5. Media Types Registry

This section registers the 'application/voucher-cose+cbor' in the

IANA "Media Types" registry. This media type is used to indicate

that the content is a CBOR voucher or voucher request signed with a

COSE_Sign1 structure [I-D.ietf-cose-rfc8152bis-struct].

15.5.1. application/voucher-cose+cbor

15.6. CoAP Content-Format Registry

One addition to the sub-registry "CoAP Content-Formats", within the

"CoRE Parameters" registry is needed for a new content-format. It

can be registered in the Expert Review range (0-255) or the IETF

Review range (256-9999).

¶

Type name: application

Subtype name: voucher-cose+cbor

Required parameters: N/A

Optional parameters: N/A

Encoding considerations: binary (CBOR)

Security considerations: Security Considerations of THIS RFC.

Interoperability considerations: The format is designed to be

 broadly interoperable.

Published specification: THIS RFC.

Applications that use this media type: ANIMA, 6tisch, and other

 zero-touch onboarding systems

Fragment identifier considerations: The syntax and semantics of

 fragment identifiers specified for application/voucher-cose+cbor

 are as specified for application/cbor. (At publication of this

 document, there is no fragment identification syntax defined for

 application/cbor.)

Additional information:

 Deprecated alias names for this type: N/A

 Magic number(s): N/A

 File extension(s): .vch

 Macintosh file type code(s): N/A

Person & email address to contact for further information: IETF

 ANIMA Working Group (anima@ietf.org) or IETF Operations and

 Management Area Working Group (opsawg@ietf.org)

Intended usage: COMMON

Restrictions on usage: N/A

Author: ANIMA WG

Change controller: IETF

Provisional registration? (standards tree only): NO

¶

¶

Media type Encoding ID Reference

----------------------------- --------- ---- ----------

application/voucher-cose+cbor - TBD3 [This RFC]

¶

[I-D.ietf-ace-coap-est]

16. Acknowledgements

We are very grateful to Jim Schaad for explaining COSE and CMS

choices. Also thanks to Jim Schaad for correcting earlier versions

of the COSE_Sign1 objects.

Michel Veillette did extensive work on pyang to extend it to support

the SID allocation process, and this document was among its first

users.

17. Changelog

-10 Design considerations extended Examples made consistent

-08 Examples for cose_sign1 are completed and improved.

-06 New SID values assigned; regenerated examples

-04 voucher and request-voucher MUST be signed examples for signed

request are added in appendix IANA SID registration is updated SID

values in examples are aligned signed cms examples aligned with new

SIDs

-03

-02

-01

18. References

18.1. Normative References

Stok, P. V. D., Kampanakis, P., Richardson,

M. C., and S. Raza, "EST over secure CoAP (EST-coaps)",

Work in Progress, Internet-Draft, draft-ietf-ace-coap-

¶

¶

¶

¶

¶

¶

¶

Examples are inverted.¶

¶

Example of requestvoucher with unsigned appllication/cbor is added

attributes of voucher "refined" to optional

CBOR serialization of vouchers improved

Discovery port numbers are specified

¶

¶

application/json is optional, application/cbor is compulsory

Cms and cose mediatypes are introduced

¶

[I-D.ietf-core-sid]

[I-D.ietf-core-yang-cbor]

[I-D.ietf-cose-rfc8152bis-algs]

[I-D.ietf-cose-rfc8152bis-struct]

[I-D.ietf-cose-x509]

[I-D.ietf-tls-dtls13]

[ieee802-1AR]

[RFC2119]

est-18, 6 January 2020, <https://www.ietf.org/archive/id/

draft-ietf-ace-coap-est-18.txt>.

Veillette, M., Pelov, A., Petrov, I., Bormann,

C., and M. Richardson, "YANG Schema Item iDentifier (YANG

SID)", Work in Progress, Internet-Draft, draft-ietf-core-

sid-18, 18 November 2021, <https://www.ietf.org/archive/

id/draft-ietf-core-sid-18.txt>.

Veillette, M., Petrov, I., Pelov, A.,

Bormann, C., and M. Richardson, "CBOR Encoding of Data

Modeled with YANG", Work in Progress, Internet-Draft,

draft-ietf-core-yang-cbor-17, 25 October 2021, <https://

www.ietf.org/archive/id/draft-ietf-core-yang-

cbor-17.txt>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Initial Algorithms", Work in Progress, Internet-Draft,

draft-ietf-cose-rfc8152bis-algs-12, 24 September 2020,

<https://www.ietf.org/archive/id/draft-ietf-cose-

rfc8152bis-algs-12.txt>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Structures and Process", Work in Progress, Internet-

Draft, draft-ietf-cose-rfc8152bis-struct-15, 1 February

2021, <https://www.ietf.org/archive/id/draft-ietf-cose-

rfc8152bis-struct-15.txt>.

Schaad, J., "CBOR Object Signing and Encryption

(COSE): Header parameters for carrying and referencing X.

509 certificates", Work in Progress, Internet-Draft,

draft-ietf-cose-x509-08, 14 December 2020, <https://

www.ietf.org/archive/id/draft-ietf-cose-x509-08.txt>.

Rescorla, E., Tschofenig, H., and N. Modadugu,

"The Datagram Transport Layer Security (DTLS) Protocol

Version 1.3", Work in Progress, Internet-Draft, draft-

ietf-tls-dtls13-43, 30 April 2021, <https://www.ietf.org/

archive/id/draft-ietf-tls-dtls13-43.txt>.

IEEE Standard, ., "IEEE 802.1AR Secure Device

Identifier", 2009, <http://standards.ieee.org/findstds/

standard/802.1AR-2009.html>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

https://www.ietf.org/archive/id/draft-ietf-ace-coap-est-18.txt
https://www.ietf.org/archive/id/draft-ietf-ace-coap-est-18.txt
https://www.ietf.org/archive/id/draft-ietf-core-sid-18.txt
https://www.ietf.org/archive/id/draft-ietf-core-sid-18.txt
https://www.ietf.org/archive/id/draft-ietf-core-yang-cbor-17.txt
https://www.ietf.org/archive/id/draft-ietf-core-yang-cbor-17.txt
https://www.ietf.org/archive/id/draft-ietf-core-yang-cbor-17.txt
https://www.ietf.org/archive/id/draft-ietf-cose-rfc8152bis-algs-12.txt
https://www.ietf.org/archive/id/draft-ietf-cose-rfc8152bis-algs-12.txt
https://www.ietf.org/archive/id/draft-ietf-cose-rfc8152bis-struct-15.txt
https://www.ietf.org/archive/id/draft-ietf-cose-rfc8152bis-struct-15.txt
https://www.ietf.org/archive/id/draft-ietf-cose-x509-08.txt
https://www.ietf.org/archive/id/draft-ietf-cose-x509-08.txt
https://www.ietf.org/archive/id/draft-ietf-tls-dtls13-43.txt
https://www.ietf.org/archive/id/draft-ietf-tls-dtls13-43.txt
http://standards.ieee.org/findstds/standard/802.1AR-2009.html
http://standards.ieee.org/findstds/standard/802.1AR-2009.html
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC3688]

[RFC4193]

[RFC4210]

[RFC5280]

[RFC5652]

[RFC6020]

[RFC6066]

[RFC6125]

[RFC7250]

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast

Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,

<https://www.rfc-editor.org/info/rfc4193>.

Adams, C., Farrell, S., Kause, T., and T. Mononen,

"Internet X.509 Public Key Infrastructure Certificate

Management Protocol (CMP)", RFC 4210, DOI 10.17487/

RFC4210, September 2005, <https://www.rfc-editor.org/

info/rfc4210>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Housley, R., "Cryptographic Message Syntax (CMS)", STD

70, RFC 5652, DOI 10.17487/RFC5652, September 2009,

<https://www.rfc-editor.org/info/rfc5652>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Eastlake 3rd, D., "Transport Layer Security (TLS)

Extensions: Extension Definitions", RFC 6066, DOI

10.17487/RFC6066, January 2011, <https://www.rfc-

editor.org/info/rfc6066>.

Saint-Andre, P. and J. Hodges, "Representation and

Verification of Domain-Based Application Service Identity

within Internet Public Key Infrastructure Using X.509

(PKIX) Certificates in the Context of Transport Layer

Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March

2011, <https://www.rfc-editor.org/info/rfc6125>.

Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,

Weiler, S., and T. Kivinen, "Using Raw Public Keys in

Transport Layer Security (TLS) and Datagram Transport

https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc4193
https://www.rfc-editor.org/info/rfc4210
https://www.rfc-editor.org/info/rfc4210
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6125

[RFC7950]

[RFC8174]

[RFC8366]

[RFC8446]

[RFC8610]

[RFC8949]

[RFC8995]

[RFC9031]

[RFC9032]

[COSE-registry]

Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,

June 2014, <https://www.rfc-editor.org/info/rfc7250>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,

"A Voucher Artifact for Bootstrapping Protocols", RFC

8366, DOI 10.17487/RFC8366, May 2018, <https://www.rfc-

editor.org/info/rfc8366>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,

and K. Watsen, "Bootstrapping Remote Secure Key

Infrastructure (BRSKI)", RFC 8995, DOI 10.17487/RFC8995,

May 2021, <https://www.rfc-editor.org/info/rfc8995>.

Vučinić, M., Ed., Simon, J., Pister, K., and M.

Richardson, "Constrained Join Protocol (CoJP) for

6TiSCH", RFC 9031, DOI 10.17487/RFC9031, May 2021,

<https://www.rfc-editor.org/info/rfc9031>.

Dujovne, D., Ed. and M. Richardson, "Encapsulation of

6TiSCH Join and Enrollment Information Elements", RFC

9032, DOI 10.17487/RFC9032, May 2021, <https://www.rfc-

editor.org/info/rfc9032>.

18.2. Informative References

https://www.rfc-editor.org/info/rfc7250
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8366
https://www.rfc-editor.org/info/rfc8366
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8995
https://www.rfc-editor.org/info/rfc9031
https://www.rfc-editor.org/info/rfc9032
https://www.rfc-editor.org/info/rfc9032

[I-D.ietf-6lo-mesh-link-establishment]

[I-D.ietf-anima-constrained-join-proxy]

[I-D.ietf-anima-jws-voucher]

[I-D.ietf-lake-edhoc]

[I-D.kuehlewind-update-tag]

[I-D.richardson-anima-masa-considerations]

[RFC4443]

IANA, ., "CBOR Object Signing and Encryption (COSE)

registry", 2017, <https://www.iana.org/assignments/cose/

cose.xhtml>.

Kelsey, R., "Mesh Link Establishment", Work in Progress,

Internet-Draft, draft-ietf-6lo-mesh-link-

establishment-00, 1 December 2015, <https://www.ietf.org/

archive/id/draft-ietf-6lo-mesh-link-

establishment-00.txt>.

Richardson, M., Stok, P. V.

D., and P. Kampanakis, "Constrained Join Proxy for

Bootstrapping Protocols", Work in Progress, Internet-

Draft, draft-ietf-anima-constrained-join-proxy-06, 3

December 2021, <https://www.ietf.org/archive/id/draft-

ietf-anima-constrained-join-proxy-06.txt>.

Richardson, M. and T. Werner, "JWS

signed Voucher Artifacts for Bootstrapping Protocols",

Work in Progress, Internet-Draft, draft-ietf-anima-jws-

voucher-01, 25 October 2021, <https://www.ietf.org/

archive/id/draft-ietf-anima-jws-voucher-01.txt>.

Selander, G., Mattsson, J. P., and F.

Palombini, "Ephemeral Diffie-Hellman Over COSE (EDHOC)",

Work in Progress, Internet-Draft, draft-ietf-lake-

edhoc-12, 20 October 2021, <https://www.ietf.org/archive/

id/draft-ietf-lake-edhoc-12.txt>.

Kuehlewind, M. and S. Krishnan,

"Definition of new tags for relations between RFCs", Work

in Progress, Internet-Draft, draft-kuehlewind-update-

tag-04, 12 July 2021, <https://www.ietf.org/archive/id/

draft-kuehlewind-update-tag-04.txt>.

Richardson, M. and W.

Pan, "Operatonal Considerations for Voucher

infrastructure for BRSKI MASA", Work in Progress,

Internet-Draft, draft-richardson-anima-masa-

considerations-06, 13 November 2021, <https://

www.ietf.org/archive/id/draft-richardson-anima-masa-

considerations-06.txt>.

Conta, A., Deering, S., and M. Gupta, Ed., "Internet

Control Message Protocol (ICMPv6) for the Internet

Protocol Version 6 (IPv6) Specification", STD 89, RFC

4443, DOI 10.17487/RFC4443, March 2006, <https://www.rfc-

editor.org/info/rfc4443>.

https://www.iana.org/assignments/cose/cose.xhtml
https://www.iana.org/assignments/cose/cose.xhtml
https://www.ietf.org/archive/id/draft-ietf-6lo-mesh-link-establishment-00.txt
https://www.ietf.org/archive/id/draft-ietf-6lo-mesh-link-establishment-00.txt
https://www.ietf.org/archive/id/draft-ietf-6lo-mesh-link-establishment-00.txt
https://www.ietf.org/archive/id/draft-ietf-anima-constrained-join-proxy-06.txt
https://www.ietf.org/archive/id/draft-ietf-anima-constrained-join-proxy-06.txt
https://www.ietf.org/archive/id/draft-ietf-anima-jws-voucher-01.txt
https://www.ietf.org/archive/id/draft-ietf-anima-jws-voucher-01.txt
https://www.ietf.org/archive/id/draft-ietf-lake-edhoc-12.txt
https://www.ietf.org/archive/id/draft-ietf-lake-edhoc-12.txt
https://www.ietf.org/archive/id/draft-kuehlewind-update-tag-04.txt
https://www.ietf.org/archive/id/draft-kuehlewind-update-tag-04.txt
https://www.ietf.org/archive/id/draft-richardson-anima-masa-considerations-06.txt
https://www.ietf.org/archive/id/draft-richardson-anima-masa-considerations-06.txt
https://www.ietf.org/archive/id/draft-richardson-anima-masa-considerations-06.txt
https://www.rfc-editor.org/info/rfc4443
https://www.rfc-editor.org/info/rfc4443

[RFC6282]

[RFC6690]

[RFC7030]

[RFC7228]

[RFC8340]

[RFC8990]

[Thread]

Hui, J., Ed. and P. Thubert, "Compression Format for IPv6

Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,

DOI 10.17487/RFC6282, September 2011, <https://www.rfc-

editor.org/info/rfc6282>.

Shelby, Z., "Constrained RESTful Environments (CoRE) Link

Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,

<https://www.rfc-editor.org/info/rfc6690>.

Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,

"Enrollment over Secure Transport", RFC 7030, DOI

10.17487/RFC7030, October 2013, <https://www.rfc-

editor.org/info/rfc7030>.

Bormann, C., Ersue, M., and A. Keranen, "Terminology for

Constrained-Node Networks", RFC 7228, DOI 10.17487/

RFC7228, May 2014, <https://www.rfc-editor.org/info/

rfc7228>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Bormann, C., Carpenter, B., Ed., and B. Liu, Ed.,

"GeneRic Autonomic Signaling Protocol (GRASP)", RFC 8990,

DOI 10.17487/RFC8990, May 2021, <https://www.rfc-

editor.org/info/rfc8990>.

Thread Group, Inc, ., "Thread support page, White

Papers", November 2021, <https://www.threadgroup.org/

support#Whitepapers>.

Appendix A. Library support for BRSKI

For the implementation of BRSKI, the use of a software library to

manipulate certificates and use crypto algorithms is often

beneficial. Two C-based examples are OPENSSL and mbedtls. Others

more targeted to specific platforms or languages exist. It is

important to realize that the library interfaces differ

significantly between libraries.

Libraries do not support all known crypto algorithms. Before

deciding on a library, it is important to look at their supported

crypto algorithms and the roadmap for future support. Apart from

availability, the library footprint, and the required execution

cycles should be investigated beforehand.

The handling of certificates usually includes the checking of a

certificate chain. In some libraries, chains are constructed and

¶

¶

https://www.rfc-editor.org/info/rfc6282
https://www.rfc-editor.org/info/rfc6282
https://www.rfc-editor.org/info/rfc6690
https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8990
https://www.rfc-editor.org/info/rfc8990
https://www.threadgroup.org/support#Whitepapers
https://www.threadgroup.org/support#Whitepapers

verified on the basis of a set of certificates, the trust anchor

(usually self signed root CA), and the target certificate. In other

libraries, the chain must be constructed beforehand and obey order

criteria. Verification always includes the checking of the

signatures. Less frequent is the checking the validity of the dates

or checking the existence of a revoked certificate in the chain

against a set of revoked certificates. Checking the chain on the

consistency of the certificate extensions which specify the use of

the certificate usually needs to be programmed explicitly.

A libary can be used to construct a (D)TLS connection. It is useful

to realize that differences beetween (D)TLS implementations will

occur due to the differences in the certicate checks supported by

the library. On top of that, checks between client and server

certificates enforced by (D)TLS are not always helpful for a BRSKI

implementation. For example, the certificates of Pledge and

Registrar are usually not related when the BRSKI protocol is

started. It must be verified that checks on the relation between

client and server certificates do not hamper a succeful DTLS

connection establishment.

A.1. OpensSSL

from openssl's apps/verify.c

¶

¶

¶

A.2. mbedTLS

Appendix B. Constrained BRSKI-EST messages

This section extends the examples from Appendix A of [I-D.ietf-ace-

coap-est] with the constrained BRSKI requests. The CoAP headers are

only worked out for the enrollstatus example.

 X509 *x = NULL;

 int i = 0, ret = 0;

 X509_STORE_CTX *csc;

 STACK_OF(X509) *chain = NULL;

 int num_untrusted;

 x = load_cert(file, "certificate file");

 if (x == NULL)

 goto end;

 csc = X509_STORE_CTX_new();

 if (csc == NULL) {

 BIO_printf(bio_err, "error %s: X.509 store context"

 "allocation failed\n",

 (file == NULL) ? "stdin" : file);

 goto end;

 }

 X509_STORE_set_flags(ctx, vflags);

 if (!X509_STORE_CTX_init(csc, ctx, x, uchain)) {

 X509_STORE_CTX_free(csc);

 BIO_printf(bio_err,

 "error %s: X.509 store context"

 "initialization failed\n",

 (file == NULL) ? "stdin" : file);

 goto end;

 }

 if (tchain != NULL)

 X509_STORE_CTX_set0_trusted_stack(csc, tchain);

 if (crls != NULL)

 X509_STORE_CTX_set0_crls(csc, crls);

 i = X509_verify_cert(csc);

 X509_STORE_CTX_free(csc);

<CODE ENDS>

¶

 mbedtls_x509_crt cert;

 mbedtls_x509_crt caCert;

 uint32_t certVerifyResultFlags;

 ...

 int result = mbedtls_x509_crt_verify(&cert, &caCert, NULL, NULL,

 &certVerifyResultFlags, NULL, NULL);

¶

¶

B.1. enrollstatus

A coaps enrollstatus message can be :

The corresponding CoAP header fields are shown below.

The Uri-Host and Uri-Port Options are omitted because they coincide

with the transport protocol destination address and port

respectively. TBD - Show the binary CBOR payload of this example.

A 2.04 Changed response from the Registrar will then be:

With CoAP fields:

B.2. voucher_status

A coaps voucher_status message can be:

¶

 POST coaps://192.0.2.1:8085/b/es¶

¶

 Ver = 1

 T = 0 (CON)

 Code = 0x02 (0.02 is POST)

 Options

 Option (Uri-Path)

 Option Delta = 0xb (option nr = 11)

 Option Length = 0x1

 Option Value = "b"

 Option (Uri-Path)

 Option Delta = 0x0 (option nr = 11)

 Option Length = 0x2

 Option Value = "es"

 Option (Content-Format)

 Option Delta = 0x1 (option nr = 12)

 Option Length = 0x1

 Option Value = 60 (application/cbor)

 Payload Marker = 0xFF

 Payload = <binary CBOR enrollstatus document>

¶

¶

¶

 2.04 Changed¶

¶

 Ver=1

 T=2 (ACK)

 Code = 0x44 (2.04 Changed)

¶

¶

The request payload above is binary CBOR but represented here in

hexadecimal for readability. Below is the equivalent CBOR diagnostic

format.

A 2.04 Changed response without payload will then be sent by the

Registrar back to the Pledge.

Appendix C. COSE examples

These examples are generated on a Pi 4 and a PC running BASH. Keys

and Certificates have been generated with openssl with the following

shell script:

 POST coaps://[2001:db8::2:1]:61616/b/vs

 Content-Format: 60 (application/cbor)

 Payload =

a46776657273696f6e0166737461747573f466726561736f6e7828496e66

6f726d61746976652068756d616e2d7265616461626c65206572726f7220

6d6573736167656e726561736f6e2d636f6e74657874a100764164646974

696f6e616c20696e666f726d6174696f6e

<CODE ENDS>

¶

¶

{"version": 1, "status": false,

"reason": "Informative human-readable error message",

"reason-context": { 0: "Additional information" } }

<CODE ENDS>

¶

¶

 2.04 Changed¶

¶

#!/bin/bash

#try-cert.sh

export dir=./brski/intermediate

export cadir=./brski

export cnfdir=./conf

export format=pem

export default_crl_days=30

sn=8

DevID=pledge.1.2.3.4

serialNumber="serialNumber=$DevID"

export hwType=1.3.6.1.4.1.6715.10.1

export hwSerialNum=01020304 # Some hex

export subjectAltName="otherName:1.3.6.1.5.5.7.8.4;SEQ:hmodname"

echo $hwType - $hwSerialNum

echo $serialNumber

OPENSSL_BIN="openssl"

remove all files

rm -r ./brski/*

#

initialize file structure

root level

cd $cadir

mkdir certs crl csr newcerts private

chmod 700 private

touch index.txt

touch serial

echo 11223344556600 >serial

echo 1000 > crlnumber

intermediate level

mkdir intermediate

cd intermediate

mkdir certs crl csr newcerts private

chmod 700 private

touch index.txt

echo 11223344556600 >serial

echo 1000 > crlnumber

cd ../..

file structure is cleaned start filling

echo "#############################"

echo "create registrar keys and certificates "

echo "#############################"

echo "create root registrar certificate using ecdsa with sha 256 key"

$OPENSSL_BIN ecparam -name prime256v1 -genkey \

 -noout -out $cadir/private/ca-regis.key

$OPENSSL_BIN req -new -x509 \

 -config $cnfdir/openssl-regis.cnf \

 -key $cadir/private/ca-regis.key \

 -out $cadir/certs/ca-regis.crt \

 -extensions v3_ca\

 -days 365 \

 -subj "/C=NL/ST=NB/L=Helmond/O=vanderstok/OU=consultancy \

/CN=registrar.stok.nl"

Combine authority certificate and key

echo "Combine authority certificate and key"

$OPENSSL_BIN pkcs12 -passin pass:watnietweet -passout pass:watnietweet\

 -inkey $cadir/private/ca-regis.key \

 -in $cadir/certs/ca-regis.crt -export \

 -out $cadir/certs/ca-regis-comb.pfx

converteer authority pkcs12 file to pem

echo "converteer authority pkcs12 file to pem"

$OPENSSL_BIN pkcs12 -passin pass:watnietweet -passout pass:watnietweet\

 -in $cadir/certs/ca-regis-comb.pfx \

 -out $cadir/certs/ca-regis-comb.crt -nodes

#show certificate in registrar combined certificate

$OPENSSL_BIN x509 -in $cadir/certs/ca-regis-comb.crt -text

#

Certificate Authority for MASA

#

echo "#############################"

echo "create MASA keys and certificates "

echo "#############################"

echo "create root MASA certificate using ecdsa with sha 256 key"

$OPENSSL_BIN ecparam -name prime256v1 -genkey -noout \

 -out $cadir/private/ca-masa.key

$OPENSSL_BIN req -new -x509 \

 -config $cnfdir/openssl-masa.cnf \

 -days 1000 -key $cadir/private/ca-masa.key \

 -out $cadir/certs/ca-masa.crt \

 -extensions v3_ca\

 -subj "/C=NL/ST=NB/L=Helmond/O=vanderstok/OU=manufacturer\

/CN=masa.stok.nl"

Combine authority certificate and key

echo "Combine authority certificate and key for masa"

$OPENSSL_BIN pkcs12 -passin pass:watnietweet -passout pass:watnietweet\

 -inkey $cadir/private/ca-masa.key \

 -in $cadir/certs/ca-masa.crt -export \

 -out $cadir/certs/ca-masa-comb.pfx

converteer authority pkcs12 file to pem for masa

echo "converteer authority pkcs12 file to pem for masa"

$OPENSSL_BIN pkcs12 -passin pass:watnietweet -passout pass:watnietweet\

 -in $cadir/certs/ca-masa-comb.pfx \

 -out $cadir/certs/ca-masa-comb.crt -nodes

#show certificate in pledge combined certificate

$OPENSSL_BIN x509 -in $cadir/certs/ca-masa-comb.crt -text

#

Certificate for Pledge derived from MASA certificate

#

echo "#############################"

echo "create pledge keys and certificates "

echo "#############################"

Pledge derived Certificate

echo "create pledge derived certificate using ecdsa with sha 256 key"

$OPENSSL_BIN ecparam -name prime256v1 -genkey -noout \

 -out $dir/private/pledge.key

echo "create pledge certificate request"

$OPENSSL_BIN req -nodes -new -sha256 \

 -key $dir/private/pledge.key -out $dir/csr/pledge.csr \

 -subj "/C=NL/ST=NB/L=Helmond/O=vanderstok/OU=manufacturing\

 /CN=uuid:$DevID/$serialNumber"

Sign pledge derived Certificate

echo "sign pledge derived certificate "

$OPENSSL_BIN ca -config $cnfdir/openssl-pledge.cnf \

 -extensions 8021ar_idevid\

 -days 365 -in $dir/csr/pledge.csr \

 -out $dir/certs/pledge.crt

Add pledge key and pledge certificate to pkcs12 file

echo "Add derived pledge key and derived pledge \

 certificate to pkcs12 file"

$OPENSSL_BIN pkcs12 -passin pass:watnietweet -passout pass:watnietweet\

 -inkey $dir/private/pledge.key \

 -in $dir/certs/pledge.crt -export \

 -out $dir/certs/pledge-comb.pfx

converteer pledge pkcs12 file to pem

echo "converteer pledge pkcs12 file to pem"

$OPENSSL_BIN pkcs12 -passin pass:watnietweet -passout pass:watnietweet\

 -in $dir/certs/pledge-comb.pfx \

 -out $dir/certs/pledge-comb.crt -nodes

#show certificate in pledge-comb.crt

$OPENSSL_BIN x509 -in $dir/certs/pledge-comb.crt -text

#show private key in pledge-comb.crt

$OPENSSL_BIN ecparam -name prime256v1\

 -in $dir/certs/pledge-comb.crt -text

<CODE ENDS>

¶

The xxxx-comb certificates have been generated as required by

libcoap for the DTLS connection generation.

C.1. Pledge, Registrar and MASA keys

This first section documents the public and private keys used in the

subsequent test vectors below. These keys come from test code and

are not used in any production system, and should only be used only

to validate implementations.

C.1.1. Pledge private key

C.1.2. Registrar private key

¶

¶

Private-Key: (256 bit)

priv:

 9b:4d:43:b6:a9:e1:7c:04:93:45:c3:13:d9:b5:f0:

 41:a9:6a:9c:45:79:73:b8:62:f1:77:03:3a:fc:c2:

 9c:9a

pub:

 04:d6:b7:6f:74:88:bd:80:ae:5f:28:41:2c:72:02:

 ef:5f:98:b4:81:e1:d9:10:4c:f8:1b:66:d4:3e:5c:

 ea:da:73:e6:a8:38:a9:f1:35:11:85:b6:cd:e2:04:

 10:be:fe:d5:0b:3b:14:69:2e:e1:b0:6a:bc:55:40:

 60:eb:95:5c:54

ASN1 OID: prime256v1

NIST CURVE: P-256

<CODE ENDS>

¶

Private-Key: (256 bit)

priv:

 81:df:bb:50:a3:45:58:06:b5:56:3b:46:de:f3:e9:

 e9:00:ae:98:13:9e:2f:36:68:81:fc:d9:65:24:fb:

 21:7e

pub:

 04:50:7a:c8:49:1a:8c:69:c7:b5:c3:1d:03:09:ed:

 35:ba:13:f5:88:4c:e6:2b:88:cf:30:18:15:4f:a0:

 59:b0:20:ec:6b:eb:b9:4e:02:b8:93:40:21:89:8d:

 a7:89:c7:11:ce:a7:13:39:f5:0e:34:8e:df:0d:92:

 3e:d0:2d:c7:b7

ASN1 OID: prime256v1

NIST CURVE: P-256

<CODE ENDS>

¶

C.1.3. MASA private key

C.2. Pledge, Registrar and MASA certificates

Below the certificates that accompany the keys. The certificate

description is followed by the hexadecimal DER of the certificate

Private-Key: (256 bit)

priv:

 c6:bb:a5:8f:b6:d3:c4:75:28:d8:d3:d9:46:c3:31:

 83:6d:00:0a:9a:38:ce:22:5c:e9:d9:ea:3b:98:32:

 ec:31

pub:

 04:59:80:94:66:14:94:20:30:3c:66:08:85:55:86:

 db:e7:d4:d1:d7:7a:d2:a3:1a:0c:73:6b:01:0d:02:

 12:15:d6:1f:f3:6e:c8:d4:84:60:43:3b:21:c5:83:

 80:1e:fc:e2:37:85:77:97:94:d4:aa:34:b5:b6:c6:

 ed:f3:17:5c:f1

ASN1 OID: prime256v1

NIST CURVE: P-256

<CODE ENDS>

¶

¶

C.2.1. Pledge IDevID certificate

This is the hexadecimal representation in (request-)voucher examples

referred to as pledge-cert-hex.

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 4822678189204992 (0x11223344556600)

 Signature Algorithm: ecdsa-with-SHA256

 Issuer: C=NL, ST=NB, L=Helmond, O=vanderstok, OU=manufacturer,

 CN=masa.stok.nl

 Validity

 Not Before: Dec 9 10:02:36 2020 GMT

 Not After : Dec 31 23:59:59 9999 GMT

 Subject: C=NL, ST=NB, L=Helmond, O=vanderstok, OU=manufacturing,

 CN=uuid:pledge.1.2.3.4/serialNumber=pledge.1.2.3.4

 Subject Public Key Info:

 Public Key Algorithm: id-ecPublicKey

 Public-Key: (256 bit)

 pub:

 04:d6:b7:6f:74:88:bd:80:ae:5f:28:41:2c:72:02:

 ef:5f:98:b4:81:e1:d9:10:4c:f8:1b:66:d4:3e:5c:

 ea:da:73:e6:a8:38:a9:f1:35:11:85:b6:cd:e2:04:

 10:be:fe:d5:0b:3b:14:69:2e:e1:b0:6a:bc:55:40:

 60:eb:95:5c:54

 ASN1 OID: prime256v1

 NIST CURVE: P-256

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:FALSE

 X509v3 Authority Key Identifier:

 keyid:

 E4:03:93:B4:C3:D3:F4:2A:80:A4:77:18:F6:96:49:03:01:17:68:A3

 Signature Algorithm: ecdsa-with-SHA256

 30:46:02:21:00:d2:e6:45:3b:b0:c3:00:b3:25:8d:f1:83:fe:

 d9:37:c1:a2:49:65:69:7f:6b:b9:ef:2c:05:07:06:31:ac:17:

 bd:02:21:00:e2:ce:9e:7b:7f:74:50:33:ad:9e:ff:12:4e:e9:

 a6:f3:b8:36:65:ab:7d:80:bb:56:88:bc:03:1d:e5:1e:31:6f

<CODE ENDS>

¶

¶

30820226308201cba003020102020711223344556600300a06082a8648ce3d04

0302306f310b3009060355040613024e4c310b300906035504080c024e423110

300e06035504070c0748656c6d6f6e6431133011060355040a0c0a76616e6465

7273746f6b31153013060355040b0c0c6d616e75666163747572657231153013

06035504030c0c6d6173612e73746f6b2e6e6c3020170d323031323039313030

3233365a180f39393939313233313233353935395a308190310b300906035504

0613024e4c310b300906035504080c024e423110300e06035504070c0748656c

6d6f6e6431133011060355040a0c0a76616e64657273746f6b31163014060355

040b0c0d6d616e75666163747572696e67311c301a06035504030c1375756964

3a706c656467652e312e322e332e34311730150603550405130e706c65646765

2e312e322e332e343059301306072a8648ce3d020106082a8648ce3d03010703

420004d6b76f7488bd80ae5f28412c7202ef5f98b481e1d9104cf81b66d43e5c

eada73e6a838a9f1351185b6cde20410befed50b3b14692ee1b06abc554060eb

955c54a32e302c30090603551d1304023000301f0603551d23041830168014e4

0393b4c3d3f42a80a47718f6964903011768a3300a06082a8648ce3d04030203

49003046022100d2e6453bb0c300b3258df183fed937c1a24965697f6bb9ef2c

05070631ac17bd022100e2ce9e7b7f745033ad9eff124ee9a6f3b83665ab7d80

bb5688bc031de51e316f<CODE ENDS>

¶

C.2.2. Registrar Certificate

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number:

 70:56:ea:aa:30:66:d8:82:6a:55:5b:90:88:d4:62:bf:9c:f2:8c:fd

 Signature Algorithm: ecdsa-with-SHA256

 Issuer: C=NL, ST=NB, L=Helmond, O=vanderstok, OU=consultancy,

 CN=registrar.stok.nl

 Validity

 Not Before: Dec 9 10:02:36 2020 GMT

 Not After : Dec 9 10:02:36 2021 GMT

 Subject: C=NL, ST=NB, L=Helmond, O=vanderstok, OU=consultancy,

 CN=registrar.stok.nl

 Subject Public Key Info:

 Public Key Algorithm: id-ecPublicKey

 Public-Key: (256 bit)

 pub:

 04:50:7a:c8:49:1a:8c:69:c7:b5:c3:1d:03:09:ed:

 35:ba:13:f5:88:4c:e6:2b:88:cf:30:18:15:4f:a0:

 59:b0:20:ec:6b:eb:b9:4e:02:b8:93:40:21:89:8d:

 a7:89:c7:11:ce:a7:13:39:f5:0e:34:8e:df:0d:92:

 3e:d0:2d:c7:b7

 ASN1 OID: prime256v1

 NIST CURVE: P-256

 X509v3 extensions:

 X509v3 Subject Key Identifier:

 08:C2:BF:36:88:7F:79:41:21:85:87:2F:16:A7:AC:A6:EF:B3:D2:B3

 X509v3 Authority Key Identifier:

 keyid:

 08:C2:BF:36:88:7F:79:41:21:85:87:2F:16:A7:AC:A6:EF:B3:D2:B3

 X509v3 Basic Constraints: critical

 CA:TRUE

 X509v3 Extended Key Usage:

 CMC Registration Authority, TLS Web Server

 Authentication, TLS Web Client Authentication

 X509v3 Key Usage: critical

 Digital Signature, Non Repudiation, Key Encipherment,

 Data Encipherment, Certificate Sign, CRL Sign

 Signature Algorithm: ecdsa-with-SHA256

 30:44:02:20:74:4c:99:00:85:13:b2:f1:bc:fd:f9:02:1a:46:

 fb:17:4c:f8:83:a2:7c:a1:d9:3f:ae:ac:f3:1e:4e:dd:12:c6:

 02:20:11:47:14:db:f5:1a:5e:78:f5:81:b9:42:1c:6e:47:02:

 ab:53:72:70:c5:ba:fb:2d:16:c3:de:9a:a1:82:c3:5f

<CODE ENDS>

¶

This the hexadecimal representation, in (request-)voucher examples

referred to as regis-cert-hex¶

308202753082021ca00302010202147056eaaa3066d8826a555b9088d462bf9c

f28cfd300a06082a8648ce3d0403023073310b3009060355040613024e4c310b

300906035504080c024e423110300e06035504070c0748656c6d6f6e64311330

11060355040a0c0a76616e64657273746f6b31143012060355040b0c0b636f6e

73756c74616e6379311a301806035504030c117265676973747261722e73746f

6b2e6e6c301e170d3230313230393130303233365a170d323131323039313030

3233365a3073310b3009060355040613024e4c310b300906035504080c024e42

3110300e06035504070c0748656c6d6f6e6431133011060355040a0c0a76616e

64657273746f6b31143012060355040b0c0b636f6e73756c74616e6379311a30

1806035504030c117265676973747261722e73746f6b2e6e6c3059301306072a

8648ce3d020106082a8648ce3d03010703420004507ac8491a8c69c7b5c31d03

09ed35ba13f5884ce62b88cf3018154fa059b020ec6bebb94e02b8934021898d

a789c711cea71339f50e348edf0d923ed02dc7b7a3818d30818a301d0603551d

0e0416041408c2bf36887f79412185872f16a7aca6efb3d2b3301f0603551d23

04183016801408c2bf36887f79412185872f16a7aca6efb3d2b3300f0603551d

130101ff040530030101ff30270603551d250420301e06082b0601050507031c

06082b0601050507030106082b06010505070302300e0603551d0f0101ff0404

030201f6300a06082a8648ce3d04030203470030440220744c99008513b2f1bc

fdf9021a46fb174cf883a27ca1d93faeacf31e4edd12c60220114714dbf51a5e

78f581b9421c6e4702ab537270c5bafb2d16c3de9aa182c35f<CODE ENDS>

¶

C.2.3. MASA Certificate

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number:

 14:26:b8:1c:ce:d8:c3:e8:14:05:cb:87:67:0d:be:ef:d5:81:25:b4

 Signature Algorithm: ecdsa-with-SHA256

 Issuer: C=NL, ST=NB, L=Helmond, O=vanderstok,

 OU=manufacturer, CN=masa.stok.nl

 Validity

 Not Before: Dec 9 10:02:36 2020 GMT

 Not After : Sep 5 10:02:36 2023 GMT

 Subject: C=NL, ST=NB, L=Helmond, O=vanderstok,

 OU=manufacturer, CN=masa.stok.nl

 Subject Public Key Info:

 Public Key Algorithm: id-ecPublicKey

 Public-Key: (256 bit)

 pub:

 04:59:80:94:66:14:94:20:30:3c:66:08:85:55:86:

 db:e7:d4:d1:d7:7a:d2:a3:1a:0c:73:6b:01:0d:02:

 12:15:d6:1f:f3:6e:c8:d4:84:60:43:3b:21:c5:83:

 80:1e:fc:e2:37:85:77:97:94:d4:aa:34:b5:b6:c6:

 ed:f3:17:5c:f1

 ASN1 OID: prime256v1

 NIST CURVE: P-256

 X509v3 extensions:

 X509v3 Subject Key Identifier:

 E4:03:93:B4:C3:D3:F4:2A:80:A4:77:18:F6:96:49:03:01:17:68:A3

 X509v3 Authority Key Identifier:

 keyid:

 E4:03:93:B4:C3:D3:F4:2A:80:A4:77:18:F6:96:49:03:01:17:68:A3

 X509v3 Basic Constraints: critical

 CA:TRUE

 X509v3 Extended Key Usage:

 CMC Registration Authority,

 TLS Web Server Authentication,

 TLS Web Client Authentication

 X509v3 Key Usage: critical

 Digital Signature, Non Repudiation, Key Encipherment,

 Data Encipherment, Certificate Sign, CRL Sign

 Signature Algorithm: ecdsa-with-SHA256

 30:44:02:20:2e:c5:f2:24:72:70:20:ea:6e:74:8b:13:93:67:

 8a:e6:fe:fb:8d:56:7f:f5:34:18:a9:ef:a5:0f:c3:99:ca:53:

 02:20:3d:dc:91:d0:e9:6a:69:20:01:fb:e4:20:40:de:7c:7d:

 98:ed:d8:84:53:61:84:a7:f9:13:06:4c:a9:b2:8f:5c

<CODE ENDS>

¶

This is the hexadecimal representation, in (request-)voucher

examples referred to as masa-cert-hex.

C.3. COSE signed voucher request from Pledge to Registrar

In this example the voucher request has been signed by the Pledge,

and has been sent to the JRC over CoAPS. The Pledge uses the

proximity assertion together with an included proximity-registrar-

cert field to inform MASA about its proximity to the specific

Registrar.

The payload signed_request_voucher is shown as hexadecimal dump

(with lf added):

¶

3082026d30820214a00302010202141426b81cced8c3e81405cb87670dbeefd5

8125b4300a06082a8648ce3d040302306f310b3009060355040613024e4c310b

300906035504080c024e423110300e06035504070c0748656c6d6f6e64311330

11060355040a0c0a76616e64657273746f6b31153013060355040b0c0c6d616e

7566616374757265723115301306035504030c0c6d6173612e73746f6b2e6e6c

301e170d3230313230393130303233365a170d3233303930353130303233365a

306f310b3009060355040613024e4c310b300906035504080c024e423110300e

06035504070c0748656c6d6f6e6431133011060355040a0c0a76616e64657273

746f6b31153013060355040b0c0c6d616e756661637475726572311530130603

5504030c0c6d6173612e73746f6b2e6e6c3059301306072a8648ce3d02010608

2a8648ce3d0301070342000459809466149420303c6608855586dbe7d4d1d77a

d2a31a0c736b010d021215d61ff36ec8d48460433b21c583801efce237857797

94d4aa34b5b6c6edf3175cf1a3818d30818a301d0603551d0e04160414e40393

b4c3d3f42a80a47718f6964903011768a3301f0603551d23041830168014e403

93b4c3d3f42a80a47718f6964903011768a3300f0603551d130101ff04053003

0101ff30270603551d250420301e06082b0601050507031c06082b0601050507

030106082b06010505070302300e0603551d0f0101ff0404030201f6300a0608

2a8648ce3d040302034700304402202ec5f224727020ea6e748b1393678ae6fe

fb8d567ff53418a9efa50fc399ca5302203ddc91d0e96a692001fbe42040de7c

7d98edd884536184a7f913064ca9b28f5c<CODE ENDS>

¶

¶

 POST coaps://registrar.example.com/b/rv

 (Content-Format: application/voucher-cose+cbor)

 signed_request_voucher

¶

¶

The representiation of signed_voucher_request in CBOR diagnostic

format is:

d28444a101382ea104582097113db094eee8eae48683e7337875c0372164

be89d023a5f3df52699c0fbfb55902d2a11909c5a60274323032302d3132

2d32335431323a30353a32325a0474323032322d31322d32335431323a30

353a32325a01020750684ca83e27230aff97630cf2c1ec409a0d6e706c65

6467652e312e322e332e340a590279308202753082021ca0030201020214

7056eaaa3066d8826a555b9088d462bf9cf28cfd300a06082a8648ce3d04

03023073310b3009060355040613024e4c310b300906035504080c024e42

3110300e06035504070c0748656c6d6f6e6431133011060355040a0c0a76

616e64657273746f6b31143012060355040b0c0b636f6e73756c74616e63

79311a301806035504030c117265676973747261722e73746f6b2e6e6c30

1e170d3230313230393130303233365a170d323131323039313030323336

5a3073310b3009060355040613024e4c310b300906035504080c024e4231

10300e06035504070c0748656c6d6f6e6431133011060355040a0c0a7661

6e64657273746f6b31143012060355040b0c0b636f6e73756c74616e6379

311a301806035504030c117265676973747261722e73746f6b2e6e6c3059

301306072a8648ce3d020106082a8648ce3d03010703420004507ac8491a

8c69c7b5c31d0309ed35ba13f5884ce62b88cf3018154fa059b020ec6beb

b94e02b8934021898da789c711cea71339f50e348edf0d923ed02dc7b7a3

818d30818a301d0603551d0e0416041408c2bf36887f79412185872f16a7

aca6efb3d2b3301f0603551d2304183016801408c2bf36887f7941218587

2f16a7aca6efb3d2b3300f0603551d130101ff040530030101ff30270603

551d250420301e06082b0601050507031c06082b0601050507030106082b

06010505070302300e0603551d0f0101ff0404030201f6300a06082a8648

ce3d04030203470030440220744c99008513b2f1bcfdf9021a46fb174cf8

83a27ca1d93faeacf31e4edd12c60220114714dbf51a5e78f581b9421c6e

4702ab537270c5bafb2d16c3de9aa182c35f58473045022063766c7bbd1b

339dbc398e764af3563e93b25a69104befe9aac2b3336b8f56e1022100cd

0419559ad960ccaed4dee3f436eca40b7570b25a52eb60332bc1f2991484

e9

<CODE ENDS>

¶

¶

C.4. COSE signed voucher request from Registrar to MASA

TBD - modify example to use full paths to MASA, not short-names.

Also not use CoAP but HTTP protocol.

In this example the voucher request has been signed by the JRC using

the private key from Appendix C.1.2. Contained within this voucher

request is the voucher request from the Pledge to JRC.

The payload signed_masa_voucher_request is shown as hexadecimal dump

(with lf added):

Diagnose(signed_request_voucher) =

18([

h'A101382E', // {"alg": -47}

{4: h'97113DB094EEE8EAE48683E7337875C0372164B

 E89D023A5F3DF52699C0FBFB5'},

h'1234', // request_voucher

h'3045022063766C7BBD1B339DBC398E764AF3563E93B

25A69104BEFE9AAC2B3336B8F56E1022100CD0419559A

D960CCAED4DEE3F436ECA40B7570B25A52EB60332BC1F

2991484E9'

])

Diagnose(request_voucher) =

{2501: {2: "2020-12-23T12:05:22Z",

 4: "2022-12-23T12:05:22Z",

 1: 2,

 7: h'684CA83E27230AFF97630CF2C1EC409A',

 13: "pledge.1.2.3.4",

 10: h'1234' // regis-cert-hex

}}

<CODE ENDS>

¶

¶

¶

 POST coaps://masa.example.com/b/rv

 (Content-Format: application/voucher-cose+cbor)

 signed_masa_request_voucher

¶

¶

The representiation of signed_masa_voucher_request in CBOR

diagnostic format is:

d28444a101382ea1045820e8735bc4b470c3aa6a7aa9aa8ee584c09c1113

1b205efec5d0313bad84c5cd05590414a11909c5a60274323032302d3132

2d32385431303a30333a33355a0474323032322d31322d32385431303a30

333a33355a07501551631f6e0416bd162ba53ea00c2a050d6e706c656467

652e312e322e332e3405587131322d32385431303a30333a33355a075015

51631f6e0416bd162ba53ea00c2a050d6e706c656467652e312e322e332e

3405587131322d32385431303a300000000000000000000000000416bd16

2ba53ea00c2a050d6e706c656467652e312e322e332e3405587131322d32

385431303a09590349d28444a101382ea104582097113db094eee8eae486

83e7337875c0372164be89d023a5f3df52699c0fbfb55902d2a11909c5a6

0274323032302d31322d32385431303a30333a33355a0474323032322d31

322d32385431303a30333a33355a010207501551631f6e0416bd162ba53e

a00c2a050d6e706c656467652e312e322e332e340a590279308202753082

021ca00302010202147056eaaa3066d8826a555b9088d462bf9cf28cfd30

0a06082a8648ce3d0403023073310b3009060355040613024e4c310b3009

06035504080c024e423110300e06035504070c0748656c6d6f6e64311330

11060355040a0c0a76616e64657273746f6b31143012060355040b0c0b63

6f6e73756c74616e6379311a301806035504030c11726567697374726172

2e73746f6b2e6e6c301e170d3230313230393130303233365a170d323131

3230393130303233365a3073310b3009060355040613024e4c310b300906

035504080c024e423110300e06035504070c0748656c6d6f6e6431133011

060355040a0c0a76616e64657273746f6b31143012060355040b0c0b636f

6e73756c74616e6379311a301806035504030c117265676973747261722e

73746f6b2e6e6c3059301306072a8648ce3d020106082a8648ce3d030107

03420004507ac8491a8c69c7b5c31d0309ed35ba13f5884ce62b88cf3018

154fa059b020ec6bebb94e02b8934021898da789c711cea71339f50e348e

df0d923ed02dc7b7a3818d30818a301d0603551d0e0416041408c2bf3688

7f79412185872f16a7aca6efb3d2b3301f0603551d2304183016801408c2

bf36887f79412185872f16a7aca6efb3d2b3300f0603551d130101ff0405

30030101ff30270603551d250420301e06082b0601050507031c06082b06

01050507030106082b06010505070302300e0603551d0f0101ff04040302

01f6300a06082a8648ce3d04030203470030440220744c99008513b2f1bc

fdf9021a46fb174cf883a27ca1d93faeacf31e4edd12c60220114714dbf5

1a5e78f581b9421c6e4702ab537270c5bafb2d16c3de9aa182c35f584730

45022063766c7bbd1b339dbc398e764af3563e93b25a69104befe9aac2b3

336b8f56e1022100cd0419559ad960ccaed4dee3f436eca40b7570b25a52

eb60332bc1f2991484e958473045022100e6b45558c1b806bba23f4ac626

c9bdb6fd354ef4330d8dfb7c529f29cca934c802203c1f2ccbbac89733d1

7ee7775bc2654c5f1cc96afba2741cc31532444aa8fed8

<CODE ENDS>

¶

¶

C.5. COSE signed voucher from MASA to Pledge via Registrar

The resulting voucher is created by the MASA and returned via the

JRC to the Pledge. It is signed by the MASA's private key Appendix

C.1.3 and can be verified by the Pledge using the MASA's public key

contained within the MASA certificate.

This is the raw binary signed_voucher, encoded in hexadecimal (with

lf added):

Diagnose(signed_registrar_request-voucher)

18([

h'A101382E', // {"alg": -47}

h'E8735BC4B470C3AA6A7AA9AA8EE584C09C11131B205EFEC5D0313BAD84

C5CD05'},

h'1234', // registrar_request_voucher',

h'3045022100E6B45558C1B806BBA23F4AC626C9BDB6FD354EF4330D8DFB

7C529F29CCA934C802203C1F2CCBBAC89733D17EE7775BC2654C5F1CC96A

FBA2741CC31532444AA8FED8'

])

Diagnose(registrar_request_voucher)

{2501:

 {2: "2020-12-28T10:03:35Z",

 4: "2022-12-28T10:03:35Z",

 7: h'1551631F6E0416BD162BA53EA00C2A05',

 13: "pledge.1.2.3.4",

 5: h'31322D32385431303A30333A33355A07501551631F6E0416BD

 162BA53EA00C2A050D6E706C656467652E312E322E332E3405

 587131322D32385431303A3000000000000000000000000004

 16BD162BA53EA00C2A050D6E706C656467652E312E322E332E

 3405587131322D32385431303A',

 9: h'1234' // signature

}}

<CODE ENDS>

¶

¶

¶

The representiation of signed_voucher in CBOR diagnostic format is:

Appendix D. Pledge Device Class Profiles

This specification allows implementers to select between various

functional options for the Pledge, yielding different code size

footprints and different requirements on Pledge hardware. Thus for

each product an optimal trade-off between functionality,

development/maintenance cost and hardware cost can be made.

This appendix illustrates different selection outcomes by means of

defining different example "profiles" of constrained Pledges. In the

d28444a101382ea104582039920a34ee92d3148ab3a729f58611193270c9

029f7784daf112614b19445d5158cfa1190993a70274323032302d31322d

32335431353a30333a31325a0474323032302d31322d32335431353a3233

3a31325a010007506508e06b2959d5089d7a3169ea889a490b6e706c6564

67652e312e322e332e340858753073310b3009060355040613024e4c310b

300906035504080c024e423110300e06035504070c0748656c6d6f6e6431

133011060355040a0c0a76616e64657273746f6b31143012060355040b0c

0b636f6e73756c74616e6379311a301806035504030c1172656769737472

61722e73746f6b2e6e6c03f458473045022022515d96cd12224ee5d3ac67

3237163bba24ad84815699285d9618f463ee73fa022100a6bff9d8585c1c

9256371ece94da3d26264a5dfec0a354fe7b3aef58344c512f

<CODE ENDS>

¶

¶

Diagnose(signed_voucher) =

18([

h'A101382E', # {"alg": -47}

{4: h'39920A34EE92D3148AB3A729F58611193270C9029F7784DAF112614B194

45D51'},

h'voucher',

h'3045022022515D96CD12224EE5D3AC673237163BBA24AD84815699285D9618F

463EE73FA022100A6BFF9D8585C1C9256371ECE94DA3D26264A5DFEC0A354FE7B

3AEF58344C512F'

])

Diagnose(voucher) =

{2451:

 {2: "2020-12-23T15:03:12Z",

 4: "2020-12-23T15:23:12Z",

 1: 0,

 7: h'6508E06B2959D5089D7A3169EA889A49',

 11: "pledge.1.2.3.4",

 8: h'regis-cert-hex',

 3: false}}

<CODE ENDS>

¶

¶

following subsections, these profiles are defined and a comparison

is provided.

D.1. Minimal Pledge

The Minimal Pledge profile (Min) aims to reduce code size and

hardware cost to a minimum. This comes with some severe functional

restrictions, in particular:

No support for EST re-enrollment: whenever this would be needed,

a factory reset followed by a new bootstrap process is required.

No support for change of Registrar: for this case, a factory

reset followed by a new bootstrap process is required.

This profile would be appropriate for single-use devices which must

be replaced rather than re-deployed. That might include medical

devices, but also sensors used during construction, such as concrete

temperature sensors.

D.2. Typical Pledge

The Typical Pledge profile (Typ) aims to support a typical

Constrained BRSKI feature set including EST re-enrollment support

and Registrar changes.

D.3. Full-featured Pledge

The Full-featured Pledge profile (Full) illustrates a Pledge

category that supports multiple bootstrap methods, hardware real-

time clock, BRSKI/EST resource discovery, and CSR Attributes

request/response. It also supports most of the optional features

defined in this specification.

D.4. Comparison chart of Pledge Classes

The below table specifies the functions implemented in the three

example Pledge classes Min, Typ and Full.

Function |====================| Profiles -> Min Typ Full

General === === ====

Support Constrained BRSKI bootstrap Y Y Y

Support other bootstrap method(s) - - Y

Real-time clock and cert time checks - - Y

Constrained BRSKI === === ====

Discovery for rt=brski* - - Y

Support pinned Registrar public key (RPK) Y - Y

Support pinned Registrar certificate - Y Y

Support pinned Domain CA - Y Y

¶

¶

*

¶

*

¶

¶

¶

¶

¶

Function |====================| Profiles -> Min Typ Full

Constrained EST === === ====

Discovery for rt=ace.est* - - Y

GET /att and response parsing - - Y

GET /crts format 281 (multiple CA certs) - - Y

GET /crts only format TBD287 (one CA cert only) Y Y -

ETag handling support for GET /crts - Y Y

Re-enrollment supported - (1) Y Y

6.6.1 optimized procedure Y Y -

Pro-active cert re-enrollment at own initiative N/A - Y

Periodic trust anchor retrieval GET /crts - (1) Y Y

Supports change of Registrar identity - (1) Y Y

Table 2

Notes: (1) is possible only by doing a factory-reset followed by a

new bootstrap procedure.

Contributors

Russ Housley

Email: housley@vigilsec.com

Authors' Addresses

Michael Richardson

Sandelman Software Works

Email: mcr+ietf@sandelman.ca

Peter van der Stok

vanderstok consultancy

Email: stokcons@bbhmail.nl

Panos Kampanakis

Cisco Systems

Email: pkampana@cisco.com

Esko Dijk

IoTconsultancy.nl

Email: esko.dijk@iotconsultancy.nl

¶

mailto:housley@vigilsec.com
mailto:mcr+ietf@sandelman.ca
mailto:stokcons@bbhmail.nl
mailto:pkampana@cisco.com
mailto:esko.dijk@iotconsultancy.nl

	Constrained Bootstrapping Remote Secure Key Infrastructure (BRSKI)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Requirements Language
	4. Overview of Protocol
	5. Updates to RFC8366 and RFC8995
	6. BRSKI-EST Protocol
	6.1. Registrar and the Server Name Indicator (SNI)
	6.2. TLS Client Certificates: IDevID authentication
	6.3. Discovery, URIs and Content Formats
	6.3.1. RFC8995 Telemetry Returns

	6.4. Join Proxy options
	6.5. Extensions to BRSKI
	6.5.1. Discovery
	6.5.2. CoAP responses

	6.6. Extensions to EST-coaps
	6.6.1. Pledge Extensions
	6.6.2. EST-client Extensions
	6.6.3. Registrar Extensions

	6.7. DTLS handshake fragmentation Considerations

	7. BRSKI-MASA Protocol
	7.1. Protocol and Formats
	7.2. Registrar Voucher Request
	7.3. MASA and the Server Name Indicator (SNI)
	7.3.1. Registrar Certificate Requirement

	8. Pinning in Voucher Artifacts
	8.1. Registrar Identity Selection and Encoding
	8.2. MASA Pinning Policy
	8.3. Pinning of Raw Public Keys
	8.4. Considerations for use of IDevID-Issuer

	9. Artifacts
	9.1. Voucher Request artifact
	9.1.1. Tree Diagram
	9.1.2. SID values
	9.1.3. YANG Module
	9.1.4. Example voucher request artifact

	9.2. Voucher artifact
	9.2.1. Tree Diagram
	9.2.2. SID values
	9.2.3. YANG Module
	9.2.4. Example voucher artifacts

	9.3. Signing voucher and voucher-request artifacts with COSE

	10. Deployment-specific Discovery Considerations
	10.1. 6TSCH Deployments
	10.2. Generic networks using GRASP
	10.3. Generic networks using mDNS
	10.4. Thread networks using Mesh Link Establishment (MLE)
	10.5. Non-mesh networks using CoAP Discovery

	11. Design Considerations
	12. Raw Public Key Use Considerations
	12.1. The Registrar Trust Anchor
	12.2. The Pledge Voucher Request
	12.3. The Voucher Response

	13. Use of constrained vouchers with HTTPS
	14. Security Considerations
	14.1. Duplicate serial-numbers
	14.2. IDevID security in Pledge
	14.3. Security of CoAP and UDP protocols
	14.4. Registrar Certificate may be self-signed
	14.5. Use of RPK alternatives to proximity-registrar-cert
	14.6. MASA support of CoAPS

	15. IANA Considerations
	15.1. Resource Type Registry
	15.2. The IETF XML Registry
	15.3. The YANG Module Names Registry
	15.4. The RFC SID range assignment sub-registry
	15.5. Media Types Registry
	15.5.1. application/voucher-cose+cbor

	15.6. CoAP Content-Format Registry

	16. Acknowledgements
	17. Changelog
	18. References
	18.1. Normative References
	18.2. Informative References

	Appendix A. Library support for BRSKI
	A.1. OpensSSL
	A.2. mbedTLS

	Appendix B. Constrained BRSKI-EST messages
	B.1. enrollstatus
	B.2. voucher_status

	Appendix C. COSE examples
	C.1. Pledge, Registrar and MASA keys
	C.1.1. Pledge private key
	C.1.2. Registrar private key
	C.1.3. MASA private key

	C.2. Pledge, Registrar and MASA certificates
	C.2.1. Pledge IDevID certificate
	C.2.2. Registrar Certificate
	C.2.3. MASA Certificate

	C.3. COSE signed voucher request from Pledge to Registrar
	C.4. COSE signed voucher request from Registrar to MASA
	C.5. COSE signed voucher from MASA to Pledge via Registrar

	Appendix D. Pledge Device Class Profiles
	D.1. Minimal Pledge
	D.2. Typical Pledge
	D.3. Full-featured Pledge
	D.4. Comparison chart of Pledge Classes

	Contributors
	Authors' Addresses

