
Network Working Group C. Bormann
Internet-Draft Universitaet Bremen TZI
Intended status: Standards Track B. Carpenter, Ed.
Expires: October 1, 2017 Univ. of Auckland
 B. Liu, Ed.
 Huawei Technologies Co., Ltd
 March 30, 2017

A Generic Autonomic Signaling Protocol (GRASP)
draft-ietf-anima-grasp-11

Abstract

 This document establishes requirements for a signaling protocol that
 enables autonomic nodes and autonomic service agents to dynamically
 discover peers, to synchronize state with them, and to negotiate
 parameter settings with them. The document then defines a general
 protocol for discovery, synchronization and negotiation, while the
 technical objectives for specific scenarios are to be described in
 separate documents. An Appendix briefly discusses existing protocols
 with comparable features.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 1, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Bormann, et al. Expires October 1, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft GRASP March 2017

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
 2. Requirement Analysis of Discovery, Synchronization and
 Negotiation . 5

2.1. Requirements for Discovery 5
 2.2. Requirements for Synchronization and Negotiation
 Capability . 6

2.3. Specific Technical Requirements 9
3. GRASP Protocol Overview 10
3.1. Terminology . 10
3.2. High Level Deployment Model 12
3.3. High Level Design Choices 13
3.4. Quick Operating Overview 16
3.5. GRASP Protocol Basic Properties and Mechanisms 16
3.5.1. Required External Security Mechanism 16
3.5.2. Constrained Instances 17
3.5.3. Transport Layer Usage 19
3.5.4. Discovery Mechanism and Procedures 20
3.5.5. Negotiation Procedures 23
3.5.6. Synchronization and Flooding Procedures 25

3.6. GRASP Constants . 27
3.7. Session Identifier (Session ID) 28
3.8. GRASP Messages . 29
3.8.1. Message Overview 29
3.8.2. GRASP Message Format 29
3.8.3. Message Size . 30
3.8.4. Discovery Message 30
3.8.5. Discovery Response Message 31
3.8.6. Request Messages 32
3.8.7. Negotiation Message 33
3.8.8. Negotiation End Message 34
3.8.9. Confirm Waiting Message 34
3.8.10. Synchronization Message 34
3.8.11. Flood Synchronization Message 35
3.8.12. Invalid Message 36
3.8.13. No Operation Message 36

3.9. GRASP Options . 36
3.9.1. Format of GRASP Options 36
3.9.2. Divert Option . 37
3.9.3. Accept Option . 37

Bormann, et al. Expires October 1, 2017 [Page 2]

Internet-Draft GRASP March 2017

3.9.4. Decline Option 37
3.9.5. Locator Options 38

3.10. Objective Options . 40
3.10.1. Format of Objective Options 40
3.10.2. Objective flags 41
3.10.3. General Considerations for Objective Options 41
3.10.4. Organizing of Objective Options 42
3.10.5. Experimental and Example Objective Options 44

4. Implementation Status [RFC Editor: please remove] 44
4.1. BUPT C++ Implementation 44
4.2. Python Implementation 45

5. Security Considerations 45
6. CDDL Specification of GRASP 48
7. IANA Considerations . 50
8. Acknowledgements . 52
9. References . 52
9.1. Normative References 52
9.2. Informative References 53

Appendix A. Open Issues [RFC Editor: This section should be
 empty. Please remove] 56

Appendix B. Closed Issues [RFC Editor: Please remove] 56
Appendix C. Change log [RFC Editor: Please remove] 65
Appendix D. Example Message Formats 71
D.1. Discovery Example . 72
D.2. Flood Example . 72
D.3. Synchronization Example 72
D.4. Simple Negotiation Example 73
D.5. Complete Negotiation Example 73

Appendix E. Capability Analysis of Current Protocols 74
 Authors' Addresses . 77

1. Introduction

 The success of the Internet has made IP-based networks bigger and
 more complicated. Large-scale ISP and enterprise networks have
 become more and more problematic for human based management. Also,
 operational costs are growing quickly. Consequently, there are
 increased requirements for autonomic behavior in the networks.
 General aspects of autonomic networks are discussed in [RFC7575] and
 [RFC7576].

 One approach is to largely decentralize the logic of network
 management by migrating it into network elements. A reference model
 for autonomic networking on this basis is given in
 [I-D.ietf-anima-reference-model]. The reader should consult this
 document to understand how various autonomic components fit together.
 In order to fulfill autonomy, devices that embody Autonomic Service
 Agents (ASAs, [RFC7575]) have specific signaling requirements. In

https://datatracker.ietf.org/doc/html/rfc7575
https://datatracker.ietf.org/doc/html/rfc7576
https://datatracker.ietf.org/doc/html/rfc7575

Bormann, et al. Expires October 1, 2017 [Page 3]

Internet-Draft GRASP March 2017

 particular they need to discover each other, to synchronize state
 with each other, and to negotiate parameters and resources directly
 with each other. There is no limitation on the types of parameters
 and resources concerned, which can include very basic information
 needed for addressing and routing, as well as anything else that
 might be configured in a conventional non-autonomic network. The
 atomic unit of discovery, synchronization or negotiation is referred
 to as a technical objective, i.e, a configurable parameter or set of
 parameters (defined more precisely in Section 3.1).

 Following this Introduction, Section 2 describes the requirements for
 discovery, synchronization and negotiation. Negotiation is an
 iterative process, requiring multiple message exchanges forming a
 closed loop between the negotiating entities. In fact, these
 entities are ASAs, normally but not necessarily in different network
 devices. State synchronization, when needed, can be regarded as a
 special case of negotiation, without iteration. Section 3.3
 describes a behavior model for a protocol intended to support
 discovery, synchronization and negotiation. The design of GeneRic
 Autonomic Signaling Protocol (GRASP) in Section 3 of this document is
 based on this behavior model. The relevant capabilities of various
 existing protocols are reviewed in Appendix E.

 The proposed discovery mechanism is oriented towards synchronization
 and negotiation objectives. It is based on a neighbor discovery
 process on the local link, but also supports diversion to peers on
 other links. There is no assumption of any particular form of
 network topology. When a device starts up with no pre-configuration,
 it has no knowledge of the topology. The protocol itself is capable
 of being used in a small and/or flat network structure such as a
 small office or home network as well as in a large professionally
 managed network. Therefore, the discovery mechanism needs to be able
 to allow a device to bootstrap itself without making any prior
 assumptions about network structure.

 Because GRASP can be used as part of a decision process among
 distributed devices or between networks, it must run in a secure and
 strongly authenticated environment.

 In realistic deployments, not all devices will support GRASP.
 Therefore, some autonomic service agents will directly manage a group
 of non-autonomic nodes, and other non-autonomic nodes will be managed
 traditionally. Such mixed scenarios are not discussed in this
 specification.

Bormann, et al. Expires October 1, 2017 [Page 4]

Internet-Draft GRASP March 2017

2. Requirement Analysis of Discovery, Synchronization and Negotiation

 This section discusses the requirements for discovery, negotiation
 and synchronization capabilities. The primary user of the protocol
 is an autonomic service agent (ASA), so the requirements are mainly
 expressed as the features needed by an ASA. A single physical device
 might contain several ASAs, and a single ASA might manage several
 technical objectives. If a technical objective is managed by several
 ASAs, any necessary coordination is outside the scope of the GRASP
 signaling protocol. Furthermore, requirements for ASAs themselves,
 such as the processing of Intent [RFC7575], are out of scope for the
 present document.

2.1. Requirements for Discovery

 D1. ASAs may be designed to manage any type of configurable device
 or software, as required in Section 2.2. A basic requirement is
 therefore that the protocol can represent and discover any kind of
 technical objective among arbitrary subsets of participating nodes.

 In an autonomic network we must assume that when a device starts up
 it has no information about any peer devices, the network structure,
 or what specific role it must play. The ASA(s) inside the device are
 in the same situation. In some cases, when a new application session
 starts up within a device, the device or ASA may again lack
 information about relevant peers. For example, it might be necessary
 to set up resources on multiple other devices, coordinated and
 matched to each other so that there is no wasted resource. Security
 settings might also need updating to allow for the new device or
 user. The relevant peers may be different for different technical
 objectives. Therefore discovery needs to be repeated as often as
 necessary to find peers capable of acting as counterparts for each
 objective that a discovery initiator needs to handle. From this
 background we derive the next three requirements:

 D2. When an ASA first starts up, it may have no knowledge of the
 specific network to which it is attached. Therefore the discovery
 process must be able to support any network scenario, assuming only
 that the device concerned is bootstrapped from factory condition.

 D3. When an ASA starts up, it must require no configured location
 information about any peers in order to discover them.

 D4. If an ASA supports multiple technical objectives, relevant peers
 may be different for different discovery objectives, so discovery
 needs to be performed separately to find counterparts for each
 objective. Thus, there must be a mechanism by which an ASA can

https://datatracker.ietf.org/doc/html/rfc7575

Bormann, et al. Expires October 1, 2017 [Page 5]

Internet-Draft GRASP March 2017

 separately discover peer ASAs for each of the technical objectives
 that it needs to manage, whenever necessary.

 D5. Following discovery, an ASA will normally perform negotiation or
 synchronization for the corresponding objectives. The design should
 allow for this by conveniently linking discovery to negotiation and
 synchronization. It may provide an optional mechanism to combine
 discovery and negotiation/synchronization in a single protocol
 exchange.

 D6. Some objectives may only be significant on the local link, but
 others may be significant across the routed network and require off-
 link operations. Thus, the relevant peers might be immediate
 neighbors on the same layer 2 link, or they might be more distant and
 only accessible via layer 3. The mechanism must therefore provide
 both on-link and off-link discovery of ASAs supporting specific
 technical objectives.

 D7. The discovery process should be flexible enough to allow for
 special cases, such as the following:

 o During initialization, a device must be able to establish mutual
 trust with the rest of the network and participate in an
 authentication mechanism. Although this will inevitably start
 with a discovery action, it is a special case precisely because
 trust is not yet established. This topic is the subject of
 [I-D.ietf-anima-bootstrapping-keyinfra]. We require that once
 trust has been established for a device, all ASAs within the
 device inherit the device's credentials and are also trusted.
 This does not preclude the device having multiple credentials.

 o Depending on the type of network involved, discovery of other
 central functions might be needed, such as the Network Operations
 Center (NOC) [I-D.ietf-anima-stable-connectivity]. The protocol
 must be capable of supporting such discovery during
 initialization, as well as discovery during ongoing operation.

 D8. The discovery process must not generate excessive traffic and
 must take account of sleeping nodes.

 D9. There must be a mechanism for handling stale discovery results.

2.2. Requirements for Synchronization and Negotiation Capability

 As background, consider the example of routing protocols, the closest
 approximation to autonomic networking already in widespread use.
 Routing protocols use a largely autonomic model based on distributed
 devices that communicate repeatedly with each other. The focus is

Bormann, et al. Expires October 1, 2017 [Page 6]

Internet-Draft GRASP March 2017

 reachability, so routing protocols primarily consider simple link
 status and metrics, and an underlying assumption is that nodes need a
 consistent, although partial, view of the network topology in order
 for the routing algorithm to converge. Also, routing is mainly based
 on simple information synchronization between peers, rather than on
 bi-directional negotiation.

 By contrast, autonomic networks need to be able to manage many
 different types of parameter and consider many more dimensions, such
 as latency, load, unused or limited resources, conflicting resource
 requests, security settings, power saving, load balancing, etc.
 Status information and resource metrics need to be shared between
 nodes for dynamic adjustment of resources and for monitoring
 purposes. While this might be achieved by existing protocols when
 they are available, the new protocol needs to be able to support
 parameter exchange, including mutual synchronization, even when no
 negotiation as such is required. In general, these parameters do not
 apply to all participating nodes, but only to a subset.

 SN1. A basic requirement for the protocol is therefore the ability
 to represent, discover, synchronize and negotiate almost any kind of
 network parameter among selected subsets of participating nodes.

 SN2. Negotiation is an iterative request/response process that must
 be guaranteed to terminate (with success or failure). While tie-
 breaking rules must be defined specifically for each use case, the
 protocol should have some general mechanisms in support of loop and
 deadlock prevention, such as hop count limits or timeouts.

 SN3. Synchronization must be possible for groups of nodes ranging
 from small to very large.

 SN4. To avoid "reinventing the wheel", the protocol should be able
 to encapsulate the data formats used by existing configuration
 protocols (such as NETCONF/YANG) in cases where that is convenient.

 SN5. Human intervention in complex situations is costly and error-
 prone. Therefore, synchronization or negotiation of parameters
 without human intervention is desirable whenever the coordination of
 multiple devices can improve overall network performance. It follows
 that the protocol's resource requirements must be appropriate for any
 device that would otherwise need human intervention. The issue of
 running in constrained nodes is discussed in
 [I-D.ietf-anima-reference-model].

 SN6. Human intervention in large networks is often replaced by use
 of a top-down network management system (NMS). It therefore follows
 that the protocol, as part of the Autonomic Networking

Bormann, et al. Expires October 1, 2017 [Page 7]

Internet-Draft GRASP March 2017

 Infrastructure, should be capable of running in any device that would
 otherwise be managed by an NMS, and that it can co-exist with an NMS,
 and with protocols such as SNMP and NETCONF.

 SN7. Some features are expected to be implemented by individual
 ASAs, but the protocol must be general enough to allow them:

 o Dependencies and conflicts: In order to decide upon a
 configuration for a given device, the device may need information
 from neighbors. This can be established through the negotiation
 procedure, or through synchronization if that is sufficient.
 However, a given item in a neighbor may depend on other
 information from its own neighbors, which may need another
 negotiation or synchronization procedure to obtain or decide.
 Therefore, there are potential dependencies and conflicts among
 negotiation or synchronization procedures. Resolving dependencies
 and conflicts is a matter for the individual ASAs involved. To
 allow this, there need to be clear boundaries and convergence
 mechanisms for negotiations. Also some mechanisms are needed to
 avoid loop dependencies or uncontrolled growth in a tree of
 dependencies. It is the ASA designer's responsibility to avoid or
 detect looping dependencies or excessive growth of dependency
 trees. The protocol's role is limited to bilateral signaling
 between ASAs, and the avoidance of loops during bilateral
 signaling.

 o Recovery from faults and identification of faulty devices should
 be as automatic as possible. The protocol's role is limited to
 discovery, synchronization and negotiation. These processes can
 occur at any time, and an ASA may need to repeat any of these
 steps when the ASA detects an event such as a negotiation
 counterpart failing.

 o Since a major goal is to minimize human intervention, it is
 necessary that the network can in effect "think ahead" before
 changing its parameters. One aspect of this is an ASA that relies
 on a knowledge base to predict network behavior. This is out of
 scope for the signaling protocol. However, another aspect is
 forecasting the effect of a change by a "dry run" negotiation
 before actually installing the change. Signaling a dry run is
 therefore a desirable feature of the protocol.

 Note that management logging, monitoring, alerts and tools for
 intervention are required. However, these can only be features of
 individual ASAs, not of the protocol itself. Another document
 [I-D.ietf-anima-stable-connectivity] discusses how such agents may be
 linked into conventional OAM systems via an Autonomic Control Plane
 [I-D.ietf-anima-autonomic-control-plane].

Bormann, et al. Expires October 1, 2017 [Page 8]

Internet-Draft GRASP March 2017

 SN8. The protocol will be able to deal with a wide variety of
 technical objectives, covering any type of network parameter.
 Therefore the protocol will need a flexible and easily extensible
 format for describing objectives. At a later stage it may be
 desirable to adopt an explicit information model. One consideration
 is whether to adopt an existing information model or to design a new
 one.

2.3. Specific Technical Requirements

 T1. It should be convenient for ASA designers to define new
 technical objectives and for programmers to express them, without
 excessive impact on run-time efficiency and footprint. In
 particular, it should be convenient for ASAs to be implemented
 independently of each other as user space programs rather than as
 kernel code, where such a programming model is possible. The classes
 of device in which the protocol might run is discussed in
 [I-D.ietf-anima-reference-model].

 T2. The protocol should be easily extensible in case the initially
 defined discovery, synchronization and negotiation mechanisms prove
 to be insufficient.

 T3. To be a generic platform, the protocol payload format should be
 independent of the transport protocol or IP version. In particular,
 it should be able to run over IPv6 or IPv4. However, some functions,
 such as multicasting on a link, might need to be IP version
 dependent. By default, IPv6 should be preferred.

 T4. The protocol must be able to access off-link counterparts via
 routable addresses, i.e., must not be restricted to link-local
 operation.

 T5. It must also be possible for an external discovery mechanism to
 be used, if appropriate for a given technical objective. In other
 words, GRASP discovery must not be a prerequisite for GRASP
 negotiation or synchronization.

 T6. The protocol must be capable of supporting multiple simultaneous
 operations with one or more peers, especially when wait states occur.

 T7. Intent: Although the distribution of Intent is out of scope for
 this document, the protocol must not by design exclude its use for
 Intent distribution.

 T8. Management monitoring, alerts and intervention: Devices should
 be able to report to a monitoring system. Some events must be able
 to generate operator alerts and some provision for emergency

Bormann, et al. Expires October 1, 2017 [Page 9]

Internet-Draft GRASP March 2017

 intervention must be possible (e.g. to freeze synchronization or
 negotiation in a mis-behaving device). These features might not use
 the signaling protocol itself, but its design should not exclude such
 use.

 T9. Because this protocol may directly cause changes to device
 configurations and have significant impacts on a running network, all
 protocol exchanges need to be fully secured against forged messages
 and man-in-the middle attacks, and secured as much as reasonably
 possible against denial of service attacks. There must also be an
 encryption mechanism to resist unwanted monitoring. However, it is
 not required that the protocol itself provides these security
 features; it may depend on an existing secure environment.

3. GRASP Protocol Overview

3.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119] when they appear in ALL CAPS. When these words are not in
 ALL CAPS (such as "should" or "Should"), they have their usual
 English meanings, and are not to be interpreted as [RFC2119] key
 words.

 This document uses terminology defined in [RFC7575].

 The following additional terms are used throughout this document:

 o Discovery: a process by which an ASA discovers peers according to
 a specific discovery objective. The discovery results may be
 different according to the different discovery objectives. The
 discovered peers may later be used as negotiation counterparts or
 as sources of synchronization data.

 o Negotiation: a process by which two ASAs interact iteratively to
 agree on parameter settings that best satisfy the objectives of
 both ASAs.

 o State Synchronization: a process by which ASAs interact to receive
 the current state of parameter values stored in other ASAs. This
 is a special case of negotiation in which information is sent but
 the ASAs do not request their peers to change parameter settings.
 All other definitions apply to both negotiation and
 synchronization.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7575

Bormann, et al. Expires October 1, 2017 [Page 10]

Internet-Draft GRASP March 2017

 o Technical Objective (usually abbreviated as Objective): A
 technical objective is a data structure, whose main contents are a
 name and a value. The value consists of a single configurable
 parameter or a set of parameters of some kind. The exact format
 of an objective is defined in Section 3.10.1. An objective occurs
 in three contexts: Discovery, Negotiation and Synchronization.
 Normally, a given objective will not occur in negotiation and
 synchronization contexts simultaneously.

 * One ASA may support multiple independent objectives.

 * The parameter(s) in the value of a given objective apply to a
 specific service or function or action. They may in principle
 be anything that can be set to a specific logical, numerical or
 string value, or a more complex data structure, by a network
 node. Each node is expected to contain one or more ASAs which
 may each manage subsidiary non-autonomic nodes.

 * Discovery Objective: an objective in the process of discovery.
 Its value may be undefined.

 * Synchronization Objective: an objective whose specific
 technical content needs to be synchronized among two or more
 ASAs. Thus, each ASA will maintain its own copy of the
 objective.

 * Negotiation Objective: an objective whose specific technical
 content needs to be decided in coordination with another ASA.
 Again, each ASA will maintain its own copy of the objective.

 A detailed discussion of objectives, including their format, is
 found in Section 3.10.

 o Discovery Initiator: an ASA that starts discovery by sending a
 discovery message referring to a specific discovery objective.

 o Discovery Responder: a peer that either contains an ASA supporting
 the discovery objective indicated by the discovery initiator, or
 caches the locator(s) of the ASA(s) supporting the objective. It
 sends a Discovery Response, as described later.

 o Synchronization Initiator: an ASA that starts synchronization by
 sending a request message referring to a specific synchronization
 objective.

 o Synchronization Responder: a peer ASA which responds with the
 value of a synchronization objective.

Bormann, et al. Expires October 1, 2017 [Page 11]

Internet-Draft GRASP March 2017

 o Negotiation Initiator: an ASA that starts negotiation by sending a
 request message referring to a specific negotiation objective.

 o Negotiation Counterpart: a peer with which the Negotiation
 Initiator negotiates a specific negotiation objective.

 o GRASP Instance: This refers to an instantiation of a GRASP
 protocol engine, likely including multiple threads or processes as
 well as dynamic data structures such as a discovery cache, running
 in a given security environment on a single device.

 o Network Interface: Unless otherwise stated, this refers to a
 network interface - which might be physical or virtual - that a
 specific instance of GRASP is currently using. A device might
 have other interfaces that are not used by GRASP.

3.2. High Level Deployment Model

 A GRASP implementation will be part of the Autonomic Networking
 Infrastructure in an autonomic node, which must also provide an
 appropriate security environment. In accordance with
 [I-D.ietf-anima-reference-model], this SHOULD be the Autonomic
 Control Plane (ACP) [I-D.ietf-anima-autonomic-control-plane]. It is
 expected that GRASP will access the ACP by using a typical socket
 programming interface. There will also be one or more Autonomic
 Service Agents (ASAs). In the minimal case of a single-purpose
 device, these components might be fully integrated. A more common
 model is expected to be a multi-purpose device capable of containing
 several ASAs. In this case it is expected that the ACP, GRASP and
 the ASAs will be implemented as separate processes, which are
 probably multi-threaded to support asynchronous and simultaneous
 operations.

 In some scenarios, a limited negotiation model might be deployed
 based on a limited trust relationship such as that between two
 administrative domains. ASAs might then exchange limited information
 and negotiate some particular configurations.

 A suitable Application Programming Interface (API) will be needed
 between GRASP and the ASAs. In some implementations, ASAs would run
 in user space with a GRASP library providing the API, and this
 library would in turn communicate via system calls with core GRASP
 functions. Details of the API are out of scope for the present
 document. For further details of possible deployment models, see
 [I-D.ietf-anima-reference-model].

 An instance of GRASP must be aware of the network interfaces it will
 use, and of the appropriate global-scope and link-local addresses.

Bormann, et al. Expires October 1, 2017 [Page 12]

Internet-Draft GRASP March 2017

 In the presence of the ACP, such information will be available from
 the adjacency table discussed in [I-D.ietf-anima-reference-model].
 In other cases, GRASP must determine such information for itself.
 Details depend on the device and operating system. In the rest of
 this document, the term 'interfaces' refers only to the set of
 network interfaces that a specific instance of GRASP is currently
 using.

 Because GRASP needs to work with very high reliability, especially
 during bootstrapping and during fault conditions, it is essential
 that every implementation is as robust as possible. For example,
 discovery failures, or any kind of socket exception at any time, must
 not cause irrecoverable failures in GRASP itself, and must return
 suitable error codes through the API so that ASAs can also recover.

 GRASP must not depend upon non-volatile data storage. All run time
 error conditions, and events such as address renumbering, network
 interface failures, and CPU sleep/wake cycles, must be handled in
 such a way that GRASP will still operate correctly and securely
 (Section 3.5.1) afterwards.

 An autonomic node will normally run a single instance of GRASP, used
 by multiple ASAs. Possible exceptions are mentioned below.

3.3. High Level Design Choices

 This section describes a behavior model and design choices for GRASP,
 supporting discovery, synchronization and negotiation, to act as a
 platform for different technical objectives.

 o A generic platform:

 The protocol design is generic and independent of the
 synchronization or negotiation contents. The technical contents
 will vary according to the various technical objectives and the
 different pairs of counterparts.

 o Normally, a single main instance of the GRASP protocol engine will
 exist in an autonomic node, and each ASA will run as an
 independent asynchronous process. However, scenarios where
 multiple instances of GRASP run in a single node, perhaps with
 different security properties, are possible (Section 3.5.2). In
 this case, each instance MUST listen independently for GRASP link-
 local multicasts, and all instances MUST be woken by each such
 multicast, in order for discovery and flooding to work correctly.

Bormann, et al. Expires October 1, 2017 [Page 13]

Internet-Draft GRASP March 2017

 o Security infrastructure:

 As noted above, the protocol itself has no built-in security
 functionality, and relies on a separate secure infrastructure.

 o Discovery, synchronization and negotiation are designed together:

 The discovery method and the synchronization and negotiation
 methods are designed in the same way and can be combined when this
 is useful, allowing a rapid mode of operation described in

Section 3.5.4. These processes can also be performed
 independently when appropriate.

 * Thus, for some objectives, especially those concerned with
 application layer services, another discovery mechanism such as
 the future DNS Service Discovery [RFC7558] MAY be used. The
 choice is left to the designers of individual ASAs.

 o A uniform pattern for technical objectives:

 The synchronization and negotiation objectives are defined
 according to a uniform pattern. The values that they contain
 could be carried either in a simple binary format or in a complex
 object format. The basic protocol design uses the Concise Binary
 Object Representation (CBOR) [RFC7049], which is readily
 extensible for unknown future requirements.

 o A flexible model for synchronization:

 GRASP supports synchronization between two nodes, which could be
 used repeatedly to perform synchronization among a small number of
 nodes. It also supports an unsolicited flooding mode when large
 groups of nodes, possibly including all autonomic nodes, need data
 for the same technical objective.

 * There may be some network parameters for which a more
 traditional flooding mechanism such as DNCP [RFC7787] is
 considered more appropriate. GRASP can coexist with DNCP.

 o A simple initiator/responder model for negotiation:

 Multi-party negotiations are very complicated to model and cannot
 readily be guaranteed to converge. GRASP uses a simple bilateral
 model and can support multi-party negotiations by indirect steps.

https://datatracker.ietf.org/doc/html/rfc7558
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7787

Bormann, et al. Expires October 1, 2017 [Page 14]

Internet-Draft GRASP March 2017

 o Organizing of synchronization or negotiation content:

 The technical content transmitted by GRASP will be organized
 according to the relevant function or service. The objectives for
 different functions or services are kept separate, because they
 may be negotiated or synchronized with different counterparts or
 have different response times. Thus a normal arrangement would be
 a single ASA managing a small set of closely related objectives,
 with a version of that ASA in each relevant autonomic node.
 Further discussion of this aspect is out of scope for the current
 document.

 o Requests and responses in negotiation procedures:

 The initiator can negotiate a specific negotiation objective with
 relevant counterpart ASAs. It can request relevant information
 from a counterpart so that it can coordinate its local
 configuration. It can request the counterpart to make a matching
 configuration. It can request simulation or forecast results by
 sending some dry run conditions.

 Beyond the traditional yes/no answer, the responder can reply with
 a suggested alternative value for the objective concerned. This
 would start a bi-directional negotiation ending in a compromise
 between the two ASAs.

 o Convergence of negotiation procedures:

 To enable convergence, when a responder suggests a new value or
 condition in a negotiation step reply, it should be as close as
 possible to the original request or previous suggestion. The
 suggested value of later negotiation steps should be chosen
 between the suggested values from the previous two steps. GRASP
 provides mechanisms to guarantee convergence (or failure) in a
 small number of steps, namely a timeout and a maximum number of
 iterations.

 o Extensibility:

 GRASP does not have a version number, and could be extended by
 adding new message types and options. In normal use, new
 semantics will be added by defining new synchronization or
 negotiation objectives.

Bormann, et al. Expires October 1, 2017 [Page 15]

Internet-Draft GRASP March 2017

3.4. Quick Operating Overview

 An instance of GRASP is expected to run as a separate core module,
 providing an API (such as [I-D.liu-anima-grasp-api]) to interface to
 various ASAs. These ASAs may operate without special privilege,
 unless they need it for other reasons (such as configuring IP
 addresses or manipulating routing tables).

 The GRASP mechanisms used by the ASA are built around GRASP
 objectives defined as data structures containing administrative
 information such as the objective's unique name, and its current
 value. The format and size of the value is not restricted by the
 protocol, except that it must be possible to serialise it for
 transmission in CBOR, which is no restriction at all in practice.

 GRASP provides the following mechanisms:

 o A discovery mechanism (M_DISCOVERY, M_RESPONSE), by which an ASA
 can discover other ASAs supporting a given objective.

 o A negotiation request mechanism (M_REQ_NEG), by which an ASA can
 start negotiation of an objective with a counterpart ASA. Once a
 negotiation has started, the process is symmetrical, and there is
 a negotiation step message (M_NEGOTIATE) for each ASA to use in
 turn. Two other functions support negotiating steps (M_WAIT,
 M_END).

 o A synchronization mechanism (M_REQ_SYN), by which an ASA can
 request the current value of an objective from a counterpart ASA.
 With this, there is a corresponding response function (M_SYNCH)
 for an ASA that wishes to respond to synchronization requests.

 o A flood mechanism (M_FLOOD), by which an ASA can cause the current
 value of an objective to be flooded throughout the autonomic
 network so that any ASA can receive it. One application of this
 is to act as an announcement, avoiding the need for discovery of a
 widely applicable objective.

 Some example messages and simple message flows are provided in
Appendix D.

3.5. GRASP Protocol Basic Properties and Mechanisms

3.5.1. Required External Security Mechanism

 The protocol SHOULD always run within a secure Autonomic Control
 Plane (ACP) [I-D.ietf-anima-autonomic-control-plane]. The ACP is
 assumed to carry all messages securely, including link-local

Bormann, et al. Expires October 1, 2017 [Page 16]

Internet-Draft GRASP March 2017

 multicast when it is virtualized over the ACP. A GRASP instance MUST
 verify whether the ACP is operational.

 If there is no ACP, one of the following alternatives applies:

 1. The protocol instance MUST use another form of strong
 authentication and a form of strong encryption MUST be
 implemented. An exception is that during initialization of nodes
 there will be a transition period during which it might not be
 practical to run with strong encryption. This period MUST be as
 short as possible, changing to a fully secure setup as soon as
 possible. See Section 3.5.2.1 for further discussion.

 2. The protocol instance MUST operate as described in
Section 3.5.2.2 or Section 3.5.2.3.

 Network interfaces could be at different security levels, for example
 being part of the ACP or not. All the interfaces supported by a
 given GRASP instance MUST be at the same security level.

 The ACP, or in its absence another security mechanism, sets the
 boundary within which nodes are trusted as GRASP peers. A GRASP
 implementation MUST refuse to execute GRASP synchronization and
 negotiation functions if there is neither an operational ACP nor
 another secure environment.

 Link-local multicast is used for discovery messages. Responses to
 discovery messages MUST be secured, with one exception mentioned in
 the next section.

3.5.2. Constrained Instances

 This section describes some cases where additional instances of GRASP
 subject to certain constraints are appropriate.

3.5.2.1. No ACP

 As mentioned in Section 3.3, some GRASP operations might be performed
 across an administrative domain boundary by mutual agreement, without
 the benefit of an ACP. Such operations MUST be confined to a
 separate instance of GRASP with its own copy of all GRASP data
 structures. Messages MUST be authenticated and encryption MUST be
 implemented. TLS [RFC5246] and DTLS [RFC6347] based on a Public Key
 Infrastructure (PKI) [RFC5280] are RECOMMENDED for this purpose.
 Further details are out of scope for this document.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5280

Bormann, et al. Expires October 1, 2017 [Page 17]

Internet-Draft GRASP March 2017

3.5.2.2. Discovery Unsolicited Link-Local

 Some services may need to use insecure GRASP discovery, response and
 flood messages without being able to use pre-existing security
 associations. Such operations being intrinsically insecure, they
 need to be confined to link-local use to minimize the risk of
 malicious actions. Possible examples include discovery of candidate
 ACP neighbors [I-D.ietf-anima-autonomic-control-plane], discovery of
 bootstrap proxies [I-D.ietf-anima-bootstrapping-keyinfra] or perhaps
 initialization services in networks using GRASP without being fully
 autonomic (e.g., no ACP). Such usage MUST be limited to link-local
 operations and MUST be confined to a separate insecure instance of
 GRASP with its own copy of all GRASP data structures. This instance
 is nicknamed DULL - Discovery Unsolicited Link-Local.

 The detailed rules for the DULL instance of GRASP are as follows:

 o An initiator MUST only send Discovery or Flood Synchronization
 link-local multicast messages with a loop count of 1. Other GRASP
 message types MUST NOT be sent.

 o A responder MUST silently discard any message whose loop count is
 not 1.

 o A responder MUST silently discard any message referring to a GRASP
 Objective that is not directly part of a service that requires
 this insecure mode.

 o A responder MUST NOT relay any multicast messages.

 o A Discovery Response MUST indicate a link-local address.

 o A Discovery Response MUST NOT include a Divert option.

 o A node MUST silently discard any message whose source address is
 not link-local.

 To minimize traffic possibly observed by third parties, GRASP traffic
 SHOULD be minimized by using only Flood Synchronization to announce
 objectives and their associated locators, rather than by using
 Discovery and Response. Further details are out of scope for this
 document

3.5.2.3. Secure Only Neighbor Negotiation

 Some services might use insecure on-link operations as in DULL, but
 also use unicast synchronization or negotiation operations protected
 by TLS. A separate instance of GRASP is used, with its own copy of

Bormann, et al. Expires October 1, 2017 [Page 18]

Internet-Draft GRASP March 2017

 all GRASP data structures. This instance is nicknamed SONN - Secure
 Only Neighbor Negotiation.

 The detailed rules for the SONN instance of GRASP are as follows:

 o All types of GRASP message are permitted.

 o An initiator MUST send any Discovery or Flood Synchronization
 link-local multicast messages with a loop count of 1.

 o A responder MUST silently discard any Discovery or Flood
 Synchronization message whose loop count is not 1.

 o A responder MUST silently discard any message referring to a GRASP
 Objective that is not directly part of the service concerned.

 o A responder MUST NOT relay any multicast messages.

 o A Discovery Response MUST indicate a link-local address.

 o A Discovery Response MUST NOT include a Divert option.

 o A node MUST silently discard any message whose source address is
 not link-local.

 Further details are out of scope for this document.

3.5.3. Transport Layer Usage

 GRASP discovery and flooding messages are designed for use over link-
 local multicast UDP. They MUST NOT be fragmented, and therefore MUST
 NOT exceed the link MTU size.

 All other GRASP messages are unicast and could in principle run over
 any transport protocol. An implementation MUST support use of TCP.
 It MAY support use of another transport protocol. However, GRASP
 itself does not provide for error detection or retransmission. Use
 of an unreliable transport protocol is therefore NOT RECOMMENDED.

 Nevertheless, when running within a secure ACP on reliable
 infrastructure, UDP MAY be used for unicast messages not exceeding
 the minimum IPv6 path MTU; however, TCP MUST be used for longer
 messages. In other words, IPv6 fragmentation is avoided. If a node
 receives a UDP message but the reply is too long, it MUST open a TCP
 connection to the peer for the reply. Note that when the network is
 under heavy load or in a fault condition, UDP might become
 unreliable. Since this is when autonomic functions are most

Bormann, et al. Expires October 1, 2017 [Page 19]

Internet-Draft GRASP March 2017

 necessary, automatic fallback to TCP MUST be implemented. The
 simplest implementation is therefore to use only TCP.

 For considerations when running without an ACP, see Section 3.5.2.1.

 For link-local multicast, the GRASP protocol listens to the well-
 known GRASP Listen Port (Section 3.6). For unicast transport
 sessions used for discovery responses, synchronization and
 negotiation, the ASA concerned normally listens on its own
 dynamically assigned ports, which are communicated to its peers
 during discovery. However, a minimal implementation MAY use the
 GRASP Listen Port for this purpose.

3.5.4. Discovery Mechanism and Procedures

3.5.4.1. Separated discovery and negotiation mechanisms

 Although discovery and negotiation or synchronization are defined
 together in GRASP, they are separate mechanisms. The discovery
 process could run independently from the negotiation or
 synchronization process. Upon receiving a Discovery (Section 3.8.4)
 message, the recipient node should return a response message in which
 it either indicates itself as a discovery responder or diverts the
 initiator towards another more suitable ASA. However, this response
 may be delayed if the recipient needs to relay the discovery onwards,
 as described below.

 The discovery action (M_DISCOVERY) will normally be followed by a
 negotiation (M_REQ_NEG) or synchronization (M_REQ_SYN) action. The
 discovery results could be utilized by the negotiation protocol to
 decide which ASA the initiator will negotiate with.

 The initiator of a discovery action for a given objective need not be
 capable of responding to that objective as a Negotiation Counterpart,
 as a Synchronization Responder or as source for flooding. For
 example, an ASA might perform discovery even if it only wishes to act
 a Synchronization Initiator or Negotiation Initiator. Such an ASA
 does not itself need to respond to discovery messages.

 It is also entirely possible to use GRASP discovery without any
 subsequent negotiation or synchronization action. In this case, the
 discovered objective is simply used as a name during the discovery
 process and any subsequent operations between the peers are outside
 the scope of GRASP.

Bormann, et al. Expires October 1, 2017 [Page 20]

Internet-Draft GRASP March 2017

3.5.4.2. Discovery Overview

 A complete discovery process will start with a multicast (of
 M_DISCOVERY) on the local link. On-link neighbors supporting the
 discovery objective will respond directly (with M_RESPONSE). A
 neighbor with multiple interfaces will respond with a cached
 discovery response if any. However, it SHOULD NOT respond with a
 cached response on an interface if it learnt that information from
 the same interface, because the peer in question will answer directly
 if still operational. If it has no cached response, it will relay
 the discovery on its other interfaces, for example reaching a higher-
 level gateway in a hierarchical network. If a node receiving the
 relayed discovery supports the discovery objective, it will respond
 to the relayed discovery. If it has a cached response, it will
 respond with that. If not, it will repeat the discovery process,
 which thereby becomes iterative. The loop count and timeout will
 ensure that the process ends.

 A Discovery message MAY be sent unicast (via UDP or TCP) to a peer
 node, which SHOULD then proceed exactly as if the message had been
 multicast, except that when TCP is used, the response will be on the
 same socket as the query. However, this mode does not guarantee
 successful discovery in the general case.

3.5.4.3. Discovery Procedures

 Discovery starts as an on-link operation. The Divert option can tell
 the discovery initiator to contact an off-link ASA for that discovery
 objective. A Discovery message is sent by a discovery initiator via
 UDP to the ALL_GRASP_NEIGHBORS link-local multicast address
 (Section 3.6). Every network device that supports GRASP always
 listens to a well-known UDP port to capture the discovery messages.
 Because this port is unique in a device, this is a function of the
 GRASP instance and not of an individual ASA. As a result, each ASA
 will need to register the objectives that it supports with the local
 GRASP instance.

 If an ASA in a neighbor device supports the requested discovery
 objective, the device SHOULD respond to the link-local multicast with
 a unicast Discovery Response message (Section 3.8.5) with locator
 option(s), unless it is temporarily unavailable. Otherwise, if the
 neighbor has cached information about an ASA that supports the
 requested discovery objective (usually because it discovered the same
 objective before), it SHOULD respond with a Discovery Response
 message with a Divert option pointing to the appropriate Discovery
 Responder.

Bormann, et al. Expires October 1, 2017 [Page 21]

Internet-Draft GRASP March 2017

 If a device has no information about the requested discovery
 objective, and is not acting as a discovery relay (see below) it MUST
 silently discard the Discovery message.

 If no discovery response is received within a reasonable timeout
 (default GRASP_DEF_TIMEOUT milliseconds, Section 3.6), the Discovery
 message MAY be repeated, with a newly generated Session ID
 (Section 3.7). An exponential backoff SHOULD be used for subsequent
 repetitions, to limit the load during busy periods. Frequent
 repetition might be symptomatic of a denial of service attack.

 After a GRASP device successfully discovers a locator for a Discovery
 Responder supporting a specific objective, it MUST cache this
 information, including the interface index via which it was
 discovered. This cache record MAY be used for future negotiation or
 synchronization, and the locator SHOULD be passed on when appropriate
 as a Divert option to another Discovery Initiator.

 The cache mechanism MUST include a lifetime for each entry. The
 lifetime is derived from a time-to-live (ttl) parameter in each
 Discovery Response message. Cached entries MUST be ignored or
 deleted after their lifetime expires. In some environments,
 unplanned address renumbering might occur. In such cases, the
 lifetime SHOULD be short compared to the typical address lifetime and
 a mechanism to flush the discovery cache MUST be implemented. The
 discovery mechanism needs to track the node's current address to
 ensure that Discovery Responses always indicate the correct address.

 If multiple Discovery Responders are found for the same objective,
 they SHOULD all be cached, unless this creates a resource shortage.
 The method of choosing between multiple responders is an
 implementation choice. This choice MUST be available to each ASA but
 the GRASP implementation SHOULD provide a default choice.

 Because Discovery Responders will be cached in a finite cache, they
 might be deleted at any time. In this case, discovery will need to
 be repeated. If an ASA exits for any reason, its locator might still
 be cached for some time, and attempts to connect to it will fail.
 ASAs need to be robust in these circumstances.

3.5.4.4. Discovery Relaying

 A GRASP instance with multiple link-layer interfaces (typically
 running in a router) MUST support discovery on all interfaces. We
 refer to this as a 'relaying instance'.

 Constrained Instances (Section 3.5.2) are always single-interface
 instances and therefore MUST NOT perform discovery relaying.

Bormann, et al. Expires October 1, 2017 [Page 22]

Internet-Draft GRASP March 2017

 If a relaying instance receives a Discovery message on a given
 interface for a specific objective that it does not support and for
 which it has not previously cached a Discovery Responder, it MUST
 relay the query by re-issuing a new Discovery message as a link-local
 multicast on its other interfaces.

 The relayed discovery message MUST have the same Session ID as the
 incoming discovery message and MUST be tagged with the IP address of
 its original initiator (see Section 3.8.4). Note that this initiator
 address is only used to allow for disambiguation of the Session ID
 and is never used to address Response packets, which are sent to the
 relaying instance, not the original initiator.

 Since the relay device is unaware of the timeout set by the original
 initiator it SHOULD set a timeout at least equal to GRASP_DEF_TIMEOUT
 milliseconds.

 The relaying instance MUST decrement the loop count within the
 objective, and MUST NOT relay the Discovery message if the result is
 zero. Also, it MUST limit the total rate at which it relays
 discovery messages to a reasonable value, in order to mitigate
 possible denial of service attacks. It MUST cache the Session ID
 value and initiator address of each relayed Discovery message until
 any Discovery Responses have arrived or the discovery process has
 timed out. To prevent loops, it MUST NOT relay a Discovery message
 which carries a given cached Session ID and initiator address more
 than once. These precautions avoid discovery loops and mitigate
 potential overload.

 The discovery results received by the relaying instance MUST in turn
 be sent as a Discovery Response message to the Discovery message that
 caused the relay action.

3.5.4.5. Rapid Mode (Discovery/Negotiation binding)

 A Discovery message MAY include a Negotiation Objective option. This
 allows a rapid mode of negotiation described in Section 3.5.5. A
 similar mechanism is defined for synchronization in Section 3.5.6.

 Note that rapid mode is currently limited to a single objective for
 simplicity of design and implementation. A possible future extension
 is to allow multiple objectives in rapid mode for greater efficiency.

3.5.5. Negotiation Procedures

 A negotiation initiator sends a negotiation request (using M_REQ_NEG)
 to a counterpart ASA, including a specific negotiation objective. It
 may request the negotiation counterpart to make a specific

Bormann, et al. Expires October 1, 2017 [Page 23]

Internet-Draft GRASP March 2017

 configuration. Alternatively, it may request a certain simulation or
 forecast result by sending a dry run configuration. The details,
 including the distinction between dry run and an actual configuration
 change, will be defined separately for each type of negotiation
 objective.

 If no reply message of any kind is received within a reasonable
 timeout (default GRASP_DEF_TIMEOUT milliseconds, Section 3.6), the
 negotiation request MAY be repeated, with a newly generated Session
 ID (Section 3.7). An exponential backoff SHOULD be used for
 subsequent repetitions.

 If the counterpart can immediately apply the requested configuration,
 it will give an immediate positive (O_ACCEPT) answer (using M_END).
 This will end the negotiation phase immediately. Otherwise, it will
 negotiate (using M_NEGOTIATE). It will reply with a proposed
 alternative configuration that it can apply (typically, a
 configuration that uses fewer resources than requested by the
 negotiation initiator). This will start a bi-directional negotiation
 (using M_NEGOTIATE) to reach a compromise between the two ASAs.

 The negotiation procedure is ended when one of the negotiation peers
 sends a Negotiation Ending (M_END) message, which contains an accept
 (O_ACCEPT) or decline (O_DECLINE) option and does not need a response
 from the negotiation peer. Negotiation may also end in failure
 (equivalent to a decline) if a timeout is exceeded or a loop count is
 exceeded.

 A negotiation procedure concerns one objective and one counterpart.
 Both the initiator and the counterpart may take part in simultaneous
 negotiations with various other ASAs, or in simultaneous negotiations
 about different objectives. Thus, GRASP is expected to be used in a
 multi-threaded mode. Certain negotiation objectives may have
 restrictions on multi-threading, for example to avoid over-allocating
 resources.

 Some configuration actions, for example wavelength switching in
 optical networks, might take considerable time to execute. The ASA
 concerned needs to allow for this by design, but GRASP does allow for
 a peer to insert latency in a negotiation process if necessary
 (Section 3.8.9, M_WAIT).

3.5.5.1. Rapid Mode (Discovery/Negotiation Linkage)

 A Discovery message MAY include a Negotiation Objective option. In
 this case it is as if the initiator sent the sequence M_DISCOVERY,
 immediately followed by M_REQ_NEG. This has implications for the
 construction of the GRASP core, as it must carefully pass the

Bormann, et al. Expires October 1, 2017 [Page 24]

Internet-Draft GRASP March 2017

 contents of the Negotiation Objective option to the ASA so that it
 may evaluate the objective directly. When a Negotiation Objective
 option is present the ASA replies with an M_NEGOTIATE message (or
 M_END with O_ACCEPT if it is immediately satisfied with the
 proposal), rather than with an M_RESPONSE. However, if the recipient
 node does not support rapid mode, discovery will continue normally.

 It is possible that a Discovery Response will arrive from a responder
 that does not support rapid mode, before such a Negotiation message
 arrives. In this case, rapid mode will not occur.

 This rapid mode could reduce the interactions between nodes so that a
 higher efficiency could be achieved. However, a network in which
 some nodes support rapid mode and others do not will have complex
 timing-dependent behaviors. Therefore, the rapid negotiation
 function SHOULD be disabled by default.

3.5.6. Synchronization and Flooding Procedures

3.5.6.1. Unicast Synchronization

 A synchronization initiator sends a synchronization request to a
 counterpart, including a specific synchronization objective. The
 counterpart responds with a Synchronization message (Section 3.8.10)
 containing the current value of the requested synchronization
 objective. No further messages are needed.

 If no reply message of any kind is received within a reasonable
 timeout (default GRASP_DEF_TIMEOUT milliseconds, Section 3.6), the
 synchronization request MAY be repeated, with a newly generated
 Session ID (Section 3.7). An exponential backoff SHOULD be used for
 subsequent repetitions.

3.5.6.2. Flooding

 In the case just described, the message exchange is unicast and
 concerns only one synchronization objective. For large groups of
 nodes requiring the same data, synchronization flooding is available.
 For this, a flooding initiator MAY send an unsolicited Flood
 Synchronization message containing one or more Synchronization
 Objective option(s), if and only if the specification of those
 objectives permits it. This is sent as a multicast message to the
 ALL_GRASP_NEIGHBORS multicast address (Section 3.6).

 Receiving flood multicasts is a function of the GRASP core, as in the
 case of discovery multicasts (Section 3.5.4.3).

Bormann, et al. Expires October 1, 2017 [Page 25]

Internet-Draft GRASP March 2017

 To ensure that flooding does not result in a loop, the originator of
 the Flood Synchronization message MUST set the loop count in the
 objectives to a suitable value (the default is GRASP_DEF_LOOPCT).
 Also, a suitable mechanism is needed to avoid excessive multicast
 traffic. This mechanism MUST be defined as part of the specification
 of the synchronization objective(s) concerned. It might be a simple
 rate limit or a more complex mechanism such as the Trickle algorithm
 [RFC6206].

 A GRASP device with multiple link-layer interfaces (typically a
 router) MUST support synchronization flooding on all interfaces. If
 it receives a multicast Flood Synchronization message on a given
 interface, it MUST relay it by re-issuing a Flood Synchronization
 message on its other interfaces. The relayed message MUST have the
 same Session ID as the incoming message and MUST be tagged with the
 IP address of its original initiator.

 Link-layer Flooding is supported by GRASP by setting the loop count
 to 1, and sending with a link-local source address. Floods with
 link-local source addresses and a loop count other than 1 are
 invalid, and such messages MUST be discarded.

 The relaying device MUST decrement the loop count within the first
 objective, and MUST NOT relay the Flood Synchronization message if
 the result is zero. Also, it MUST limit the total rate at which it
 relays Flood Synchronization messages to a reasonable value, in order
 to mitigate possible denial of service attacks. It MUST cache the
 Session ID value and initiator address of each relayed Flood
 Synchronization message for a time not less than twice
 GRASP_DEF_TIMEOUT milliseconds. To prevent loops, it MUST NOT relay
 a Flood Synchronization message which carries a given cached Session
 ID and initiator address more than once. These precautions avoid
 synchronization loops and mitigate potential overload.

 Note that this mechanism is unreliable in the case of sleeping nodes,
 or new nodes that join the network, or nodes that rejoin the network
 after a fault. An ASA that initiates a flood SHOULD repeat the flood
 at a suitable frequency and SHOULD also act as a synchronization
 responder for the objective(s) concerned. Thus nodes that require an
 objective subject to flooding can either wait for the next flood or
 request unicast synchronization for that objective.

 The multicast messages for synchronization flooding are subject to
 the security rules in Section 3.5.1. In practice this means that
 they MUST NOT be transmitted and MUST be ignored on receipt unless
 there is an operational ACP or equivalent strong security in place.
 However, because of the security weakness of link-local multicast
 (Section 5), synchronization objectives that are flooded SHOULD NOT

https://datatracker.ietf.org/doc/html/rfc6206

Bormann, et al. Expires October 1, 2017 [Page 26]

Internet-Draft GRASP March 2017

 contain unencrypted private information and SHOULD be validated by
 the recipient ASA.

3.5.6.3. Rapid Mode (Discovery/Synchronization Linkage)

 A Discovery message MAY include a Synchronization Objective option.
 In this case the Discovery message also acts as a Request
 Synchronization message to indicate to the Discovery Responder that
 it could directly reply to the Discovery Initiator with a
 Synchronization message Section 3.8.10 with synchronization data for
 rapid processing, if the discovery target supports the corresponding
 synchronization objective. The design implications are similar to
 those discussed in Section 3.5.5.1.

 It is possible that a Discovery Response will arrive from a responder
 that does not support rapid mode, before such a Synchronization
 message arrives. In this case, rapid mode will not occur.

 This rapid mode could reduce the interactions between nodes so that a
 higher efficiency could be achieved. However, a network in which
 some nodes support rapid mode and others do not will have complex
 timing-dependent behaviors. Therefore, the rapid synchronization
 function SHOULD be configured off by default and MAY be configured on
 or off by Intent.

3.6. GRASP Constants

 o ALL_GRASP_NEIGHBORS

 A link-local scope multicast address used by a GRASP-enabled
 device to discover GRASP-enabled neighbor (i.e., on-link) devices.
 All devices that support GRASP are members of this multicast
 group.

 * IPv6 multicast address: TBD1

 * IPv4 multicast address: TBD2

 o GRASP_LISTEN_PORT (TBD3)

 A well-known UDP user port that every GRASP-enabled network device
 MUST always listen to for link-local multicasts. This user port
 MAY also be used to listen for TCP or UDP unicast messages in a
 simple implementation of GRASP (Section 3.5.3).

 o GRASP_DEF_TIMEOUT (60000 milliseconds)

Bormann, et al. Expires October 1, 2017 [Page 27]

Internet-Draft GRASP March 2017

 The default timeout used to determine that a discovery etc. has
 failed to complete.

 o GRASP_DEF_LOOPCT (6)

 The default loop count used to determine that a negotiation has
 failed to complete, and to avoid looping messages.

 o GRASP_DEF_MAX_SIZE (2048)

 The default maximum message size in bytes.

3.7. Session Identifier (Session ID)

 This is an up to 32-bit opaque value used to distinguish multiple
 sessions between the same two devices. A new Session ID MUST be
 generated by the initiator for every new Discovery, Flood
 Synchronization or Request message. All responses and follow-up
 messages in the same discovery, synchronization or negotiation
 procedure MUST carry the same Session ID.

 The Session ID SHOULD have a very low collision rate locally. It
 MUST be generated by a pseudo-random algorithm using a locally
 generated seed which is unlikely to be used by any other device in
 the same network [RFC4086]. When allocating a new Session ID, GRASP
 MUST check that the value is not already in use and SHOULD check that
 it has not been used recently, by consulting a cache of current and
 recent sessions. In the unlikely event of a clash, GRASP MUST
 generate a new value.

 However, there is a finite probability that two nodes might generate
 the same Session ID value. For that reason, when a Session ID is
 communicated via GRASP, the receiving node MUST tag it with the
 initiator's IP address to allow disambiguation. In the highly
 unlikely event of two peers opening sessions with the same Session ID
 value, this tag will allow the two sessions to be distinguished.
 Multicast GRASP messages and their responses, which may be relayed
 between links, therefore include a field that carries the initiator's
 global IP address.

 There is a highly unlikely race condition in which two peers start
 simultaneous negotiation sessions with each other using the same
 Session ID value. Depending on various implementation choices, this
 might lead to the two sessions being confused. See Section 3.8.6 for
 details of how to avoid this.

https://datatracker.ietf.org/doc/html/rfc4086

Bormann, et al. Expires October 1, 2017 [Page 28]

Internet-Draft GRASP March 2017

3.8. GRASP Messages

3.8.1. Message Overview

 This section defines the GRASP message format and message types.
 Message types not listed here are reserved for future use.

 The messages currently defined are:

 Discovery and Discovery Response (M_DISCOVERY, M_RESPONSE).

 Request Negotiation, Negotiation, Confirm Waiting and Negotiation
 End (M_REQ_NEG, M_NEGOTIATE, M_WAIT, M_END).

 Request Synchronization, Synchronization, and Flood
 Synchronization (M_REQ_SYN, M_SYNCH, M_FLOOD.

 No Operation and Invalid (M_NOOP, M_INVALID).

3.8.2. GRASP Message Format

 GRASP messages share an identical header format and a variable format
 area for options. GRASP message headers and options are transmitted
 in Concise Binary Object Representation (CBOR) [RFC7049]. In this
 specification, they are described using CBOR data definition language
 (CDDL) [I-D.greevenbosch-appsawg-cbor-cddl]. Fragmentary CDDL is
 used to describe each item in this section. A complete and normative
 CDDL specification of GRASP is given in Section 6, including
 constants such as message types.

 Every GRASP message, except the No Operation message, carries a
 Session ID (Section 3.7). Options are then presented serially in the
 options field.

 In fragmentary CDDL, every GRASP message follows the pattern:

 grasp-message = (message .within message-structure) / noop-message

 message-structure = [MESSAGE_TYPE, session-id, ?initiator,
 *grasp-option]

 MESSAGE_TYPE = 1..255
 session-id = 0..4294967295 ;up to 32 bits
 grasp-option = any

 The MESSAGE_TYPE indicates the type of the message and thus defines
 the expected options. Any options received that are not consistent
 with the MESSAGE_TYPE SHOULD be silently discarded.

https://datatracker.ietf.org/doc/html/rfc7049

Bormann, et al. Expires October 1, 2017 [Page 29]

Internet-Draft GRASP March 2017

 The No Operation (noop) message is described in Section 3.8.13.

 The various MESSAGE_TYPE values are defined in Section 6.

 All other message elements are described below and formally defined
 in Section 6.

 If an unrecognized MESSAGE_TYPE is received in a unicast message, an
 Invalid message (Section 3.8.12) MAY be returned. Otherwise the
 message MAY be logged and MUST be discarded. If an unrecognized
 MESSAGE_TYPE is received in a multicast message, it MAY be logged and
 MUST be silently discarded.

3.8.3. Message Size

 GRASP nodes MUST be able to receive unicast messages of at least
 GRASP_DEF_MAX_SIZE bytes. GRASP nodes MUST NOT send unicast messages
 longer than GRASP_DEF_MAX_SIZE bytes unless a longer size is
 explicitly allowed for the objective concerned. For example, GRASP
 negotiation itself could be used to agree on a longer message size.

 The message parser used by GRASP should be configured to know about
 the GRASP_DEF_MAX_SIZE, or any larger negotiated message size, so
 that it may defend against overly long messages.

 The maximum size of multicast messages (M_DISCOVERY and M_FLOOD)
 depends on the link layer technology or link adaptation layer in use.

3.8.4. Discovery Message

 In fragmentary CDDL, a Discovery message follows the pattern:

 discovery-message = [M_DISCOVERY, session-id, initiator, objective]

 A discovery initiator sends a Discovery message to initiate a
 discovery process for a particular objective option.

 The discovery initiator sends all Discovery messages via UDP to port
 GRASP_LISTEN_PORT at the link-local ALL_GRASP_NEIGHBORS multicast
 address on each link-layer interface in use by GRASP. It then
 listens for unicast TCP responses on a given port, and stores the
 discovery results (including responding discovery objectives and
 corresponding unicast locators).

 The listening port used for TCP MUST be the same port as used for
 sending the Discovery UDP multicast, on a given interface. In a low-
 end implementation this MAY be GRASP_LISTEN_PORT. In a more complex
 implementation, the GRASP discovery mechanism will find, for each

Bormann, et al. Expires October 1, 2017 [Page 30]

Internet-Draft GRASP March 2017

 interface, a dynamic port that it can bind to for both UDP and TCP
 before initiating any discovery.

 The 'initiator' field in the message is a globally unique IP address
 of the initiator, for the sole purpose of disambiguating the Session
 ID in other nodes. If for some reason the initiator does not have a
 globally unique IP address, it MUST use a link-local address for this
 purpose that is highly likely to be unique, for example using
 [RFC7217].

 A Discovery message MUST include exactly one of the following:

 o a discovery objective option (Section 3.10.1). Its loop count
 MUST be set to a suitable value to prevent discovery loops
 (default value is GRASP_DEF_LOOPCT). If the discovery initiator
 requires only on-link responses, the loop count MUST be set to 1.

 o a negotiation objective option (Section 3.10.1). This is used
 both for the purpose of discovery and to indicate to the discovery
 target that it MAY directly reply to the discovery initiatior with
 a Negotiation message for rapid processing, if it could act as the
 corresponding negotiation counterpart. The sender of such a
 Discovery message MUST initialize a negotiation timer and loop
 count in the same way as a Request Negotiation message
 (Section 3.8.6).

 o a synchronization objective option (Section 3.10.1). This is used
 both for the purpose of discovery and to indicate to the discovery
 target that it MAY directly reply to the discovery initiator with
 a Synchronization message for rapid processing, if it could act as
 the corresponding synchronization counterpart. Its loop count
 MUST be set to a suitable value to prevent discovery loops
 (default value is GRASP_DEF_LOOPCT).

 As mentioned in Section 3.5.4.2, a Discovery message MAY be sent
 unicast to a peer node, which SHOULD then proceed exactly as if the
 message had been multicast.

3.8.5. Discovery Response Message

 In fragmentary CDDL, a Discovery Response message follows the
 pattern:

 response-message = [M_RESPONSE, session-id, initiator, ttl,
 (+locator-option // divert-option), ?objective)]

 ttl = 0..4294967295 ; in milliseconds

https://datatracker.ietf.org/doc/html/rfc7217

Bormann, et al. Expires October 1, 2017 [Page 31]

Internet-Draft GRASP March 2017

 A node which receives a Discovery message SHOULD send a Discovery
 Response message if and only if it can respond to the discovery.

 It MUST contain the same Session ID and initiator as the Discovery
 message.

 It MUST contain a time-to-live (ttl) for the validity of the
 response, given as a positive integer value in milliseconds. Zero
 is treated as the default value GRASP_DEF_TIMEOUT (Section 3.6).

 It MAY include a copy of the discovery objective from the
 Discovery message.

 It is sent to the sender of the Discovery message via TCP at the port
 used to send the Discovery message (as explained in Section 3.8.4).
 In the case of a relayed Discovery message, the Discovery Response is
 thus sent to the relay, not the original initiator.

 If the responding node supports the discovery objective of the
 discovery, it MUST include at least one kind of locator option
 (Section 3.9.5) to indicate its own location. A sequence of multiple
 kinds of locator options (e.g. IP address option and FQDN option) is
 also valid.

 If the responding node itself does not support the discovery
 objective, but it knows the locator of the discovery objective, then
 it SHOULD respond to the discovery message with a divert option
 (Section 3.9.2) embedding a locator option or a combination of
 multiple kinds of locator options which indicate the locator(s) of
 the discovery objective.

 More details on the processing of Discovery Responses are given in
Section 3.5.4.

3.8.6. Request Messages

 In fragmentary CDDL, Request Negotiation and Request Synchronization
 messages follow the patterns:

 request-negotiation-message = [M_REQ_NEG, session-id, objective]

 request-synchronization-message = [M_REQ_SYN, session-id, objective]

 A negotiation or synchronization requesting node sends the
 appropriate Request message to the unicast address (directly stored
 or resolved from an FQDN or URI) of the negotiation or

Bormann, et al. Expires October 1, 2017 [Page 32]

Internet-Draft GRASP March 2017

 synchronization counterpart, using the appropriate protocol and port
 numbers (selected from the discovery results).

 A Request message MUST include the relevant objective option. In the
 case of Request Negotiation, the objective option MUST include the
 requested value.

 When an initiator sends a Request Negotiation message, it MUST
 initialize a negotiation timer for the new negotiation thread. The
 default is GRASP_DEF_TIMEOUT milliseconds. Unless this timeout is
 modified by a Confirm Waiting message (Section 3.8.9), the initiator
 will consider that the negotiation has failed when the timer expires.

 Similarly, when an initiator sends a Request Synchronization, it
 SHOULD initialize a synchronization timer. The default is
 GRASP_DEF_TIMEOUT milliseconds. The initiator will consider that
 synchronization has failed if there is no response before the timer
 expires.

 When an initiator sends a Request message, it MUST initialize the
 loop count of the objective option with a value defined in the
 specification of the option or, if no such value is specified, with
 GRASP_DEF_LOOPCT.

 If a node receives a Request message for an objective for which no
 ASA is currently listening, it MUST immediately close the relevant
 socket to indicate this to the initiator. This is to avoid
 unnecessary timeouts if, for example, an ASA exits prematurely but
 the GRASP core is listening on its behalf.

 To avoid the highly unlikely race condition in which two nodes
 simultaneously request sessions with each other using the same
 Session ID (Section 3.7), when a node receives a Request message, it
 MUST verify that the received Session ID is not already locally
 active. In case of a clash, it MUST discard the Request message, in
 which case the initiator will detect a timeout.

3.8.7. Negotiation Message

 In fragmentary CDDL, a Negotiation message follows the pattern:

 negotiate-message = [M_NEGOTIATE, session-id, objective]

 A negotiation counterpart sends a Negotiation message in response to
 a Request Negotiation message, a Negotiation message, or a Discovery
 message in Rapid Mode. A negotiation process MAY include multiple
 steps.

Bormann, et al. Expires October 1, 2017 [Page 33]

Internet-Draft GRASP March 2017

 The Negotiation message MUST include the relevant Negotiation
 Objective option, with its value updated according to progress in the
 negotiation. The sender MUST decrement the loop count by 1. If the
 loop count becomes zero the message MUST NOT be sent. In this case
 the negotiation session has failed and will time out.

3.8.8. Negotiation End Message

 In fragmentary CDDL, a Negotiation End message follows the pattern:

 end-message = [M_END, session-id, accept-option / decline-option]

 A negotiation counterpart sends an Negotiation End message to close
 the negotiation. It MUST contain either an accept or a decline
 option, defined in Section 3.9.3 and Section 3.9.4. It could be sent
 either by the requesting node or the responding node.

3.8.9. Confirm Waiting Message

 In fragmentary CDDL, a Confirm Waiting message follows the pattern:

 wait-message = [M_WAIT, session-id, waiting-time]
 waiting-time = 0..4294967295 ; in milliseconds

 A responding node sends a Confirm Waiting message to ask the
 requesting node to wait for a further negotiation response. It might
 be that the local process needs more time or that the negotiation
 depends on another triggered negotiation. This message MUST NOT
 include any other options. When received, the waiting time value
 overwrites and restarts the current negotiation timer
 (Section 3.8.6).

 The responding node SHOULD send a Negotiation, Negotiation End or
 another Confirm Waiting message before the negotiation timer expires.
 If not, the initiator MUST abandon or restart the negotiation
 procedure, to avoid an indefinite wait.

3.8.10. Synchronization Message

 In fragmentary CDDL, a Synchronization message follows the pattern:

 synch-message = [M_SYNCH, session-id, objective]

 A node which receives a Request Synchronization, or a Discovery
 message in Rapid Mode, sends back a unicast Synchronization message
 with the synchronization data, in the form of a GRASP Option for the
 specific synchronization objective present in the Request
 Synchronization.

Bormann, et al. Expires October 1, 2017 [Page 34]

Internet-Draft GRASP March 2017

3.8.11. Flood Synchronization Message

 In fragmentary CDDL, a Flood Synchronization message follows the
 pattern:

 flood-message = [M_FLOOD, session-id, initiator, ttl,
 +[objective, (locator-option / [])]]

 ttl = 0..4294967295 ; in milliseconds

 A node MAY initiate flooding by sending an unsolicited Flood
 Synchronization Message with synchronization data. This MAY be sent
 to port GRASP_LISTEN_PORT at the link-local ALL_GRASP_NEIGHBORS
 multicast address, in accordance with the rules in Section 3.5.6.

 The initiator address is provided, as described for Discovery
 messages (Section 3.8.4), only to disambiguate the Session ID.

 The message MUST contain a time-to-live (ttl) for the validity of
 the contents, given as a positive integer value in milliseconds.
 There is no default; zero indicates an indefinite lifetime.

 The synchronization data are in the form of GRASP Option(s) for
 specific synchronization objective(s). The loop count(s) MUST be
 set to a suitable value to prevent flood loops (default value is
 GRASP_DEF_LOOPCT).

 Each objective option MAY be followed by a locator option
 associated with the flooded objective. In its absence, an empty
 option MUST be included to indicate a null locator.

 A node that receives a Flood Synchronization message MUST cache the
 received objectives for use by local ASAs. Each cached objective
 MUST be tagged with the locator option sent with it, or with a null
 tag if an empty locator option was sent. If a subsequent Flood
 Synchronization message carrying the same objective arrives with the
 same tag, the corresponding cached copy of the objective MUST be
 overwritten. If a subsequent Flood Synchronization message carrying
 the same objective arrives with a different tag, a new cached entry
 MUST be created.

 Note: the purpose of this mechanism is to allow the recipient of
 flooded values to distinguish between different senders of the same
 objective, and if necessary communicate with them using the locator,
 protocol and port included in the locator option. Many objectives
 will not need this mechanism, so they will be flooded with a null
 locator.

Bormann, et al. Expires October 1, 2017 [Page 35]

Internet-Draft GRASP March 2017

 Cached entries MUST be ignored or deleted after their lifetime
 expires.

3.8.12. Invalid Message

 In fragmentary CDDL, an Invalid message follows the pattern:

 invalid-message = [M_INVALID, session-id, ?any]

 This message MAY be sent by an implementation in response to an
 incoming unicast message that it considers invalid. The session-id
 MUST be copied from the incoming message. The content SHOULD be
 diagnostic information such as a partial copy of the invalid message.
 An M_INVALID message MAY be silently ignored by a recipient.
 However, it could be used in support of extensibility, since it
 indicates that the remote node does not support a new or obsolete
 message or option.

 An M_INVALID message MUST NOT be sent in response to an M_INVALID
 message.

3.8.13. No Operation Message

 In fragmentary CDDL, a No Operation message follows the pattern:

 noop-message = [M_NOOP]

 This message MAY be sent by an implementation that for practical
 reasons needs to initialize a socket. It MUST be silently ignored by
 a recipient.

3.9. GRASP Options

 This section defines the GRASP options for the negotiation and
 synchronization protocol signaling. Additional options may be
 defined in the future.

3.9.1. Format of GRASP Options

 GRASP options are CBOR objects that MUST start with an unsigned
 integer identifying the specific option type carried in this option.
 These option types are formally defined in Section 6. Apart from
 that the only format requirement is that each option MUST be a well-
 formed CBOR object. In general a CBOR array format is RECOMMENDED to
 limit overhead.

 GRASP options may be defined to include encapsulated GRASP options.

Bormann, et al. Expires October 1, 2017 [Page 36]

Internet-Draft GRASP March 2017

3.9.2. Divert Option

 The Divert option is used to redirect a GRASP request to another
 node, which may be more appropriate for the intended negotiation or
 synchronization. It may redirect to an entity that is known as a
 specific negotiation or synchronization counterpart (on-link or off-
 link) or a default gateway. The divert option MUST only be
 encapsulated in Discovery Response messages. If found elsewhere, it
 SHOULD be silently ignored.

 A discovery initiator MAY ignore a Divert option if it only requires
 direct discovery responses.

 In fragmentary CDDL, the Divert option follows the pattern:

 divert-option = [O_DIVERT, +locator-option]

 The embedded Locator Option(s) (Section 3.9.5) point to diverted
 destination target(s) in response to a Discovery message.

3.9.3. Accept Option

 The accept option is used to indicate to the negotiation counterpart
 that the proposed negotiation content is accepted.

 The accept option MUST only be encapsulated in Negotiation End
 messages. If found elsewhere, it SHOULD be silently ignored.

 In fragmentary CDDL, the Accept option follows the pattern:

 accept-option = [O_ACCEPT]

3.9.4. Decline Option

 The decline option is used to indicate to the negotiation counterpart
 the proposed negotiation content is declined and end the negotiation
 process.

 The decline option MUST only be encapsulated in Negotiation End
 messages. If found elsewhere, it SHOULD be silently ignored.

 In fragmentary CDDL, the Decline option follows the pattern:

 decline-option = [O_DECLINE, ?reason]
 reason = text ;optional error message

 Note: there might be scenarios where an ASA wants to decline the
 proposed value and restart the negotiation process. In this case it

Bormann, et al. Expires October 1, 2017 [Page 37]

Internet-Draft GRASP March 2017

 is an implementation choice whether to send a Decline option or to
 continue with a Negotiate message, with an objective option that
 contains a null value, or one that contains a new value that might
 achieve convergence.

3.9.5. Locator Options

 These locator options are used to present reachability information
 for an ASA, a device or an interface. They are Locator IPv6 Address
 Option, Locator IPv4 Address Option, Locator FQDN (Fully Qualified
 Domain Name) Option and URI (Uniform Resource Identifier) Option.

 Since ASAs will normally run as independent user programs, locator
 options need to indicate the network layer locator plus the transport
 protocol and port number for reaching the target. For this reason,
 the Locator Options for IP addresses and FQDNs include this
 information explicitly. In the case of the URI Option, this
 information can be encoded in the URI itself.

 Note: It is assumed that all locators are in scope throughout the
 GRASP domain. GRASP is not intended to work across disjoint
 addressing or naming realms.

3.9.5.1. Locator IPv6 address option

 In fragmentary CDDL, the IPv6 address option follows the pattern:

 ipv6-locator-option = [O_IPv6_LOCATOR, ipv6-address,
 transport-proto, port-number]
 ipv6-address = bytes .size 16

 transport-proto = IPPROTO_TCP / IPPROTO_UDP
 IPPROTO_TCP = 6
 IPPROTO_UDP = 17
 port-number = 0..65535

 The content of this option is a binary IPv6 address followed by the
 protocol number and port number to be used.

 Note 1: The IPv6 address MUST normally have global scope. However,
 during initialization, a link-local address MAY be used for specific
 objectives only (Section 3.5.2). In this case the corresponding
 Discovery Response message MUST be sent via the interface to which
 the link-local address applies.

 Note 2: A link-local IPv6 address MUST NOT be used when this option
 is included in a Divert option.

Bormann, et al. Expires October 1, 2017 [Page 38]

Internet-Draft GRASP March 2017

3.9.5.2. Locator IPv4 address option

 In fragmentary CDDL, the IPv4 address option follows the pattern:

 ipv4-locator-option = [O_IPv4_LOCATOR, ipv4-address,
 transport-proto, port-number]
 ipv4-address = bytes .size 4

 The content of this option is a binary IPv4 address followed by the
 protocol number and port number to be used.

 Note: If an operator has internal network address translation for
 IPv4, this option MUST NOT be used within the Divert option.

3.9.5.3. Locator FQDN option

 In fragmentary CDDL, the FQDN option follows the pattern:

 fqdn-locator-option = [O_FQDN_LOCATOR, text,
 transport-proto, port-number]

 The content of this option is the Fully Qualified Domain Name of the
 target followed by the protocol number and port number to be used.

 Note 1: Any FQDN which might not be valid throughout the network in
 question, such as a Multicast DNS name [RFC6762], MUST NOT be used
 when this option is used within the Divert option.

 Note 2: Normal GRASP operations are not expected to use this option.
 It is intended for special purposes such as discovering external
 services.

3.9.5.4. Locator URI option

 In fragmentary CDDL, the URI option follows the pattern:

 uri-locator = [O_URI_LOCATOR, text]

 The content of this option is the Uniform Resource Identifier of the
 target [RFC3986].

 Note 1: Any URI which might not be valid throughout the network in
 question, such as one based on a Multicast DNS name [RFC6762], MUST
 NOT be used when this option is used within the Divert option.

 Note 2: Normal GRASP operations are not expected to use this option.
 It is intended for special purposes such as discovering external
 services.

https://datatracker.ietf.org/doc/html/rfc6762
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6762

Bormann, et al. Expires October 1, 2017 [Page 39]

Internet-Draft GRASP March 2017

3.10. Objective Options

3.10.1. Format of Objective Options

 An objective option is used to identify objectives for the purposes
 of discovery, negotiation or synchronization. All objectives MUST be
 in the following format, described in fragmentary CDDL:

 objective = [objective-name, objective-flags, loop-count, ?any]

 objective-name = text
 loop-count = 0..255

 All objectives are identified by a unique name which is a UTF-8
 string, to be compared byte by byte.

 The names of generic objectives MUST NOT include a colon (":") and
 MUST be registered with IANA (Section 7).

 The names of privately defined objectives MUST include at least one
 colon (":"). The string preceding the last colon in the name MUST be
 globally unique and in some way identify the entity or person
 defining the objective. The following three methods MAY be used to
 create such a globally unique string:

 1. The unique string is a decimal number representing a registered
 32 bit Private Enterprise Number (PEN) [I-D.liang-iana-pen] that
 uniquely identifies the enterprise defining the objective.

 2. The unique string is a fully qualified domain name that uniquely
 identifies the entity or person defining the objective.

 3. The unique string is an email address that uniquely identifies
 the entity or person defining the objective.

 The GRASP protocol treats the objective name as an opaque string.
 For example, "EX1", "411:EX1", "example.com:EX1", "example.org:EX1
 and "user@example.org:EX1" would be five different objectives.

 The 'objective-flags' field is described below.

 The 'loop-count' field is used for terminating negotiation as
 described in Section 3.8.7. It is also used for terminating
 discovery as described in Section 3.5.4, and for terminating flooding
 as described in Section 3.5.6.2. It is placed in the objective
 rather than in the GRASP message format because, as far as the ASA is
 concerned, it is a property of the objective itself.

Bormann, et al. Expires October 1, 2017 [Page 40]

Internet-Draft GRASP March 2017

 The 'any' field is to express the actual value of a negotiation or
 synchronization objective. Its format is defined in the
 specification of the objective and may be a simple value or a data
 structure of any kind. It is optional because it is optional in a
 Discovery or Discovery Response message.

3.10.2. Objective flags

 An objective may be relevant for discovery only, for discovery and
 negotiation, or for discovery and synchronization. This is expressed
 in the objective by logical flag bits:

 objective-flags = uint .bits objective-flag
 objective-flag = &(
 F_DISC: 0 ; valid for discovery
 F_NEG: 1 ; valid for negotiation
 F_SYNCH: 2 ; valid for synchronization
 F_NEG_DRY: 3 ; negotiation is dry-run
)

 These bits are independent and may be combined appropriately, e.g.
 (F_DISC and F_SYNCH) or (F_DISC and F_NEG) or (F_DISC and F_NEG and
 F_NEG_DRY).

 Note that for a given negotiation session, an objective must be
 either used for negotiation, or for dry-run negotiation. Mixing the
 two modes in a single negotiation is not possible.

3.10.3. General Considerations for Objective Options

 As mentioned above, Objective Options MUST be assigned a unique name.
 As long as privately defined Objective Options obey the rules above,
 this document does not restrict their choice of name, but the entity
 or person concerned SHOULD publish the names in use.

 Names are expressed as UTF-8 strings for convenience in designing
 Objective Options for localized use. For generic usage, names
 expressed in the ASCII subset of UTF-8 are RECOMMENDED. Designers
 planning to use non-ASCII names are strongly advised to consult
 [RFC7564] or its successor to understand the complexities involved.
 Since the GRASP protocol compares names byte by byte, all issues of
 Unicode profiling and canonicalization MUST be specified in the
 design of the Objective Option.

 All Objective Options MUST respect the CBOR patterns defined above as
 "objective" and MUST replace the "any" field with a valid CBOR data
 definition for the relevant use case and application.

https://datatracker.ietf.org/doc/html/rfc7564

Bormann, et al. Expires October 1, 2017 [Page 41]

Internet-Draft GRASP March 2017

 An Objective Option that contains no additional fields beyond its
 "loop-count" can only be a discovery objective and MUST only be used
 in Discovery and Discovery Response messages.

 The Negotiation Objective Options contain negotiation objectives,
 which vary according to different functions/services. They MUST be
 carried by Discovery, Request Negotiation or Negotiation messages
 only. The negotiation initiator MUST set the initial "loop-count" to
 a value specified in the specification of the objective or, if no
 such value is specified, to GRASP_DEF_LOOPCT.

 For most scenarios, there should be initial values in the negotiation
 requests. Consequently, the Negotiation Objective options MUST
 always be completely presented in a Request Negotiation message, or
 in a Discovery message in rapid mode. If there is no initial value,
 the value field SHOULD be set to the 'null' value defined by CBOR.

 Synchronization Objective Options are similar, but MUST be carried by
 Discovery, Discovery Response, Request Synchronization, or Flood
 Synchronization messages only. They include value fields only in
 Synchronization or Flood Synchronization messages.

3.10.4. Organizing of Objective Options

 Generic objective options MUST be specified in documents available to
 the public and SHOULD be designed to use either the negotiation or
 the synchronization mechanism described above.

 As noted earlier, one negotiation objective is handled by each GRASP
 negotiation thread. Therefore, a negotiation objective, which is
 based on a specific function or action, SHOULD be organized as a
 single GRASP option. It is NOT RECOMMENDED to organize multiple
 negotiation objectives into a single option, nor to split a single
 function or action into multiple negotiation objectives.

 It is important to understand that GRASP negotiation does not support
 transactional integrity. If transactional integrity is needed for a
 specific objective, this must be ensured by the ASA. For example, an
 ASA might need to ensure that it only participates in one negotiation
 thread at the same time. Such an ASA would need to stop listening
 for incoming negotiation requests before generating an outgoing
 negotiation request.

 A synchronization objective SHOULD be organized as a single GRASP
 option.

 Some objectives will support more than one operational mode. An
 example is a negotiation objective with both a "dry run" mode (where

Bormann, et al. Expires October 1, 2017 [Page 42]

Internet-Draft GRASP March 2017

 the negotiation is to find out whether the other end can in fact make
 the requested change without problems) and a "live" mode. Such modes
 will be defined in the specification of such an objective. These
 objectives SHOULD include flags indicating the applicable mode(s).

 An issue requiring particular attention is that GRASP itself is a
 stateless protocol. Any state associated with a dry run operation,
 such as temporarily reserving a resource for subsequent use in a live
 run, is entirely a matter for the designer of the ASA concerned.

 As indicated in Section 3.1, an objective's value may include
 multiple parameters. Parameters might be categorized into two
 classes: the obligatory ones presented as fixed fields; and the
 optional ones presented in some other form of data structure embedded
 in CBOR. The format might be inherited from an existing management
 or configuration protocol, with the objective option acting as a
 carrier for that format. The data structure might be defined in a
 formal language, but that is a matter for the specifications of
 individual objectives. There are many candidates, according to the
 context, such as ABNF, RBNF, XML Schema, YANG, etc. The GRASP
 protocol itself is agnostic on these questions. The only restriction
 is that the format can be mapped into CBOR.

 It is NOT RECOMMENDED to mix parameters that have significantly
 different response time characteristics in a single objective.
 Separate objectives are more suitable for such a scenario.

 All objectives MUST support GRASP discovery. However, as mentioned
 in Section 3.3, it is acceptable for an ASA to use an alternative
 method of discovery.

 Normally, a GRASP objective will refer to specific technical
 parameters as explained in Section 3.1. However, it is acceptable to
 define an abstract objective for the purpose of managing or
 coordinating ASAs. It is also acceptable to define a special-purpose
 objective for purposes such as trust bootstrapping or formation of
 the ACP.

 To guarantee convergence, a limited number of rounds or a timeout is
 needed for each negotiation objective. Therefore, the definition of
 each negotiation objective SHOULD clearly specify this, for example a
 default loop count and timeout, so that the negotiation can always be
 terminated properly. If not, the GRASP defaults will apply.

 There must be a well-defined procedure for concluding that a
 negotiation cannot succeed, and if so deciding what happens next
 (e.g., deadlock resolution, tie-breaking, or revert to best-effort

Bormann, et al. Expires October 1, 2017 [Page 43]

Internet-Draft GRASP March 2017

 service). This MUST be specified for individual negotiation
 objectives.

3.10.5. Experimental and Example Objective Options

 The names "EX0" through "EX9" have been reserved for experimental
 options. Multiple names have been assigned because a single
 experiment may use multiple options simultaneously. These
 experimental options are highly likely to have different meanings
 when used for different experiments. Therefore, they SHOULD NOT be
 used without an explicit human decision and SHOULD NOT be used in
 unmanaged networks such as home networks.

 These names are also RECOMMENDED for use in documentation examples.

4. Implementation Status [RFC Editor: please remove]

 Two prototype implementations of GRASP have been made.

4.1. BUPT C++ Implementation

 o Name: BaseNegotiator.cpp, msg.cpp, Client.cpp, Server.cpp

 o Description: C++ implementation of GRASP core and API

 o Maturity: Prototype code, interoperable between Ubuntu.

 o Coverage: Corresponds to draft-carpenter-anima-gdn-protocol-03.
 Since it was implemented based on the old version draft, the most
 significant limitations comparing to current protocol design
 include:

 * Not support CBOR

 * Not support Flooding

 * Not support loop avoidance

 * only coded for IPv6, any IPv4 is accidental

 o Licensing: Huawei License.

 o Experience: https://github.com/liubingpang/IETF-Anima-Signaling-
Protocol/blob/master/README.md

 o Contact: https://github.com/liubingpang/IETF-Anima-Signaling-
Protocol

https://datatracker.ietf.org/doc/html/draft-carpenter-anima-gdn-protocol-03
https://github.com/liubingpang/IETF-Anima-Signaling-Protocol/blob/master/README.md
https://github.com/liubingpang/IETF-Anima-Signaling-Protocol/blob/master/README.md
https://github.com/liubingpang/IETF-Anima-Signaling-Protocol
https://github.com/liubingpang/IETF-Anima-Signaling-Protocol

Bormann, et al. Expires October 1, 2017 [Page 44]

Internet-Draft GRASP March 2017

4.2. Python Implementation

 o Name: graspy

 o Description: Python 3 implementation of GRASP core and API.

 o Maturity: Prototype code, interoperable between Windows 7 and
 Linux.

 o Coverage: Corresponds to draft-ietf-anima-grasp-10. Limitations
 include:

 * insecure: uses a dummy ACP module and does not implement TLS

 * only coded for IPv6, any IPv4 is accidental

 * FQDN and URI locators incompletely supported

 * no code for rapid mode

 * relay code is lazy (no rate control)

 * all unicast transactions use TCP (no unicast UDP).
 Experimental code for unicast UDP proved to be complex and
 brittle.

 * optional Objective option in Response messages not implemented

 * workarounds for defects in Python socket module and Windows
 socket peculiarities

 o Licensing: Simplified BSD

 o Experience: https://www.cs.auckland.ac.nz/~brian/graspy/graspy.pdf

 o Contact: https://www.cs.auckland.ac.nz/~brian/graspy/

5. Security Considerations

 A successful attack on negotiation-enabled nodes would be extremely
 harmful, as such nodes might end up with a completely undesirable
 configuration that would also adversely affect their peers. GRASP
 nodes and messages therefore require full protection. As explained
 in Section 3.5.1, GRASP MUST run within a secure environment such as
 the Autonomic Control Plane [I-D.ietf-anima-autonomic-control-plane],
 except for the constrained instances described in Section 3.5.2.

 - Authentication

https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-10
https://www.cs.auckland.ac.nz/~brian/graspy/graspy.pdf
https://www.cs.auckland.ac.nz/~brian/graspy/

Bormann, et al. Expires October 1, 2017 [Page 45]

Internet-Draft GRASP March 2017

 A cryptographically authenticated identity for each device is
 needed in an autonomic network. It is not safe to assume that a
 large network is physically secured against interference or that
 all personnel are trustworthy. Each autonomic node MUST be
 capable of proving its identity and authenticating its messages.
 GRASP relies on a separate external certificate-based security
 mechanism to support authentication, data integrity protection,
 and anti-replay protection.

 Since GRASP must be deployed in an existing secure environment,
 the protocol itself specifies nothing concerning the trust anchor
 and certification authority.

 If GRASP is used temporarily without an external security
 mechanism, for example during system bootstrap (Section 3.5.1),
 the Session ID (Section 3.7) will act as a nonce to provide
 limited protection against third parties injecting responses. A
 full analysis of the secure bootstrap process is in
 [I-D.ietf-anima-bootstrapping-keyinfra].

 - Authorization and Roles

 The GRASP protocol is agnostic about the roles and capabilities of
 individual ASAs and about which objectives a particular ASA is
 authorized to support. An implementation might support
 precautions such as allowing only one ASA in a given node to
 modify a given objective, but this may not be appropriate in all
 cases. For example, it might be operationally useful to allow an
 old and a new version of the same ASA to run simultaneously during
 an overlap period. These questions are out of scope for the
 present specification.

 - Privacy and confidentiality

 Generally speaking, no personal information is expected to be
 involved in the signaling protocol, so there should be no direct
 impact on personal privacy. Nevertheless, traffic flow paths,
 VPNs, etc. could be negotiated, which could be of interest for
 traffic analysis. Also, operators generally want to conceal
 details of their network topology and traffic density from
 outsiders. Therefore, since insider attacks cannot be excluded in
 a large network, the security mechanism for the protocol MUST
 provide message confidentiality. This is why Section 3.5.1
 requires either an ACP or an alternative security mechanism.

 - Link-local multicast security

Bormann, et al. Expires October 1, 2017 [Page 46]

Internet-Draft GRASP March 2017

 GRASP has no reasonable alternative to using link-local multicast
 for Discovery or Flood Synchronization messages and these messages
 are sent in clear and with no authentication. They are therefore
 available to on-link eavesdroppers, and could be forged by on-link
 attackers. In the case of Discovery, the Discovery Responses are
 unicast and will therefore be protected (Section 3.5.1), and an
 untrusted forger will not be able to receive responses. In the
 case of Flood Synchronization, an on-link eavesdropper will be
 able to receive the flooded objectives but there is no response
 message to consider. Some precautions for Flood Synchronization
 messages are suggested in Section 3.5.6.2.

 - DoS Attack Protection

 GRASP discovery partly relies on insecure link-local multicast.
 Since routers participating in GRASP sometimes relay discovery
 messages from one link to another, this could be a vector for
 denial of service attacks. Some mitigations are specified in

Section 3.5.4. However, malicious code installed inside the
 Autonomic Control Plane could always launch DoS attacks consisting
 of spurious discovery messages, or of spurious discovery
 responses. It is important that firewalls prevent any GRASP
 messages from entering the domain from an unknown source.

 - Security during bootstrap and discovery

 A node cannot trust GRASP traffic from other nodes until the
 security environment (such as the ACP) has identified the trust
 anchor and can authenticate traffic by validating certificates for
 other nodes. Also, until it has succesfully enrolled
 [I-D.ietf-anima-bootstrapping-keyinfra] a node cannot assume that
 other nodes are able to authenticate its own traffic. Therefore,
 GRASP discovery during the bootstrap phase for a new device will
 inevitably be insecure. Secure synchronization and negotiation
 will be impossible until enrollment is complete. Further details
 are given in Section 3.5.2.

 - Security of discovered locators

 When GRASP discovery returns an IP address, it MUST be that of a
 node within the secure environment (Section 3.5.1). If it returns
 an FQDN or a URI, the ASA that receives it MUST NOT assume that
 the target of the locator is within the secure environment.

Bormann, et al. Expires October 1, 2017 [Page 47]

Internet-Draft GRASP March 2017

6. CDDL Specification of GRASP

 <CODE BEGINS>
 grasp-message = (message .within message-structure) / noop-message

 message-structure = [MESSAGE_TYPE, session-id, ?initiator,
 *grasp-option]

 MESSAGE_TYPE = 0..255
 session-id = 0..4294967295 ;up to 32 bits
 grasp-option = any

 message /= discovery-message
 discovery-message = [M_DISCOVERY, session-id, initiator, objective]

 message /= response-message ;response to Discovery
 response-message = [M_RESPONSE, session-id, initiator, ttl,
 (+locator-option // divert-option), ?objective]

 message /= synch-message ;response to Synchronization request
 synch-message = [M_SYNCH, session-id, objective]

 message /= flood-message
 flood-message = [M_FLOOD, session-id, initiator, ttl,
 +[objective, (locator-option / [])]]

 message /= request-negotiation-message
 request-negotiation-message = [M_REQ_NEG, session-id, objective]

 message /= request-synchronization-message
 request-synchronization-message = [M_REQ_SYN, session-id, objective]

 message /= negotiation-message
 negotiation-message = [M_NEGOTIATE, session-id, objective]

 message /= end-message
 end-message = [M_END, session-id, accept-option / decline-option]

 message /= wait-message
 wait-message = [M_WAIT, session-id, waiting-time]

 message /= invalid-message
 invalid-message = [M_INVALID, session-id, ?any]

 noop-message = [M_NOOP]

 divert-option = [O_DIVERT, +locator-option]

Bormann, et al. Expires October 1, 2017 [Page 48]

Internet-Draft GRASP March 2017

 accept-option = [O_ACCEPT]

 decline-option = [O_DECLINE, ?reason]
 reason = text ;optional error message

 waiting-time = 0..4294967295 ; in milliseconds
 ttl = 0..4294967295 ; in milliseconds

 locator-option /= [O_IPv4_LOCATOR, ipv4-address,
 transport-proto, port-number]
 ipv4-address = bytes .size 4

 locator-option /= [O_IPv6_LOCATOR, ipv6-address,
 transport-proto, port-number]
 ipv6-address = bytes .size 16

 locator-option /= [O_FQDN_LOCATOR, text, transport-proto, port-number]

 transport-proto = IPPROTO_TCP / IPPROTO_UDP
 IPPROTO_TCP = 6
 IPPROTO_UDP = 17
 port-number = 0..65535

 locator-option /= [O_URI_LOCATOR, text]

 initiator = ipv4-address / ipv6-address

 objective-flags = uint .bits objective-flag

 objective-flag = &(
 F_DISC: 0 ; valid for discovery
 F_NEG: 1 ; valid for negotiation
 F_SYNCH: 2 ; valid for synchronization
 F_NEG_DRY: 3 ; negotiation is dry-run
)

 objective = [objective-name, objective-flags, loop-count, ?any]

 objective-name = text ;see specification for uniqueness rules

 loop-count = 0..255

 ; Constants for message types and option types

 M_NOOP = 0
 M_DISCOVERY = 1
 M_RESPONSE = 2
 M_REQ_NEG = 3

Bormann, et al. Expires October 1, 2017 [Page 49]

Internet-Draft GRASP March 2017

 M_REQ_SYN = 4
 M_NEGOTIATE = 5
 M_END = 6
 M_WAIT = 7
 M_SYNCH = 8
 M_FLOOD = 9
 M_INVALID = 99

 O_DIVERT = 100
 O_ACCEPT = 101
 O_DECLINE = 102
 O_IPv6_LOCATOR = 103
 O_IPv4_LOCATOR = 104
 O_FQDN_LOCATOR = 105
 O_URI_LOCATOR = 106
 <CODE ENDS>

7. IANA Considerations

 This document defines the GeneRic Autonomic Signaling Protocol
 (GRASP).

Section 3.6 explains the following link-local multicast addresses,
 which IANA is requested to assign for use by GRASP:

 ALL_GRASP_NEIGHBORS multicast address (IPv6): (TBD1). Assigned in
 the IPv6 Link-Local Scope Multicast Addresses registry.

 ALL_GRASP_NEIGHBORS multicast address (IPv4): (TBD2). Assigned in
 the IPv4 Multicast Local Network Control Block.

Section 3.6 explains the following User Port, which IANA is requested
 to assign for use by GRASP for both UDP and TCP:

 GRASP_LISTEN_PORT: (TBD3)
 Service Name: Generic Autonomic Signaling Protocol (GRASP)
 Transport Protocols: UDP, TCP
 Assignee: iesg@ietf.org
 Contact: chair@ietf.org
 Description: See Section 3.6
 Reference: RFC XXXX (this document)

 The IANA is requested to create a GRASP Parameter Registry including
 two registry tables. These are the GRASP Messages and Options
 Table and the GRASP Objective Names Table.

 GRASP Messages and Options Table. The values in this table are names
 paired with decimal integers. Future values MUST be assigned using

Bormann, et al. Expires October 1, 2017 [Page 50]

Internet-Draft GRASP March 2017

 the Standards Action policy defined by [RFC5226]. The following
 initial values are assigned by this document:

 M_NOOP = 0
 M_DISCOVERY = 1
 M_RESPONSE = 2
 M_REQ_NEG = 3
 M_REQ_SYN = 4
 M_NEGOTIATE = 5
 M_END = 6
 M_WAIT = 7
 M_SYNCH = 8
 M_FLOOD = 9
 M_INVALID = 99

 O_DIVERT = 100
 O_ACCEPT = 101
 O_DECLINE = 102
 O_IPv6_LOCATOR = 103
 O_IPv4_LOCATOR = 104
 O_FQDN_LOCATOR = 105
 O_URI_LOCATOR = 106

 GRASP Objective Names Table. The values in this table are UTF-8
 strings. Future values MUST be assigned using the Specification
 Required policy defined by [RFC5226].

 To assist expert review of a new objective, the specification should
 include a precise description of the format of the new objective,
 with sufficient explanation of its semantics to allow independent
 implementations. See Section 3.10.3 for more details. If the new
 objective is similar in name or purpose to a previously registered
 objective, the specification should explain why a new objective is
 justified.

 The following initial values are assigned by this document:

 EX0
 EX1
 EX2
 EX3
 EX4
 EX5
 EX6
 EX7
 EX8
 EX9

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Bormann, et al. Expires October 1, 2017 [Page 51]

Internet-Draft GRASP March 2017

8. Acknowledgements

 A major contribution to the original version of this document was
 made by Sheng Jiang. Significant review inputs were received from
 Toerless Eckert, Joel Halpern, Barry Leiba, Charles E. Perkins, and
 Michael Richardson.

 Valuable comments were received from Michael Behringer, Jeferson
 Campos Nobre, Laurent Ciavaglia, Zongpeng Du, Yu Fu, Zhenbin Li,
 Dimitri Papadimitriou, Pierre Peloso, Reshad Rahman, Markus Stenberg,
 Rene Struik, Dacheng Zhang, and other participants in the NMRG
 research group and the ANIMA working group.

9. References

9.1. Normative References

 [I-D.greevenbosch-appsawg-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "CBOR data
 definition language (CDDL): a notational convention to
 express CBOR data structures", draft-greevenbosch-appsawg-

cbor-cddl-10 (work in progress), March 2017.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <http://www.rfc-editor.org/info/rfc4086>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-10
https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-10
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
http://www.rfc-editor.org/info/rfc4086
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
http://www.rfc-editor.org/info/rfc5280

Bormann, et al. Expires October 1, 2017 [Page 52]

Internet-Draft GRASP March 2017

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7217] Gont, F., "A Method for Generating Semantically Opaque
 Interface Identifiers with IPv6 Stateless Address
 Autoconfiguration (SLAAC)", RFC 7217,
 DOI 10.17487/RFC7217, April 2014,
 <http://www.rfc-editor.org/info/rfc7217>.

9.2. Informative References

 [I-D.chaparadza-intarea-igcp]
 Behringer, M., Chaparadza, R., Petre, R., Li, X., and H.
 Mahkonen, "IP based Generic Control Protocol (IGCP)",

draft-chaparadza-intarea-igcp-00 (work in progress), July
 2011.

 [I-D.ietf-anima-autonomic-control-plane]
 Behringer, M., Eckert, T., and S. Bjarnason, "An Autonomic
 Control Plane", draft-ietf-anima-autonomic-control-

plane-06 (work in progress), March 2017.

 [I-D.ietf-anima-bootstrapping-keyinfra]
 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-

keyinfra-05 (work in progress), March 2017.

 [I-D.ietf-anima-reference-model]
 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 Pierre, P., Liu, B., Nobre, J., and J. Strassner, "A
 Reference Model for Autonomic Networking", draft-ietf-

anima-reference-model-03 (work in progress), March 2017.

 [I-D.ietf-anima-stable-connectivity]
 Eckert, T. and M. Behringer, "Using Autonomic Control
 Plane for Stable Connectivity of Network OAM", draft-ietf-

anima-stable-connectivity-02 (work in progress), February
 2017.

https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7049
http://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7217
http://www.rfc-editor.org/info/rfc7217
https://datatracker.ietf.org/doc/html/draft-chaparadza-intarea-igcp-00
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-06
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-06
https://datatracker.ietf.org/doc/html/draft-ietf-anima-bootstrapping-keyinfra-05
https://datatracker.ietf.org/doc/html/draft-ietf-anima-bootstrapping-keyinfra-05
https://datatracker.ietf.org/doc/html/draft-ietf-anima-reference-model-03
https://datatracker.ietf.org/doc/html/draft-ietf-anima-reference-model-03
https://datatracker.ietf.org/doc/html/draft-ietf-anima-stable-connectivity-02
https://datatracker.ietf.org/doc/html/draft-ietf-anima-stable-connectivity-02

Bormann, et al. Expires October 1, 2017 [Page 53]

Internet-Draft GRASP March 2017

 [I-D.liang-iana-pen]
 Liang, P., Melnikov, A., and D. Conrad, "Private
 Enterprise Number (PEN) practices and Internet Assigned
 Numbers Authority (IANA) registration considerations",

draft-liang-iana-pen-06 (work in progress), July 2015.

 [I-D.liu-anima-grasp-api]
 Carpenter, B., Liu, B., Wang, W., and X. Gong, "Generic
 Autonomic Signaling Protocol Application Program Interface
 (GRASP API)", draft-liu-anima-grasp-api-03 (work in
 progress), February 2017.

 [I-D.stenberg-anima-adncp]
 Stenberg, M., "Autonomic Distributed Node Consensus
 Protocol", draft-stenberg-anima-adncp-00 (work in
 progress), March 2015.

 [RFC2205] Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
 September 1997, <http://www.rfc-editor.org/info/rfc2205>.

 [RFC2334] Luciani, J., Armitage, G., Halpern, J., and N. Doraswamy,
 "Server Cache Synchronization Protocol (SCSP)", RFC 2334,
 DOI 10.17487/RFC2334, April 1998,
 <http://www.rfc-editor.org/info/rfc2334>.

 [RFC2608] Guttman, E., Perkins, C., Veizades, J., and M. Day,
 "Service Location Protocol, Version 2", RFC 2608,
 DOI 10.17487/RFC2608, June 1999,
 <http://www.rfc-editor.org/info/rfc2608>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",

RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <http://www.rfc-editor.org/info/rfc2865>.

 [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <http://www.rfc-editor.org/info/rfc3209>.

 [RFC3315] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
 C., and M. Carney, "Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
 2003, <http://www.rfc-editor.org/info/rfc3315>.

https://datatracker.ietf.org/doc/html/draft-liang-iana-pen-06
https://datatracker.ietf.org/doc/html/draft-liu-anima-grasp-api-03
https://datatracker.ietf.org/doc/html/draft-stenberg-anima-adncp-00
https://datatracker.ietf.org/doc/html/rfc2205
http://www.rfc-editor.org/info/rfc2205
https://datatracker.ietf.org/doc/html/rfc2334
http://www.rfc-editor.org/info/rfc2334
https://datatracker.ietf.org/doc/html/rfc2608
http://www.rfc-editor.org/info/rfc2608
https://datatracker.ietf.org/doc/html/rfc2865
http://www.rfc-editor.org/info/rfc2865
https://datatracker.ietf.org/doc/html/rfc3209
http://www.rfc-editor.org/info/rfc3209
https://datatracker.ietf.org/doc/html/rfc3315
http://www.rfc-editor.org/info/rfc3315

Bormann, et al. Expires October 1, 2017 [Page 54]

Internet-Draft GRASP March 2017

 [RFC3416] Presuhn, R., Ed., "Version 2 of the Protocol Operations
 for the Simple Network Management Protocol (SNMP)",
 STD 62, RFC 3416, DOI 10.17487/RFC3416, December 2002,
 <http://www.rfc-editor.org/info/rfc3416>.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 DOI 10.17487/RFC4861, September 2007,
 <http://www.rfc-editor.org/info/rfc4861>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5971] Schulzrinne, H. and R. Hancock, "GIST: General Internet
 Signalling Transport", RFC 5971, DOI 10.17487/RFC5971,
 October 2010, <http://www.rfc-editor.org/info/rfc5971>.

 [RFC6206] Levis, P., Clausen, T., Hui, J., Gnawali, O., and J. Ko,
 "The Trickle Algorithm", RFC 6206, DOI 10.17487/RFC6206,
 March 2011, <http://www.rfc-editor.org/info/rfc6206>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6733] Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733,
 DOI 10.17487/RFC6733, October 2012,
 <http://www.rfc-editor.org/info/rfc6733>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <http://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <http://www.rfc-editor.org/info/rfc6763>.

 [RFC6887] Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and
 P. Selkirk, "Port Control Protocol (PCP)", RFC 6887,
 DOI 10.17487/RFC6887, April 2013,
 <http://www.rfc-editor.org/info/rfc6887>.

https://datatracker.ietf.org/doc/html/rfc3416
http://www.rfc-editor.org/info/rfc3416
https://datatracker.ietf.org/doc/html/rfc4861
http://www.rfc-editor.org/info/rfc4861
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc5971
http://www.rfc-editor.org/info/rfc5971
https://datatracker.ietf.org/doc/html/rfc6206
http://www.rfc-editor.org/info/rfc6206
https://datatracker.ietf.org/doc/html/rfc6241
http://www.rfc-editor.org/info/rfc6241
https://datatracker.ietf.org/doc/html/rfc6733
http://www.rfc-editor.org/info/rfc6733
https://datatracker.ietf.org/doc/html/rfc6762
http://www.rfc-editor.org/info/rfc6762
https://datatracker.ietf.org/doc/html/rfc6763
http://www.rfc-editor.org/info/rfc6763
https://datatracker.ietf.org/doc/html/rfc6887
http://www.rfc-editor.org/info/rfc6887

Bormann, et al. Expires October 1, 2017 [Page 55]

Internet-Draft GRASP March 2017

 [RFC7558] Lynn, K., Cheshire, S., Blanchet, M., and D. Migault,
 "Requirements for Scalable DNS-Based Service Discovery
 (DNS-SD) / Multicast DNS (mDNS) Extensions", RFC 7558,
 DOI 10.17487/RFC7558, July 2015,
 <http://www.rfc-editor.org/info/rfc7558>.

 [RFC7564] Saint-Andre, P. and M. Blanchet, "PRECIS Framework:
 Preparation, Enforcement, and Comparison of
 Internationalized Strings in Application Protocols",

RFC 7564, DOI 10.17487/RFC7564, May 2015,
 <http://www.rfc-editor.org/info/rfc7564>.

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <http://www.rfc-editor.org/info/rfc7575>.

 [RFC7576] Jiang, S., Carpenter, B., and M. Behringer, "General Gap
 Analysis for Autonomic Networking", RFC 7576,
 DOI 10.17487/RFC7576, June 2015,
 <http://www.rfc-editor.org/info/rfc7576>.

 [RFC7787] Stenberg, M. and S. Barth, "Distributed Node Consensus
 Protocol", RFC 7787, DOI 10.17487/RFC7787, April 2016,
 <http://www.rfc-editor.org/info/rfc7787>.

 [RFC7788] Stenberg, M., Barth, S., and P. Pfister, "Home Networking
 Control Protocol", RFC 7788, DOI 10.17487/RFC7788, April
 2016, <http://www.rfc-editor.org/info/rfc7788>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <http://www.rfc-editor.org/info/rfc8040>.

Appendix A. Open Issues [RFC Editor: This section should be empty.
 Please remove]

 o 68. (Placeholder)

Appendix B. Closed Issues [RFC Editor: Please remove]

 o 1. UDP vs TCP: For now, this specification suggests UDP and TCP
 as message transport mechanisms. This is not clarified yet. UDP
 is good for short conversations, is necessary for multicast
 discovery, and generally fits the discovery and divert scenarios
 well. However, it will cause problems with large messages. TCP
 is good for stable and long sessions, with a little bit of time

https://datatracker.ietf.org/doc/html/rfc7558
http://www.rfc-editor.org/info/rfc7558
https://datatracker.ietf.org/doc/html/rfc7564
http://www.rfc-editor.org/info/rfc7564
https://datatracker.ietf.org/doc/html/rfc7575
http://www.rfc-editor.org/info/rfc7575
https://datatracker.ietf.org/doc/html/rfc7576
http://www.rfc-editor.org/info/rfc7576
https://datatracker.ietf.org/doc/html/rfc7787
http://www.rfc-editor.org/info/rfc7787
https://datatracker.ietf.org/doc/html/rfc7788
http://www.rfc-editor.org/info/rfc7788
https://datatracker.ietf.org/doc/html/rfc8040
http://www.rfc-editor.org/info/rfc8040

Bormann, et al. Expires October 1, 2017 [Page 56]

Internet-Draft GRASP March 2017

 consumption during the session establishment stage. If messages
 exceed a reasonable MTU, a TCP mode will be required in any case.
 This question may be affected by the security discussion.

 RESOLVED by specifying UDP for short message and TCP for longer
 one.

 o 2. DTLS or TLS vs built-in security mechanism. For now, this
 specification has chosen a PKI based built-in security mechanism
 based on asymmetric cryptography. However, (D)TLS might be chosen
 as security solution to avoid duplication of effort. It also
 allows essentially similar security for short messages over UDP
 and longer ones over TCP. The implementation trade-offs are
 different. The current approach requires expensive asymmetric
 cryptographic calculations for every message. (D)TLS has startup
 overheads but cheaper crypto per message. DTLS is less mature
 than TLS.

 RESOLVED by specifying external security (ACP or (D)TLS).

 o The following open issues applied only if the original security
 model was retained:

 * 2.1. For replay protection, GRASP currently requires every
 participant to have an NTP-synchronized clock. Is this OK for
 low-end devices, and how does it work during device
 bootstrapping? We could take the Timestamp out of signature
 option, to become an independent and OPTIONAL (or RECOMMENDED)
 option.

 * 2.2. The Signature Option states that this option could be any
 place in a message. Wouldn't it be better to specify a
 position (such as the end)? That would be much simpler to
 implement.

 RESOLVED by changing security model.

 o 3. DoS Attack Protection needs work.

 RESOLVED by adding text.

 o 4. Should we consider preferring a text-based approach to
 discovery (after the initial discovery needed for bootstrapping)?
 This could be a complementary mechanism for multicast based
 discovery, especially for a very large autonomic network.
 Centralized registration could be automatically deployed
 incrementally. At the very first stage, the repository could be
 empty; then it could be filled in by the objectives discovered by

Bormann, et al. Expires October 1, 2017 [Page 57]

Internet-Draft GRASP March 2017

 different devices (for example using Dynamic DNS Update). The
 more records are stored in the repository, the less the multicast-
 based discovery is needed. However, if we adopt such a mechanism,
 there would be challenges: stateful solution, and security.

 RESOLVED for now by adding optional use of DNS-SD by ASAs.
 Subsequently removed by editors as irrelevant to GRASP istelf.

 o 5. Need to expand description of the minimum requirements for the
 specification of an individual discovery, synchronization or
 negotiation objective.

 RESOLVED for now by extra wording.

 o 6. Use case and protocol walkthrough. A description of how a
 node starts up, performs discovery, and conducts negotiation and
 synchronisation for a sample use case would help readers to
 understand the applicability of this specification. Maybe it
 should be an artificial use case or maybe a simple real one, based
 on a conceptual API. However, the authors have not yet decided
 whether to have a separate document or have it in the protocol
 document.

 RESOLVED: recommend a separate document.

 o 7. Cross-check against other ANIMA WG documents for consistency
 and gaps.

 RESOLVED: Satisfied by WGLC.

 o 8. Consideration of ADNCP proposal.

 RESOLVED by adding optional use of DNCP for flooding-type
 synchronization.

 o 9. Clarify how a GDNP instance knows whether it is running inside
 the ACP. (Sheng)

 RESOLVED by improved text.

 o 10. Clarify how a non-ACP GDNP instance initiates (D)TLS.
 (Sheng)

 RESOLVED by improved text and declaring DTLS out of scope for this
 draft.

 o 11. Clarify how UDP/TCP choice is made. (Sheng) [Like DNS? -
 Brian]

Bormann, et al. Expires October 1, 2017 [Page 58]

Internet-Draft GRASP March 2017

 RESOLVED by improved text.

 o 12. Justify that IP address within ACP or (D)TLS environment is
 sufficient to prove AN identity; or explain how Device Identity
 Option is used. (Sheng)

 RESOLVED for now: we assume that all ASAs in a device are trusted
 as soon as the device is trusted, so they share credentials. In
 that case the Device Identity Option is useless. This needs to be
 reviewed later.

 o 13. Emphasise that negotiation/synchronization are independent
 from discovery, although the rapid discovery mode includes the
 first step of a negotiation/synchronization. (Sheng)

 RESOLVED by improved text.

 o 14. Do we need an unsolicited flooding mechanism for discovery
 (for discovery results that everyone needs), to reduce scaling
 impact of flooding discovery messages? (Toerless)

 RESOLVED: Yes, added to requirements and solution.

 o 15. Do we need flag bits in Objective Options to distinguish
 distinguish Synchronization and Negotiation "Request" or rapid
 mode "Discovery" messages? (Bing)

 RESOLVED: yes, work on the API showed that these flags are
 essential.

 o 16. (Related to issue 14). Should we revive the "unsolicited
 Response" for flooding synchronisation data? This has to be done
 carefully due to the well-known issues with flooding, but it could
 be useful, e.g. for Intent distribution, where DNCP doesn't seem
 applicable.

 RESOLVED: Yes, see #14.

 o 17. Ensure that the discovery mechanism is completely proof
 against loops and protected against duplicate responses.

 RESOLVED: Added loop count mechanism.

 o 18. Discuss the handling of multiple valid discovery responses.

 RESOLVED: Stated that the choice must be available to the ASA but
 GRASP implementation should pick a default.

Bormann, et al. Expires October 1, 2017 [Page 59]

Internet-Draft GRASP March 2017

 o 19. Should we use a text-oriented format such as JSON/CBOR
 instead of native binary TLV format?

 RESOLVED: Yes, changed to CBOR.

 o 20. Is the Divert option needed? If a discovery response
 provides a valid IP address or FQDN, the recipient doesn't gain
 any extra knowledge from the Divert. On the other hand, the
 presence of Divert informs the receiver that the target is off-
 link, which might be useful sometimes.

 RESOLVED: Decided to keep Divert option.

 o 21. Rename the protocol as GRASP (GeneRic Autonomic Signaling
 Protocol)?

 RESOLVED: Yes, name changed.

 o 22. Does discovery mechanism scale robustly as needed? Need hop
 limit on relaying?

 RESOLVED: Added hop limit.

 o 23. Need more details on TTL for caching discovery responses.

 RESOLVED: Done.

 o 24. Do we need "fast withdrawal" of discovery responses?

 RESOLVED: This doesn't seem necessary. If an ASA exits or stops
 supporting a given objective, peers will fail to start future
 sessions and will simply repeat discovery.

 o 25. Does GDNP discovery meet the needs of multi-hop DNS-SD?

 RESOLVED: Decided not to consider this further as a GRASP protocol
 issue. GRASP objectives could embed DNS-SD formats if needed.

 o 26. Add a URL type to the locator options (for security bootstrap
 etc.)

 RESOLVED: Done, later renamed as URI.

 o 27. Security of Flood multicasts (Section 3.5.6.2).

 RESOLVED: added text.

 o 28. Does ACP support secure link-local multicast?

Bormann, et al. Expires October 1, 2017 [Page 60]

Internet-Draft GRASP March 2017

 RESOLVED by new text in the Security Considerations.

 o 29. PEN is used to distinguish vendor options. Would it be
 better to use a domain name? Anything unique will do.

 RESOLVED: Simplified this by removing PEN field and changing
 naming rules for objectives.

 o 30. Does response to discovery require randomized delays to
 mitigate amplification attacks?

 RESOLVED: WG feedback is that it's unnecessary.

 o 31. We have specified repeats for failed discovery etc. Is that
 sufficient to deal with sleeping nodes?

 RESOLVED: WG feedback is that it's unnecessary to say more.

 o 32. We have one-to-one synchronization and flooding
 synchronization. Do we also need selective flooding to a subset
 of nodes?

 RESOLVED: This will be discussed as a protocol extension in a
 separate draft (draft-liu-anima-grasp-distribution).

 o 33. Clarify if/when discovery needs to be repeated.

 RESOLVED: Done.

 o 34. Clarify what is mandatory for running in ACP, expand
 discussion of security boundary when running with no ACP - might
 rely on the local PKI infrastructure.

 RESOLVED: Done.

 o 35. State that role-based authorization of ASAs is out of scope
 for GRASP. GRASP doesn't recognize/handle any "roles".

 RESOLVED: Done.

 o 36. Reconsider CBOR definition for PEN syntax. (objective-name
 = text / [pen, text] ; pen = uint)

 RESOLVED: See issue 29.

 o 37. Are URI locators really needed?

https://datatracker.ietf.org/doc/html/draft-liu-anima-grasp-distribution

Bormann, et al. Expires October 1, 2017 [Page 61]

Internet-Draft GRASP March 2017

 RESOLVED: Yes, e.g. for security bootstrap discovery, but added
 note that addresses are the normal case (same for FQDN locators).

 o 38. Is Session ID sufficient to identify relayed responses?
 Isn't the originator's address needed too?

 RESOLVED: Yes, this is needed for multicast messages and their
 responses.

 o 39. Clarify that a node will contain one GRASP instance
 supporting multiple ASAs.

 RESOLVED: Done.

 o 40. Add a "reason" code to the DECLINE option?

 RESOLVED: Done.

 o 41. What happens if an ASA cannot conveniently use one of the
 GRASP mechanisms? Do we (a) add a message type to GRASP, or (b)
 simply pass the discovery results to the ASA so that it can open
 its own socket?

 RESOLVED: Both would be possible, but (b) is preferred.

 o 42. Do we need a feature whereby an ASA can bypass the ACP and
 use the data plane for efficiency/throughput? This would require
 discovery to return non-ACP addresses and would evade ACP
 security.

 RESOLVED: This is considered out of scope for GRASP, but a comment
 has been added in security considerations.

 o 43. Rapid mode synchronization and negotiation is currently
 limited to a single objective for simplicity of design and
 implementation. A future consideration is to allow multiple
 objectives in rapid mode for greater efficiency.

 RESOLVED: This is considered out of scope for this version.

 o 44. In requirement T9, the words that encryption "may not be
 required in all deployments" were removed. Is that OK?.

 RESOLVED: No objections.

 o 45. Device Identity Option is unused. Can we remove it
 completely?.

Bormann, et al. Expires October 1, 2017 [Page 62]

Internet-Draft GRASP March 2017

 RESOLVED: No objections. Done.

 o 46. The 'initiator' field in DISCOVER, RESPONSE and FLOOD
 messages is intended to assist in loop prevention. However, we
 also have the loop count for that. Also, if we create a new
 Session ID each time a DISCOVER or FLOOD is relayed, that ID can
 be disambiguated by recipients. It would be simpler to remove the
 initiator from the messages, making parsing more uniform. Is that
 OK?

 RESOLVED: Yes. Done.

 o 47. REQUEST is a dual purpose message (request negotiation or
 request synchronization). Would it be better to split this into
 two different messages (and adjust various message names
 accordingly)?

 RESOLVED: Yes. Done.

 o 48. Should the Appendix "Capability Analysis of Current
 Protocols" be deleted before RFC publication?

 RESOLVED: No (per WG meeting at IETF 96).

 o 49. Section 3.5.1 Should say more about signaling between two
 autonomic networks/domains.

 RESOLVED: Description of separate GRASP instance added.

 o 50. Is Rapid mode limited to on-link only? What happens if first
 discovery responder does not support Rapid Mode? Section 3.5.5,

Section 3.5.6)

 RESOLVED: Not limited to on-link. First responder wins.

 o 51. Should flooded objectives have a time-to-live before they are
 deleted from the flood cache? And should they be tagged in the
 cache with their source locator?

 RESOLVED: TTL added to Flood (and Discovery Response) messages.
 Cached flooded objectives must be tagged with their originating
 ASA locator, and multiple copies must be kept if necessary.

 o 52. Describe in detail what is allowed and disallowed in an
 insecure instance of GRASP.

 RESOLVED: Done.

Bormann, et al. Expires October 1, 2017 [Page 63]

Internet-Draft GRASP March 2017

 o 53. Tune IANA Considerations to support early assignment request.

 o 54. Is there a highly unlikely race condition if two peers
 simultaneously choose the same Session ID and send each other
 simultaneous M_REQ_NEG messages?

 RESOLVED: Yes. Enhanced text on Session ID generation, and added
 precaution when receiving a Request message.

 o 55. Could discovery be performed over TCP?

 RESOLVED: Unicast discovery added as an option.

 o 56. Change Session-ID to 32 bits?

 RESOLVED: Done.

 o 57. Add M_INVALID message?

 RESOLVED: Done.

 o 58. Maximum message size?

 RESOLVED by specifying default maximum message size (2048 bytes).

 o 59. Add F_NEG_DRY flag to specify a "dry run" objective?.

 RESOLVED: Done.

 o 60. Change M_FLOOD syntax to associate a locator with each
 objective?

 RESOLVED: Done.

 o 61. Is the SONN constrained instance really needed?

 RESOLVED: Retained but only as an option.

 o 62. Is it helpful to tag descriptive text with message names
 (M_DISCOVER etc.)?

 RESOLVED: Yes, done in various parts of the text.

 o 63. Should encryption be MUST instead of SHOULD in Section 3.5.1
 and Section 3.5.2.1?

 RESOLVED: Yes, MUST implement in both cases.

Bormann, et al. Expires October 1, 2017 [Page 64]

Internet-Draft GRASP March 2017

 o 64. Should more security text be moved from the main text into
 the Security Considerations?

 RESOLVED: No, on AD advice.

 o 65. Do we need to formally restrict Unicode characters allowed in
 objective names?

 RESOLVED: No, but need to point to guidance from PRECIS WG.

 o 66. Split requirements into separate document?

 RESOLVED: No, on AD advice.

 o 67. Remove normative dependency on draft-greevenbosch-appsawg-
cbor-cddl?

 RESOLVED: No, on AD advice. In worst case, fix at AUTH48.

Appendix C. Change log [RFC Editor: Please remove]

draft-ietf-anima-grasp-11, 2017-03-30:

 Updates following IETF 98 discussion:

 Encryption changed to a MUST implement.

 Pointed to guidance on UTF-8 names.

draft-ietf-anima-grasp-10, 2017-03-10:

 Updates following IETF Last call:

 Protocol change: Specify that an objective with no initial value
 should have its value field set to CBOR 'null'.

 Protocol change: Specify behavior on receiving unrecognized message
 type.

 Noted that UTF-8 names are matched byte-for-byte.

 Added brief guidance for Expert Reviewer of new generic objectives.

 Numerous editorial improvements and clarifications and minor text
 rearrangements, none intended to change the meaning.

draft-ietf-anima-grasp-09, 2016-12-15:

https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl
https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-11
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-10
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-09

Bormann, et al. Expires October 1, 2017 [Page 65]

Internet-Draft GRASP March 2017

 Protocol change: Add F_NEG_DRY flag to specify a "dry run" objective.

 Protocol change: Change M_FLOOD syntax to associate a locator with
 each objective.

 Concentrated mentions of TLS in one section, with all details out of
 scope.

 Clarified text around constrained instances of GRASP.

 Strengthened text restricting LL addresses in locator options.

 Clarified description of rapid mode processsing.

 Specified that cached discovery results should not be returned on the
 same interface where they were learned.

 Shortened text in "High Level Design Choices"

 Dropped the word 'kernel' to avoid confusion with o/s kernel mode.

 Editorial improvements and clarifications.

draft-ietf-anima-grasp-08, 2016-10-30:

 Protocol change: Added M_INVALID message.

 Protocol change: Increased Session ID space to 32 bits.

 Enhanced rules to avoid Session ID clashes.

 Corrected and completed description of timeouts for Request messages.

 Improved wording about exponential backoff and DoS.

 Clarified that discovery relaying is not done by limited security
 instances.

 Corrected and expanded explanation of port used for Discovery
 Response.

 Noted that Discovery message could be sent unicast in special cases.

 Added paragraph on extensibility.

 Specified default maximum message size.

 Added Appendix for sample messages.

https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-08

Bormann, et al. Expires October 1, 2017 [Page 66]

Internet-Draft GRASP March 2017

 Added short protocol overview.

 Editorial fixes, including minor re-ordering for readability.

draft-ietf-anima-grasp-07, 2016-09-13:

 Protocol change: Added TTL field to Flood message (issue 51).

 Protocol change: Added Locator option to Flood message (issue 51).

 Protocol change: Added TTL field to Discovery Response message
 (corrollary to issue 51).

 Clarified details of rapid mode (issues 43 and 50).

 Description of inter-domain GRASP instance added (issue 49).

 Description of limited security GRASP instances added (issue 52).

 Strengthened advice to use TCP rather than UDP.

 Updated IANA considerations and text about well-known port usage
 (issue 53).

 Amended text about ASA authorization and roles to allow for
 overlapping ASAs.

 Added text recommending that Flood should be repeated periodically.

 Editorial fixes.

draft-ietf-anima-grasp-06, 2016-06-27:

 Added text on discovery cache timeouts.

 Noted that ASAs that are only initiators do not need to respond to
 discovery message.

 Added text on unexpected address changes.

 Added text on robust implementation.

 Clarifications and editorial fixes for numerous review comments

 Added open issues for some review comments.

draft-ietf-anima-grasp-05, 2016-05-13:

https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-07
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-06
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-05

Bormann, et al. Expires October 1, 2017 [Page 67]

Internet-Draft GRASP March 2017

 Noted in requirement T1 that it should be possible to implement ASAs
 independently as user space programs.

 Protocol change: Added protocol number and port to discovery
 response. Updated protocol description, CDDL and IANA considerations
 accordingly.

 Clarified that discovery and flood multicasts are handled by the
 GRASP core, not directly by ASAs.

 Clarified that a node may discover an objective without supporting it
 for synchronization or negotiation.

 Added Implementation Status section.

 Added reference to SCSP.

 Editorial fixes.

draft-ietf-anima-grasp-04, 2016-03-11:

 Protocol change: Restored initiator field in certain messages and
 adjusted relaying rules to provide complete loop detection.

 Updated IANA Considerations.

draft-ietf-anima-grasp-03, 2016-02-24:

 Protocol change: Removed initiator field from certain messages and
 adjusted relaying requirement to simplify loop detection. Also
 clarified narrative explanation of discovery relaying.

 Protocol change: Split Request message into two (Request Negotiation
 and Request Synchronization) and updated other message names for
 clarity.

 Protocol change: Dropped unused Device ID option.

 Further clarified text on transport layer usage.

 New text about multicast insecurity in Security Considerations.

 Various other clarifications and editorial fixes, including moving
 some material to Appendix.

draft-ietf-anima-grasp-02, 2016-01-13:

 Resolved numerous issues according to WG discussions.

https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-04
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-03
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-02

Bormann, et al. Expires October 1, 2017 [Page 68]

Internet-Draft GRASP March 2017

 Renumbered requirements, added D9.

 Protocol change: only allow one objective in rapid mode.

 Protocol change: added optional error string to DECLINE option.

 Protocol change: removed statement that seemed to say that a Request
 not preceded by a Discovery should cause a Discovery response. That
 made no sense, because there is no way the initiator would know where
 to send the Request.

 Protocol change: Removed PEN option from vendor objectives, changed
 naming rule accordingly.

 Protocol change: Added FLOOD message to simplify coding.

 Protocol change: Added SYNCH message to simplify coding.

 Protocol change: Added initiator id to DISCOVER, RESPONSE and FLOOD
 messages. But also allowed the relay process for DISCOVER and FLOOD
 to regenerate a Session ID.

 Protocol change: Require that discovered addresses must be global
 (except during bootstrap).

 Protocol change: Receiver of REQUEST message must close socket if no
 ASA is listening for the objective.

 Protocol change: Simplified Waiting message.

 Protocol change: Added No Operation message.

 Renamed URL locator type as URI locator type.

 Updated CDDL definition.

 Various other clarifications and editorial fixes.

draft-ietf-anima-grasp-01, 2015-10-09:

 Updated requirements after list discussion.

 Changed from TLV to CBOR format - many detailed changes, added co-
 author.

 Tightened up loop count and timeouts for various cases.

 Noted that GRASP does not provide transactional integrity.

https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-01

Bormann, et al. Expires October 1, 2017 [Page 69]

Internet-Draft GRASP March 2017

 Various other clarifications and editorial fixes.

draft-ietf-anima-grasp-00, 2015-08-14:

 File name and protocol name changed following WG adoption.

 Added URL locator type.

draft-carpenter-anima-gdn-protocol-04, 2015-06-21:

 Tuned wording around hierarchical structure.

 Changed "device" to "ASA" in many places.

 Reformulated requirements to be clear that the ASA is the main
 customer for signaling.

 Added requirement for flooding unsolicited synch, and added it to
 protocol spec. Recognized DNCP as alternative for flooding synch
 data.

 Requirements clarified, expanded and rearranged following design team
 discussion.

 Clarified that GDNP discovery must not be a prerequisite for GDNP
 negotiation or synchronization (resolved issue 13).

 Specified flag bits for objective options (resolved issue 15).

 Clarified usage of ACP vs TLS/DTLS and TCP vs UDP (resolved issues
 9,10,11).

 Updated DNCP description from latest DNCP draft.

 Editorial improvements.

draft-carpenter-anima-gdn-protocol-03, 2015-04-20:

 Removed intrinsic security, required external security

 Format changes to allow DNCP co-existence

 Recognized DNS-SD as alternative discovery method.

 Editorial improvements

draft-carpenter-anima-gdn-protocol-02, 2015-02-19:

https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-00
https://datatracker.ietf.org/doc/html/draft-carpenter-anima-gdn-protocol-04
https://datatracker.ietf.org/doc/html/draft-carpenter-anima-gdn-protocol-03
https://datatracker.ietf.org/doc/html/draft-carpenter-anima-gdn-protocol-02

Bormann, et al. Expires October 1, 2017 [Page 70]

Internet-Draft GRASP March 2017

 Tuned requirements to clarify scope,

 Clarified relationship between types of objective,

 Clarified that objectives may be simple values or complex data
 structures,

 Improved description of objective options,

 Added loop-avoidance mechanisms (loop count and default timeout,
 limitations on discovery relaying and on unsolicited responses),

 Allow multiple discovery objectives in one response,

 Provided for missing or multiple discovery responses,

 Indicated how modes such as "dry run" should be supported,

 Minor editorial and technical corrections and clarifications,

 Reorganized future work list.

draft-carpenter-anima-gdn-protocol-01, restructured the logical flow
 of the document, updated to describe synchronization completely, add
 unsolicited responses, numerous corrections and clarifications,
 expanded future work list, 2015-01-06.

draft-carpenter-anima-gdn-protocol-00, combination of draft-jiang-
config-negotiation-ps-03 and draft-jiang-config-negotiation-protocol-
02, 2014-10-08.

Appendix D. Example Message Formats

 For readers unfamiliar with CBOR, this appendix shows a number of
 example GRASP messages conforming to the CDDL syntax given in

Section 6. Each message is shown three times in the following
 formats:

 1. CBOR diagnostic notation.

 2. Similar, but showing the names of the constants. (Details of the
 flag bit encoding are omitted.)

 3. Hexadecimal version of the CBOR wire format.

 Long lines are split for display purposes only.

https://datatracker.ietf.org/doc/html/draft-carpenter-anima-gdn-protocol-01
https://datatracker.ietf.org/doc/html/draft-carpenter-anima-gdn-protocol-00
https://datatracker.ietf.org/doc/html/draft-jiang-config-negotiation-ps-03
https://datatracker.ietf.org/doc/html/draft-jiang-config-negotiation-ps-03
https://datatracker.ietf.org/doc/html/draft-jiang-config-negotiation-protocol-02
https://datatracker.ietf.org/doc/html/draft-jiang-config-negotiation-protocol-02

Bormann, et al. Expires October 1, 2017 [Page 71]

Internet-Draft GRASP March 2017

D.1. Discovery Example

 The initiator (2001:db8:f000:baaa:28cc:dc4c:9703:6781) multicasts a
 discovery message looking for objective EX1:

 [1, 13948744, h'20010db8f000baaa28ccdc4c97036781', ["EX1", 5, 2, 0]]
 [M_DISCOVERY, 13948744, h'20010db8f000baaa28ccdc4c97036781',
 ["EX1", F_SYNCH_bits, 2, 0]]
 h'84011a00d4d7485020010db8f000baaa28ccdc4c970367818463455831050200'

 A peer (2001:0db8:f000:baaa:f000:baaa:f000:baaa) responds with a
 locator:

 [2, 13948744, h'20010db8f000baaa28ccdc4c97036781', 60000,
 [103, h'20010db8f000baaaf000baaaf000baaa', 6, 49443]]
 [M_RESPONSE, 13948744, h'20010db8f000baaa28ccdc4c97036781', 60000,
 [O_IPv6_LOCATOR, h'20010db8f000baaaf000baaaf000baaa',
 IPPROTO_TCP, 49443]]
 h'85021a00d4d7485020010db8f000baaa28ccdc4c9703678119ea6084186750
 20010db8f000baaaf000baaaf000baaa0619c123'

D.2. Flood Example

 The initiator multicasts a flood message. The single objective has a
 null locator. There is no response:

[9, 3504974, h'20010db8f000baaa28ccdc4c97036781', 10000,
 [["EX1", 5, 2, ["Example 1 value=", 100]],[]]]
[M_FLOOD, 3504974, h'20010db8f000baaa28ccdc4c97036781', 10000,
 [["EX1", F_SYNCH_bits, 2, ["Example 1 value=", 100]],[]]]
h'86091a00357b4e5020010db8f000baaa28ccdc4c97036781192710
 828463455831050282704578616d706c6520312076616c75653d186480'

D.3. Synchronization Example

 Following successful discovery of objective EX2, the initiator
 unicasts a request:

 [4, 4038926, ["EX2", 5, 5, 0]]
 [M_REQ_SYN, 4038926, ["EX2", F_SYNCH_bits, 5, 0]]
 h'83041a003da10e8463455832050500'

 The peer responds with a value:

 [8, 4038926, ["EX2", 5, 5, ["Example 2 value=", 200]]]
 [M_SYNCH, 4038926, ["EX2", F_SYNCH_bits, 5, ["Example 2 value=", 200]]]
 h'83081a003da10e8463455832050582704578616d706c6520322076616c75653d18c8'

Bormann, et al. Expires October 1, 2017 [Page 72]

Internet-Draft GRASP March 2017

D.4. Simple Negotiation Example

 Following successful discovery of objective EX3, the initiator
 unicasts a request:

 [3, 802813, ["EX3", 3, 6, ["NZD", 47]]]
 [M_REQ_NEG, 802813, ["EX3", F_NEG_bits, 6, ["NZD", 47]]]
 h'83031a000c3ffd8463455833030682634e5a44182f'

 The peer responds with immediate acceptance. Note that no objective
 is needed, because the initiator's request was accepted without
 change:

 [6, 802813, [101]]
 [M_END , 802813, [O_ACCEPT]]
 h'83061a000c3ffd811865'

D.5. Complete Negotiation Example

 Again the initiator unicasts a request:

 [3, 13767778, ["EX3", 3, 6, ["NZD", 410]]]
 [M_REQ_NEG, 13767778, ["EX3", F_NEG_bits, 6, ["NZD", 410]]]
 h'83031a00d214628463455833030682634e5a4419019a'

 The responder starts to negotiate (making an offer):

 [5, 13767778, ["EX3", 3, 6, ["NZD", 80]]]
 [M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 6, ["NZD", 80]]]
 h'83051a00d214628463455833030682634e5a441850'

 The initiator continues to negotiate (reducing its request, and note
 that the loop count is decremented):

 [5, 13767778, ["EX3", 3, 5, ["NZD", 307]]]
 [M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 5, ["NZD", 307]]]
 h'83051a00d214628463455833030582634e5a44190133'

 The responder asks for more time:

 [7, 13767778, 34965]
 [M_WAIT, 13767778, 34965]
 h'83071a00d21462198895'

 The responder continues to negotiate (increasing its offer):

Bormann, et al. Expires October 1, 2017 [Page 73]

Internet-Draft GRASP March 2017

 [5, 13767778, ["EX3", 3, 4, ["NZD", 120]]]
 [M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 4, ["NZD", 120]]]
 h'83051a00d214628463455833030482634e5a441878'

 The initiator continues to negotiate (reducing its request):

 [5, 13767778, ["EX3", 3, 3, ["NZD", 246]]]
 [M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 3, ["NZD", 246]]]
 h'83051a00d214628463455833030382634e5a4418f6'

 The responder refuses to negotiate further:

 [6, 13767778, [102, "Insufficient funds"]]
 [M_END , 13767778, [O_DECLINE, "Insufficient funds"]]
 h'83061a00d2146282186672496e73756666696369656e742066756e6473'

 This negotiation has failed. If either side had sent [M_END,
 13767778, [O_ACCEPT]] it would have succeeded, converging on the
 objective value in the preceding M_NEGOTIATE. Note that apart from
 the initial M_REQ_NEG, the process is symmetrical.

Appendix E. Capability Analysis of Current Protocols

 This appendix discusses various existing protocols with properties
 related to the requirements described in Section 2. The purpose is
 to evaluate whether any existing protocol, or a simple combination of
 existing protocols, can meet those requirements.

 Numerous protocols include some form of discovery, but these all
 appear to be very specific in their applicability. Service Location
 Protocol (SLP) [RFC2608] provides service discovery for managed
 networks, but requires configuration of its own servers. DNS-SD
 [RFC6763] combined with mDNS [RFC6762] provides service discovery for
 small networks with a single link layer. [RFC7558] aims to extend
 this to larger autonomous networks but this is not yet standardized.
 However, both SLP and DNS-SD appear to target primarily application
 layer services, not the layer 2 and 3 objectives relevant to basic
 network configuration. Both SLP and DNS-SD are text-based protocols.

 Routing protocols are mainly one-way information announcements. The
 receiver makes independent decisions based on the received
 information and there is no direct feedback information to the
 announcing peer. This remains true even though the protocol is used
 in both directions between peer routers; there is state
 synchronization, but no negotiation, and each peer runs its route
 calculations independently.

https://datatracker.ietf.org/doc/html/rfc2608
https://datatracker.ietf.org/doc/html/rfc6763
https://datatracker.ietf.org/doc/html/rfc6762
https://datatracker.ietf.org/doc/html/rfc7558

Bormann, et al. Expires October 1, 2017 [Page 74]

Internet-Draft GRASP March 2017

 Simple Network Management Protocol (SNMP) [RFC3416] uses a command/
 response model not well suited for peer negotiation. Network
 Configuration Protocol (NETCONF) [RFC6241] uses an RPC model that
 does allow positive or negative responses from the target system, but
 this is still not adequate for negotiation.

 There are various existing protocols that have elementary negotiation
 abilities, such as Dynamic Host Configuration Protocol for IPv6
 (DHCPv6) [RFC3315], Neighbor Discovery (ND) [RFC4861], Port Control
 Protocol (PCP) [RFC6887], Remote Authentication Dial In User Service
 (RADIUS) [RFC2865], Diameter [RFC6733], etc. Most of them are
 configuration or management protocols. However, they either provide
 only a simple request/response model in a master/slave context or
 very limited negotiation abilities.

 There are some signaling protocols with an element of negotiation.
 For example Resource ReSerVation Protocol (RSVP) [RFC2205] was
 designed for negotiating quality of service parameters along the path
 of a unicast or multicast flow. RSVP is a very specialised protocol
 aimed at end-to-end flows. However, it has some flexibility, having
 been extended for MPLS label distribution [RFC3209]. A more generic
 design is General Internet Signalling Transport (GIST) [RFC5971], but
 it is complex, tries to solve many problems, and is also aimed at
 per-flow signaling across many hops rather than at device-to-device
 signaling. However, we cannot completely exclude extended RSVP or
 GIST as a synchronization and negotiation protocol. They do not
 appear to be directly useable for peer discovery.

 RESTCONF [RFC8040] is a protocol intended to convey NETCONF
 information expressed in the YANG language via HTTP, including the
 ability to transit HTML intermediaries. While this is a powerful
 approach in the context of centralised configuration of a complex
 network, it is not well adapted to efficient interactive negotiation
 between peer devices, especially simple ones that might not include
 YANG processing already.

 The Distributed Node Consensus Protocol (DNCP) [RFC7787] is defined
 as a generic form of state synchronization protocol, with a proposed
 usage profile being the Home Networking Control Protocol (HNCP)
 [RFC7788] for configuring Homenet routers. A specific application of
 DNCP for autonomic networking was proposed in
 [I-D.stenberg-anima-adncp].

 DNCP "is designed to provide a way for each participating node to
 publish a set of TLV (Type-Length-Value) tuples, and to provide a
 shared and common view about the data published... DNCP is most
 suitable for data that changes only infrequently... If constant rapid

https://datatracker.ietf.org/doc/html/rfc3416
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc6887
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc6733
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc3209
https://datatracker.ietf.org/doc/html/rfc5971
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/rfc7787
https://datatracker.ietf.org/doc/html/rfc7788

Bormann, et al. Expires October 1, 2017 [Page 75]

Internet-Draft GRASP March 2017

 state changes are needed, the preferable choice is to use an
 additional point-to-point channel..."

 Specific features of DNCP include:

 o Every participating node has a unique node identifier.

 o DNCP messages are encoded as a sequence of TLV objects, sent over
 unicast UDP or TCP, with or without (D)TLS security.

 o Multicast is used only for discovery of DNCP neighbors when lower
 security is acceptable.

 o Synchronization of state is maintained by a flooding process using
 the Trickle algorithm. There is no bilateral synchronization or
 negotiation capability.

 o The HNCP profile of DNCP is designed to operate between directly
 connected neighbors on a shared link using UDP and link-local IPv6
 addresses.

 DNCP does not meet the needs of a general negotiation protocol,
 because it is designed specifically for flooding synchronization.
 Also, in its HNCP profile it is limited to link-local messages and to
 IPv6. However, at the minimum it is a very interesting test case for
 this style of interaction between devices without needing a central
 authority, and it is a proven method of network-wide state
 synchronization by flooding.

 The Server Cache Synchronization Protocol (SCSP) [RFC2334] also
 describes a method for cache synchronization and cache replication
 among a group of nodes.

 A proposal was made some years ago for an IP based Generic Control
 Protocol (IGCP) [I-D.chaparadza-intarea-igcp]. This was aimed at
 information exchange and negotiation but not directly at peer
 discovery. However, it has many points in common with the present
 work.

 None of the above solutions appears to completely meet the needs of
 generic discovery, state synchronization and negotiation in a single
 solution. Many of the protocols assume that they are working in a
 traditional top-down or north-south scenario, rather than a fluid
 peer-to-peer scenario. Most of them are specialized in one way or
 another. As a result, we have not identified a combination of
 existing protocols that meets the requirements in Section 2. Also,
 we have not identified a path by which one of the existing protocols
 could be extended to meet the requirements.

https://datatracker.ietf.org/doc/html/rfc2334

Bormann, et al. Expires October 1, 2017 [Page 76]

Internet-Draft GRASP March 2017

Authors' Addresses

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 D-28359 Bremen
 Germany

 Email: cabo@tzi.org

 Brian Carpenter (editor)
 Department of Computer Science
 University of Auckland
 PB 92019
 Auckland 1142
 New Zealand

 Email: brian.e.carpenter@gmail.com

 Bing Liu (editor)
 Huawei Technologies Co., Ltd
 Q14, Huawei Campus
 No.156 Beiqing Road
 Hai-Dian District, Beijing 100095
 P.R. China

 Email: leo.liubing@huawei.com

Bormann, et al. Expires October 1, 2017 [Page 77]

