
Network Working Group B. Liu (Ed.)
Internet-Draft Huawei Technologies
Intended status: Standards Track X. Xiao (Ed.)
Expires: March 5, 2021 A. Hecker
 MRC, Huawei Technologies
 S. Jiang
 Huawei Technologies
 Z. Despotovic
 MRC, Huawei Technologies
 B. Carpenter
 Univ. of Auckland
 September 1, 2020

Information Distribution over GRASP
draft-ietf-anima-grasp-distribution-01

Abstract

 This document proposes a solution for information distribution in the
 autonomic network infrastructure (ANI). Information distribution is
 categorized into two different modes: 1) instantaneous distribution
 and 2) publication for retrieval. In the former case, the
 information is sent, propagated and disposed of after reception. In
 the latter case, information needs to be stored in the network.

 The capability to distribute information is a basic and fundamental
 need for an autonomous network ([RFC7575]). This document describes
 typical use cases of information distribution in ANI and requirements
 to ANI, such that rich information distribution can be natively
 supported. The document proposes extensions to the autonomic nodes
 and suggests an implementation based on GRASP
 ([I-D.ietf-anima-grasp]) extensions as a protocol on the wire.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Liu (Ed.), et al. Expires March 5, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7575
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Information Distribution September 2020

 This Internet-Draft will expire on March 5, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Requirements for Information Distribution in ANI 4
4. Node Behaviors . 7
4.1. Instant Information Distribution (IID) Sub-module 7
4.1.1. Instant P2P Communication 7
4.1.2. Instant Flooding Communication 7

 4.2. Asynchronous Information Distribution (AID) Sub-module . 8
4.2.1. Information Storage 9
4.2.2. Event Queue . 11

4.3. Bulk Information Transfer 12
4.4. Summary . 14

5. Extending GRASP for Information Distribution 15
 5.1. New M_UNSOLIDSYNCH message for Instant P2P Transmission . 15

5.2. New O_SELECTIVE_FLOOD option for Selective Flooding . . . 15
5.3. New O_SUBSCRIPTION Objective Option 16
5.4. New O_UNSUBSCRIBE Objective Option 16
5.5. New O_PULISH Objective Option 16

6. Security Considerations 17
7. IANA Considerations . 17
8. Acknowledgements . 17
9. References . 17
9.1. Normative References 17
9.2. Informative References 18

Appendix A. Open Issues [RFC Editor: To Be removed before
 becoming RFC] 19

Appendix B. Closed Issues [RFC Editor: To Be removed before
 becoming RFC] 20

Appendix C. Change log [RFC Editor: To Be removed before

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Liu (Ed.), et al. Expires March 5, 2021 [Page 2]

Internet-Draft Information Distribution September 2020

 becoming RFC] 20
Appendix D. Implementation Examples and Considerations 20
D.1. GRASP Bulk Transport 20
D.2. Asynchronous ID Integrated with GRASP APIs 23

Appendix E. Real-world Use Cases of Information Distribution . . 23
E.1. Pub/Sub in 3GPP 5G Networks 24
E.2. Event Queue/Storage in Vehicle-to-Everything (V2X) . . . 25
E.3. Selective Flooding 25
E.4. Summary . 27

Appendix F. Information Distribution Module in ANI 27
 Authors' Addresses . 28

1. Introduction

 In an autonomic network, autonomic functions (AFs) running on
 autonomic nodes constantly exchange information, e.g. AF control/
 management signaling or AF data exchange. This document discusses
 the information distribution capability of such exchanges between
 AFs.

 Depending on the number of participants, the information can be
 distributed in in the following scenarios:

 1) Point-to-point (P2P) Communication: information is exchanged
 between parties, i.e. two nodes.

 2) One-to-Many Communication: information exchanges involve an
 information source and multiple receivers.

 The approaches to infrmation distribution can be mainly categorized
 into two basic modes:

 1) An instantaneous mode (push): a source sends the actual content
 (e.g. control/management signaling, synchronization data and so
 on) to all interested receiver(s) immediately. Generally, some
 preconfiguration is required, as nodes interested in this
 information must be already known to all nodes in the sense that
 any receiving node must be able to decide, to which nodes this
 data is to be sent.

 2) An asynchronous mode (delayed pull): here, a source publishes the
 content in some form in the network, which may later be looked
 for, found and retrieved by some endpoints in the AN. Here,
 depending on the size of the content, either the whole content or
 only its metadata might be published into the AN. In the latter
 case the metadata (e.g. a content descriptor, e.g. a key, and a
 location in the ANI) may be used for the actual retrieval.
 Importantly, the source, i.e. here publisher, needs to be able to

Liu (Ed.), et al. Expires March 5, 2021 [Page 3]

Internet-Draft Information Distribution September 2020

 determine the node, where the information (or its metadata) can be
 stored.

 Note that in both cases, the total size of transferred information
 can be larger than the payload size of a single GRASP message fitted
 in one Synchronization and Flood message. In this situation, this
 document also considers a case of bulk data transfer. To avoid
 repetitive implementations by each AF developer, this document opts
 for a common support for information distribution implemented as a
 basic ANI capability, therefore available to all AFs. In fact, GRASP
 already provides part of the capabilities.

 Regardless, an AF may still define and implement its own information
 distribution capability. Such a capability may then be advertised
 using the common information distribution capability defined in this
 document. Overall, ANI nodes and AFs may decide, which of the
 information distribution mechanisms they want to use for which type
 of information, according to their own preferences (e.g. semantic
 routing table, etc.)

 This document first analyzes requirements for information
 distribution in autonomic networks (Section 3) and then discuss the
 relevant node behavior (Section 4). After that, the required GRASP
 extensions are formally introduced (Section 5).

 and relevan

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Requirements for Information Distribution in ANI

 The question of information distribution in an autonomic network can
 be discussed through particular use cases or more generally.
 Depending on the situation it can be quite simple or might require
 more complex provisions.

 Indeed, in the most general case, the information can be sent:

 1) at once (in one or multiple packets, in one flow),

 2) straightaway (send-and-forget),

 3) to all nodes.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Liu (Ed.), et al. Expires March 5, 2021 [Page 4]

Internet-Draft Information Distribution September 2020

 For the first scenario, presuming 1), 2) and 3) hold, information
 distribution in smaller or scarce topologies can be implemented using
 broadcast, i.e. unconstrained flooding. For reasons well-understood,
 this approach has its limits in larger and denser networks. In this
 case, a graph can be constructed such that it contains every node
 exactly once (e.g. a spanning tree), still allowing to distribute any
 information to all nodes straightaway. Multicast tree construction
 protocols could be used in this case. There are reasonable use cases
 for such scenarios, as presented in Appendix E.

 Secondly, a more complex scenario arises, if only 1) and 2) hold, but
 the information only concerns a subset of nodes. Then, some kinds of
 selection become required, to which nodes the given information
 should be distributed. Here, a further distinction is necessary;
 notably, if the selection of the target nodes is with respect to the
 nature or position of the node, or whether it is with respect to the
 information content. If the first, some knowledge about the node
 types, its topological position, etc (e.g. the routing information
 within ANI) can be used to distinguish nodes accordingly. For
 instance, edge nodes and forwarding nodes can be distinguished in
 this way. If the distribution scope is primarily to be defined by
 the information elements, then a registration / join / subscription
 or label distribution mechanism is unavoidable. This would be the
 case, for instance, if the AFs can be dynamically deployed on nodes,
 and the information is majorily destined to the AFs. Then, depending
 on the current AF deployment, the distribution scope must be adjusted
 as well.

 Thirdly, if only 1) holds, but the information content might be
 required again and again, or might not yet be fully available, then
 more complex mechanisms might be required to store the information
 within the network for later, for further redistribution, and for
 notification of interested nodes. Examples for this include
 distribution of reconfiguration information for different AF
 instances, which might not require an immediate action, but only an
 eventual update of the parameters. Also, in some situations, there
 could be a significant delay between the occurrence of a new event
 and the full content availability (e.g. if the processing requires a
 lot of time).

 Finally, none of the three might hold. Then, along with the
 subscription and notification, the actual content might be different
 from its metadata, i.e. some descriptions of the content and,
 possibly, its location. The fetching can then be implemented in
 different, appropriate ways, if necessary as a complex transport
 session.

Liu (Ed.), et al. Expires March 5, 2021 [Page 5]

Internet-Draft Information Distribution September 2020

 In essence, as flooding is usually not an option, and the interest of
 nodes for particular information elements can change over time, ANI
 should support autonomics also for the information distribution.

 This calls for autonomic mechanisms in the ANI, allowing
 participating nodes to 1) advertise/publish, 2) look for/subscribe to
 3) store, 4) fetch/retrieve and 5) instantaneously push data
 information.

 In the following cases, situations depicting complicated ways of
 information distribution are discussed.

 1) Long Communication Intervals. The actual sending of the
 information is not necessarily instantaneous with some events.
 Sophisticated AFs may involve into longer jobs/tasks (e.g.
 database lookup, validations, etc.) when processing requests, and
 might not be able to reply immediately. Instead of actively
 waiting for the reply, a better way for an interested AF might be
 to get notified, when the reply is finally available.

 2) Common Interest Distribution. AFs may share information that is a
 common interest. For example, the network intent will be
 distributed to network nodes enrolled, which is usually one-to-
 many scenario. Intent distribution can also be performed by an
 instant flooding (e.g. via GRASP) to every network node. However,
 because of network changes, not every node can be just ready at
 the moment when the network intent is broadcast. Also, a flooding
 often does not cover all network nodes as there is usually a
 limitation on the hop number. In fact, nodes may join in the
 network sequentially. In this situation, an asynchronous
 communication model could be a better choice where every (newly
 joining) node can subscribe the intent information and will get
 notified if it is ready (or updated).

 3) Distributed Coordination. With computing and storage resources on
 autonomic nodes, alive AFs not only consume but also generate data
 information. An example is AFs coordinating with each other as
 distributed schedulers, responding to service requests and
 distributing tasks. It is critical for those AFs to make correct
 decisions based on local information, which might be asymmetric as
 well. AFs may also need synthetic/aggregated data information
 (e.g. statistic info, like average values of several AFs, etc.)
 to make decisions. In these situations, AFs will need an
 efficient way to form a global view of the network (e.g. about
 resource consumption, bandwidth and statistics). Obviously,
 purely relying on instant communication model is inefficient,
 while a scalable, common, yet distributed data layer, on which AFs

Liu (Ed.), et al. Expires March 5, 2021 [Page 6]

Internet-Draft Information Distribution September 2020

 can store and share information in an asynchronous way, should be
 a better choice.

 Therefore, for ANI, in order to support various communication
 scenarios, an information distribution module is required, and both
 instantaneous and asynchronous communication models should be
 supported. Some real-world use cases are introduced in Appendix E.

4. Node Behaviors

 In this section, how a node should behave in order to support the two
 identified modes of information distribution is discussed. An ANI is
 a distributed system, so the information distribution module must be
 implemented in a distributed way as well.

4.1. Instant Information Distribution (IID) Sub-module

 In this case, an information sender directly specifies the
 information receiver(s). The instant information distribution sub-
 module will be the main element.

4.1.1. Instant P2P Communication

 IID sub-module performs instant information transmission for ASAs
 running in an ANI. In specific, IID sub-module will have to retrieve
 the address of the information receiver specified by an ASA, then
 deliver the information to the receiver. Such a delivery can be done
 either in a connectionless or a connection-oriented way.

 Current GRASP provides the capability to support instant P2P
 synchronization for ASAs. A P2P synchronization is a use case of P2P
 information transmission. However, as mentioned in Section 3, there
 are some scenarios where one node needs to transmit some information
 to another node(s). This is different to synchronization because
 after transmitting the information, the local status of the
 information does not have to be the same as the information sent to
 the receiver. This is not directly support by existing GRASP.

4.1.2. Instant Flooding Communication

 IID sub-module finishes instant flooding for ASAs in an ANI. Instant
 flooding is for all ASAs in an ANI. An information sender has to
 specify a special destination address of the information and
 broadcast to all interfaces to its neighbors. When another IID sub-
 module receives such a broadcast, after checking its TTL, it further
 broadcast the message to the neighbors. In order to avoid flooding
 storms in an ANI, usually a TTL number is specified, so that after a

Liu (Ed.), et al. Expires March 5, 2021 [Page 7]

Internet-Draft Information Distribution September 2020

 pre-defined limit, the flooding message will not be further broadcast
 again.

 In order to avoid unnecessary flooding, a selective flooding can be
 done where an information sender wants to send information to
 multiple receivers at once. When doing this, sending information
 needs to contain criteria to judge on which interfaces the
 distributed information should and should not be sent. Specifically,
 the criteria contain:

 o Matching Condition: a set of matching rules such as addresses of
 recipients, node features and so on.

 o Matching object: the object that the match condition would be
 applied to. For example, the matching object could be node itself
 or its neighbors.

 o Action: what the node needs to do when the Matching Condition is
 fulfilled. For example, the action could be forwarding or
 discarding the distributed message.

 Sent information must be included in the message distributed from the
 sender. The receiving node reacts by first checking the carried
 Matching Condition in the message to decide who should consume the
 message, which could be either the node itself, some neighbors or
 both. If the node itself is a recipient, Action field is followed;
 if a neighbor is a recipient, the message is sent accordingly.

 An exemplary extension to support selective flooding on GRASP is
 described in Section 5.

4.2. Asynchronous Information Distribution (AID) Sub-module

 In asynchronous information distribution, sender(s) and receiver(s)
 are not immediately specified while they may appear in an
 asynchronous way. Firstly, AID sub-module enables that the
 information can be stored in the network; secondly, AID sub-module
 provides an information publication and subscription (Pub/Sub)
 mechanism for ASAs.

 As sketched in the previous section, in general each node requires
 two modules: 1) Information Storage (IS) module and 2) Event Queue
 (EQ) module in the information distribution module. Details of the
 two modules are described in the following sections.

Liu (Ed.), et al. Expires March 5, 2021 [Page 8]

Internet-Draft Information Distribution September 2020

4.2.1. Information Storage

 IS module handles how to save and retrieve information for ASAs
 across the network. The IS module uses a syntax to index
 information, generating the hash index value (e.g. a hash value) of
 the information and mapping the hash index to a certain node in ANI.
 Note that, this mechanism can use existing solutions. Specifically,
 storing information in an ANIMA network will be realized in the
 following steps.

 1) ASA-to-IS Negotiation. An ASA calls the API provided by
 information distribution module (directly supported by IS sub-
 module) to request to store the information somewhere in the
 network. The IS module performs various checks of the request
 (e.g. permitted information size).

 2) Storing Peer Mapping. The information block will be handled by
 the IS module in order to calculate/map to a peer node in the
 network. Since ANIMA network is a peer-to-peer network, a typical
 way is to use distributed hash table (DHT) to map information to a
 unique index identifier. For example, if the size of the
 information is reasonable, the information block itself can be
 hashed, otherwise, some meta-data of the information block can be
 used to generate the mapping.

 3) Storing Peer Negotiation Request. Negotiation request of storing
 the information will be sent from the IS module to the IS module
 on the destination node. The negotiation request contains
 parameters about the information block from the source IS module.
 According to the parameters as well as the local available
 resource, the requested storing peer will send feedback the source
 IS module.

 4) Storing Peer Negotiation Response. Negotiation response from the
 storing peer is sent back to the source IS module. If the source
 IS module gets confirmation that the information can be stored,
 source IS module will prepare to transfer the information block;
 otherwise, a new storing peer must be discovered (i.e. going to
 step 7).

 5) Information Block Transfer. Before sending the information block
 to the storing peer that already accepts the request, the IS
 module of the source node will check if the information block can
 be afforded by one GRASP message. If so, the information block
 will be directly sent by calling a GRASP API
 ([I-D.ietf-anima-grasp-api]). Otherwise, a bulk data transmission
 is needed. For that, there are multiple ways to do it. The first
 option is to utilize one of existing protocols that is independent

Liu (Ed.), et al. Expires March 5, 2021 [Page 9]

Internet-Draft Information Distribution September 2020

 of the GRASP stack. For example, a session connectivity can be
 established to the storing peer, and over the connection the bulky
 data can be transmitted part by part. In this case, the IS module
 should support basic TCP-based session protocols such as HTTP(s)
 or native TCP. The second option is to directly use GRASP itself
 for bulky data transferring [I-D.carpenter-anima-grasp-bulk].

 6) Information Writing. Once the information block (or a smaller
 block) is received, the IS module of the storing peer will store
 the data block in the local storage is accessible.

 7) (Optional) New Storing Peer Discovery. If the previously selected
 storing peer is not available to store the information block, the
 source IS module will have to identify a new destination node to
 start a new negotiation. In this case, the discovery can be done
 by using discovery GRASP API to identify a new candidate, or more
 complex mechanisms can be introduced.

 Similarly, Getting information from an ANI will be realized in the
 following steps.

 1) ASA-to-IS Request. An ASA accesses the IS module via the APIs
 exposed by the information distribution module. The key/index of
 the interested information will be sent to the IS module. An
 assumption here is that the key/index should be known to an ASA
 before an ASA can ask for the information. This relates to the
 publishing/subscribing of the information, which are handled by
 other modules (e.g. Event Queue with Pub/Sub supported by GRASP).

 2) Storing Peer Mapping. IS module maps the key/index of the
 requested information to a peer that stores the information, and
 prepares the information request. The mapping here follows the
 same mechanism when the information is stored.

 3) Retrieval Negotiation Request. The source IS module sends a
 request to the storing peer and asks if such an information object
 is available.

 4) Retrieval Negotiation Response. The storing peer checks the key/
 index of the information in the request, and replies to the source
 IS module. If the information is found and the information block
 can be afforded within one GRASP message, the information will be
 sent together with the response to the source IS module.

 5) (Optional) New Destination Request. If the information is not
 found after the source IS module gets the response from the
 originally identified storing peer, the source IS module will have
 to discover the location of the requested information.

Liu (Ed.), et al. Expires March 5, 2021 [Page 10]

Internet-Draft Information Distribution September 2020

 IS module can reuse distributed databases and key value stores like
 NoSQL, Cassandra, DHT technologies. storage and retrieval of
 information are all event-driven responsible by the EQ module.

4.2.2. Event Queue

 The Event Queue (EQ) module is to help ASAs to publish information to
 the network and subscribe to interested information in asynchronous
 scenarios. In an ANI, information generated on network nodes is an
 event labeled with an event ID, which is semantically related to the
 topic of the information. Key features of EQ module are summarized
 as follows.

 1) Event Group: An EQ module provides isolated queues for different
 event groups. If two groups of AFs could have completely
 different purposes, the EQ module allows to create multiple queues
 where only AFs interested in the same topic will be aware of the
 corresponding event queue.

 2) Event Prioritization: Events can have different priorities in ANI.
 This corresponds to how much important or urgent the event
 implies. Some of them are more urgent than regular ones.
 Prioritization allows AFs to differentiate events (i.e.
 information) they publish or subscribe to.

 3) Event Matching: an information consumer has to be identified from
 the queue in order to deliver the information from the provider.
 Event matching keeps looking for the subscriptions in the queue to
 see if there is an exact published event there. Whenever a match
 is found, it will notify the upper layer to inform the
 corresponding ASAs who are the information provider and
 subscriber(s) respectively.

 The EQ module on every network node operates as follows.

 1) Event ID Generation: If information of an ASA is ready, an event
 ID is generated according to the content of the information. This
 is also related to how the information is stored/saved by the IS
 module introduced before. Meanwhile, the type of the event is
 also specified where it can be of control purpose or user plane
 data.

 2) Priority Specification: According to the type of the event, the
 ASA may specify its priority to say how this event is to be
 processed. By considering both aspects, the priority of the event
 will be determined.

Liu (Ed.), et al. Expires March 5, 2021 [Page 11]

Internet-Draft Information Distribution September 2020

 3) Event Enqueue: Given the event ID, event group and its priority, a
 queue is identified locally if all criteria can be satisfied. If
 there is such a queue, the event will be simply added into the
 queue, otherwise a new queue will be created to accommodate such
 an event.

 4) Event Propagation: The published event will be propagated to the
 other network nodes in the ANIMA domain. A propagation algorithm
 can be employed to optimize the propagation efficiency of the
 updated event queue states.

 5) Event Match and Notification: While propagating updated event
 states, EQ module in parallel keeps matching published events and
 its interested consumers. Once a match is found, the provider and
 subscriber(s) will be notified for final information retrieval.

 The category of event priority is defined as the following. In
 general, there are two event types:

 1) Network Control Event: This type of events are defined by the ANI
 for operational purposes on network control. A pre-defined
 priority levels for required system messages is suggested. For
 highest level to lowest level, the priority value ranges from
 NC_PRIOR_HIGH to NC_PRIOR_LOW as integer values. The NC_PRIOR_*
 values will be defined later according to the total number system
 events required by the ANI.

 2) Custom ASA Event: This type of events are defined by the ASAs of
 users. This specifies the priority of the message within a group
 of ASAs, therefore it is only effective among ASAs that join the
 same message group. Within the message group, a group header/
 leader has to define a list of priority levels ranging from
 CUST_PRIOR_HIGH to CUST_PRIOR_LOW. Such a definition completely
 depends on the individual purposes of the message group. When a
 system message is delivered, its event type and event priority
 value have to be both specified.

 Event contains the address where the information is stored, after a
 subscriber is notified, it directly retrieves the information from
 the given location.

4.3. Bulk Information Transfer

 In both cases discussed previously, they are limited to distributing
 GRASP Objective Options contained in messages that cannot exceed the
 GRASP maximum message size of 2048 bytes. This places a limit on the
 size of data that can be transferred directly in a GRASP message such

Liu (Ed.), et al. Expires March 5, 2021 [Page 12]

Internet-Draft Information Distribution September 2020

 as a Synchronization or Flood operation for instantaneous information
 distribution.

 There are scenarios in autonomic networks where this restriction is a
 problem. One example is the distribution of network policy in
 lengthy formats such as YANG or JSON. Another case might be an
 Autonomic Service Agent (ASA) uploading a log file to the Network
 Operations Center (NOC). A third case might be a supervisory system
 downloading a software upgrade to an autonomic node. A related case
 might be installing the code of a new or updated ASA to a target
 node.

 Naturally, an existing solution such as a secure file transfer
 protocol or secure HTTP might be used for this. Other management
 protocols such as syslog [RFC5424] or NETCONF [RFC6241] might also be
 used for related purposes, or might be mapped directly over GRASP.
 The present document, however, applies to any scenario where it is
 preferable to re-use the autonomic networking infrastructure itself
 to transfer a significant amount of data, rather than install and
 configure an additional mechanism.

 The node behavior is to use the GRASP Negotiation process to transfer
 and acknowledge multiple blocks of data in successive negotiation
 steps, thereby overcoming the GRASP message size limitation. The
 emphasis is placed on simplicity rather than efficiency, high
 throughput, or advanced functionality. For example, if a transfer
 gets out of step or data packets are lost, the strategy is to abort
 the transfer and try again. In an enterprise network with low bit
 error rates, and with GRASP running over TCP, this is not considered
 a serious issue. Clearly, a more sophisticated approach could be
 designed but if the application requires that, existing protocols
 could be used, as indicated in the preceding paragraph.

 As for any GRASP operation, the two participants are considered to be
 Autonomic Service Agents (ASAs) and they communicate using a specific
 GRASP Objective Option, containing its own name, some flag bits, a
 loop count, and a value. In bulk transfer, we can model the ASA
 acting as the source of the transfer as a download server, and the
 destination as a download client. No changes or extensions are
 required to GRASP itself, but compared to a normal GRASP negotiation,
 the communication pattern is slightly asymmetric:

 1) The client first discovers the server by the GRASP discovery
 mechanism (M_DISCOVERY and M_RESPONSE messages).

 2) The client then sends a GRASP negotiation request (M_REQ_NEG
 message). The value of the objective expresses the requested item
 (e.g., a file name - see the next section for a detailed example).

https://datatracker.ietf.org/doc/html/rfc5424
https://datatracker.ietf.org/doc/html/rfc6241

Liu (Ed.), et al. Expires March 5, 2021 [Page 13]

Internet-Draft Information Distribution September 2020

 3) The server replies with a negotiation step (M_NEGOTIATE message).
 The value of the objective is the first section of the requested
 item (e.g., the first block of the requested file as a raw byte
 string).

 4) The client replies with a negotiation step (M_NEGOTIATE message).
 The value of the objective is a simple acknowledgement (e.g., the
 text string 'ACK').

 The last two steps repeat until the transfer is complete. The server
 signals the end by transferring an empty byte string as the final
 value. In this case the client responds with a normal end to the
 negotiation (M_END message with an O_ACCEPT option).

 Errors of any kind are handled with the normal GRASP mechanisms, in
 particular by an M_END message with an O_DECLINE option in either
 direction. In this case the GRASP session terminates. It is then
 the client's choice whether to retry the operation from the start, as
 a new GRASP session, or to abandon the transfer. The block size must
 be chosen such that each step does not exceed the GRASP message size
 limit of 2048 bits.

 GRASP bulk transport function doesn't require new GRASP messages/
 options (as specified in Section 5) to be difined. An implementation
 example is given in Appendix D.1 .

4.4. Summary

 In summary, the general requirements for the information distribution
 module on each autonomic node are realized by two sub-modules
 handling instant communications and asynchronous communications,
 respectively. For instantaneous mode, node requirements are simple,
 calling for support for additional signaling. With minimum efforts,
 reusing the existing GRASP is possible.

 For asynchronous mode, information distribution module uses new
 primitives on the wire, and implements an event queue and an
 information storage mechanism. An architectural consideration on ANI
 with the information distribution module is briefly discussed in

Appendix F.

 In both cases, a scenario of bulk information transfer is considered
 where the retrieved information cannot be fitted in one GRASP
 message. Based on GRASP Negotiation operation, multiple
 transmissions can be repeatedly done in order to transfer bulk
 informtion piece by piece.

Liu (Ed.), et al. Expires March 5, 2021 [Page 14]

Internet-Draft Information Distribution September 2020

5. Extending GRASP for Information Distribution

5.1. New M_UNSOLIDSYNCH message for Instant P2P Transmission

 This could be a new message in GRASP. In fragmentary CDDL, an Un-
 solicited Synchronization message follows the pattern:

 unsolicited_synch-message = [M_UNSOLIDSYNCH, session-id,
 objective]

 A node MAY actively send a unicast Un-solicited Synchronization
 message with the Synchronization data, to another node. This MAY be
 sent to port GRASP_LISTEN_PORT at the destination address, which
 might be obtained by GRASP Discovery or other possible ways. The
 synchronization data are in the form of GRASP Option(s) for specific
 synchronization objective(s).

5.2. New O_SELECTIVE_FLOOD option for Selective Flooding

 Since normal flooding is already supported by GRASP, this section
 only defines the selective flooding extension.

 In fragmentary CDDL, the selective flooding follows the pattern:

 selective-flood-option = [O_SELECTIVE_FLOOD, +O_MATCH-CONDITION,
 match-object, action]

 O_MATCH-CONDITION = [O_MATCH-CONDITION, Obj1, match-rule, Obj2]
 Obj1 = text

 match-rule = GREATER / LESS / WITHIN / CONTAIN

 Obj2 = text

 match-object = NEIGHBOR / SELF

 action = FORWARD / DROP

 The option field encapsulates a match-condition option which
 represents the conditions regarding to continue or discontinue flood
 the current message. For the match-condition option, the Obj1 and
 Obj2 are to objects that need to be compared. For example, the Obj1
 could be the role of the device and Obj2 could be "RSG". The match
 rules between the two objects could be greater, less than, within, or
 contain. The match-object represents of which Obj1 belongs to, it
 could be the device itself or the neighbor(s) intended to be flooded.
 The action means, when the match rule applies, the current device
 just continues flood or discontinues.

Liu (Ed.), et al. Expires March 5, 2021 [Page 15]

Internet-Draft Information Distribution September 2020

 Some exaples of specific O_SELECTIVE_FLOOD option definitions
 according to some use cases, are described in Appendix E.3 .

5.3. New O_SUBSCRIPTION Objective Option

 In fragmentary CDDL, a Subscription Objective Option follows the
 pattern:

 subscription-objection-option = [SUBSCRIPTION, 2, 2, subobj]
 objective-name = SUBSCRIPTION

 objective-flags = 2

 loop-count = 2

 subobj = text

 This option MAY be included in GRASP M_Synchronization, when
 included, it means this message is for a subscription to a specific
 object.

5.4. New O_UNSUBSCRIBE Objective Option

 In fragmentary CDDL, a Un_Subscribe Objective Option follows the
 pattern:

 Unsubscribe-objection-option = [UNSUBSCRIB, 2, 2, unsubobj]

 objective-name = SUBSCRIPTION

 objective-flags = 2

 loop-count = 2

 unsubobj = text

 This option MAY be included in GRASP M_Synchronization, when
 included, it means this message is for a un-subscription to a
 specific object.

5.5. New O_PULISH Objective Option

 In fragmentary CDDL, a Publish Objective Option follows the pattern:

 publish-objection-option = [PUBLISH, 2, 2, pubobj]

 objective-name = PUBLISH

Liu (Ed.), et al. Expires March 5, 2021 [Page 16]

Internet-Draft Information Distribution September 2020

 objective-flags = 2

 loop-count = 2

 pubobj = text

 This option MAY be included in GRASP M_Synchronization, when
 included, it means this message is for a publish of a specific object
 data.

6. Security Considerations

 The distribution source authentication could be done at multiple
 layers:

 o Outer layer authentication: the GRASP communication is within ACP
 ([I-D.ietf-anima-autonomic-control-plane]). This is the default
 GRASP behavior.

 o Inner layer authentication: the GRASP communication might not be
 within a protected channel, then there should be embedded
 protection in distribution information itself. Public key
 infrastructure might be involved in this case.

7. IANA Considerations

 TBD.

8. Acknowledgements

 Valuable comments were received from Michael Richardson, Roland
 Bless, Mohamed Boucadair, Diego Lopez, Toerless Eckert, Joel Halpern
 and other participants in the ANIMA working group.

 This document was produced using the xml2rfc tool [RFC2629].

9. References

9.1. Normative References

 [I-D.ietf-anima-grasp]
 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-

grasp-15 (work in progress), July 2017.

https://datatracker.ietf.org/doc/html/rfc2629
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-15
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-15

Liu (Ed.), et al. Expires March 5, 2021 [Page 17]

Internet-Draft Information Distribution September 2020

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2629] Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
 DOI 10.17487/RFC2629, June 1999,
 <https://www.rfc-editor.org/info/rfc2629>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

9.2. Informative References

 [I-D.carpenter-anima-grasp-bulk]
 Carpenter, B., Jiang, S., and B. Liu, "Transferring Bulk
 Data over the GeneRic Autonomic Signaling Protocol
 (GRASP)", draft-carpenter-anima-grasp-bulk-05 (work in
 progress), January 2020.

 [I-D.du-anima-an-intent]
 Du, Z., Jiang, S., Nobre, J., Ciavaglia, L., and M.
 Behringer, "ANIMA Intent Policy and Format", draft-du-

anima-an-intent-05 (work in progress), February 2017.

 [I-D.ietf-anima-autonomic-control-plane]
 Eckert, T., Behringer, M., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-ietf-anima-autonomic-control-

plane-28 (work in progress), July 2020.

 [I-D.ietf-anima-bootstrapping-keyinfra]
 Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,
 and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-

keyinfra-43 (work in progress), August 2020.

 [I-D.ietf-anima-grasp-api]
 Carpenter, B., Liu, B., Wang, W., and X. Gong, "Generic
 Autonomic Signaling Protocol Application Program Interface
 (GRASP API)", draft-ietf-anima-grasp-api-06 (work in
 progress), June 2020.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2629
https://www.rfc-editor.org/info/rfc2629
https://datatracker.ietf.org/doc/html/rfc8610
https://www.rfc-editor.org/info/rfc8610
https://datatracker.ietf.org/doc/html/draft-carpenter-anima-grasp-bulk-05
https://datatracker.ietf.org/doc/html/draft-du-anima-an-intent-05
https://datatracker.ietf.org/doc/html/draft-du-anima-an-intent-05
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-28
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-28
https://datatracker.ietf.org/doc/html/draft-ietf-anima-bootstrapping-keyinfra-43
https://datatracker.ietf.org/doc/html/draft-ietf-anima-bootstrapping-keyinfra-43
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-api-06

Liu (Ed.), et al. Expires March 5, 2021 [Page 18]

Internet-Draft Information Distribution September 2020

 [I-D.ietf-anima-reference-model]
 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 and J. Nobre, "A Reference Model for Autonomic
 Networking", draft-ietf-anima-reference-model-10 (work in
 progress), November 2018.

 [RFC5424] Gerhards, R., "The Syslog Protocol", RFC 5424,
 DOI 10.17487/RFC5424, March 2009,
 <https://www.rfc-editor.org/info/rfc5424>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <https://www.rfc-editor.org/info/rfc7575>.

Appendix A. Open Issues [RFC Editor: To Be removed before becoming RFC]

 1. More reference to the use cases in the introduction.

 2. Better explanation of the required context of the Connected-Car
 case: Not applicable unless the ACP will be extended to the car,
 which may not be desirable with the current ACP design, but maybe
 refocussing on an "autonomous fleet" use-case (e.g.: all cars
 operated by some taxi like service).

 3. Consider use-case/example of firmware update. By abstracting the
 location of the firmware from the name of the firmware, while
 providing a way to notify about it, this significantly supports
 distribution of firmware updates. References to SUIT would
 appropriate.

 4. Issues discussed in https://mailarchive.ietf.org/arch/msg/
anima/_0fYQPBcLPt8xzQee7P4dILsn3A

 5. Rethink/refine terminology, e.g.: "module" seems to be too
 prescriptive. Refine proposed extensions.

 6. Provide more protocol behavior description instead of only
 implementation / software module architecture description.
 Reduce the latter or provide better justification for their
 presence due to explained interoperability requirements.

https://datatracker.ietf.org/doc/html/draft-ietf-anima-reference-model-10
https://datatracker.ietf.org/doc/html/rfc5424
https://www.rfc-editor.org/info/rfc5424
https://datatracker.ietf.org/doc/html/rfc6241
https://www.rfc-editor.org/info/rfc6241
https://datatracker.ietf.org/doc/html/rfc7575
https://www.rfc-editor.org/info/rfc7575
https://mailarchive.ietf.org/arch/msg/anima/_0fYQPBcLPt8xzQee7P4dILsn3A
https://mailarchive.ietf.org/arch/msg/anima/_0fYQPBcLPt8xzQee7P4dILsn3A

Liu (Ed.), et al. Expires March 5, 2021 [Page 19]

Internet-Draft Information Distribution September 2020

 7. Better motivation in sections 1..4 of the proposed extensions

 8. Consider moving examples from appendices into core-text . Ideally
 craft a single use-case showing/applying all extensions (most
 simple use case that uses them all).

 9. Refine terminology to better match/reuse-the established
 terminology from the pre-existing ANIMA documents.

Appendix B. Closed Issues [RFC Editor: To Be removed before becoming
 RFC]

Appendix C. Change log [RFC Editor: To Be removed before becoming RFC]

draft-ietf-anima-grasp-distribution-01, 2020-09-01:

 Merged some essential content of draft-carpenter-anima-grasp-bulk-05.
 __

 Adjusted appendix structure and content.

draft-ietf-anima-grasp-distribution-00, 2020-02-25:

 File name changed following WG adoption.

 __Added appendix A&B for open/closed issues. The open issues were
 comments received during the adoption call.

Appendix D. Implementation Examples and Considerations

D.1. GRASP Bulk Transport

 Example for file transfer: this example describes a client ASA
 requesting a file download from a server ASA.

 Firstly we define a GRASP objective informally: ["411:mvFile", 3, 6,
 value]

 The formal CDDL definition [RFC8610] is:

 o mvfile-objective = ["411:mvFile", objective-flags, loop-count,
 value]

 o objective-flags = ; as in the GRASP specification loop-count = ;
 as in the GRASP specification value = any

https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-distribution-01
https://datatracker.ietf.org/doc/html/draft-carpenter-anima-grasp-bulk-05
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-distribution-00
https://datatracker.ietf.org/doc/html/rfc8610

Liu (Ed.), et al. Expires March 5, 2021 [Page 20]

Internet-Draft Information Distribution September 2020

 The objective-flags field is set to indicate negotiation. Dry run
 mode must not be used. The loop-count is set to a suitable value to
 limit the scope of discovery. A suggested default value is 6.

 The value takes the following forms:

 o In the initial request from the client, a UTF-8 string containing
 the requested file name (with file path if appropriate).

 o In negotiation steps from the server, a byte string containing at
 most 1024 bytes. However:

 * If the file does not exist, the first negotiation step will
 return an M_END, O_DECLINE response.

 * After sending the last block, the next and final negotiation
 step will send an empty byte string as the value.

 o In negotiation steps from the client, the value is the UTF-8
 string 'ACK'.

 Note that the block size of 1024 is chosen to guarantee not only that
 each GRASP message is below the size limit, but also that only one
 TCP data packet will be needed, even on an IPv6 network with a
 minimum link MTU.

 We now present outline pseudocode for the client and the server ASA.
 The API documented in [I-D.ietf-anima-grasp-api] is used in a
 simplified way, and error handling is not shown in detail.

 Pseudo code for client ASA (request and receive a file):

Liu (Ed.), et al. Expires March 5, 2021 [Page 21]

Internet-Draft Information Distribution September 2020

 requested_obj = objective('411:mvFile')
 locator = discover(requested_obj)
 requested_obj.value = 'etc/test.json'
 received_obj = request_negotiate(requested_obj, locator)
 if error_code == declined:
 #no such file
 exit

 file = open(requested_obj.value)
 file.write(received_obj.value) #write to file
 eof = False
 while not eof:
 received_obj.value = 'ACK'
 received_obj.loop_count = received_obj.loop_count + 1
 received_obj = negotiate_step(received_obj)
 if received_obj.value == null:
 end_negotiate(True)
 file.close()
 eof = True
 else:
 file.write(received_obj.value) #write to file

 #file received
 exit

 Pseudo code for server ASA (await request and send a file):

 supported_obj = objective('411:mvFile')
 requested_obj = listen_negotiate(supported_obj)
 file = open(requested_obj.value) #open the source file
 if no such file:
 end_negotiate(False) #decline negotiation
 exit

 eof = False
 while not eof:
 chunk = file.read(1024) #next block of file
 requested_obj.value = chunk
 requested_obj.loop_count = requested_obj.loop_count + 1
 requested_obj = negotiate_step(requested_obj)
 if chunk == null:
 file.close()
 eof = True
 end_negotiate(True)
 exit
 if requested_obj.value != 'ACK':
 #unexpected reply...

Liu (Ed.), et al. Expires March 5, 2021 [Page 22]

Internet-Draft Information Distribution September 2020

D.2. Asynchronous ID Integrated with GRASP APIs

 Actions triggered to the information distribution module will
 eventually invoke underlying GRASP APIs. Moreover, EQ and IS modules
 are usually correlated. When an AF(ASA) publishes information, not
 only such an event is translated and sent to EQ module, but also the
 information is indexed and stored simultaneously. Similarly, when an
 AF(ASA) subscribes information, not only subscribing event is
 triggered and sent to EQ module, but also the information will be
 retrieved by IS module at the same time.

 o Storing and publishing information: This action involves both IS
 and EQ modules where a node that can store the information will be
 discovered first and related event will e published to the
 network. For this, GRASP APIs discover(), synchronize() and
 flood() are combined to compose such a procedure. In specific,
 discover() call will specific its objective being to "store_data"
 and the return parameters could be either an ASA_locator who will
 accept to store the data, or an error code indicating that no one
 could afford such data; after that, synchronize() call will send
 the data to the specified ASA_locator and the data will be stored
 at that node, with return of processing results like
 store_data_ack; meanwhile, such a successful event (i.e. data is
 stored successfully) will be flooded via a flood() call to
 interesting parties (such a multicast group existed).

 o Subscribing and getting information: This action involves both IS
 and EQ modules as well where a node that is interested in a topic
 will subscribe the topic by triggering EQ module and if the topic
 is ready IS module will retrieve the content of the topic (i.e.
 the data). GRASP APIs such as register_objective(), flood(),
 synchronize() are combined to compose the procedure. In specific,
 any subscription action received by EQ module will be translated
 to register_objective() call where the interested topic will be
 the parameter inside of the call; the registration will be
 (selectively) flooded to the network by an API call of flood()
 with the option we extended in this draft; once a matched topic is
 found (because of the previous procedure), the node finding such a
 match will call API synchronize() to send the stored data to the
 subscriber.

Appendix E. Real-world Use Cases of Information Distribution

 The requirement analysis in Section 3 shows that generally
 information distribution should be better of as an infrastructure
 layer module, which provides to upper layer utilizations. In this
 section, we review some use cases from the real-world where an

Liu (Ed.), et al. Expires March 5, 2021 [Page 23]

Internet-Draft Information Distribution September 2020

 information distribution module with powerful functions do plays a
 critical role there.

E.1. Pub/Sub in 3GPP 5G Networks

 In addition to Internet, the telecommunication network (i.e. carrier
 mobile wireless networks) is another world-wide networking system.
 The architecture of the 5G mobile networks from 3GPP has been defined
 to follow a service-based architecture (SBA) where any network
 function (NF) can be dynamically associated with any other NF(s) when
 needed to compose a network service. Note that one NF can
 simultaneously associate with multiple other NFs, instead of being
 physically wired as in the previous generations of mobile networks.
 NFs communicate with each other over service-based interface (SBI),
 which is also standardized by 3GPP [3GPP.23.501].

 In order to realize an SBA network system, detailed requirements are
 further defined to specify how NFs should interact with each other
 with information exchange over the SBI. We now list three
 requirements that are related to information distribution here.

 1) NF Pub/Sub: Any NF should be able to expose its service status to
 the network and any NF should be able to subscribe the service
 status of an NF and get notified if the status is available. A
 concrete example is that a session management function (SMF) can
 subscribe to the REGISTER notification from an access management
 function (AMF) if there is a new user equipment trying to access
 the mobile network [3GPP.23.502].

 2) Network Exposure Function (NEF): A particular network function
 that is required to manage the event exposure and distributions.
 Specifically, SBA requires such a functionality to register
 network events from the other NFs (e.g. AMF, SMF and so on),
 classify the events and properly handle event distributions
 accordingly in terms of different criteria (e.g. priorities)
 [3GPP.23.502].

 3) Network Repository Function (NRF): A particular network function
 where all service status information is stored for the whole
 network. An SBA network system requires all NFs to be stateless
 so as to improve the resilience as well as agility of providing
 network services. Therefore, the information of the available NFs
 and the service status generated by those NFs will be globally
 stored in NRF as a repository of the system. This clearly implies
 storage capability that keeps the information in the network and
 provides those information when needed. A concrete example is
 that whenever a new NF comes up, it first of all registers itself
 at NRF with its profile. When a network service requires a

Liu (Ed.), et al. Expires March 5, 2021 [Page 24]

Internet-Draft Information Distribution September 2020

 certain NF, it first inquires NRF to retrieve the availability
 information and decides whether or not there is an available NF or
 a new NF must be instantiated [3GPP.23.502].

 (Note: 3GPP CT adopted HTTP2.0/JSON to be the protocol communicating
 between NFs, but autonomic networks can also load HTTP2.0 within
 ACP.)

E.2. Event Queue/Storage in Vehicle-to-Everything (V2X)

 Connected car is one of scenarios interested in automotive
 manufacturers, carriers and vendors. 5G Automotive Alliance - an
 industry collaboration organization defines many promising use cases
 where services from car industry should be supported by the 5G mobile
 network. Here we list two examples as follows [5GAA.use.cases].

 1) Software/Firmware Update: Car manufacturers expect that the
 software/firmware of their car products can be remotely updated/
 upgraded via 5G network, instead of onsite visiting their 4S
 stores/dealers offline as nowadays. This requires the network to
 provide a mechanism for vehicles to receive the latest software
 updates during a certain period of time. In order to run such a
 service for a car manufacturer, the network shall not be just like
 a network pipe anymore. Instead, information data have to be
 stored in the network, and delivered in a publishing/subscribing
 fashion. For example, the latest release of a software will be
 first distributed and stored at the access edges of the mobile
 network, after that, the updates can be pushed by the car
 manufacturer or pulled by the car owner as needed.

 2) Real-time HD Maps: Autonomous driving clearly requires much finer
 details of road maps. Finer details not only include the details
 of just static road and streets, but also real-time information on
 the road as well as the driving area for both local urgent
 situations and intelligent driving scheduling. This asks for
 situational awareness at critical road segments in cases of
 changing road conditions. Clearly, a huge amount of traffic data
 that are real-time collected will have to be stored and shared
 across the network. This clearly requires the storage capability,
 data synchronization and event notifications in urgent cases from
 the network, which are still missing at the infrastructure layer.

E.3. Selective Flooding

 Example 1: Selected flooding in hierarchical network:

 o E.g. IPRAN network, which is normally highly hierarchical: large
 amount of access gateways (CSG) at the low layer, but limited

Liu (Ed.), et al. Expires March 5, 2021 [Page 25]

Internet-Draft Information Distribution September 2020

 aggregation gateways (ASG) and core network gateways (RSG) at the
 upper layer.

 o Some information is not necessary to flood to the CSGs. (E.g. a
 network policy of VPN mechanisms selection)

 In this case, the Selective Flooding Criteria could be defined as:

 o Matching condition: Role=RSG or ASG

 o Matching object: Neighbor devices

 o Action:

 * If the one neighbor device's "Role" matches the Matching
 Condition, which is "RSG or ASG", then the node would forward
 the message to that neighbor.

 * If not, then the node would discard the message for that
 neighbor.

 Example 2: Selected flooding within a deterministic path:

 o E.g. flood within a MPLS LSP

 o The LSP has been set up

 o One node distributes the information to all the LSRs of the LSP.
 (e.g. adjust the reserved bandwidth)

 In this case, the Selective Flooding Criteria could be defined as:

 o Matching condition: vpn-instance=WCDMA-VPN

 o Matching object: interfaces

 o Action:

 * If the interface's "vpn-instance" matches the Matching
 Condition, which is "WCDMA-VPN", then the node would forward
 the message to that interface.

 * If not, then the node would discard the message for that
 interface.

 Example 3: Selected flooding for ACP set up:

Liu (Ed.), et al. Expires March 5, 2021 [Page 26]

Internet-Draft Information Distribution September 2020

 o ACP topology should align with the physical topology as much as
 possible

 o An Anima-Enabled switch should not forwarding the ACP discovery to
 the nodes attached to it

 In this case, the Selective Flooding Criteria could be defined as:

 o Matching condition: Role=switch

 o Matching object: self

 o Action:

 * If the "Role" of the node itself matches the Matching
 Condition, which is "switch", then the node would discard the
 message.

 * If not, then the node would continue the flood.

E.4. Summary

 Through the general analysis and the concrete examples from the real-
 world, we realize that the ways information are exchanged in the
 coming new scenarios are not just short and instant anymore. More
 advanced as well as diverse information distribution capabilities are
 required and should be generically supported from the infrastructure
 layer. Upper layer applications (e.g. ASAs in ANIMA) access and
 utilize such a unified mechanism for their own services.

Appendix F. Information Distribution Module in ANI

 This appendix describes how the information distribution module fits
 into the ANI and what extensions of GRASP are required.

Liu (Ed.), et al. Expires March 5, 2021 [Page 27]

Internet-Draft Information Distribution September 2020

 (preamble)

 +-------------------+
 | ASAs |
 +-------------------+
 ^
 |
 v
 +-------------Info-Dist. APIs--------------+
 | +---------------+ +--------------------+ |
 | | Instant Dist. | | Asynchronous Dist. | |
 | +---------------+ +--------------------+ |
 +--+
 ^
 |
 v
 +---GRASP APIs----+
 | ACP |
 +-----------------+

 Figure E.1 Information Distribution Module and GRASP Extension.

 As the Fig 1 shows, the information distribution module two sub-
 modules for instant and asynchronous information distributions,
 respectively, and provides APIs to ASAs. Specific Behaviors of
 modules are described in Section 5.

Authors' Addresses

 Bing Liu
 Huawei Technologies
 Q5, Huawei Campus
 No.156 Beiqing Road
 Hai-Dian District, Beijing 100095
 P.R. China

 Email: leo.liubing@huawei.com

 Xun Xiao
 MRC, Huawei Technologies
 German Research Center
 Huawei Technologies
 Riesstr. 25
 Muenchen 80992
 Germany

 Email: xun.xiao@huawei.com

Liu (Ed.), et al. Expires March 5, 2021 [Page 28]

Internet-Draft Information Distribution September 2020

 Artur Hecker
 MRC, Huawei Technologies
 German Research Center
 Huawei Technologies
 Riesstr. 25
 Muenchen 80992
 Germany

 Email: artur.hecker@huawei.com

 Sheng Jiang
 Huawei Technologies
 Q27, Huawei Campus
 No.156 Beiqing Road
 Hai-Dian District, Beijing 100095
 P.R. China

 Email: jiangsheng@huawei.com

 Zoran Despotovic
 MRC, Huawei Technologies
 German Research Center
 Huawei Technologies
 Riesstr. 25
 Muenchen 80992
 Germany

 Email: zoran.despotovic@huawei.com

 Brian E. Carpenter
 University of Auckland
 School of Computer Science
 PB 92019
 Auckland 1142
 New Zealand

 Email: brian.e.carpenter@gmail.com

Liu (Ed.), et al. Expires March 5, 2021 [Page 29]

