
ANIMA M. Behringer, Ed.
Internet-Draft
Intended status: Informational B. Carpenter
Expires: August 27, 2018 Univ. of Auckland
 T. Eckert
 Futurewei Technologies Inc.
 L. Ciavaglia
 Nokia
 J. Nobre
 University of Vale do Rio dos Sinos
 February 23, 2018

A Reference Model for Autonomic Networking
draft-ietf-anima-reference-model-06

Abstract

 This document describes a reference model for Autonomic Networking.
 It defines the behaviour of an autonomic node, how the various
 elements in an autonomic context work together, and how autonomic
 services can use the infrastructure.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 27, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Behringer, et al. Expires August 27, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft AN Reference Model February 2018

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. The Network View . 4
3. The Autonomic Network Element 5
3.1. Architecture . 5
3.2. The Adjacency Table 6
3.3. State Machine . 8
3.3.1. State 1: Factory Default 8
3.3.2. State 2: Enrolled 9
3.3.3. State 3: In ACP 9

4. The Autonomic Networking Infrastructure 10
4.1. Naming . 10
4.2. Addressing . 10
4.3. Discovery . 11
4.4. Signaling Between Autonomic Nodes 12
4.5. Routing . 13
4.6. The Autonomic Control Plane 13
4.7. Information Distribution (*) 13

5. Security and Trust Infrastructure 14
5.1. Public Key Infrastructure 14
5.2. Domain Certificate 14
5.3. The MASA . 14
5.4. Sub-Domains (*) . 15
5.5. Cross-Domain Functionality (*) 15

6. Autonomic Service Agents (ASA) 15
6.1. General Description of an ASA 15
6.2. ASA Life-Cycle Management 17

 6.3. Specific ASAs for the Autonomic Network Infrastructure . 17
6.3.1. The enrollment ASAs 18
6.3.2. The ACP ASA . 18
6.3.3. The Information Distribution ASA (*) 18

7. Management and Programmability 19
7.1. Managing a (Partially) Autonomic Network 19
7.2. Intent (*) . 19
7.3. Aggregated Reporting (*) 20
7.4. Feedback Loops to NOC(*) 21
7.5. Control Loops (*) . 21
7.6. APIs (*) . 22
7.7. Data Model (*) . 22

8. Coordination Between Autonomic Functions (*) 23

Behringer, et al. Expires August 27, 2018 [Page 2]

Internet-Draft AN Reference Model February 2018

8.1. The Coordination Problem (*) 23
8.2. A Coordination Functional Block (*) 24

9. Security Considerations 25
9.1. Protection Against Outsider Attacks 25
9.2. Risk of Insider Attacks 26

10. IANA Considerations . 27
11. Acknowledgements . 27
12. Contributors . 27
13. References . 27
13.1. Normative References 27
13.2. Informative References 28

 Authors' Addresses . 29

1. Introduction

 The document "Autonomic Networking - Definitions and Design Goals"
 [RFC7575] explains the fundamental concepts behind Autonomic
 Networking, and defines the relevant terms in this space, as well as
 a high level reference model. [RFC7576] provides a gap analysis
 between traditional and autonomic approaches.

 This document defines this reference model with more detail, to allow
 for functional and protocol specifications to be developed in an
 architecturally consistent, non-overlapping manner.

 As discussed in [RFC7575], the goal of this work is not to focus
 exclusively on fully autonomic nodes or networks. In reality, most
 networks will run with some autonomic functions, while the rest of
 the network is traditionally managed. This reference model allows
 for this hybrid approach.

 For example, it is possible in an existing, non-autonomic network to
 enrol devices in a traditional way, to bring up a trust
 infrastructure with certificates. This trust infrastructure could
 then be used to automatically bring up an Autonomic Control Plane
 (ACP), and run traditional network operations over the secure and
 self-healing ACP. See [I-D.ietf-anima-stable-connectivity] for a
 description of this use case.

 This document describes a first, simple, implementable phase of an
 Autonomic Networking solution. It is expected that the experience
 from this phase will be used in defining updated and extended
 specifications over time. Some topics are considered architecturally
 in this document, but are not yet reflected in the implementation
 specifications. They are marked with an (*).

https://datatracker.ietf.org/doc/html/rfc7575
https://datatracker.ietf.org/doc/html/rfc7576
https://datatracker.ietf.org/doc/html/rfc7575

Behringer, et al. Expires August 27, 2018 [Page 3]

Internet-Draft AN Reference Model February 2018

2. The Network View

 This section describes the various elements in a network with
 autonomic functions, and how these entities work together, on a high
 level. Subsequent sections explain the detailed inside view for each
 of the autonomic network elements, as well as the network functions
 (or interfaces) between those elements.

 Figure 1 shows the high level view of an Autonomic Network. It
 consists of a number of autonomic nodes, which interact directly with
 each other. Those autonomic nodes provide a common set of
 capabilities across the network, called the "Autonomic Networking
 Infrastructure" (ANI). The ANI provides functions like naming,
 addressing, negotiation, synchronization, discovery and messaging.

 Autonomic functions typically span several, possibly all nodes in the
 network. The atomic entities of an autonomic function are called the
 "Autonomic Service Agents" (ASA), which are instantiated on nodes.

 +- +
 : : Autonomic Function 1 : :
 : ASA 1 : ASA 1 : ASA 1 : ASA 1 :
 +- +
 : : :
 : +- - - - - - - - - - - - - - + :
 : : Autonomic Function 2 : :
 : : ASA 2 : ASA 2 : :
 : +- - - - - - - - - - - - - - + :
 : : :
 +- +
 : Autonomic Networking Infrastructure :
 +- +
 +--------+ : +--------+ : +--------+ : +--------+
 | Node 1 |--------| Node 2 |--------| Node 3 |----...-----| Node n |
 +--------+ : +--------+ : +--------+ : +--------+

 Figure 1: High level view of an Autonomic Network

 In a horizontal view, autonomic functions span across the network, as
 well as the Autonomic Networking Infrastructure. In a vertical view,
 a node always implements the ANI, plus it may have one or several
 Autonomic Service Agents. ASAs may be standalone, or use other ASAs
 in a hierarchical way.

 The Autonomic Networking Infrastructure (ANI) therefore is the
 foundation for autonomic functions.

Behringer, et al. Expires August 27, 2018 [Page 4]

Internet-Draft AN Reference Model February 2018

3. The Autonomic Network Element

 This section explains the general architecture of an Autonomic
 Network Element (Section 3.1), how it tracks its surrounding
 environment in an Adjacency Table (Section 3.2), and the state
 machine which defines the behaviour of the network element
 (Section 3.3), based on that adjacency table.

3.1. Architecture

 This section describes an autonomic network element and its internal
 architecture. The reference model explained in the document
 "Autonomic Networking - Definitions and Design Goals" [RFC7575] shows
 the sources of information that an autonomic service agent can
 leverage: Self-knowledge, network knowledge (through discovery),
 Intent, and feedback loops. There are two levels inside an autonomic
 node: the level of Autonomic Service Agents, and the level of the
 Autonomic Networking Infrastructure, with the former using the
 services of the latter. Figure 2 illustrates this concept.

 +--+
 | |
 | +-----------+ +------------+ +------------+ |
	Autonomic		Autonomic		Autonomic	
	Service		Service		Service	
	Agent 1		Agent 2		Agent 3	
+-----------+ +------------+ +------------+						
^ ^ ^						
- -	- - API level - -	- - - - - - -	- - -			
V V V						
--						
Autonomic Networking Infrastructure						
- Data structures (ex: certificates, peer information)						
- Generalized Autonomic Control Plane (GACP)						
- Autonomic Node Addressing						
- Discovery, negotiation and synchronisation functions						
- Distribution of Intent and other information						
- Aggregated reporting and feedback loops						
- Routing						
--						
Basic Operating System Functions						
 +--+

 Figure 2: Model of an autonomic node

 The Autonomic Networking Infrastructure (lower part of Figure 2)
 contains node specific data structures, for example trust information
 about itself and its peers, as well as a generic set of functions,

https://datatracker.ietf.org/doc/html/rfc7575

Behringer, et al. Expires August 27, 2018 [Page 5]

Internet-Draft AN Reference Model February 2018

 independent of a particular usage. This infrastructure should be
 generic, and support a variety of Autonomic Service Agents (upper
 part of Figure 2).

 The Generalized Autonomic Control Plane (GACP) is the summary of all
 interactions of the Autonomic Networking Infrastructure with other
 nodes and services. A specific implementation of the GACP is
 referred to here as the Autonomic Control Plane (ACP), and described
 in [I-D.ietf-anima-autonomic-control-plane].

 The use cases of "Autonomics" such as self-management, self-
 optimisation, etc, are implemented as Autonomic Service Agents. They
 use the services and data structures of the underlying Autonomic
 Networking Infrastructure, which should be self-managing.

 The "Basic Operating System Functions" include the "normal OS",
 including the network stack, security functions, etc.

 Full AN nodes have the full Autonomic Networking Infrastructure, with
 the full functionality described in this document. At a later stage
 ANIMA may define a scope for constrained nodes with a reduced ANI and
 well-defined minimal functionality. They are currently out of scope.

3.2. The Adjacency Table

 Autonomic Networking is based on direct interactions between devices
 of a domain. The Autonomic Control Plane (ACP) is normally
 constructed on a hop-by-hop basis. Therefore, many interactions in
 the ANI are based on the ANI adjacency table. There are interactions
 that provide input into the adjacency table, and other interactions
 that leverage the information contained in it.

 The ANI adjacency table contains information about adjacent autonomic
 nodes, at a minimum: node-ID, IP address in data plane, IP address in
 ACP, domain, certificate. An autonomic node maintains this adjacency
 table up to date. The adjacency table only contains information
 about other nodes that are capable of Autonomic Networking; non-
 autonomic nodes are normally not tracked here. However, the
 information is tracked independently of the status of the peer nodes;
 specifically, it contains information about non-enrolled nodes, nodes
 of the same and other domains. The adjacency table may contain
 information about the validity and trust of the adjacent autonomic
 node's certificate, although all autonomic interactions must verify
 validity and trust independently.

 The adjacency table is fed by the following inputs:

Behringer, et al. Expires August 27, 2018 [Page 6]

Internet-Draft AN Reference Model February 2018

 o Link local discovery: This interaction happens in the data plane,
 using IPv6 link local addressing only, because this addressing
 type is itself autonomic. This way the nodes learns about all
 autonomic nodes around itself. The related standards track
 documents ([I-D.ietf-anima-grasp],
 [I-D.ietf-anima-bootstrapping-keyinfra],
 [I-D.ietf-anima-autonomic-control-plane]) describe in detail how
 link local discovery is used.

 o Vendor re-direct: A new device may receive information on where
 its home network is through a vendor based MASA re-direct; this is
 typically a routable address. See
 [I-D.ietf-anima-bootstrapping-keyinfra].

 o Non-autonomic input: A node may be configured manually with an
 autonomic peer; it could learn about autonomic nodes through DHCP
 options, DNS, and other non-autonomic mechanisms. Generally such
 non-autonomic mechansims require some administrator intervention.
 The key purpose is to by-pass a non-autonomic device or network.
 As this pertains to new devices, it is covered in appendix A and B
 of [I-D.ietf-anima-bootstrapping-keyinfra].

 The adjacency table is defining the behaviour of an autonomic node:

 o If the node has not bootstrapped into a domain (i.e., doesn't have
 a domain certificate), it rotates through all nodes in the
 adjacency table that claim to have a domain, and will attempt
 bootstrapping through them, one by one. One possible response is
 a vendor MASA re-direct, which will be entered into the adjacency
 table (see second bullet above). See
 [I-D.ietf-anima-bootstrapping-keyinfra].

 o If the adjacent node has the same domain, it will authenticate
 that adjacent node and, if successful, establish the Autonomic
 Control Plane (ACP). See
 [I-D.ietf-anima-autonomic-control-plane].

 o Once the node is part of the ACP of a domain, it will use GRASP
 [I-D.ietf-anima-grasp] to find Registrar(s) of its domain and
 potentially other services.

 o If the node is part of an ACP and has discovered via GRASP at
 least one Registrar in its domain, it will start the "join
 assistant" ASA, and act as a join assistant for neighboring nodes
 that need to be bootstrapped. See
 [I-D.ietf-anima-bootstrapping-keyinfra].

Behringer, et al. Expires August 27, 2018 [Page 7]

Internet-Draft AN Reference Model February 2018

 o Other behaviours are possible, for example establishing the ACP
 also with devices of a sub-domain, to other domains, etc. Those
 will likely be controlled by Intent. They are outside scope for
 the moment. Note that Intent is distributed through the ACP;
 therefore, a node can only adapt Intent driven behaviour once it
 has joined the ACP. At the moment, ANIMA does not consider
 providing Intent outside the ACP; this can be considered later.

 Once a node has joined the ACP, it will also learn the ACP addresses
 of its adjacent nodes, and add them to the adjacency table, to allow
 for communication inside the ACP. Further autonomic domain
 interactions will now happen inside the ACP. At this moment, only
 negotiation / synchronization via GRASP [I-D.ietf-anima-grasp] is
 being defined. (Note that GRASP runs in the data plane, as an input
 in building the adjacency table, as well as inside the ACP.)

 Autonomic Functions consist of Autonomic Service Agents (ASAs). They
 run logically above the AN Infrastructure, and may use the adjacency
 table, the ACP, negotiation and synchronization through GRASP in the
 ACP, Intent and other functions of the ANI. Since the ANI only
 provides autonomic interactions within a domain, autonomic functions
 can also use any other context on a node, specifically the global
 data plane.

3.3. State Machine

 Autonomic Networking applies during the full life-cycle of a node.
 This section describes a state machine of an autonomic node,
 throughout its life.

3.3.1. State 1: Factory Default

 An autonomic node is leaving the factory in this state. In this
 state, the node has no domain specific configuration, specifically no
 LDevID, and could be used in any particular target network. It does
 however have a vendor/manufacturer specific ID, the IDevID [IDevID].
 Nodes without IDevID cannot be autonomically and securely enrolled
 into a domain; they require manual pre-staging, in which case the
 pre-staging takes them directly to state 2.

 Transitions:

 o Bootstrap event: The device enrols into a domain; as part of this
 process it receives a domain identity (LDevID). If enrollment is
 successful, the next state is state 2. See
 [I-D.ietf-anima-bootstrapping-keyinfra] Section 3 for details on
 enrollment.

Behringer, et al. Expires August 27, 2018 [Page 8]

Internet-Draft AN Reference Model February 2018

 o Powercycle event: The device loses all state tables. It remains
 in state: 1.

3.3.2. State 2: Enrolled

 An autonomic node is in the state "enrolled" if it has a domain
 identity (LDevID). It may have further configuration or state, for
 example if it had been in state 3 before, but lost all its ACP
 channels. The LDevID can only be removed from a device through a
 factory reset, which also removes all other state from the device.
 This ensures that a device has no stale domain specific state when
 entering the "enrolled" state from state 1.

 Transitions:

 o Joining ACP: The device establishes an ACP channel to an adjacent
 device. See [I-D.ietf-anima-autonomic-control-plane] for details.
 Next state: 3.

 o Factory reset: A factory reset removes all configuration and the
 domain identity (LDevID) from the device. Next state: 1.

 o Powercycle event: The device loses all state tables, but not its
 domain identity (LDevID). it remains in state: 2.

3.3.3. State 3: In ACP

 In this state, the autonomic node has at least one ACP channel to
 another device. It can participate in further autonomic
 transactions, such as starting autonomic service agents. For example
 it must now enable the join assistant ASA, to help other devices to
 join the domain. Other conditions may apply to such interactions,
 for example to serve as a join assistant, the device must first
 discover a bootstrap Registrar.

 Transitions:

 o Leaving ACP: The device drops the last (or only) ACP channel to an
 adjacent device. Next state: 2.

 o Factory reset: A factory reset removes all configuration and the
 domain identity (LDevID) from the device. Next state: 1.

 o Powercycle event: The device loses all state tables, but not its
 domain identity (LDevID). Next state: 2.

Behringer, et al. Expires August 27, 2018 [Page 9]

Internet-Draft AN Reference Model February 2018

4. The Autonomic Networking Infrastructure

 The Autonomic Networking Infrastructure provides a layer of common
 functionality across an Autonomic Network. It provides the
 elementary functions and services, as well as extensions. An
 Autonomic Function, comprising of Autonomic Service Agents on nodes,
 uses the functions described in this section.

4.1. Naming

 Inside a domain, each autonomic device should be assigned a unique
 name. The naming scheme should be consistent within a domain. Names
 are typically assigned by a Registrar at bootstrap time and
 persistent over the lifetime of the device. All Registrars in a
 domain must follow the same naming scheme.

 In the absence of a domain specific naming scheme, a default naming
 scheme should use the same logic as the addressing scheme discussed
 in [I-D.ietf-anima-autonomic-control-plane]. The device name is then
 composed of a Registrar ID (for example taking a MAC address of the
 Registrar) and a device number. An example name would then look like
 this:

 0123-4567-89ab-0001

 The first three fields are the MAC address, the fourth field is the
 sequential number for the device.

4.2. Addressing

 Autonomic Service Agents (ASAs) need to communicate with each other,
 using the autonomic addressing of the Autonomic Networking
 Infrastructure of the node they reside on. This section describes
 the addressing approach of the Autonomic Networking Infrastructure,
 used by ASAs.

 Out of scope are addressing approaches for the data plane of the
 network, which may be configured and managed in the traditional way,
 or negotiated as a service of an ASA. One use case for such an
 autonomic function is described in
 [I-D.ietf-anima-prefix-management].

 Autonomic addressing is a function of the Autonomic Networking
 Infrastructure (lower part of Figure 2), specifically the Autonomic
 Control Plane. ASAs do not have their own addresses. They may use
 either API calls, or the autonomic addressing scheme of the Autonomic
 Networking Infrastructure.

Behringer, et al. Expires August 27, 2018 [Page 10]

Internet-Draft AN Reference Model February 2018

 An autonomic addressing scheme has the following requirements:

 o Zero-touch for simple networks: Simple networks should have
 complete self-management of addressing, and not require any
 central address management, tools, or address planning.

 o Low-touch for complex networks: If complex networks require
 operator input for autonomic address management, it should be
 limited to high level guidance only, expressed in Intent.

 o Flexibility: The addressing scheme must be flexible enough for
 nodes to be able to move around, for the network to grow, split
 and merge.

 o Robustness: It should be as hard as possible for an administrator
 to negatively affect addressing (and thus connectivity) in the
 autonomic context.

 o Stability: The addressing scheme should be as stable as possible.
 However, implementations need to be able to recover from
 unexpected address changes.

 o Support for virtualization: Autonomic Nodes may support Autonomic
 Service Agents in different virtual machines or containers. The
 addressing scheme should support this architecture.

 o Simplicity: To make engineering simpler, and to give the human
 administrator an easy way to trouble-shoot autonomic functions.

 o Scale: The proposed scheme should work in any network of any size.

 o Upgradability: The scheme must be able to support different
 addressing concepts in the future.

 The proposed addressing scheme is described in the document "An
 Autonomic Control Plane" ([I-D.ietf-anima-autonomic-control-plane]).

4.3. Discovery

 Traditionally, most of the information a node requires is provided
 through configuration or northbound interfaces. An autonomic
 function should rely on such northbound interfaces minimally or not
 at all, and therefore it needs to discover peers and other resources
 in the network. This section describes various discovery functions
 in an autonomic network.

 Discovering nodes and their properties and capabilities: A core
 function to establish an autonomic domain is the mutual discovery of

Behringer, et al. Expires August 27, 2018 [Page 11]

Internet-Draft AN Reference Model February 2018

 autonomic nodes, primarily adjacent nodes and secondarily off-link
 peers. This may in principle either leverage existing discovery
 mechanisms, or use new mechanisms tailored to the autonomic context.
 An important point is that discovery must work in a network with no
 predefined topology, ideally no manual configuration of any kind, and
 with nodes starting up from factory condition or after any form of
 failure or sudden topology change.

 Discovering services: Network services such as AAA should also be
 discovered and not configured. Service discovery is required for
 such tasks. An autonomic network can either leverage existing
 service discovery functions, or use a new approach, or a mixture.

 Thus the discovery mechanism could either be fully integrated with
 autonomic signaling (next section) or could use an independent
 discovery mechanism such as DNS Service Discovery or Service Location
 Protocol. This choice could be made independently for each Autonomic
 Service Agent, although the infrastructure might require some minimal
 lowest common denominator (e.g., for discovering the security
 bootstrap mechanism, or the source of information distribution,

Section 4.7).

 Phase 1 of Autonomic Networking uses GRASP for discovery, described
 in [I-D.ietf-anima-grasp].

4.4. Signaling Between Autonomic Nodes

 Autonomic nodes must communicate with each other, for example to
 negotiate and/or synchronize technical objectives (i.e., network
 parameters) of any kind and complexity. This requires some form of
 signaling between autonomic nodes. Autonomic nodes implementing a
 specific use case might choose their own signaling protocol, as long
 as it fits the overall security model. However, in the general case,
 any pair of autonomic nodes might need to communicate, so there needs
 to be a generic protocol for this. A prerequisite for this is that
 autonomic nodes can discover each other without any preconfiguration,
 as mentioned above. To be generic, discovery and signaling must be
 able to handle any sort of technical objective, including ones that
 require complex data structures. The document "A Generic Autonomic
 Signaling Protocol (GRASP)" [I-D.ietf-anima-grasp] describes more
 detailed requirements for discovery, negotiation and synchronization
 in an autonomic network. It also defines a protocol, GRASP, for this
 purpose, including an integrated but optional discovery protocol.

 GRASP is normally expected to run inside the Autonomic Control Plane
 (ACP; see Section 4.6) and to depend on the ACP for security. It may
 run insecurely for a short time during bootstrapping.

Behringer, et al. Expires August 27, 2018 [Page 12]

Internet-Draft AN Reference Model February 2018

 An autonomic node will normally run a single instance of GRASP, used
 by multiple ASAs. However, scenarios where multiple instances of
 GRASP run in a single node, perhaps with different security
 properties, are not excluded.

4.5. Routing

 All autonomic nodes in a domain must be able to communicate with each
 other, and later phases also with autonomic nodes outside their own
 domain. Therefore, an Autonomic Control Plane relies on a routing
 function. For Autonomic Networks to be interoperable, they must all
 support one common routing protocol.

 The routing protocol is defined in the ACP document
 [I-D.ietf-anima-autonomic-control-plane].

4.6. The Autonomic Control Plane

 The "Autonomic Control Plane" carries the control protocols in an
 autonomic network. This control plane can be either implemented in
 the global routing table of a node, such as IGPs in today's networks;
 or it can be provided as an overlay network. The document "An
 Autonomic Control Plane" ([I-D.ietf-anima-autonomic-control-plane])
 describes the implementation details suggested here. See
 [I-D.ietf-anima-stable-connectivity] for uses cases for the ACP.

4.7. Information Distribution (*)

 Certain forms of information require distribution across an autonomic
 domain. The distribution of information runs inside the Autonomic
 Control Plane. For example, Intent is distributed across an
 autonomic domain, as explained in [RFC7575].

 Intent is the policy language of an Autonomic Network, see also
Section 7.2. It is a high level policy, and should change only

 infrequently (order of days). Therefore, information such as Intent
 should be simply flooded to all nodes in an autonomic domain, and
 there is currently no perceived need to have more targeted
 distribution methods. Intent is also expected to be monolithic, and
 flooded as a whole. One possible method for distributing Intent, as
 well as other forms of data, is discussed in
 [I-D.liu-anima-grasp-distribution]. Intent and information
 distribution are not part of phase 1 of ANIMA.

https://datatracker.ietf.org/doc/html/rfc7575

Behringer, et al. Expires August 27, 2018 [Page 13]

Internet-Draft AN Reference Model February 2018

5. Security and Trust Infrastructure

 An Autonomic Network is self-protecting. All protocols are secure by
 default, without the requirement for the administrator to explicitly
 configure security.

 Autonomic nodes have direct interactions between themselves, which
 must be secured. Since an autonomic network does not rely on
 configuration, it is not an option to configure for example pre-
 shared keys. A trust infrastructure such as a PKI infrastructure
 must be in place. This section describes the principles of this
 trust infrastructure.

 The default method to automatically bring up a trust infrastructure
 is defined in the document "Bootstrapping Key Infrastructures"
 [I-D.ietf-anima-bootstrapping-keyinfra]. The ASAs required for this
 enrollment process are described in Section 6.3. An autonomic node
 must implement the enrollment and join assistant ASAs. The registrar
 ASA may be implemented only on a sub-set of nodes.

5.1. Public Key Infrastructure

 An autonomic domain uses a PKI model. The root of trust is a
 certification authority (CA). A registrar acts as a registration
 authority (RA).

 A minimum implementation of an autonomic domain contains one CA, one
 Registrar, and network elements.

5.2. Domain Certificate

 Each device in an autonomic domain uses a domain certificate (LDevID)
 to prove its identity. A new device uses its manufacturer provided
 certificate (IDevID) during bootstrap, to obtain a domain
 certificate. [I-D.ietf-anima-bootstrapping-keyinfra] describes how a
 new device receives a domain certificate, and the certificate format.

5.3. The MASA

 The Manufacturer Authorized Signing Authority (MASA) is a trusted
 service for bootstrapping devices. The purpose of the MASA is to
 provide ownership tracking of devices in a domain. The MASA provides
 audit, authorization, and ownership tokens to the registrar during
 the bootstrap process to assist in the authentication of devices
 attempting to join an Autonomic Domain, and to allow a joining device
 to validate whether it is joining the correct domain. The details
 for MASA service, security, and usage are defined in
 [I-D.ietf-anima-bootstrapping-keyinfra].

Behringer, et al. Expires August 27, 2018 [Page 14]

Internet-Draft AN Reference Model February 2018

5.4. Sub-Domains (*)

 By default, sub-domains are treated as different domains. This
 implies no trust between a domain and its sub-domains, and no trust
 between sub-domains of the same domain. Specifically, no ACP is
 built, and Intent is valid only for the domain it is defined for
 explicitly.

 In phase 2 of ANIMA, alternative trust models should be defined, for
 example to allow full or limited trust between domain and sub-domain.

5.5. Cross-Domain Functionality (*)

 By default, different domains do not interoperate, no ACP is built
 and no trust is implied between them.

 In the future, models can be established where other domains can be
 trusted in full or for limited operations between the domains.

6. Autonomic Service Agents (ASA)

 This section describes how autonomic services run on top of the
 Autonomic Networking Infrastructure.

6.1. General Description of an ASA

 An Autonomic Service Agent (ASA) is defined in [RFC7575] as "An agent
 implemented on an autonomic node that implements an autonomic
 function, either in part (in the case of a distributed function) or
 whole." Thus it is a process that makes use of the features provided
 by the ANI to achieve its own goals, usually including interaction
 with other ASAs via the GRASP protocol [I-D.ietf-anima-grasp] or
 otherwise. Of course it also interacts with the specific targets of
 its function, using any suitable mechanism. Unless its function is
 very simple, the ASA will need to handle overlapping asynchronous
 operations. It may therefore be a quite complex piece of software in
 its own right, forming part of the application layer above the ANI.
 ASA design guidelines are available in
 [I-D.carpenter-anima-asa-guidelines].

 Thus we can distinguish at least three classes of ASAs:

 o Simple ASAs with a small footprint that could run anywhere.

 o Complex, possibly multi-threaded ASAs that have a significant
 resource requirement and will only run on selected nodes.

https://datatracker.ietf.org/doc/html/rfc7575

Behringer, et al. Expires August 27, 2018 [Page 15]

Internet-Draft AN Reference Model February 2018

 o A few 'infrastructure ASAs' that use basic ANI features in support
 of the ANI itself, which must run in all autonomic nodes. These
 are outlined in the following sections.

 Autonomic nodes, and therefore their ASAs, will be self-aware. Every
 autonomic node will be loaded with various functions and ASAs and
 will be aware of its own capabilities, typically decided by the
 hardware, firmware or pre-installed software. Its exact role may
 depend on Intent and on the surrounding network behaviors, which may
 include forwarding behaviors, aggregation properties, topology
 location, bandwidth, tunnel or translation properties, etc. The
 surrounding topology will depend on the network planning. Following
 an initial discovery phase, the device properties and those of its
 neighbors are the foundation of the behavior of a specific device. A
 device and its ASAs have no pre-configuration for the particular
 network in which they are installed.

 Since all ASAs will interact with the ANI, they will depend on
 appropriate application programming interfaces (APIs). It is
 desirable that ASAs are portable between operating systems, so these
 APIs need to be universal. An API for GRASP is described in
 [I-D.ietf-anima-grasp-api].

 ASAs will in general be designed and coded by experts in a particular
 technology and use case, not by experts in the ANI and its
 components. Also, they may be coded in a variety of programming
 languages, in particular including languages that support object
 constructs as well as traditional variables and structures. The APIs
 should be designed with these factors in mind.

 It must be possible to run ASAs as non-privileged (user space)
 processes except for those (such as the infrastructure ASAs) that
 necessarily require kernel privilege. Also, it is highly desirable
 that ASAs can be dynamically loaded on a running node.

 Since autonomic systems must be self-repairing, it is of great
 importance that ASAs are coded using robust programming techniques.
 All run-time error conditions must be caught, leading to suitable
 recovery actions, with a complete restart of the ASA as a last
 resort. Conditions such as discovery failures or negotiation
 failures must be treated as routine, with the ASA retrying the failed
 operation, preferably with an exponential back-off in the case of
 persistent errors. When multiple threads are started within an ASA,
 these threads must be monitored for failures and hangups, and
 appropriate action taken. Attention must be given to garbage
 collection, so that ASAs never run out of resources. There is
 assumed to be no human operator - again, in the worst case, every ASA
 must be capable of restarting itself.

Behringer, et al. Expires August 27, 2018 [Page 16]

Internet-Draft AN Reference Model February 2018

 ASAs will automatically benefit from the security provided by the
 ANI, and specifically by the ACP and by GRASP. However, beyond that,
 they are responsible for their own security, especially when
 communicating with the specific targets of their function.
 Therefore, the design of an ASA must include a security analysis
 beyond 'use ANI security.'

6.2. ASA Life-Cycle Management

 ASAs operating on a given ANI may come from different providers and
 pursue different objectives. Whichever the ASA, its management and
 its interactions with the ANI must follow the same operating
 principles, hence comply to a generic life-cycle management model.

 The ASA life-cycle provides standard processes to:

 o install ASA: copy the ASA code onto the host and start it,

 o deploy ASA: associate the ASA instance with a (some) managed
 network device(s) (or network function),

 o control ASA execution: when and how an ASA executes its control
 loop.

 The life-cyle will cover the sequential states below: Installation,
 Deployment, Operation and the transitional states in-between. This
 Life-Cycle will also define which interactions ASAs have with the ANI
 in between the different states. The noticeable interactions are:

 o Self-description of ASA instances at the end of deployment: its
 format needs to define the information required for the management
 of ASAs by ANI entities

 o Control of ASA control-loop during the operation: a signaling has
 to carry formatted messages to control ASA execution (at least
 starting and stopping control loop)

6.3. Specific ASAs for the Autonomic Network Infrastructure

 The following functions provide essential, required functionality in
 an autonomic network, and are therefore mandatory to implement on
 unconstrained autonomic nodes. They are described here as ASAs that
 include the underlying infrastructure components, but implementation
 details might vary.

 The first three together support the trust enrollment process
 described in Section 5. For details see
 [I-D.ietf-anima-bootstrapping-keyinfra].

Behringer, et al. Expires August 27, 2018 [Page 17]

Internet-Draft AN Reference Model February 2018

6.3.1. The enrollment ASAs

6.3.1.1. The Pledge ASA

 This ASA includes the function of an autonomic node that bootstraps
 into the domain with the help of an join assitant ASA (see below).
 Such a node is known as a Pledge during the enrollment process. This
 ASA must be installed by default on all nodes that require an
 autonomic zero-touch bootstrap.

6.3.1.2. The Join Assistant ASA

 This ASA includes the function of an autonomic node that helps a non-
 enrolled, adjacent devices to enroll into the domain. This ASA must
 be installed on all nodes, although only one join assistant needs to
 be active on a given LAN.

6.3.1.3. The Join Registrar ASA

 This ASA includes the join registrar function in an autonomic
 network. This ASA does not need to be installed on all nodes, but
 only on nodes that implement the Join Registrar function.

6.3.2. The ACP ASA

 This ASA includes the ACP function in an autonomic network. In
 particular it acts to discover other potential ACP nodes, and to
 support the establishment and teardown of ACP channels. This ASA
 must be installed on all nodes. For details see Section 4.6 and
 [I-D.ietf-anima-autonomic-control-plane].

6.3.3. The Information Distribution ASA (*)

 This ASA is currently out of scope in ANIMA, and provided here only
 as background information.

 This ASA includes the information distribution function in an
 autonomic network. In particular it acts to announce the
 availability of Intent and other information to all other autonomic
 nodes. This ASA does not need to be installed on all nodes, but only
 on nodes that implement the information distribution function. For
 details see Section 4.7.

 Note that information distribution can be implemented as a function
 in any ASA. See [I-D.liu-anima-grasp-distribution] for more details
 on how information is suggested to be distributed.

Behringer, et al. Expires August 27, 2018 [Page 18]

Internet-Draft AN Reference Model February 2018

7. Management and Programmability

 This section describes how an Autonomic Network is managed, and
 programmed.

7.1. Managing a (Partially) Autonomic Network

 Autonomic management usually co-exists with traditional management
 methods in most networks. Thus, autonomic behavior will be defined
 for individual functions in most environments. Examples for overlap
 are:

 o Autonomic functions can use traditional methods and protocols
 (e.g., SNMP and NETCONF) to perform management tasks, inside and
 outside the ACP;

 o Autonomic functions can conflict with behavior enforced by the
 same traditional methods and protocols;

 o Traditional functions can use the ACP, for example if reachability
 on the data plane is not (yet) established.

 The autonomic Intent is defined at a high level of abstraction.
 However, since it is necessary to address individual managed
 elements, autonomic management needs to communicate in lower-level
 interactions (e.g., commands and requests). For example, it is
 expected that the configuration of such elements be performed using
 NETCONF and YANG modules as well as the monitoring be executed
 through SNMP and MIBs.

 Conflict can occur between autonomic default behavior, autonomic
 Intent, traditional management methods. Conflict resolution is
 achieved in autonomic management through prioritization [RFC7575].
 The rationale is that manual and node-based management have a higher
 priority over autonomic management. Thus, the autonomic default
 behavior has the lowest priority, then comes the autonomic Intent
 (medium priority), and, finally, the highest priority is taken by
 node-specific network management methods, such as the use of command
 line interfaces.

7.2. Intent (*)

 Intent is not covered in the current implementation specifications.
 This section is for informational purposes, for following phases of
 standardization.

 This section gives an overview of Intent, and how it is managed.
 Intent and Policy-Based Network Management (PBNM) is already

https://datatracker.ietf.org/doc/html/rfc7575

Behringer, et al. Expires August 27, 2018 [Page 19]

Internet-Draft AN Reference Model February 2018

 described inside the IETF (e.g., PCIM and SUPA) and in other SDOs
 (e.g., DMTF and TMF ZOOM).

 Intent can be described as an abstract, declarative, high-level
 policy used to operate an autonomic domain, such as an enterprise
 network [RFC7575]. Intent should be limited to high level guidance
 only, thus it does not directly define a policy for every network
 element separately.

 Intent can be refined to lower level policies using different
 approaches. This is expected in order to adapt the Intent to the
 capabilities of managed devices. Intent may contain role or function
 information, which can be translated to specific nodes [RFC7575].
 One of the possible refinements of the Intent is using Event-
 Condition-Action (ECA) rules.

 Different parameters may be configured for Intent. These parameters
 are usually provided by the human operator. Some of these parameters
 can influence the behavior of specific autonomic functions as well as
 the way the Intent is used to manage the autonomic domain.

 Intent is discussed in more detail in [I-D.du-anima-an-intent].
 Intent as well as other types of information are distributed via
 GRASP, see [I-D.liu-anima-grasp-distribution].

7.3. Aggregated Reporting (*)

 Aggregated reporting is not covered in the current implementation
 specifications. This section is for informational purposes, for
 following phases of standardization.

 Autonomic Network should minimize the need for human intervention.
 In terms of how the network should behave, this is done through an
 autonomic Intent provided by the human administrator. In an
 analogous manner, the reports which describe the operational status
 of the network should aggregate the information produced in different
 network elements in order to present the effectiveness of autonomic
 Intent enforcement. Therefore, reporting in an autonomic network
 should happen on a network-wide basis [RFC7575].

 Several events can occur in an autonomic network in the same way they
 can happen in a traditional network. However, when reporting to a
 human administrator, such events should be aggregated to avoid
 advertisement about individual managed elements. In this context,
 algorithms may be used to determine what should be reported (e.g.,
 filtering) and in which way and how different events are related to
 each other. Besides that, an event in an individual element can be

https://datatracker.ietf.org/doc/html/rfc7575
https://datatracker.ietf.org/doc/html/rfc7575
https://datatracker.ietf.org/doc/html/rfc7575

Behringer, et al. Expires August 27, 2018 [Page 20]

Internet-Draft AN Reference Model February 2018

 compensated by changes in other elements to maintain a network-wide
 level which is described in the autonomic Intent.

 Reporting in an autonomic network may be in the same abstraction
 level of the Intent. In this context, the visibility on current
 operational status of an autonomic network can be used to switch to
 different management modes. Despite the fact that autonomic
 management should minimize the need for user intervention, possibly
 there are some events that need to be addressed by human
 administrator actions.

7.4. Feedback Loops to NOC(*)

 Feedback loops are required in an autonomic network to allow the
 intervention of a human administrator or central control systems,
 while maintaining a default behaviour. Through a feedback loop an
 administrator can be prompted with a default action, and has the
 possibility to acknowledge or override the proposed default action.

7.5. Control Loops (*)

 Control loops are not covered in the current implementation
 specifications. This section is for informational purposes, for
 following phases of standardization.

 Control loops are used in autonomic networking to provide a generic
 mechanism to enable the Autonomic System to adapt (on its own) to
 various factors that can change the goals that the autonomic network
 is trying to achieve, or how those goals are achieved. For example,
 as user needs, business goals, and the ANI itself changes, self-
 adaptation enables the ANI to change the services and resources it
 makes available to adapt to these changes.

 Control loops operate to continuously observe and collect data that
 enables the autonomic management system to understand changes to the
 behavior of the system being managed, and then provide actions to
 move the state of the system being managed toward a common goal.
 Self-adaptive systems move decision-making from static, pre-defined
 commands to dynamic processes computed at runtime.

 Most autonomic systems use a closed control loop with feedback. Such
 control loops should be able to be dynamically changed at runtime to
 adapt to changing user needs, business goals, and changes in the ANI.

Behringer, et al. Expires August 27, 2018 [Page 21]

Internet-Draft AN Reference Model February 2018

7.6. APIs (*)

 APIs are not covered in the current implementation specifications.
 This section is for informational purposes, for following phases of
 standardization.

 Most APIs are static, meaning that they are pre-defined and represent
 an invariant mechanism for operating with data. An Autonomic Network
 should be able to use dynamic APIs in addition to static APIs.

 A dynamic API is one that retrieves data using a generic mechanism,
 and then enables the client to navigate the retrieved data and
 operate on it. Such APIs typically use introspection and/or
 reflection. Introspection enables software to examine the type and
 properties of an object at runtime, while reflection enables a
 program to manipulate the attributes, methods, and/or metadata of an
 object.

 APIs must be able to express and preserve the semantics of data
 models. For example, software contracts [Meyer97] are based on the
 principle that a software-intensive system, such as an Autonomic
 Network, is a set of communicating components whose interaction is
 based on precisely-defined specifications of the mutual obligations
 that interacting components must respect. This typically includes
 specifying:

 o pre-conditions that must be satisfied before the method can start
 execution

 o post-conditions that must be satisfied when the method has
 finished execution

 o invariant attributes that must not change during the execution of
 the method

7.7. Data Model (*)

 Data models are not covered in the current implementation
 specifications. This section is for informational purposes, for
 following phases of standardization.

 The following definitions are adapted from
 [I-D.ietf-supa-generic-policy-data-model]:

 An information model is a representation of concepts of interest to
 an environment in a form that is independent of data repository, data
 definition language, query language, implementation language, and
 protocol. In contrast, a data model is a representation of concepts

Behringer, et al. Expires August 27, 2018 [Page 22]

Internet-Draft AN Reference Model February 2018

 of interest to an environment in a form that is dependent on data
 repository, data definition language, query language, implementation
 language, and protocol (typically, but not necessarily, all three).

 The utility of an information model is to define objects and their
 relationships in a technology-neutral manner. This forms a
 consensual vocabulary that the ANI and ASAs can use. A data model is
 then a technology-specific mapping of all or part of the information
 model to be used by all or part of the system.

 A system may have multiple data models. Operational Support Systems,
 for example, typically have multiple types of repositories, such as
 SQL and NoSQL, to take advantage of the different properties of each.
 If multiple data models are required by an Autonomic System, then an
 information model should be used to ensure that the concepts of each
 data model can be related to each other without technological bias.

 A data model is essential for certain types of functions, such as a
 MRACL. More generally, a data model can be used to define the
 objects, attributes, methods, and relationships of a software system
 (e.g., the ANI, an autonomic node, or an ASA). A data model can be
 used to help design an API, as well as any language used to interface
 to the Autonomic Network.

8. Coordination Between Autonomic Functions (*)

 Coordination between autonomic functions is not covered in the
 current implementation specifications. This section is for
 informational purposes, for following phases of standardization.

8.1. The Coordination Problem (*)

 Different autonomic functions may conflict in setting certain
 parameters. For example, an energy efficiency function may want to
 shut down a redundant link, while a load balancing function would not
 want that to happen. The administrator must be able to understand
 and resolve such interactions, to steer autonomic network performance
 to a given (intended) operational point.

 Several interaction types may exist among autonomic functions, for
 example:

 o Cooperation: An autonomic function can improve the behavior or
 performance of another autonomic function, such as a traffic
 forecasting function used by a traffic allocation function.

 o Dependency: An autonomic function cannot work without another one
 being present or accessible in the autonomic network.

Behringer, et al. Expires August 27, 2018 [Page 23]

Internet-Draft AN Reference Model February 2018

 o Conflict: A metric value conflict is a conflict where one metric
 is influenced by parameters of different autonomic functions. A
 parameter value conflict is a conflict where one parameter is
 modified by different autonomic functions.

 Solving the coordination problem beyond one-by-one cases can rapidly
 become intractable for large networks. Specifying a common
 functional block on coordination is a first step to address the
 problem in a systemic way. The coordination life-cycle consists in
 three states:

 o At build-time, a "static interaction map" can be constructed on
 the relationship of functions and attributes. This map can be
 used to (pre-)define policies and priorities on identified
 conflicts.

 o At deploy-time, autonomic functions are not yet active/acting on
 the network. A "dynamic interaction map" is created for each
 instance of each autonomic functions and on a per resource basis,
 including the actions performed and their relationships. This map
 provides the basis to identify conflicts that will happen at run-
 time, categorize them and plan for the appropriate coordination
 strategies/mechanisms.

 o At run-time, when conflicts happen, arbitration is driven by the
 coordination strategies. Also new dependencies can be observed
 and inferred, resulting in an update of the dynamic interaction
 map and adaptation of the coordination strategies and mechanisms.

 Multiple coordination strategies and mechanisms exist and can be
 devised. The set ranges from basic approaches such as random process
 or token-based process, to approaches based on time separation and
 hierarchical optimization, to more complex approaches such as multi-
 objective optimization, and other control theory approaches and
 algorithms family.

8.2. A Coordination Functional Block (*)

 A common coordination functional block is a desirable component of
 the ANIMA reference model. It provides a means to ensure network
 properties and predictable performance or behavior such as stability,
 and convergence, in the presence of several interacting autonomic
 functions.

 A common coordination function requires:

 o A common description of autonomic functions, their attributes and
 life-cycle.

Behringer, et al. Expires August 27, 2018 [Page 24]

Internet-Draft AN Reference Model February 2018

 o A common representation of information and knowledge (e.g.,
 interaction maps).

 o A common "control/command" interface between the coordination
 "agent" and the autonomic functions.

 Guidelines, recommendations or BCPs can also be provided for aspects
 pertaining to the coordination strategies and mechanisms.

9. Security Considerations

 In this section we distinguish outsider and insider attacks. In an
 outsider attack all network elements and protocols are securely
 managed and operating, and an outside attacker can sniff packets in
 transit, inject and replay packets. In an insider attack, the
 attacker has access to an autonomic node or other means (e.g. remote
 code execution in the node by exploiting ACP-independent
 vulnerabilities in the node platform) to produce arbitrary payloads
 on the protected ACP channels.

 If a system has vulnerabilities in the implementation or operation
 (configuration), an outside attacker can exploit such vulnerabilies
 to become an insider attacker.

9.1. Protection Against Outsider Attacks

 Here, we assume that all systems involved in an autonomic network are
 secured and operated according to best current practices. These
 protection methods comprise traditional security implementation and
 operation methods (such as code security, strong randomization
 algorithms, strong passwords, etc.) as well as mechanisms specific to
 an autonomic network (such as a secured MASA service).

 Traditional security methods for both implementation and operation
 are outside scope for this document.

 AN specific protocols and methods must also follow traditional
 security methods, in that all packets that can be sniffed or injected
 by an outside attacker are:

 o protected against modification.

 o authenticated.

 o protected against replay attacks.

 o encrypted.

Behringer, et al. Expires August 27, 2018 [Page 25]

Internet-Draft AN Reference Model February 2018

 o and that the AN protocols are robust against packet drops and man-
 in-the-middle attacks.

 How these requirements are met is covered in the AN standards track
 documents that define the methods used, specifically
 [I-D.ietf-anima-bootstrapping-keyinfra], [I-D.ietf-anima-grasp], and
 [I-D.ietf-anima-autonomic-control-plane].

 Most AN messages run inside the cryptographically protected ACP. The
 not protected AN messages outside the ACP are limited to a simple
 discovery method, defined in Section 2.5.2 of [I-D.ietf-anima-grasp]:
 The "Discovery Unsolicited Link-Local (DULL)" message, with detailed
 rules on its usage.

 If AN messages can be observed by a third party, they might reveal
 valuable information about network configuration, security
 precautions in use, individual users, and their traffic patterns. If
 encrypted, AN messages might still reveal some information via
 traffic analysis, but this would be quite limited (for example, this
 would be highly unlikely to reveal any specific information about
 user traffic).

9.2. Risk of Insider Attacks

 An autonomic network consists of autonomic devices that form a
 distributed self-managing system. Devices within a domain share a
 common trust anchor and thus implicitly trust each other. This means
 that any device inside a trust domain can by default use all
 distributed functions in the entire autonomic domain in a malicious
 way.

 If an autonomic node or protocol has vulnerabilities or is not
 securely operated, an outside attacker has the following generic ways
 to take control of an autonomic network:

 o Introducing a fake device into the trust domain, by subverting the
 authentication methods. This depends on the correct
 specification, implementation and operation of the AN protocols.

 o Subverting a device which is already part of a trust domain, and
 modifying its behavior. This threat is not specific to the
 solution discussed in this document, and applies to all network
 solutions.

 o Exploiting potentially yet unknown protocol vulnerabilities in the
 AN or other protocols. Also this is a generic threat that applies
 to all network solutions.

Behringer, et al. Expires August 27, 2018 [Page 26]

Internet-Draft AN Reference Model February 2018

 The above threats are in principle comparable to other solutions: In
 the presence of design, implementation or operational errors,
 security is no longer guaranteed. However, the distributed nature of
 AN, specifically the Autonomic Control Plane, increases the threat
 surface significantly. For example, a compromised device may have
 full IP reachability to all other devices inside the ACP, and can use
 all AN methods and protocols.

 For the next phase of the ANIMA work it is therefore recommended to
 introduce a sub-domain security model, to reduce the attack surface
 and not expose a full domain to a potential intruder. Furthermore,
 additional security mechanisms on the ASA level should be considered
 for high-risk autonomic functions.

10. IANA Considerations

 This document requests no action by IANA.

11. Acknowledgements

 Many people have provided feedback and input to this document: Sheng
 Jiang, Roberta Maglione, Jonathan Hansford, Jason Coleman, Artur
 Hecker.

12. Contributors

 Significant contributions to this document have been made by John
 Strassner and Bing Liu from Huawei, and Pierre Peloso from Nokia.

13. References

13.1. Normative References

 [I-D.ietf-anima-autonomic-control-plane]
 Eckert, T., Behringer, M., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-ietf-anima-autonomic-control-

plane-13 (work in progress), December 2017.

 [I-D.ietf-anima-bootstrapping-keyinfra]
 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-

keyinfra-11 (work in progress), February 2018.

 [I-D.ietf-anima-grasp]
 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-

grasp-15 (work in progress), July 2017.

https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-13
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-13
https://datatracker.ietf.org/doc/html/draft-ietf-anima-bootstrapping-keyinfra-11
https://datatracker.ietf.org/doc/html/draft-ietf-anima-bootstrapping-keyinfra-11
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-15
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-15

Behringer, et al. Expires August 27, 2018 [Page 27]

Internet-Draft AN Reference Model February 2018

13.2. Informative References

 [I-D.carpenter-anima-asa-guidelines]
 Carpenter, B., Ciavaglia, L., Jiang, S., and P. Pierre,
 "Guidelines for Autonomic Service Agents", draft-

carpenter-anima-asa-guidelines-03 (work in progress),
 October 2017.

 [I-D.du-anima-an-intent]
 Du, Z., Jiang, S., Nobre, J., Ciavaglia, L., and M.
 Behringer, "ANIMA Intent Policy and Format", draft-du-

anima-an-intent-05 (work in progress), February 2017.

 [I-D.ietf-anima-grasp-api]
 Carpenter, B., Liu, B., Wang, W., and X. Gong, "Generic
 Autonomic Signaling Protocol Application Program Interface
 (GRASP API)", draft-ietf-anima-grasp-api-00 (work in
 progress), December 2017.

 [I-D.ietf-anima-prefix-management]
 Jiang, S., Du, Z., Carpenter, B., and Q. Sun, "Autonomic
 IPv6 Edge Prefix Management in Large-scale Networks",

draft-ietf-anima-prefix-management-07 (work in progress),
 December 2017.

 [I-D.ietf-anima-stable-connectivity]
 Eckert, T. and M. Behringer, "Using Autonomic Control
 Plane for Stable Connectivity of Network OAM", draft-ietf-

anima-stable-connectivity-10 (work in progress), February
 2018.

 [I-D.ietf-supa-generic-policy-data-model]
 Halpern, J. and J. Strassner, "Generic Policy Data Model
 for Simplified Use of Policy Abstractions (SUPA)", draft-

ietf-supa-generic-policy-data-model-04 (work in progress),
 June 2017.

 [I-D.liu-anima-grasp-distribution]
 Liu, B., Jiang, S., Xiao, X., Hecker, A., and Z.
 Despotovic, "Information Distribution in Autonomic
 Networking", draft-liu-anima-grasp-distribution-05 (work
 in progress), February 2018.

 [IDevID] IEEE Standard, , "IEEE 802.1AR Secure Device Identifier",
 December 2009, <http://standards.ieee.org/findstds/

standard/802.1AR-2009.html>.

https://datatracker.ietf.org/doc/html/draft-carpenter-anima-asa-guidelines-03
https://datatracker.ietf.org/doc/html/draft-carpenter-anima-asa-guidelines-03
https://datatracker.ietf.org/doc/html/draft-du-anima-an-intent-05
https://datatracker.ietf.org/doc/html/draft-du-anima-an-intent-05
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-api-00
https://datatracker.ietf.org/doc/html/draft-ietf-anima-prefix-management-07
https://datatracker.ietf.org/doc/html/draft-ietf-anima-stable-connectivity-10
https://datatracker.ietf.org/doc/html/draft-ietf-anima-stable-connectivity-10
https://datatracker.ietf.org/doc/html/draft-ietf-supa-generic-policy-data-model-04
https://datatracker.ietf.org/doc/html/draft-ietf-supa-generic-policy-data-model-04
https://datatracker.ietf.org/doc/html/draft-liu-anima-grasp-distribution-05
http://standards.ieee.org/findstds/standard/802.1AR-2009.html
http://standards.ieee.org/findstds/standard/802.1AR-2009.html

Behringer, et al. Expires August 27, 2018 [Page 28]

Internet-Draft AN Reference Model February 2018

 [Meyer97] Meyer, B., "Object-Oriented Software Construction (2nd
 edition)", Prentice-Hall, ISBN 978-0136291558, 1997.

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015, <https://www.rfc-

editor.org/info/rfc7575>.

 [RFC7576] Jiang, S., Carpenter, B., and M. Behringer, "General Gap
 Analysis for Autonomic Networking", RFC 7576,
 DOI 10.17487/RFC7576, June 2015, <https://www.rfc-

editor.org/info/rfc7576>.

Authors' Addresses

 Michael H. Behringer (editor)

 Email: Michael.H.Behringer@gmail.com

 Brian Carpenter
 Department of Computer Science
 University of Auckland
 PB 92019
 Auckland 1142
 New Zealand

 Email: brian.e.carpenter@gmail.com

 Toerless Eckert
 Futurewei Technologies Inc.
 2330 Central Expy
 Santa Clara 95050
 USA

 Email: tte@cs.fau.de

 Laurent Ciavaglia
 Nokia
 Villarceaux
 Nozay 91460
 FR

 Email: laurent.ciavaglia@nokia.com

https://datatracker.ietf.org/doc/html/rfc7575
https://www.rfc-editor.org/info/rfc7575
https://www.rfc-editor.org/info/rfc7575
https://datatracker.ietf.org/doc/html/rfc7576
https://www.rfc-editor.org/info/rfc7576
https://www.rfc-editor.org/info/rfc7576

Behringer, et al. Expires August 27, 2018 [Page 29]

Internet-Draft AN Reference Model February 2018

 Jeferson Campos Nobre
 University of Vale do Rio dos Sinos
 Av. Unisinos, 950
 Sao Leopoldo 91501-970
 Brazil

 Email: jcnobre@unisinos.br

Behringer, et al. Expires August 27, 2018 [Page 30]

