
Network Working Group M. Nottingham
Internet-Draft Akamai
Intended status: Standards Track E. Wilde
Expires: March 10, 2016 UC Berkeley
 September 7, 2015

Problem Details for HTTP APIs
draft-ietf-appsawg-http-problem-01

Abstract

 This document defines a "problem detail" as a way to carry machine-
 readable details of errors in a HTTP response, to avoid the need to
 invent new error response formats for HTTP APIs.

Note to Readers

 This draft should be discussed on the apps-discuss mailing list [1].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 10, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Nottingham & Wilde Expires March 10, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Problem Details September 2015

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Requirements . 3
3. The Problem Details JSON Object 4
3.1. Problem Details Object Members 5
3.2. Extension Members . 6

4. Defining New Problem Types 6
4.1. Example . 8
4.2. Pre-Defined Problem Types 8

5. Security Considerations 9
6. IANA Considerations . 9
7. Acknowledgements . 10
8. References . 11
8.1. Normative References 11
8.2. Informative References 11

Appendix A. HTTP Problems and XML 12
Appendix B. Using Problem Details with Other Formats 14

 Authors' Addresses . 14

1. Introduction

 HTTP [RFC7230] status codes are sometimes not sufficient to convey
 enough information about an error to be helpful. While humans behind
 Web browsers can be informed about the nature of the problem with an
 HTML [W3C.REC-html401-19991224] response body, non-human consumers of
 so-called "HTTP APIs" are usually not.

 This specification defines simple JSON [RFC7159] and XML
 [W3C.REC-xml-20081126] document formats to suit this purpose. They
 are designed to be reused by HTTP APIs, which can identify distinct
 "problem types" specific to their needs.

 Thus, API clients can be informed of both the high-level error class
 (using the status code) and the finer-grained details of the problem
 (using one of these formats).

 For example, consider a response that indicates that the client's
 account doesn't have enough credit. The 403 Forbidden status code
 might be deemed most appropriate to use, as it will inform HTTP-
 generic software (such as client libraries, caches and proxies) of
 the general semantics of the response.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7159

Nottingham & Wilde Expires March 10, 2016 [Page 2]

Internet-Draft Problem Details September 2015

 However, that doesn't give the API client enough information about
 why the request was forbidden, the applicable account balance, or how
 to correct the problem. If these details are included in the
 response body in a machine-readable format, the client can treat it
 appropriately; for example, triggering a transfer of more credit into
 the account.

 This specification does this by identifying a specific type of
 problem (e.g., "out of credit") with a URI [RFC3986]; HTTP APIs can
 do this by nominating new URIs under their control, or by reusing
 existing ones.

 Additionally, problems can contain other information, such as a URI
 that identifies the specific occurrence of the problem (effectively
 giving an identifier to the concept "The time Joe didn't have enough
 credit last Thursday"), which can be useful for support or forensic
 purposes.

 The data model for problem details is a JSON [RFC7159] object; when
 formatted as a JSON document, it uses the "application/problem+json"
 media type. Appendix A defines how to express them in an equivalent
 XML format, which uses the "application/problem+xml" media type.

 Note that problem details are (naturally) not the only way to convey
 the details of a problem in HTTP; if the response is still a
 representation of a resource, for example, it's often preferable to
 accommodate describing the relevant details in that application's
 format. Likewise, in many situations, there is an appropriate HTTP
 status code that does not require extra detail to be conveyed.

 Instead, the aim of this specification is to define common error
 formats for those applications that need one, so that they aren't
 required to define their own, or worse, tempted to re-define the
 semantics of existing HTTP status codes. Even if an application
 chooses not to use it to convey errors, reviewing its design can help
 guide the design decisions faced when conveying errors in an existing
 format.

2. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc2119

Nottingham & Wilde Expires March 10, 2016 [Page 3]

Internet-Draft Problem Details September 2015

3. The Problem Details JSON Object

 The canonical model for problem details is a JSON [RFC7159] object.

 When serialised as a JSON document, that format is identified with
 the "application/problem+json" media type.

 For example, a HTTP response carrying JSON problem details:

 HTTP/1.1 403 Forbidden
 Content-Type: application/problem+json
 Content-Language: en

 {
 "type": "https://example.com/probs/out-of-credit",
 "title": "You do not have enough credit.",
 "detail": "Your current balance is 30, but that costs 50.",
 "instance": "/account/12345/msgs/abc",
 "balance": 30,
 "accounts": ["/account/12345",
 "/account/67890"]
 }

 Here, the out-of-credit problem (identified by its type URI)
 indicates the reason for the 403 in "title", gives a reference for
 the specific problem occurrence with "instance", gives occurrence-
 specific details in "detail", and adds two extensions; "balance"
 conveys the account's balance, and "accounts" gives links where the
 account can be topped up.

 The ability to convey problem-specific extensions allows more than
 one problem to be conveyed. For example:

https://datatracker.ietf.org/doc/html/rfc7159

Nottingham & Wilde Expires March 10, 2016 [Page 4]

Internet-Draft Problem Details September 2015

 HTTP/1.1 400 Bad Request
 Content-Type: application/problem+json
 Content-Language: en

 {
 "type": "https://example.net/validation-error",
 "title": "Your request parameters didn't validate.",
 "invalid-params": [{
 "name": "age",
 "reason": "must be a positive integer"
 },
 {
 "name": "color",
 "reason": "must be 'green', 'red' or 'blue'"}
]
 }

 Note that this requires each of the sub-problems to be similar enough
 to use the same HTTP status code. If they do not, the 207 (Multi-
 Status) [RFC4918] code could be used to encapsulate multiple status
 messages.

3.1. Problem Details Object Members

 A problem details object MAY have the following members:

 o "type" (string) - A URI reference [RFC3986] that identifies the
 problem type. When dereferenced, it is encouraged to provide
 human-readable documentation for the problem type (e.g., using
 HTML [W3C.REC-html401-19991224]). When this member is not
 present, its value is assumed to be "about:blank".

 o "title" (string) - A short, human-readable summary of the problem
 type. It SHOULD NOT change from occurrence to occurrence of the
 problem, except for purposes of localisation.

 o "status" (number) - The HTTP status code ([RFC7231], Section 6)
 generated by the origin server for this occurrence of the problem.

 o "detail" (string) - An human readable explanation specific to this
 occurrence of the problem.

 o "instance" (string) - A URI reference that identifies the specific
 occurrence of the problem. It may or may not yield further
 information if dereferenced.

 Consumers MUST use the type string as the primary identifier for the
 problem type; the title string is advisory, and included only for

https://datatracker.ietf.org/doc/html/rfc4918
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc7231#section-6

Nottingham & Wilde Expires March 10, 2016 [Page 5]

Internet-Draft Problem Details September 2015

 users who are not aware of the semantics of the URI, and don't have
 the ability to discover them (e.g., offline log analysis). Consumers
 SHOULD NOT automatically dereference the type URI.

 The status member, if present, is only advisory; it conveys the HTTP
 status code used for the convenience of the consumer. Generators
 MUST use the same status code in the actual HTTP response, to assure
 that generic HTTP software that does not understand this format still
 behaves correctly. See Section 5 for further caveats regarding its
 use.

 The detail member, if present, SHOULD focus on helping the client
 correct the problem, rather than giving debugging information.

 Consumers SHOULD NOT parse the detail member for information;
 extensions are more suitable and less error-prone ways to obtain such
 information.

 Note that both "type" and "instance" accept relative URIs; this means
 that they must be resolved relative to the document's base URI, as
 per {{RFC3986}}, Section 5.

3.2. Extension Members

 Problem type definitions MAY extend the problem details object with
 additional members.

 For example, our "out of credit" problem above defines two such
 extensions, "balance" and "accounts" to convey additional, problem-
 specific information.

 Clients consuming problem details MUST ignore any such extensions
 that they don't recognise; this allows problem types to evolve and
 include additional information in the future.

 Note that because extensions are effectively name spaced by the
 problem type, it is not possible to define new "standard" members
 without defining a new media type.

4. Defining New Problem Types

 When an HTTP API needs to define a response that indicates an error
 condition, it might be appropriate to do so by defining a new problem
 type.

 Before doing so, it's important to understand what they are good for,
 and what's better left to other mechanisms.

https://datatracker.ietf.org/doc/html/rfc3986

Nottingham & Wilde Expires March 10, 2016 [Page 6]

Internet-Draft Problem Details September 2015

 Problem details are not a debugging tool for the underlying
 implementation; rather, they are a way to expose greater detail about
 the HTTP interface itself. New problem types need to carefully
 consider the Security Considerations (Section 5); in particular the
 risk of exposing attack vectors by exposing implementation internals
 through error messages.

 Likewise, truly generic problems - i.e., conditions that could
 potentially apply to any resource on the Web - are usually better
 expressed as plain status codes. For example, a "write access
 disallowed" problem is probably unnecessary, since a 403 Forbidden
 status code in response to a PUT request is self-explanatory.

 Finally, an application may have a more appropriate way to carry an
 error in a format that it already defines. Problem details are
 intended to avoid the necessity of establishing new "fault" or
 "error" document formats, not to replace existing domain-specific
 formats.

 That said, it is possible to add support for problem details to
 existing HTTP APIs using HTTP content negotiation (e.g., using the
 Accept request header to indicate a preference for this format).

 New problem type definitions MUST document:

 1. A type URI (typically, with the "http" scheme),

 2. A title that appropriately describes it (think short), and

 3. The HTTP status code for it to be used with.

 Problem types MAY specify the use of the Retry-After response header
 in appropriate circumstances.

 A problem's type URI SHOULD resolve to HTML
 [W3C.REC-html401-19991224] documentation that explains how to resolve
 the problem.

 A problem type definition MAY specify additional members on the
 Problem Details object. For example, an extension might use typed
 links [RFC5988] to another resource that can be used by machines to
 resolve the problem.

 If such additional members are defined, their names SHOULD start with
 a letter (ALPHA, as per [RFC5234]) and SHOULD consist of characters
 from ALPHA, DIGIT, and "_" (so that it can be serialized in formats
 other than JSON), and SHOULD be three characters or longer.

https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc5234

Nottingham & Wilde Expires March 10, 2016 [Page 7]

Internet-Draft Problem Details September 2015

4.1. Example

 For example, if you are publishing an HTTP API to your online
 shopping cart, you might need to indicate that the user is out of
 credit (our example from above), and therefore cannot make the
 purchase.

 If you already have an application-specific format that can
 accommodate this information, it's probably best to do that.
 However, if you don't, you might consider using one of the problem
 details formats; JSON if your API is JSON-based, or XML if it uses
 that format.

 To do so, you might look for an already-defined type URI that suits
 your purposes. If one is available, you can reuse that URI.

 If one isn't available, you could mint and document a new type URI
 (which ought to be under your control and stable over time), an
 appropriate title and the HTTP status code that it will be used with,
 along with what it means and how it should be handled.

 In summary: an instance URI will always identify a specific
 occurrence of a problem. On the other hand, type URIs can be reused
 if an appropriate description of a problem type is already available
 someplace else, or they can be created for new problem types.

4.2. Pre-Defined Problem Types

 This specification reserves the use of one URI as a problem type:

 The "about:blank" URI [RFC6694], when used as a problem type,
 indicates that the problem has no additional semantics beyond that of
 the HTTP status code.

 When "about:blank" is used, the title SHOULD be the same as the
 recommended HTTP status phrase for that code (e.g., "Not Found" for
 404, and so on), although it MAY be localized to suit client
 preferences (expressed with the Accept-Language request header).

 Please note that according to how the "type" member is defined
 (Section 3.1), the "about:blank" URI is the default value for that
 member. Consequently, any problem details object not carrying an
 explicit "type" member implicitly uses this URI.

https://datatracker.ietf.org/doc/html/rfc6694

Nottingham & Wilde Expires March 10, 2016 [Page 8]

Internet-Draft Problem Details September 2015

5. Security Considerations

 When defining a new problem type, the information included must be
 carefully vetted. Likewise, when actually generating a problem -
 however it is serialized - the details given must also be
 scrutinized.

 Risks include leaking information that can be exploited to compromise
 the system, access to the system, or the privacy of users of the
 system.

 Generators providing links to occurrence information are encouraged
 to avoid making implementation details such as a stack dump available
 through the HTTP interface, since this can expose sensitive details
 of the server implementation, its data, and so on.

 The "status" member duplicates the information available in the HTTP
 status code itself, thereby bringing the possibility of disagreement
 between the two. Their relative precedence is not clear, since a
 disagreement might indicate that (for example) an intermediary has
 modified the HTTP status code in transit. As such, those defining
 problem types as well as generators and consumers of problems need to
 be aware that generic software (such as proxies, load balancers,
 firewalls, virus scanners) are unlikely to know of or respect the
 status code conveyed in this member.

6. IANA Considerations

 This specification defines two new Internet media types [RFC6838]:

https://datatracker.ietf.org/doc/html/rfc6838

Nottingham & Wilde Expires March 10, 2016 [Page 9]

Internet-Draft Problem Details September 2015

 Type name: application
 Subtype name: problem+json
 Required parameters: None
 Optional parameters: None; unrecognised parameters
 should be ignored
 Encoding considerations: Same as [RFC7159]
 Security considerations: see [this document]
 Interoperability considerations: None.
 Published specification: [this document]
 Applications that use this media type: HTTP
 Additional information:
 Magic number(s): n/a
 File extension(s): n/a
 Macintosh file type code(s): n/a
 Person & email address to contact for further information:
 Mark Nottingham <mnot@mnot.net>
 Intended usage: COMMON
 Restrictions on usage: None.
 Author: Mark Nottingham <mnot@mnot.net>
 Change controller: IESG

 Type name: application
 Subtype name: problem+xml
 Required parameters: None
 Optional parameters: None; unrecognized parameters
 should be ignored
 Encoding considerations: Same as [RFC7303]
 Security considerations: see [this document]
 Interoperability considerations: None.
 Published specification: [this document]
 Applications that use this media type: HTTP
 Additional information:
 Magic number(s): n/a
 File extension(s): n/a
 Macintosh file type code(s): n/a
 Person & email address to contact for further information:
 Mark Nottingham <mnot@mnot.net>
 Intended usage: COMMON
 Restrictions on usage: None.
 Author: Mark Nottingham <mnot@mnot.net>
 Change controller: IESG

7. Acknowledgements

 The authors would like to thank Jan Algermissen, Mike Amundsen, Subbu
 Allamaraju, Roy Fielding, Eran Hammer, Sam Johnston, Mike McCall,
 Julian Reschke, and James Snell for review of this specification.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7303

Nottingham & Wilde Expires March 10, 2016 [Page 10]

Internet-Draft Problem Details September 2015

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, DOI 10.17487/

RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing", RFC

7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231, DOI
 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

8.2. Informative References

 [ISO-19757-2]
 International Organization for Standardization,
 "Information Technology --- Document Schema Definition
 Languages (DSDL) --- Part 2: Grammar-based Validation ---
 RELAX NG", ISO/IEC 19757-2, 2003.

 [RFC4918] Dusseault, L., Ed., "HTTP Extensions for Web Distributed
 Authoring and Versioning (WebDAV)", RFC 4918, DOI
 10.17487/RFC4918, June 2007,
 <http://www.rfc-editor.org/info/rfc4918>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234
http://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc4918
http://www.rfc-editor.org/info/rfc4918

Nottingham & Wilde Expires March 10, 2016 [Page 11]

Internet-Draft Problem Details September 2015

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, DOI 10.17487/
RFC5988, October 2010,

 <http://www.rfc-editor.org/info/rfc5988>.

 [RFC6694] Moonesamy, S., Ed., "The "about" URI Scheme", RFC 6694,
 DOI 10.17487/RFC6694, August 2012,
 <http://www.rfc-editor.org/info/rfc6694>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13, RFC

6838, DOI 10.17487/RFC6838, January 2013,
 <http://www.rfc-editor.org/info/rfc6838>.

 [RFC7303] Thompson, H. and C. Lilley, "XML Media Types", RFC 7303,
 DOI 10.17487/RFC7303, July 2014,
 <http://www.rfc-editor.org/info/rfc7303>.

 [W3C.REC-html401-19991224]
 Raggett, D., Hors, A., and I. Jacobs, "HTML 4.01
 Specification", World Wide Web Consortium Recommendation
 REC-html401-19991224, December 1999,
 <http://www.w3.org/TR/1999/REC-html401-19991224>.

 [W3C.REC-rdfa-core-20120607]
 Adida, B., Birbeck, M., McCarron, S., and I. Herman, "RDFa
 Core 1.1", World Wide Web Consortium Recommendation REC-
 rdfa-core-20120607, June 2012,
 <http://www.w3.org/TR/2012/REC-rdfa-core-20120607>.

 [W3C.REC-xml-20081126]
 Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20081126, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126>.

Appendix A. HTTP Problems and XML

 Some HTTP-based APIs use XML [W3C.REC-xml-20081126] as their primary
 format convention. Such APIs MAY express problem details using the
 format defined in this appendix.

 The OPTIONAL RELAX NG schema [ISO-19757-2] for the XML format is:

https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc5988
http://www.rfc-editor.org/info/rfc5988
https://datatracker.ietf.org/doc/html/rfc6694
http://www.rfc-editor.org/info/rfc6694
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
https://datatracker.ietf.org/doc/html/rfc6838
http://www.rfc-editor.org/info/rfc6838
https://datatracker.ietf.org/doc/html/rfc7303
http://www.rfc-editor.org/info/rfc7303
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/2012/REC-rdfa-core-20120607
http://www.w3.org/TR/2008/REC-xml-20081126

Nottingham & Wilde Expires March 10, 2016 [Page 12]

Internet-Draft Problem Details September 2015

 default namespace ns = "urn:ietf:rfc:XXXX"

 start = problem

 problem =
 element problem {
 (element type { xsd:anyURI }?
 & element title { xsd:string }?
 & element detail { xsd:string }?
 & element status { xsd:positiveInteger }?
 & element instance { xsd:anyURI }?),
 anyNsElement
 }

 anyNsElement =
 (element ns:* { anyNsElement | text }
 | attribute * { text })*

 The media type for this format is "application/problem+xml".

 Extension arrays and objects can be serialized into the XML format by
 considering an element containing a child or children to represent an
 object, except for elements that contain only child element(s) named
 'i', which are considered arrays. For example, an alternate version
 of the example above would appear in XML as:

 HTTP/1.1 403 Forbidden
 Content-Type: application/problem+xml
 Content-Language: en

 <?xml version="1.0" encoding="UTF-8"?>
 <problem xmlns="urn:ietf:rfc:XXXX">
 <type>https://example.com/probs/out-of-credit</type>
 <title>You do not have enough credit.</title>
 <detail>Your current balance is 30, but that costs 50.</detail>
 <instance>
 https://example.net/account/12345/msgs/abc
 </instance>
 <balance>30</balance>
 <accounts>
 <i>https://example.net/account/12345</i>
 <i>https://example.net/account/67890</i>
 </accounts>
 </problem>

 Note that this format uses an XML Namespace. This is primarily to
 allow embedding it into other XML-based formats; it does not imply
 that it can or should be extended with elements or attributes in

Nottingham & Wilde Expires March 10, 2016 [Page 13]

Internet-Draft Problem Details September 2015

 other namespaces. The RELAX NG schema explicitly only allows
 elements from the one namespace used in the XML format. Any
 extension arrays and objects MUST be serialized into XML markup using
 only that namespace.

Appendix B. Using Problem Details with Other Formats

 In some situations, it can be advantageous to embed Problem Details
 in formats other than those described here. For example, an API that
 uses HTML [W3C.REC-html401-19991224] might want to also use HTML for
 expressing its problem details.

 Problem details can be embedded in other formats by either
 encapsulating one of the existing serializations (JSON or XML) into
 that format, or by translating the model of a Problem Detail (as
 specified in Section 3) into the format's conventions.

 For example, in HTML, a problem could be embedded by encapsulating
 JSON in a script tag:

 <script type="application/problem+json">
 {
 "type": "https://example.com/probs/out-of-credit",
 "title": "You do not have enough credit.",
 "detail": "Your current balance is 30, but that costs 50.",
 "instance": "/account/12345/msgs/abc",
 "balance": 30,
 "accounts": ["/account/12345",
 "/account/67890"]
 }
 </script>
 }

 or by inventing a mapping into RDFa [W3C.REC-rdfa-core-20120607].

 This specification does not make specific recommendations regarding
 embedding Problem Details in other formats; the appropriate way to
 embed them depends both upon the format in use and application of
 that format.

Authors' Addresses

 Mark Nottingham
 Akamai

 Email: mnot@mnot.net
 URI: http://www.mnot.net/

http://www.mnot.net/

Nottingham & Wilde Expires March 10, 2016 [Page 14]

Internet-Draft Problem Details September 2015

 Erik Wilde
 UC Berkeley

 Email: dret@berkeley.edu
 URI: http://dret.net/netdret/

Nottingham & Wilde Expires March 10, 2016 [Page 15]

http://dret.net/netdret/

