
Applications Area Working Group P. Bryan, Ed.
Internet-Draft Salesforce.com
Intended status: Informational M. Nottingham, Ed.
Expires: March 21, 2013 September 17, 2012

JSON Patch
draft-ietf-appsawg-json-patch-04

Abstract

 JSON Patch defines the media type "application/json-patch", a JSON
 document structure for expressing a sequence of operations to apply
 to a JSON document.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 21, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bryan & Nottingham Expires March 21, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSON Patch September 2012

Table of Contents

1. Introduction . 3
2. Conventions . 3
3. Document Structure . 3
4. Operations . 3
4.1. add . 4
4.2. remove . 4
4.3. replace . 5
4.4. move . 5
4.5. copy . 6
4.6. test . 6

5. Error Handling . 7
6. IANA Considerations . 8
7. Security Considerations 9
8. Acknowledgements . 9
9. References . 9
9.1. Normative References 9
9.2. Informative References 9

Appendix A. Examples . 10
A.1. Adding an Object Member 10
A.2. Adding an Array Element 10
A.3. Removing an Object Member 11
A.4. Removing an Array Element 11
A.5. Replacing a Value . 12
A.6. Moving a Value . 12
A.7. Moving an Array Element 13
A.8. Testing a Value: Success 13
A.9. Testing a Value: Error 14
A.10. Adding a nested Member Object 14

 Authors' Addresses . 14

Bryan & Nottingham Expires March 21, 2013 [Page 2]

Internet-Draft JSON Patch September 2012

1. Introduction

 JavaScript Object Notation (JSON) [RFC4627] is a common format for
 the exchange and storage of structured data. HTTP PATCH [RFC5789]
 extends the Hypertext Transfer Protocol (HTTP) [RFC2616] with a
 method to perform partial modifications to resources.

 The JSON Patch media type "application/json-patch" is a JSON document
 structure for expressing a sequence of operations to apply to a
 target JSON document, suitable for use with the HTTP PATCH method.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Document Structure

 A JSON Patch document contains a JSON array of objects. Each object
 contains a single operation to apply to the target JSON document.

 An example JSON Patch document:

 [
 { "test": "/a/b/c", "value": "foo" },
 { "remove": "/a/b/c" },
 { "add": "/a/b/c", "value": ["foo", "bar"] },
 { "replace": "/a/b/c", "value": 42 },
 { "move": "/a/b/c", "to": "/a/b/d" },
 { "copy": "/a/b/c", "to": "/a/b/e" }
]

 Evaluation of a JSON Patch document begins with a target JSON
 document. Operations are applied sequentially in the order they
 appear in the array. Each operation in the sequence is applied to
 the target document; the resulting document becomes the target of the
 next operation. Evaluation continues until all operations are
 successfully applied or an error condition is encountered.

4. Operations

 The operation to perform is expressed in a member of the operation
 object. The name of the operation member is one of: "add", "remove",
 "replace", "move", "copy" or "test".

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Bryan & Nottingham Expires March 21, 2013 [Page 3]

Internet-Draft JSON Patch September 2012

 The member value is a string containing a [JSON-Pointer] value that
 references the location within the target document to perform the
 operation. It is an error condition if an operation object contains
 no recognized operation member or more than one operation member.

4.1. add

 The "add" operation adds a new value at the specified location in the
 target document. The location must reference one of: the root of the
 target document, a member to add to an existing object, or an element
 to add to an existing array. The operation object contains a "value"
 member that specifies the value to be added.

 Example:

 { "add": "/a/b/c", "value": ["foo", "bar"] }

 If the location references the root of the target document or a
 member of an existing object, it is an error condition if a value at
 the specified location already exists.

 If the location references an element of an existing array, any
 elements at or above the specified index are shifted one position to
 the right. It is an error condition if the specified index is
 greater than the number of elements in the array.

 Note that this operation will, in common use, contain a JSON Pointer
 that does not resolve to an existing value in the target document.
 As such, the pointer's error handling algorithm is invoked. This
 specification defines the error handling algorithm for "add" pointers
 to explicitly ignore the error and perform the operation as
 specified.

 It is an error condition if the "value" member is not present.

4.2. remove

 The "remove" operation removes the value at the specified location in
 the target document.

 Example:

 { "remove": "/a/b/c" }

 If removing an element from an array, any elements above the
 specified index are shifted one position to the left.

 It is an error condition if a value at the specified location does

Bryan & Nottingham Expires March 21, 2013 [Page 4]

Internet-Draft JSON Patch September 2012

 not exist.

4.3. replace

 The "replace" operation replaces the value at the specified location
 in the target document with a new value. The operation object
 contains a "value" member that specifies the replacement value.

 Example:

 { "replace": "/a/b/c", "value": 42 }

 This operation is functionally identical to expressing a "remove"
 operation for a value, followed immediately by an "add" operation at
 the same location with the replacement value.

 It is an error condition if a value at the specified location does
 not exist.

 It is an error condition if the "value" member is not present.

4.4. move

 The "move" operation removes the value at one location and adds it to
 another location in the target document.

 The operation object contains a "to" member, a string containing a
 JSON Pointer value that references the location in the target
 document to add the value to. This location must reference one of:
 the member to add to an existing object, or an element to add to an
 existing array.

 Example:

 { "move": "/a/b/c", "to": "/a/b/d" }

 This operation is functionally identical to expressing a "remove"
 operation, followed immediately by an "add" operation at the new
 location with the value that was just removed. Moving a value to its
 current location can be safely ignored.

 If the location in the "to" member references a member of an existing
 object in the target document, it is an error condition if a value at
 the specified location already exists (unless "move" and "to" specify
 the same object, which has no effect).

 If the location in the "to" member references an element of an
 existing array, any elements at or above the specified index are

Bryan & Nottingham Expires March 21, 2013 [Page 5]

Internet-Draft JSON Patch September 2012

 shifted one position to the right. It is an error condition if the
 specified index is greater than the number of elements in the array.

 It is an error condition if the "to" member is not present.

4.5. copy

 The "copy" operation copies the value at one location to another
 location in the target document.

 The operation object contains a "to" member, a string containing a
 JSON Pointer value that references the location in the target
 document to add the value to. This location must reference one of:
 the member to add to an existing object, or an element to add to an
 existing array.

 Example:

 { "copy": "/a/b/c", "to": "/a/b/e" }

 If the location in the "to" member references a member of an existing
 object in the target document, it is an error condition if a value at
 the specified location already exists.

 If the location in the "to" member references an element of an
 existing array, any elements at or above the specified index are
 shifted one position to the right. It is an error condition if the
 specified index is greater than the number of elements in the array.

 It is an error condition if the "to" member is not present.

4.6. test

 The "test" operation tests that a value at the specified location in
 the target document is equal to a specified value. The operation
 object contains a "value" member that specifies the value to test
 for.

 Here, "equal" means that the target and specified values are of the
 same JSON type, and considered equal by the following rules for that
 type:

 o strings: are considered equal if, after unescaping any sequence(s)
 in both strings starting with a reverse solidus, they contain the
 same number of Unicode characters and their code points are
 position-wise equal.

Bryan & Nottingham Expires March 21, 2013 [Page 6]

Internet-Draft JSON Patch September 2012

 o numbers: are considered equal if subtracting one from the other
 results in 0.

 o arrays: are considered equal if they contain the same number of
 values, and each value can be considered equal to the value at the
 corresponding position in the other array.

 o objects: are considered equal if they contain the same number of
 members, and each member can be considered equal to a member in
 the other object, by comparing their keys as strings, and values
 using this list of type-specific rules.

 o literals (false, true and null): are considered equal if they are
 the same.

 Note that this is a logical comparison; e.g., whitespace between the
 member values of an array is not significant.

 Also, note that ordering of the serialisation of object members is
 not significant.

 Example:

 { "test": "/a/b/c", "value": "foo" }

 It is an error condition if the value at the specified location is
 not equal to the specified value.

 If the value is not specified, the test is only for presence, not
 value.

 For example:

 { "test": "/a/b/c" }

 merely tests that the indicated structure is present in the target
 document.

5. Error Handling

 If an error condition occurs, evaluation of the JSON Patch document
 SHOULD terminate and application of the entire patch document SHALL
 NOT be deemed successful. Note that as per [RFC5789], when used with
 the PATCH HTTP method, it is atomic.

 Therefore, the following patch would result in no changes being made
 to the document at all (because the "test" operation results in an

https://datatracker.ietf.org/doc/html/rfc5789

Bryan & Nottingham Expires March 21, 2013 [Page 7]

Internet-Draft JSON Patch September 2012

 error).

 [
 {"replace": "/a/b/c", "value": 42},
 {"test": "/a/b/c", "value": "C"}
]

6. IANA Considerations

 The Internet media type for a JSON Patch document is application/
 json-patch.

 Type name: application

 Subtype name: json-patch

 Required parameters: none

 Optional parameters: none

 Encoding considerations: binary

 Security considerations:
 See Security Considerations in section 7.

 Interoperability considerations: N/A

 Published specification:
 [this memo]

 Applications that use this media type:
 Applications that manipulate JSON documents.

 Additional information:

 Magic number(s): N/A

 File extension(s): .json-patch

 Macintosh file type code(s): TEXT

 Person & email address to contact for further information:
 Paul C. Bryan <pbryan@anode.ca>

Bryan & Nottingham Expires March 21, 2013 [Page 8]

Internet-Draft JSON Patch September 2012

 Intended usage: COMMON

 Restrictions on usage: none

 Author: Paul C. Bryan <pbryan@anode.ca>

 Change controller: IETF

7. Security Considerations

 This specification has the same security considerations as JSON
 [RFC4627] and [JSON-Pointer].

8. Acknowledgements

 The following individuals contributed ideas, feedback and wording to
 this specification:

 Mike Acar, Mike Amundsen, Paul Davis, Murray S. Kucherawy, Dean
 Landolt, Randall Leeds, Julian Reschke, James Snell, Eli Stevens.

 The structure of a JSON Patch document was influenced by the XML
 Patch document [RFC5261] specification.

9. References

9.1. Normative References

 [JSON-Pointer]
 Bryan, P. and K. Zyp, "JSON Pointer",

draft-ietf-appsawg-json-pointer-04 (work in progress),
 March 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

9.2. Informative References

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc5261
https://datatracker.ietf.org/doc/html/draft-ietf-appsawg-json-pointer-04
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc2616

Bryan & Nottingham Expires March 21, 2013 [Page 9]

Internet-Draft JSON Patch September 2012

 [RFC5261] Urpalainen, J., "An Extensible Markup Language (XML) Patch
 Operations Framework Utilizing XML Path Language (XPath)
 Selectors", RFC 5261, September 2008.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
RFC 5789, March 2010.

Appendix A. Examples

A.1. Adding an Object Member

 An example target JSON document:

 {
 "foo": "bar"
 }

 A JSON Patch document:

 [
 { "add": "/baz", "value": "qux" }
]

 The resulting JSON document:

 {
 "baz": "qux",
 "foo": "bar"
 }

A.2. Adding an Array Element

 An example target JSON document:

 {
 "foo": ["bar", "baz"]
 }

 A JSON Patch document:

 [
 { "add": "/foo/1", "value": "qux" }
]

 The resulting JSON document:

https://datatracker.ietf.org/doc/html/rfc5261
https://datatracker.ietf.org/doc/html/rfc5789

Bryan & Nottingham Expires March 21, 2013 [Page 10]

Internet-Draft JSON Patch September 2012

 {
 "foo": ["bar", "qux", "baz"]
 }

A.3. Removing an Object Member

 An example target JSON document:

 {
 "baz": "qux",
 "foo": "bar"
 }

 A JSON Patch document:

 [
 { "remove": "/baz" }
]

 The resulting JSON document:

 {
 "foo": "bar"
 }

A.4. Removing an Array Element

 An example target JSON document:

 {
 "foo": ["bar", "qux", "baz"]
 }

 A JSON Patch document:

 [
 { "remove": "/foo/1" }
]

 The resulting JSON document:

 {
 "foo": ["bar", "baz"]
 }

Bryan & Nottingham Expires March 21, 2013 [Page 11]

Internet-Draft JSON Patch September 2012

A.5. Replacing a Value

 An example target JSON document:

 {
 "baz": "qux",
 "foo": "bar"
 }

 A JSON Patch document:

 [
 { "replace": "/baz", "value": "boo" }
]

 The resulting JSON document:

 {
 "baz": "boo",
 "foo": "bar"
 }

A.6. Moving a Value

 An example target JSON document:

 {
 "foo": {
 "bar": "baz",
 "waldo": "fred"
 }
 "qux": {
 "corge": "grault"
 }
 }

 A JSON Patch document:

 [
 { "move": "/foo/waldo", to: "/qux/thud" }
]

 The resulting JSON document:

Bryan & Nottingham Expires March 21, 2013 [Page 12]

Internet-Draft JSON Patch September 2012

 {
 "foo": {
 "bar": "baz"
 }
 "qux": {
 "corge": "grault",
 "thud": "fred"
 }
 }

A.7. Moving an Array Element

 An example target JSON document:

 {
 "foo": ["all", "grass", "cows", "eat"]
 }

 A JSON Patch document:

 [
 { "move": "/foo/1", "to": "/foo/3" }
]

 The resulting JSON document:

 {
 "foo": ["all", "cows", "eat", "grass"]
 }

A.8. Testing a Value: Success

 An example target JSON document:

 {
 "baz": "qux",
 "foo": ["a", 2, "c"]
 }

 A JSON Patch document that will result in successful evaluation:

 [
 { "test": "/baz", "value": "qux" },
 { "test": "/foo/1", "value": 2 }
]

Bryan & Nottingham Expires March 21, 2013 [Page 13]

Internet-Draft JSON Patch September 2012

A.9. Testing a Value: Error

 An example target JSON document:

 {
 "baz": "qux"
 }

 A JSON Patch document that will result in an error condition:

 [
 { "test": "/baz", "value": "bar" }
]

A.10. Adding a nested Member Object

 An example target JSON document:

 {
 "foo": "bar"
 }

 A JSON Patch document:

 [
 { "add": "/child", "value": { "grandchild": { } } }
]

 The resulting JSON document:

 {
 "foo": "bar",
 "child": {
 "grandchild": {
 }
 }
 }

Authors' Addresses

 Paul C. Bryan (editor)
 Salesforce.com

 Phone: +1 604 783 1481
 Email: pbryan@anode.ca

Bryan & Nottingham Expires March 21, 2013 [Page 14]

Internet-Draft JSON Patch September 2012

 Mark Nottingham (editor)

 Email: mnot@mnot.net

Bryan & Nottingham Expires March 21, 2013 [Page 15]

