
Applications Area Working Group P. Bryan, Ed.
Internet-Draft Salesforce.com
Intended status: Standards Track M. Nottingham, Ed.
Expires: July 8, 2013 Akamai
 January 4, 2013

JSON Patch
draft-ietf-appsawg-json-patch-09

Abstract

 JSON Patch defines the media type "application/json-patch", a JSON
 document structure for expressing a sequence of operations to apply
 to a JavaScript Object Notation (JSON) document, suitable for use
 with the HTTP PATCH method.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 8, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bryan & Nottingham Expires July 8, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSON Patch January 2013

Table of Contents

1. Introduction . 3
2. Conventions . 3
3. Document Structure . 3
4. Operations . 4
4.1. add . 4
4.2. remove . 5
4.3. replace . 6
4.4. move . 6
4.5. copy . 6
4.6. test . 7

5. Error Handling . 8
6. IANA Considerations . 8
7. Security Considerations 9
8. Acknowledgements . 9
9. References . 10
9.1. Normative References 10
9.2. Informative References 10

Appendix A. Examples . 10
A.1. Adding an Object Member 10
A.2. Adding an Array Element 11
A.3. Removing an Object Member 11
A.4. Removing an Array Element 12
A.5. Replacing a Value . 12
A.6. Moving a Value . 12
A.7. Moving an Array Element 13
A.8. Testing a Value: Success 14
A.9. Testing a Value: Error 14
A.10. Adding a nested Member Object 14
A.11. Ignoring Unrecognized Elements 15
A.12. Adding to a Non-existant Target 15
A.13. Invalid JSON Patch Document 15
A.14. ~ Escape Ordering . 16
A.15. Comparing Strings and Numbers 16
A.16. Adding an Array Value 17

 Authors' Addresses . 17

Bryan & Nottingham Expires July 8, 2013 [Page 2]

Internet-Draft JSON Patch January 2013

1. Introduction

 JavaScript Object Notation (JSON) [RFC4627] is a common format for
 the exchange and storage of structured data. HTTP PATCH [RFC5789]
 extends the Hypertext Transfer Protocol (HTTP) [RFC2616] with a
 method to perform partial modifications to resources.

 JSON Patch is a format (identified by the media type "application/
 json-patch") for expressing a sequence of operations to apply to a
 target JSON document, suitable for use with the HTTP PATCH method.

 This format is also potentially useful in other cases where necessary
 to make partial updates to a JSON document.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 See Section 5 for information about handling errors.

3. Document Structure

 A JSON Patch document is a JSON [RFC4627] document that represents an
 array of objects. Each object represents a single operation to be
 applied to the target JSON document.

 An example JSON Patch document:

 [
 { "op": "test", "path": "/a/b/c", "value": "foo" },
 { "op": "remove", "path": "/a/b/c" },
 { "op": "add", "path": "/a/b/c", "value": ["foo", "bar"] },
 { "op": "replace", "path": "/a/b/c", "value": 42 },
 { "op": "move", "from": "/a/b/c", "path": "/a/b/d" },
 { "op": "copy", "from": "/a/b/d", "path": "/a/b/e" }
]

 Evaluation of a JSON Patch document begins against a target JSON
 document. Operations are applied sequentially in the order they
 appear in the array. Each operation in the sequence is applied to
 the target document; the resulting document becomes the target of the
 next operation. Evaluation continues until all operations are
 successfully applied, or an error condition is encountered.

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4627

Bryan & Nottingham Expires July 8, 2013 [Page 3]

Internet-Draft JSON Patch January 2013

4. Operations

 Operation objects MUST have exactly one "op" member, whose value
 indicates the operation to perform. Its value MUST be one of "add",
 "remove", "replace", "move", "copy" or "test". The semantics of each
 is defined below.

 Additionally, operation objects MUST have exactly one "path" member,
 whose value MUST be a string containing a [JSON-Pointer] value that
 references a location within the target document to perform the
 operation (the "target location").

 The meanings of other members of operation objects are defined by the
 operation (see the subsections below). Members that are not
 explicitly defined for the operation in question MUST be ignored.

 Note that the ordering of members in JSON objects is not significant;
 therefore, the following operation objects are equivalent:

 { "op": "add", "path": "/a/b/c", "value": "foo" }
 { "path": "/a/b/c", "op": "add", "value": "foo" }
 { "value": "foo", "path": "/a/b/c", "op": "add" }

 Operations are applied to the data structures represented by a JSON
 document; i.e., after any unescaping (see [RFC4627], Section 2.5)
 takes place.

4.1. add

 The "add" operation performs the following function, depending upon
 what the target location references:

 o If the target location specifies an array index, a new value is
 inserted into the array at the specified index.

 o If the target location specifies an object member that does not
 already exist, a new member is added to the object.

 o If the target location specifies an object member that does exist,
 that member's value is replaced.

 For example:

 { "op": "add", "path": "/a/b/c", "value": ["foo", "bar"] }

 When the operation is applied, the target location MUST reference one
 of:

https://datatracker.ietf.org/doc/html/rfc4627#section-2.5

Bryan & Nottingham Expires July 8, 2013 [Page 4]

Internet-Draft JSON Patch January 2013

 o The root of the target document - whereupon the specified value
 becomes the entire content of the target document.

 o A member to add to an existing object - whereupon the supplied
 value is added to that object at the indicated location. If the
 member already exists, it is replaced by the specified value.

 o An element to add to an existing array - whereupon the supplied
 value is added to the array at the indicated location. Any
 elements at or above the specified index are shifted one position
 to the right. The specified index MUST NOT be greater than the
 number of elements in the array. If the "-" character is used to
 index the end of the array (see [JSON-Pointer]), this has the
 effect of appending the value to the array.

 Because this operation is designed to add to existing objects and
 arrays, its target location will often not exist. Although the
 pointer's error handling algorithm will thus be invoked, this
 specification defines the error handling behaviour for "add" pointers
 to ignore that error and add the value as specified.

 However, the object itself or an array containing it does need to
 exist, and it remains an error for that not to be the case. For
 example, "add"ing to the path "/a/b" to this document:

 { "a": { "foo": 1 } }

 is not an error, because "a" exists, and "b" will be added to its
 value. It is an error in this document:

 { "q": { "bar": 2 } }

 because "a" does not exist.

4.2. remove

 The "remove" operation removes the value at the target location.

 The target location MUST exist for the operation to be successful.

 For example:

 { "op": "remove", "path": "/a/b/c" }

 If removing an element from an array, any elements above the
 specified index are shifted one position to the left.

Bryan & Nottingham Expires July 8, 2013 [Page 5]

Internet-Draft JSON Patch January 2013

4.3. replace

 The "replace" operation replaces the value at the target location
 with a new value. The operation object MUST contain a "value" member
 that specifies the replacement value.

 The target location MUST exist for the operation to be successful.

 For example:

 { "op": "replace", "path": "/a/b/c", "value": 42 }

 This operation is functionally identical to a "remove" operation for
 a value, followed immediately by an "add" operation at the same
 location with the replacement value.

4.4. move

 The "move" operation removes the value at a specified location and
 adds it to the target location.

 The operation object MUST contain a "from" member, a string
 containing a JSON Pointer value that references the location in the
 target document to move the value from.

 The "from" location MUST exist for the operation to be successful.

 For example:

 { "op": "move", "from": "/a/b/c", "path": "/a/b/d" }

 This operation is functionally identical to a "remove" operation on
 the "from" location, followed immediately by an "add" operation at
 the target location with the value that was just removed.

 The "from" location MUST NOT be a proper prefix of the "path"
 location; i.e., a location cannot be moved into one of its children.

4.5. copy

 The "copy" operation copies the value at a specified location to the
 target location.

 The operation object MUST contain a "from" member, a string
 containing a JSON Pointer value that references the location in the
 target document to copy the value from.

 The "from" location MUST exist for the operation to be successful.

Bryan & Nottingham Expires July 8, 2013 [Page 6]

Internet-Draft JSON Patch January 2013

 For example:

 { "op": "copy", "from": "/a/b/c", "path": "/a/b/e" }

 This operation is functionally identical to an "add" operation at the
 target location using the value specified in the "from".

4.6. test

 The "test" operation tests that a value at the target location is
 equal to a specified value.

 The operation object MUST contain a "value" member that conveys the
 value to be compared to that at the target location.

 The target location MUST be equal to the "value" value for the
 operation to be considered successful.

 Here, "equal" means that the value at the target location and that
 conveyed by "value" are of the same JSON type, and considered equal
 by the following rules for that type:

 o strings: are considered equal if they contain the same number of
 Unicode characters and their code points are position-wise equal.

 o numbers: are considered equal if their values are numerically
 equal.

 o arrays: are considered equal if they contain the same number of
 values, and each value can be considered equal to the value at the
 corresponding position in the other array, using this list of
 type-specific rules.

 o objects: are considered equal if they contain the same number of
 members, and each member can be considered equal to a member in
 the other object, by comparing their keys as strings, and values
 using this list of type-specific rules.

 o literals (false, true and null): are considered equal if they are
 the same.

 Note that this is a logical comparison; e.g., whitespace between the
 member values of an array is not significant.

 Also, note that ordering of the serialisation of object members is
 not significant.

Bryan & Nottingham Expires July 8, 2013 [Page 7]

Internet-Draft JSON Patch January 2013

 For example:

 { "op": "test", "path": "/a/b/c", "value": "foo" }

5. Error Handling

 If a normative requirement is violated by a JSON Patch document, or
 if an operation is not successful, evaluation of the JSON Patch
 document SHOULD terminate and application of the entire patch
 document SHALL NOT be deemed successful.

 See [RFC5789], Section 2.2 for considerations regarding handling
 errors when JSON Patch is used with the HTTP PATCH method, including
 suggested status codes to use to indicate various conditions.

 Note that the HTTP PATCH method is atomic, as per [RFC5789].
 Therefore, the following patch would result in no changes being made
 to the document at all (because the "test" operation results in an
 error).

 [
 { "op": "replace", "path": "/a/b/c", "value": 42 },
 { "op": "test", "path": "/a/b/c", "value": "C" }
]

6. IANA Considerations

 The Internet media type for a JSON Patch document is application/
 json-patch.

 Type name: application

 Subtype name: json-patch

 Required parameters: none

 Optional parameters: none

 Encoding considerations: binary

 Security considerations:
 See Security Considerations in section 7.

https://datatracker.ietf.org/doc/html/rfc5789#section-2.2
https://datatracker.ietf.org/doc/html/rfc5789

Bryan & Nottingham Expires July 8, 2013 [Page 8]

Internet-Draft JSON Patch January 2013

 Interoperability considerations: N/A

 Published specification:
 [this memo]

 Applications that use this media type:
 Applications that manipulate JSON documents.

 Additional information:

 Magic number(s): N/A

 File extension(s): .json-patch

 Macintosh file type code(s): TEXT

 Person & email address to contact for further information:
 Paul C. Bryan <pbryan@anode.ca>

 Intended usage: COMMON

 Restrictions on usage: none

 Author: Paul C. Bryan <pbryan@anode.ca>

 Change controller: IETF

7. Security Considerations

 This specification has the same security considerations as JSON
 [RFC4627] and [JSON-Pointer].

 A few older Web browsers can be coerced into loading an arbitrary
 JSON document whose root is an array, leading to a situation where a
 JSON Patch document containing sensitive information could be exposed
 to attackers, even if access is authenticated. This is known as a
 Cross-Site Request Forgery (CSRF) attack [CSRF].

 However, such browsers are not widely used (estimated to comprise
 less than 1% of the market, at the time of writing). Publishers who
 are nevertheless concerned about this attack are advised to avoid
 making such documents available with HTTP GET.

8. Acknowledgements

 The following individuals contributed ideas, feedback and wording to

https://datatracker.ietf.org/doc/html/rfc4627

Bryan & Nottingham Expires July 8, 2013 [Page 9]

Internet-Draft JSON Patch January 2013

 this specification:

 Mike Acar, Mike Amundsen, Cyrus Daboo, Paul Davis, Stefan Koegl,
 Murray S. Kucherawy, Dean Landolt, Randall Leeds, James Manger,
 Julian Reschke, James Snell, Eli Stevens and Henry S. Thompson.

 The structure of a JSON Patch document was influenced by the XML
 Patch document [RFC5261] specification.

9. References

9.1. Normative References

 [JSON-Pointer]
 Bryan, P., Zyp, K., and M. Nottingham, "JSON Pointer",

draft-ietf-appsawg-json-pointer-07 (work in progress),
 November 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

9.2. Informative References

 [CSRF] Barth, A., Jackson, C., and J. Mitchell, "Robust Defenses
 for Cross-Site Request Forgery".

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC5261] Urpalainen, J., "An Extensible Markup Language (XML) Patch
 Operations Framework Utilizing XML Path Language (XPath)
 Selectors", RFC 5261, September 2008.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
RFC 5789, March 2010.

Appendix A. Examples

A.1. Adding an Object Member

 An example target JSON document:

https://datatracker.ietf.org/doc/html/rfc5261
https://datatracker.ietf.org/doc/html/draft-ietf-appsawg-json-pointer-07
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc5261
https://datatracker.ietf.org/doc/html/rfc5789

Bryan & Nottingham Expires July 8, 2013 [Page 10]

Internet-Draft JSON Patch January 2013

 { "foo": "bar"}

 A JSON Patch document:

 [
 { "op": "add", "path": "/baz", "value": "qux" }
]

 The resulting JSON document:

 {
 "baz": "qux",
 "foo": "bar"
 }

A.2. Adding an Array Element

 An example target JSON document:

 { "foo": ["bar", "baz"] }

 A JSON Patch document:

 [
 { "op": "add", "path": "/foo/1", "value": "qux" }
]

 The resulting JSON document:

 { "foo": ["bar", "qux", "baz"] }

A.3. Removing an Object Member

 An example target JSON document:

 {
 "baz": "qux",
 "foo": "bar"
 }

 A JSON Patch document:

 [
 { "op": "remove", "path": "/baz" }
]

 The resulting JSON document:

Bryan & Nottingham Expires July 8, 2013 [Page 11]

Internet-Draft JSON Patch January 2013

 { "foo": "bar" }

A.4. Removing an Array Element

 An example target JSON document:

 { "foo": ["bar", "qux", "baz"] }

 A JSON Patch document:

 [
 { "op": "remove", "path": "/foo/1" }
]

 The resulting JSON document:

 { "foo": ["bar", "baz"] }

A.5. Replacing a Value

 An example target JSON document:

 {
 "baz": "qux",
 "foo": "bar"
 }

 A JSON Patch document:

 [
 { "op": "replace", "path": "/baz", "value": "boo" }
]

 The resulting JSON document:

 {
 "baz": "boo",
 "foo": "bar"
 }

A.6. Moving a Value

 An example target JSON document:

Bryan & Nottingham Expires July 8, 2013 [Page 12]

Internet-Draft JSON Patch January 2013

 {
 "foo": {
 "bar": "baz",
 "waldo": "fred"
 },
 "qux": {
 "corge": "grault"
 }
 }

 A JSON Patch document:

 [
 { "op": "move", "from": "/foo/waldo", "path": "/qux/thud" }
]

 The resulting JSON document:

 {
 "foo": {
 "bar": "baz"
 },
 "qux": {
 "corge": "grault",
 "thud": "fred"
 }
 }

A.7. Moving an Array Element

 An example target JSON document:

 { "foo": ["all", "grass", "cows", "eat"] }

 A JSON Patch document:

 [
 { "op": "move", "from": "/foo/1", "path": "/foo/3" }
]

 The resulting JSON document:

 { "foo": ["all", "cows", "eat", "grass"] }

Bryan & Nottingham Expires July 8, 2013 [Page 13]

Internet-Draft JSON Patch January 2013

A.8. Testing a Value: Success

 An example target JSON document:

 {
 "baz": "qux",
 "foo": ["a", 2, "c"]
 }

 A JSON Patch document that will result in successful evaluation:

 [
 { "op": "test", "path": "/baz", "value": "qux" },
 { "op": "test", "path": "/foo/1", "value": 2 }
]

A.9. Testing a Value: Error

 An example target JSON document:

 { "baz": "qux" }

 A JSON Patch document that will result in an error condition:

 [
 { "op": "test", "path": "/baz", "value": "bar" }
]

A.10. Adding a nested Member Object

 An example target JSON document:

 { "foo": "bar" }

 A JSON Patch document:

 [
 { "op": "add", "path": "/child", "value": { "grandchild": { } } }
]

 The resulting JSON document:

 {
 "foo": "bar",
 "child": {
 "grandchild": {
 }
 }

Bryan & Nottingham Expires July 8, 2013 [Page 14]

Internet-Draft JSON Patch January 2013

 }

A.11. Ignoring Unrecognized Elements

 An example target JSON document:

 { "foo": "bar" }

 A JSON Patch document:

 [
 { "op": "add", "path": "/baz", "value": "qux", "xyz": 123 }
]

 The resulting JSON document:

 {
 "foo": "bar",
 "baz": "qux"
 }

A.12. Adding to a Non-existant Target

 An example target JSON document:

 { "foo": "bar" }

 A JSON Patch document:

 [
 { "op": "add", "path": "/baz/bat", "value": "qux" }
]

 This JSON Patch document, applied to the target JSON document above,
 would result in an error (therefore not being applied) because the
 "add" operation's target location that references neither the root of
 the document, nor a member of an existing object, nor a member of an
 existing array.

A.13. Invalid JSON Patch Document

 A JSON Patch document:

 [
 { "op": "add", "path": "/baz", "value": "qux", "op": "remove" }
]

 This JSON Patch document cannot be treated as an "add" operation

Bryan & Nottingham Expires July 8, 2013 [Page 15]

Internet-Draft JSON Patch January 2013

 since there is a later "op":"remove" element. A JSON parser that
 hides such duplicate element names therefore cannot be used unless it
 always exposes only the last element with a given name (eg
 "op":"remove" in this example).

A.14. ~ Escape Ordering

 An example target JSON document:

 {
 "/": 9,
 "~1": 10
 }

 A JSON Patch document:

 [
 {"op": "test", "path": "/~01", "value": 10}
]

 The resulting JSON document:

 {
 "/": 9,
 "~1": 10
 }

A.15. Comparing Strings and Numbers

 An example target JSON document:

 {
 "/": 9,
 "~1": 10
 }

 A JSON Patch document:

 [
 {"op": "test", "path": "/~01", "value": "10"}
]

 This results in an error, because the test fails; the document value
 is numeric, whereas the value tested for is a string.

Bryan & Nottingham Expires July 8, 2013 [Page 16]

Internet-Draft JSON Patch January 2013

A.16. Adding an Array Value

 An example target JSON document:

 { "foo": ["bar"] }

 A JSON Patch document:

 [
 { "op": "add", "path": "/foo/-", "value": ["abc", "def"] }
]

 The resulting JSON document:

 { "foo": ["bar", ["abc", "def"]] }

Authors' Addresses

 Paul C. Bryan (editor)
 Salesforce.com

 Phone: +1 604 783 1481
 Email: pbryan@anode.ca

 Mark Nottingham (editor)
 Akamai

 Email: mnot@mnot.net

Bryan & Nottingham Expires July 8, 2013 [Page 17]

