
APPSAWG M. Kucherawy
Internet-Draft G. Shapiro
Intended status: Informational N. Freed
Expires: March 21, 2014 September 17, 2013

Advice for Safe Handling of Malformed Messages
draft-ietf-appsawg-malformed-mail-08

Abstract

 Although Internet mail formats have been precisely defined since the
 1970s, authoring and handling software often show only mild
 conformance to the specifications. The distributed and non-
 interactive nature of email has often prompted adjustments to
 receiving software, to handle these variations, rather than trying to
 gain better conformance by senders, since the receiving operator is
 primarily driven by complaining recipient users and has no authority
 over the sending side of the system. Processing with such
 flexibility comes at some cost, since mail software is faced with
 decisions about whether or not to permit non-conforming messages to
 continue toward their destinations unaltered, adjust them to conform
 (possibly at the cost of losing some of the original message), or
 outright rejecting them.

 A core requirement for interoperability is that both sides of an
 exchange work from the same details and semantics. By having
 receivers be flexible, beyond the specifications, there can be -- and
 often has been -- a good chance that a message will not be fully
 interoperable. Worse, a well-established pattern of tolerance for
 variations can sometimes be used as an attack vector.

 This document includes a collection of the best advice available
 regarding a variety of common malformed mail situations, to be used
 as implementation guidance. These malformations are typically based
 around loose interpretations or implementations of specifications
 such as Internet Message Format [MAIL] and Multipurpose Internet Mail
 Extensions [MIME].

 It must be emphasized, however, that the intent of this document is
 not to standardize malformations or otherwise encourage their
 proliferation. The messages are manifestly malformed, and the code
 and culture that generates them needs to be fixed. Therefore, these
 messages should be rejected outright if at all possible.
 Nevertheless, many malformed messages from otherwise legitimate
 senders are in circulation and will be for some time, and,
 unfortunately, commercial reality shows that we cannot always simply
 reject or discard them. Accordingly, this document presents

Kucherawy, et al. Expires March 21, 2014 [Page 1]

Internet-Draft Safe Mail Handling September 2013

 alternatives for dealing with them in ways that seem to do the least
 additional harm until the infrastructure is tightened up to match the
 standards.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 21, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Kucherawy, et al. Expires March 21, 2014 [Page 2]

Internet-Draft Safe Mail Handling September 2013

Table of Contents

1. Introduction . 4
1.1. The Purpose Of This Work 4
1.2. Not The Purpose Of This Work 4
1.3. General Considerations 5

2. Document Conventions . 5
2.1. Examples . 5

3. Background . 6
4. Invariant Content . 6
5. Mail Submission Agents . 7
6. Line Termination . 7
7. Header Anomalies . 8
7.1. Converting Obsolete and Invalid Syntaxes 8
7.1.1. Host-Address Syntax 8
7.1.2. Excessive Angle Brackets 8
7.1.3. Unbalanced Angle Brackets 9
7.1.4. Unbalanced Parentheses 9
7.1.5. Commas in Address Lists 9
7.1.6. Unbalanced Quotes 9
7.1.7. Naked Local-Parts 10

7.2. Non-Header Lines . 10
7.3. Unusual Spacing . 12
7.4. Header Malformations 12
7.5. Header Field Counts 13
7.5.1. Repeated Header Fields 14

7.6. Missing Header Fields 15
7.7. Return-Path . 16
7.8. Missing or Incorrect Charset Information 16
7.9. Eight-Bit Data . 17

8. MIME Anomalies . 18
8.1. Missing MIME-Version Field 18
8.2. Faulty Encodings . 18

9. Body Anomalies . 19
9.1. Oversized Lines . 19

10. Security Considerations 19
11. IANA Considerations . 20
12. References . 20
12.1. Normative References 20
12.2. Informative References 20

Appendix A. Acknowledgements 21

Kucherawy, et al. Expires March 21, 2014 [Page 3]

Internet-Draft Safe Mail Handling September 2013

1. Introduction

1.1. The Purpose Of This Work

 The history of email standards, going back to [RFC733] and beyond,
 contains a fairly rigid evolution of specifications. But
 implementations within that culture have also long had an
 undercurrent known formally as the robustness principle, but also
 known informally as Postel's Law: "Be conservative in what you do, be
 liberal in what you accept from others."

 Jon Postel's directive is often misinterpreted to mean that any
 deviance from a specification is acceptable. Rather, it was intended
 only to account for legitimate variations in interpretation within
 specifications, as well as basic transit errors, like bit errors.
 Taken to its unintended extreme, excessive tolerance would imply that
 there are no limits to the liberties that a sender might take, while
 presuming a burden on a receiver to guess "correctly" at the meaning
 of any such variation. These matters are further compounded by
 flawed receiver software -- the end users' mail readers -- which are
 also sometimes flawed, leaving senders to craft messages (sometimes
 bending the rules) to overcome those flaws.

 In general, this served the email ecosystem well by allowing a few
 errors in implementations without obstructing participation in the
 game. The proverbial bar was set low. However, as we have evolved
 into the current era, some of these lenient stances have begun to
 expose opportunities that can be exploited by malefactors. Various
 email-based applications rely on strong application of these
 standards for simple security checks, while the very basic building
 blocks of that infrastructure, intending to be robust, fail utterly
 to assert those standards.

 This document presents some areas in which the more lenient stances
 can provide vectors for attack, and then presents the collected
 wisdom of numerous applications in and around the email ecosystem for
 dealing with them to mitigate their impact.

1.2. Not The Purpose Of This Work

 It is important to understand that this work is not an effort to
 endorse or standardize certain common malformations. The code and
 culture that introduces such messages into the mail stream needs to
 be repaired, as the security penalty now being paid for this lax
 processing arguably outweighs the reduction in support costs to end
 users who are not expected to understand the standards. However, the
 reality is that this will not be fixed quickly.

https://datatracker.ietf.org/doc/html/rfc733

Kucherawy, et al. Expires March 21, 2014 [Page 4]

Internet-Draft Safe Mail Handling September 2013

 Given this, it is beneficial to provide implementers with guidance
 about the safest or most effective way to handle malformed messages
 when they arrive, taking into consideration the tradeoffs of the
 choices available especially with respect to how various actors in
 the email ecosystem respond to such messages in terms of handling,
 parsing, or rendering to end users.

1.3. General Considerations

 Many deviations from message format standards are considered by some
 receivers to be strong indications that the message is undesirable,
 i.e., is spam or contains malware. Such receivers quickly decide
 that the best handling choice is simply to reject or discard the
 message. This means malformations caused by innocent
 misunderstandings or ignorance of proper syntax can cause messages
 with no ill intent also to fail to be delivered.

 Senders that want to ensure message delivery are best advised to
 adhere strictly to the relevant standards (including, but not limited
 to, [MAIL], [MIME], and [DKIM]), as well as observe other industry
 best practices such as may be published from time to time either by
 the IETF or independently.

 Receivers that haven't the luxury of strict enforcement of the
 standards on inbound messages are usually best served by observing
 the following guidelines for handling of malformed messages:

 1. Whenever possible, mitigation of syntactic malformations should
 be guided by an assessment of the most likely semantic intent.
 For example, it is reasonable to conclude that multiple sets of
 angle brackets around an address are simply superflous and can be
 dropped.

 2. When the intent is unclear, or when it is clear but also
 impractical to change the content to reflect that intent,
 mitigation should be limited to cases where not taking any
 corrective action would clearly lead to a worse outcome.

 3. Security issues, when present, need to be addressed and may force
 mitigation strategies that are otherwise suboptimal.

2. Document Conventions

2.1. Examples

 Examples of message content include a number within braces at the end
 of each line. These are line numbers for use in subsequent
 discussion, and are not actually part of the message content

Kucherawy, et al. Expires March 21, 2014 [Page 5]

Internet-Draft Safe Mail Handling September 2013

 presented in the example.

 Blank lines are not numbered in the examples.

3. Background

 The reader would benefit from reading [EMAIL-ARCH] for some general
 background about the overall email architecture. Of particular
 interest is the Internet Message Format, detailed in [MAIL].
 Throughout this document, the use of the term "message" should be
 assumed to mean a block of text conforming to the Internet Message
 Format.

4. Invariant Content

 An agent handling a message could use several distinct
 representations of the message. One is an internal representation,
 such as separate blocks of storage for the header and body, some
 header or body alterations, or tables indexed by header name, set up
 to make particular kinds of processing easier. The other is the
 representation passed along to the next agent in the handling chain.
 This might be identical to the message input to the module, or it
 might have some changes such as added or reordered header fields or
 body elisions to remove malicious content.

 Message handling is usually most effective when each in a sequence of
 handling modules receives the same content for analysis. A module
 that "fixes" or otherwise alters the content passed to later modules
 can prevent the later modules from identifing malicious or other
 content that exposes the end user to harm. It is important that all
 processing modules can make consistent assertions about the content.
 Modules that operate sequentially sometimes add private header fields
 to relay information downstream for later filters to use (and
 possibly remove), or they may have out-of-band ways of doing so.
 Whenever possible, the latter mechanism should be used.

 The above is less of a concern when multiple analysis modules are
 operated in parallel, independent of one another.

 Often, abuse reporting systems can act effectively only when a
 complaint or report contains the original message exactly as it was
 generated. Messages that have been altered by handling modules might
 render a complaint inactionable as the system receiving the report
 may be unable to identify the original message as one of its own.

 Some message changes alter syntax without changing semantics.
 (Indeed, analyzing the semantics of malformations was the impetus for
 this work.) For example, Section 7.4 describes a situation where an

Kucherawy, et al. Expires March 21, 2014 [Page 6]

Internet-Draft Safe Mail Handling September 2013

 agent removes additional header whitespace. This is a syntax change
 without a change in semantics, though some systems (e.g., DKIM) are
 sensitive to such changes. Message system developers need to aware
 of the downstream impact of making either kind of change.

 There will always be local handling exceptions, but these guidelines
 should be useful for developing integrated message processing
 environments.

 In most cases, this document only discusses techniques used on
 internal representations. It is occasionally necessary to make
 changes between the input and output versions; such cases will be
 called out explicitly.

5. Mail Submission Agents

 Within the email context, the single most influential component that
 can reduce the presence of malformed items in the email system is the
 Mail Handling Service (MHS; see [EMAIL-ARCH]). This is the component
 that is essentially the interface between end users that create
 content and the mail stream.

 MHSes need to become more strict about enforcement of all relevant
 email standards, especially [MAIL] and the [MIME] family of
 documents.

 More strict conformance by relaying MTAs will also be helpful.
 although preventing the dissemination of malformed messages is
 desirable, the rejection of such mail already in transit also has a
 support cost, namely the creation of a [DSN] that many end users
 might not understand.

6. Line Termination

 For interoperable Internet Mail messages, the only valid line
 separation sequence during a typical SMTP session is ASCII 0x0D
 ("carriage return", or CR) followed by ASCII 0x0A ("line feed", or
 LF), commonly referred to as CRLF. This is not the case for binary
 mode SMTP (see [BINARYSMTP]).

 Common UNIX user tools, however, typically only use LF for internal
 line termination. This means that a protocol engine, which converts
 between UNIX and Internet Mail formats, has to convert between these
 two end-of-line representations before transmitting a message or
 after receiving it.

 Non-compliant implementations can cause messages to be transmitted
 with a mix of line terminations, such as LF everywhere except CRLF

Kucherawy, et al. Expires March 21, 2014 [Page 7]

Internet-Draft Safe Mail Handling September 2013

 only at the end of the message. According to [SMTP] and [MAIL], this
 means the entire message actually exists on a single line.

 Within modern Internet Mail it is highly unlikely that an isolated CR
 or LF is valid in common ASCII text. Furthermore, [MIME] presents
 mechanisms for encoding content that actually does need to contain
 such an unusual character sequence.

 Thus, it will typically be safe and helpful to treat a naked CR or LF
 as equivalent to a CRLF when parsing a message.

 Note that this advice pertains only to the raw SMTP data, and not to
 decoded MIME entities. In fact, it could be necessary to encode MIME
 content that actually does need to contain such unusual character
 sequences. However, they would by definition be encoded, and not
 visible in the raw SMTP stream.

7. Header Anomalies

 This section covers common syntactical and semantic anomalies found
 in a message header, and presents preferred mitigations.

7.1. Converting Obsolete and Invalid Syntaxes

 A message using an obsolete header syntax might confound an agent
 that is attempting to be robust in its handling of syntax variations.
 A bad actor could exploit such a weakness in order to get abuse or
 malicious content through a filter. This section presents some
 examples of such variations. Messages including them ought be
 rejected; where this is not possible, recommended internal
 interpretations are provided.

7.1.1. Host-Address Syntax

 The following obsolete syntax attempts to specify source routing:

 To: <@example.net:fran@example.com>

 This means "send to fran@example.com via the mail service at
 example.net". It can safely be interpreted as:

 To: <fran@example.com>

7.1.2. Excessive Angle Brackets

 The following over-use of angle brackets, e.g.:

 To: <<<user2@example.org>>>

Kucherawy, et al. Expires March 21, 2014 [Page 8]

Internet-Draft Safe Mail Handling September 2013

 can safely be interpreted as:

 To: <user2@example.org>

7.1.3. Unbalanced Angle Brackets

 The following use of unbalanced angle brackets:

 To: <another@example.net
 To: second@example.org>

 can usually be treated as:

 To: <another@example.net>
 To: second@example.org

7.1.4. Unbalanced Parentheses

 The following use of unbalanced parentheses:

 To: (Testing <fran@example.com>
 To: Testing) <sam@example.com>

 should be interpreted as:

 To: (Testing) <fran@example.com>
 To: "Testing)" <sam@example.com>

7.1.5. Commas in Address Lists

 This use of an errant comma:

 To: <third@example.net, fourth@example.net>

 can reasonably be interpreted as ending an address, so the above
 should really be interpreted as:

 To: third@example.net, fourth@example.net

7.1.6. Unbalanced Quotes

 The following use of unbalanced quotation marks:

 To: "Joe <joe@example.com>

 leaves software with no obvious "good" interpretation. If it is
 essential to extract an address from the above, one possible
 interpretation is:

Kucherawy, et al. Expires March 21, 2014 [Page 9]

Internet-Draft Safe Mail Handling September 2013

 To: "Joe <joe@example.com>"@example.net

 where "example.net" is the domain name or host name of the handling
 agent making the interpretation. Another possible interpretation is
 simply:

 To: "Joe" <joe@example.com>

7.1.7. Naked Local-Parts

 [MAIL] defines a local-part as the user portion of an email address,
 and the display-name as the "user-friendly" label that accompanies
 the address specification.

 Some broken submission agents might introduce messages with only a
 local-part or only a display-name and no properly formed address.
 For example:

 To: Joe

 A submission agent ought to reject this or, at a minimum, append "@"
 followed by its own host name or some other valid name likely to
 enable a reply to be delivered to the correct mailbox. Where this is
 not done, an agent receiving such a message will probably be
 successful by synthesizing a valid header field for evaluation using
 the techniques described in Section 7.6.

7.2. Non-Header Lines

 Some messages contain a line of text in the header that is not a
 valid message header field of any kind. For example:

 From: user@example.com {1}
 To: userpal@example.net {2}
 Subject: This is your reminder {3}
 about the football game tonight {4}
 Date: Wed, 20 Oct 2010 20:53:35 -0400 {5}

 Don't forget to meet us for the tailgate party! {7}

 The cause of this is typically a bug in a message generator of some
 kind. Line {4} was intended to be a continuation of line {3}; it
 should have been indented by whitespace as set out in Section 2.2.3
 of [MAIL].

 This anomaly has varying impacts on processing software, depending on
 the implementation:

Kucherawy, et al. Expires March 21, 2014 [Page 10]

Internet-Draft Safe Mail Handling September 2013

 1. some agents choose to separate the header of the message from the
 body only at the first empty line (i.e. a CRLF immediately
 followed by another CRLF);

 2. some agents assume this anomaly should be interpreted to mean the
 body starts at line {4}, as the end of the header is assumed by
 encountering something that is not a valid header field or folded
 portion thereof;

 3. some agents assume this should be interpreted as an intended
 header folding as described above and thus simply append a single
 space character (ASCII 0x20) and the content of line {4} to that
 of line {3};

 4. some agents reject this outright as line {4} is neither a valid
 header field nor a folded continuation of a header field prior to
 an empty line.

 This can be exploited if it is known that one message handling agent
 will take one action while the next agent in the handling chain will
 take another. Consider, for example, a message filter that searches
 message headers for properties indicative of abusive of malicious
 content that is attached to a Mail Transfer Agent (MTA) implementing
 option 2 above. An attacker could craft a message that includes this
 malformation at a position above the property of interest, knowing
 the MTA will not consider that content part of the header, and thus
 the MTA will not feed it to the filter, thus avoiding detection.
 Meanwhile, the Mail User Agent (MUA) which presents the content to an
 end user, implements option 1 or 3, which has some undesirable
 effect.

 It should be noted that a few implementations choose option 4 above
 since any reputable message generation program will get header
 folding right, and thus anything so blatant as this malformation is
 likely an error caused by a malefactor.

 The preferred implementation if option 4 above is not employed is to
 apply the following heuristic when this malformation is detected:

 1. Search forward for an empty line. If one is found, then apply
 option 3 above to the anomalous line, and continue.

 2. Search forward for another line that appears to be a new header
 field, i.e., a name followed by a colon. If one is found, then
 apply option 3 above to the anomalous line, and continue.

Kucherawy, et al. Expires March 21, 2014 [Page 11]

Internet-Draft Safe Mail Handling September 2013

7.3. Unusual Spacing

 The following message is valid per [MAIL]:

 From: user@example.com {1}
 To: userpal@example.net {2}
 Subject: This is your reminder {3}
 {4}
 about the football game tonight {5}
 Date: Wed, 20 Oct 2010 20:53:35 -0400 {6}

 Don't forget to meet us for the tailgate party! {8}

 Line {4} contains a single whitespace. The intended result is that
 lines {3}, {4}, and {5} comprise a single continued header field.
 However, some agents are aggressive at stripping trailing whitespace,
 which will cause line {4} to be treated as an empty line, and thus
 the separator line between header and body. This can affect header-
 specific processing algorithms as described in the previous section.

 This example was legal in earlier versions of the Internet Mail
 format standard.

 The best handling of this example is for a message parsing engine to
 behave as if line {4} was not present in the message and for a
 message creation engine to emit the message with line {4} removed.

7.4. Header Malformations

 Among the many possible malformations, a common one is insertion of
 whitespace at unusual locations, such as:

 From: user@example.com {1}
 To: userpal@example.net {2}
 Subject: This is your reminder {3}
 MIME-Version : 1.0 {4}
 Content-Type: text/plain {5}
 Date: Wed, 20 Oct 2010 20:53:35 -0400 {6}

 Don't forget to meet us for the tailgate party! {8}

 Note the addition of whitespace in line {4} after the header field
 name but before the colon that separates the name from the value.

 The acceptance grammar of [MAIL] permits that extra whitespace, so it
 cannot be considered invalid. However, a consensus of
 implementations prefers to remove that whitespace. There is no
 perceived change to the semantics of the header field being altered

Kucherawy, et al. Expires March 21, 2014 [Page 12]

Internet-Draft Safe Mail Handling September 2013

 as the whitespace is itself semantically meaningless. Therefore, it
 is best to remove all whitespace after the field name but before the
 colon and to emit the field in this modified form.

7.5. Header Field Counts

 Section 3.6 of [MAIL] prescribes specific header field counts for a
 valid message. Few agents actually enforce these in the sense that a
 message whose header contents exceed one or more limits set there are
 generally allowed to pass; they typically add any required fields
 that are missing, however.

 Also, few agents that use messages as input, including Mail User
 Agents (MUAs) that actually display messages to users, verify that
 the input is valid before proceeding. Some popular open source
 filtering programs and some popular Mailing List Management (MLM)
 packages select either the first or last instance of a particular
 field name, such as From, to decide who sent a message. Absent
 strict enforcement of [MAIL], an attacker can craft a message with
 multiple fields if that attacker knows the filter will make a
 decision based on one but the user will be shown the other.

 This situation is exacerbated when message validity is assessed, such
 as through enhanced authentication methods. Such methods might cover
 one instance of a constrained field but not another, taking the wrong
 one as "good" or "safe". An MUA, for example could show the first of
 two From fields to an end user as "good" or "safe" while an
 authentication method actually only verified the second.

 In attempting to counter this exposure, one of the following can be
 enacted:

 1. reject outright or refuse to process further any input message
 that does not conform to Section 3.6 of [MAIL];

 2. remove or, in the case of an MUA, refuse to render any instances
 of a header field whose presence exceeds a limit prescribed in
 Section 3.6 of [MAIL] when generating its output;

 3. where a field has a limited instance count, combine additional
 instances into a single compound instance;

 4. where a field can contain multiple distinct values (such as From)
 or is free-form text (such as Subject), combine them into a
 semantically identical single header field of the same name (see

Section 7.5.1);

Kucherawy, et al. Expires March 21, 2014 [Page 13]

Internet-Draft Safe Mail Handling September 2013

 5. alter the name of any header field whose presence exceeds a limit
 prescribed in Section 3.6 of [MAIL] when generating its output so
 that later agents can produce a consistent result. Any
 alteration likely to cause the field to be ignored by downstream
 agents is acceptable. A common approach is to prefix the field
 names with a string such as "BAD-".

 Selecting a mitigation action from the above list, or some other
 action, must consider the needs of the operator making the decision,
 and the nature of its user base.

7.5.1. Repeated Header Fields

 There are some occasions where repeated fields are encountered where
 only one is expected. Two examples are presented. First:

 From: reminders@example.com {1}
 To: jqpublic@example.com {2}
 Subject: Automatic Meeting Reminder {3}
 Subject: 4pm Today -- Staff Meeting {4}
 Date: Wed, 20 Oct 2010 08:00:00 -0700 {5}

 Reminder of the staff meeting today in the small {6}
 auditorium. Come early! {7}

 The message above has two Subject fields, which is in violation of
 Section 3.6 of [MAIL]. A safe interpretation of this would be to
 treat it as though the two Subject field values were concatenated, so
 long as they are not identical, such as:

 From: reminders@example.com {1}
 To: jqpublic@example.com {2}
 Subject: Automatic Meeting Reminder {3}
 4pm Today -- Staff Meeting {4}
 Date: Wed, 20 Oct 2010 08:00:00 -0700 {5}

 Reminder of the staff meeting today in the small {6}
 auditorium. Come early! {7}

 Second:

Kucherawy, et al. Expires March 21, 2014 [Page 14]

Internet-Draft Safe Mail Handling September 2013

 From: president@example.com {1}
 From: vice-president@example.com {2}
 To: jqpublic@example.com {3}
 Subject: A note from the E-Team {4}
 Date: Wed, 20 Oct 2010 08:00:00 -0700 {5}

 This memo is to remind you of the corporate dress {6}
 code. Attached you will find an updated copy of {7}
 the policy. {8}
 ...

 As with the first example, there is a violation in terms of the
 number of instances of the From field. A likely safe interpretation
 would be to combine these into a comma-separated address list in a
 single From field:

 From: president@example.com, {1}
 vice-president@example.com {2}
 To: jqpublic@example.com {3}
 Subject: A note from the E-Team {4}
 Date: Wed, 20 Oct 2010 08:00:00 -0700 {5}

 This memo is to remind you of the corporate dress {6}
 code. Attached you will find an updated copy of {7}
 the policy. {8}
 ...

7.6. Missing Header Fields

 Similar to the previous section, there are messages seen in the wild
 that lack certain required header fields. In particular, [MAIL]
 requires that a From and Date field be present in all messages.

 When presented with a message lacking these fields, the MTA might
 perform one of the following:

 1. Make no changes

 2. Add an instance of the missing field(s) using synthesized content
 based on data provided in other parts of the protocol

 Option 2 is recommended for handling this case. Handling agents
 should add these for internal handling if they are missing, but
 should not add them to the external representation. The reason for
 this advice is that there are some filter modules that would consider
 the absence of such fields to be a condition warranting special
 treatment (e.g., rejection), and thus the effectiveness of such
 modules would be stymied by an upstream filter adding them in a way

Kucherawy, et al. Expires March 21, 2014 [Page 15]

Internet-Draft Safe Mail Handling September 2013

 visible to other components.

 The synthesized fields should contain a best guess as to what should
 have been there; for From, the SMTP MAIL command's address can be
 used (if not null) or a placeholder address followed by an address
 literal (e.g., unknown@[192.0.2.1]); for Date, a date extracted from
 a Received field is a reasonable choice.

 One other important case to consider is a missing Message-Id field.
 An MTA that encounters a message missing this field should synthesize
 a valid one using techniques described above and add it to the
 external representation, since many deployed tools use the content of
 that field as a common unique message reference, so its absence
 inhibits correlation of message processing. Section 3.6.4 of [MAIL]
 describes advisable practise for synthesizing the content of this
 field when it is absent, and establishes a requirement that it be
 globally unique.

7.7. Return-Path

 A valid message will have exactly one Return-Path header field, as
 per Section 4.4 of [SMTP]. Should a message be encountered bearing
 more than one, all but the topmost one is to be disregarded, as it is
 most likely to have been added nearest to the mailbox that received
 that message.

7.8. Missing or Incorrect Charset Information

 MIME provides the means to include textual material employing
 charsets other than US-ASCII. Such material is required to have an
 identifiable charset. Charset identification is done using a
 "charset" parameter in the Content-Type header field, a character set
 label within the MIME entity itself, or the character set may be
 implicitly specified by the Content-Type (see [CHARSET]).

 It is unfortunately fairly common for required character set
 information to be missing or incorrect in textual MIME entities. As
 such, processing agents should perform basic sanity checks, e.g.:

 o US-ASCII is 7bit only, so 8bit material is necessarily not US-
 ASCII.

 o UTF-8 has a very specific syntactic structure that other 8bit
 charsets are unlikely to follow.

 o Null bytes (ASCII 0x00) are not allowed in either 7bit or 8bit
 data.

Kucherawy, et al. Expires March 21, 2014 [Page 16]

Internet-Draft Safe Mail Handling September 2013

 o Not all 7bit material is US-ASCII. The presence of the various
 escape sequences used for character switching may be used as an
 indication of the various ISO-2022 charsets.

 When a character set error is detected, processing agents should:

 a. apply heuristics to determine the most likely character set and,
 if successful, proceed using that information; or

 b. refuse to process the malformed MIME entity.

 A null byte inside a textual MIME entity can cause typical string
 processing functions to mis-identify the end of a string, which can
 be exploited to hide malicious content from analysis processes.
 Accordingly, null bytes require additional special handling.

 A few null bytes in isolation is likely to be the result of poor
 message construction practices. Such nulls should be silently
 dropped.

 Large numbers of null bytes are usually the result of binary material
 that is improperly encoded, improperly labeled, or both. Such
 material is likely to be damaged beyond the hope of recovery, so the
 best course of action is to refuse to process it.

 Finally, the presence of null bytes may be used as indication of
 possible malicious intent.

7.9. Eight-Bit Data

 Standards-compliant email messages do not contain any non-ASCII data
 without indicating that such content is present by means of published
 SMTP extensions. Absent that, MIME encodings are typically used to
 convert non-ASCII data to ASCII in a way that can be reversed by
 other handling agents or end users.

 The best way to handle non-compliant 8bit material depends on its
 location.

 Non-compliant 8bit in MIME entity content should simply be processed
 as if the necessary SMTP extensions had been used to transfer the
 message. Note that improperly labeled 8bit material in textual MIME
 entities may require treatment as described in Section 7.8.

 Non-compliant 8bit in message or MIME entity header fields can be
 handled as follows:

Kucherawy, et al. Expires March 21, 2014 [Page 17]

Internet-Draft Safe Mail Handling September 2013

 o Occurrences in unstructured text fields, comments, and phrases,
 can be converted into encoded-words (see [MIME3] if a likely
 character set can be determined. Alternatively, 8bit characters
 can be removed or replaced with some other character.

 o Occurrences in header fields whose syntax is unknown may be
 handled by dropping the field entirely or by removing/replacing
 the 8bit character as described above.

 o Occurrences in addresses are especially problematic. Agents
 supporting [EAI] may, if the 8bit conforms to 8bit syntax, elect
 to treat the messages as an EAI message and process it
 accordingly. Otherwise, it is in most cases best to exclude the
 address from any sort of processing -- which may mean dropping it
 entirely -- since any attempt to fix it definitively is unlikely
 to be successful.

8. MIME Anomalies

 [MIME], et seq, include a mechanism of message extensions for
 providing text in character sets other than ASCII, non-text
 attachments to messages, multi-part message bodies, and similar
 facilities.

 Some anomalies with MIME-compliant generation are also common. This
 section discusses some of those and presents preferred mitigations.

8.1. Missing MIME-Version Field

 Any message that uses [MIME] constructs is required to have a MIME-
 Version header field. Without it, the Content-Type and associated
 fields have no semantic meaning.

 It is often observed that a message has complete MIME structure, yet
 lacks this header field. It is prudent to disregard this absence and
 conduct analysis of the message as if it were present, especially by
 agents attempting to identify malicious material.

 Further, the absence of MIME-Version might be an indication of
 malicious intent, and extra scrutiny of the message may be warranted.
 Such omissions are not expected from compliant message generators.

8.2. Faulty Encodings

 There have been a few different specifications of base64 in the past.
 The implementation defined in [MIME] instructs decoders to discard
 characters that are not part of the base64 alphabet. Other
 implementations consider an encoded body containing such characters

Kucherawy, et al. Expires March 21, 2014 [Page 18]

Internet-Draft Safe Mail Handling September 2013

 to be completely invalid. Very early specifications of base64 (see
 [PEM], for example) allowed email-style comments within base64-
 encoded data.

 The attack vector here involves constructing a base64 body whose
 meaning varies given different possible decodings. If a security
 analysis module wishes to be thorough, it should consider scanning
 the possible outputs of the known decoding dialects in an attempt to
 anticipate how the MUA will interpret the data.

9. Body Anomalies

9.1. Oversized Lines

 A message containing a line of content that exceeds 998 characters
 plus the line terminator (1000 total) violates Section 2.1.1 of
 [MAIL]. Some handling agents may not look at content in a single
 line past the first 998 bytes, providing bad actors an opportunity to
 hide malicious content.

 There is no specified way to handle such messages, other than to
 observe that they are non-compliant and reject them, or rewrite the
 oversized line such that the message is compliant.

 To ensure long lines do not prevent analysis of potentially malicious
 data, handling agents are strongly encouraged to take one of the
 following actions:

 1. Break such lines into multiple lines at a position that does not
 change the semantics of the text being thus altered. For
 example, breaking an oversized line such that a [URI] then spans
 two lines could inhibit the proper identification of that URI.

 2. Rewrite the MIME part (or the entire message if not MIME) that
 contains the excessively long line using a content encoding that
 breaks the line in the transmission but would still result in the
 line being intact on decoding for presentation to the user. Both
 of the encodings declared in [MIME] can accomplish this.

10. Security Considerations

 The discussions of the anomalies above and their prescribed solutions
 are themselves security considerations. The practises enumerated in
 this document are generally perceived as attempts to resolve security
 considerations that already exist rather than introducing new ones.
 However, some of the attacks described here may not have appeared in
 previous email specifications.

Kucherawy, et al. Expires March 21, 2014 [Page 19]

Internet-Draft Safe Mail Handling September 2013

11. IANA Considerations

 This document contains no actions for IANA.

 [RFC Editor: Please remove this section prior to publication.]

12. References

12.1. Normative References

 [MAIL] Resnick, P., "Internet Message Format", RFC 5322,
 October 2008.

 [MIME] Freed, N. and N. Borenstein, "Multipurpose Internet
 Mail Extensions (MIME) Part One: Format of Internet
 Message Bodies", RFC 2045, November 1996.

12.2. Informative References

 [BINARYSMTP] Vaudreuil, G., "SMTP Service Extensions for
 Transmission of Large and Binary MIME Messages",

RFC 3030, December 2000.

 [CHARSET] Melnikov, A. and J. Reschke, "Update to MIME regarding
 "charset" Parameter Handling in Textual Media Types",

RFC 6657, July 2012.

 [DKIM] Allman, E., Callas, J., Delany, M., Libbey, M., Fenton,
 J., and M. Thomas, "DomainKeys Identified Mail (DKIM)
 Signatures", RFC 4871, May 2007.

 [DSN] Moore, K. and G. Vaudreuil, "An Extensible Message
 Format for Delivery Status Notifications", RFC 3464,
 January 2003.

 [EAI] Yang, A., Steele, S., and N. Freed, "Internationalized
 Email Headers", RFC 6532, February 2012.

 [EMAIL-ARCH] Crocker, D., "Internet Mail Architecture", RFC 5598,
 July 2009.

 [MIME3] Moore, K., "MIME (Multipurpose Internet Mail
 Extensions) Part Three: Message Header Extensions for
 Non-ASCII Text", RFC 2047, November 1996.

 [PEM] Linn, J., "Privacy Enhancement for Internet Electronic
 Mail: Part I -- Message Encipherment and Authentication
 Procedures", RFC 1113, August 1989.

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc3030
https://datatracker.ietf.org/doc/html/rfc6657
https://datatracker.ietf.org/doc/html/rfc4871
https://datatracker.ietf.org/doc/html/rfc3464
https://datatracker.ietf.org/doc/html/rfc6532
https://datatracker.ietf.org/doc/html/rfc5598
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc1113

Kucherawy, et al. Expires March 21, 2014 [Page 20]

Internet-Draft Safe Mail Handling September 2013

 [RFC733] Crocker, D., Vittal, J., Pogran, K., and D. Henderson,
 Jr., "Standard for the Format of Internet Text
 Messages", RFC 733, November 1977.

 [SMTP] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 October 2008.

 [URI] Berners-Lee, T., Fielding, R., and L. Masinter,
 "Uniform Resource Identifier (URI): Generic Syntax",

RFC 3986, January 2005.

Appendix A. Acknowledgements

 The author wishes to acknowledge the following for their review and
 constructive criticism of this proposal: Dave Cridland, Dave Crocker,
 Jim Galvin, Tony Hansen, John Levine, Franck Martin, Alexey Melnikov,
 and Timo Serainen

Authors' Addresses

 Murray S. Kucherawy

 EMail: superuser@gmail.com

 Gregory N. Shapiro

 EMail: gshapiro@sendmail.com

 N. Freed

 EMail: ned.freed@mrochek.com

https://datatracker.ietf.org/doc/html/rfc733
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc3986

Kucherawy, et al. Expires March 21, 2014 [Page 21]

