
Applications Area Working Group S. Leonard
Internet-Draft Penango, Inc.
Intended Status: Informational September 9, 2014
Expires: March 13, 2015

The text/markdown Media Type
draft-ietf-appsawg-text-markdown-01.txt

Abstract

 This document registers the text/markdown media type for use with
 Markdown, a family of plain text formatting syntaxes that optionally
 can be converted to formal markup languages such as HTML.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Leonard Exp. March 13, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft The text/markdown Media Type September 9, 2014

1. Introduction

 In computer systems, textual data is stored and processed using a
 continuum of techniques. On the one end is plain text: a linear
 sequence of characters in some character set (code), possibly
 interrupted by line breaks, page breaks, or other control characters.
 Plain text provides /some/ fixed facilities for formatting
 instructions, namely codes in the character set that have meanings
 other than "represent this character on the output medium"; however,
 these facilities are not particularly extensible. Compare with

[RFC6838] Section 4.2.1. (Applications may neuter the effects of
 these special characters by prohibiting them or by ignoring their
 dictated meanings, as is the case with how modern applications treat
 most control characters in US-ASCII.) On this end, any text reader or
 editor that interprets the character set can be used to see or
 manipulate the text. If some characters are corrupted, the corruption
 is unlikely to affect the ability of a computer system to process the
 text (even if the human meaning is changed).

 On the other end is binary format: a sequence of instructions
 intended for some computer application to interpret and act upon.
 Binary formats are flexible in that they can store non-textual data
 efficiently (perhaps storing no text at all, or only storing certain
 kinds of text for very specialized purposes). Binary formats require
 an application to be coded specifically to handle the format; no
 partial interoperability is possible. Furthermore, if even one byte
 or bit are corrupted in a binary format, it may prevent an
 application from processing any of the data correctly.

 Between these two extremes lies formatted text, i.e., text that
 includes non-textual information coded in a particular way, that
 affects the interpretation of the text by computer programs.
 Formatted text is distinct from plain text and binary format in that
 the non-textual information is encoded into textual characters, which
 are assigned specialized meanings /not/ defined by the character set.
 With a regular text editor and a standard keyboard (or other standard
 input mechanism), a user can enter these textual characters to
 express the non-textual meanings. For example, a character like "<"
 no longer means "LESS-THAN SIGN"; it means the start of a tag or
 element that affects the document in some way.

 On the formal end of the spectrum is markup, a family of languages
 for annotating a document in such a way that the annotations are
 syntactically distinguishable from the text. Markup languages are
 (reasonably) well-specified and tend to follow (mostly) standardized
 syntax rules. Examples of markup languages include SGML, HTML, XML,
 and LaTeX. Standardized rules lead to interoperability between markup
 processors, but a skill requirement for new (human) users of the

https://datatracker.ietf.org/doc/html/rfc6838#section-4.2.1

Leonard Exp. March 13, 2015 [Page 2]

Internet-Draft The text/markdown Media Type September 9, 2014

 language that they learn these rules in order to do useful work. This
 imposition makes markup less accessible for non-technical users
 (i.e., users who are unwilling or unable to invest in the requisite
 skill development).

 informal /---------formatted text----------\ formal
 <------v-------------v-------------v-----------------------v---->
 plain text informal markup formal markup binary format
 (Markdown) (HTML, XML, etc.)

 Figure 1: Degrees of Formality in Data Storage Formats for Text

 On the informal end of the spectrum are lightweight markup languages.
 In comparison with formal markup like XML, lightweight markup uses
 simple syntax, and is designed to be easy for humans to enter with
 basic text editors. Markdown, the subject of this document, is an
 /informal/ plain text formatting syntax that is intentionally
 targeted at non-technical users (i.e., users upon whom little to no
 skill development is imposed) using unspecialized tools (i.e., text
 boxes). Jeff Atwood once described these informal markup languages as
 "humane" [HUMANE].

 Markdown specifically is a family of syntaxes that are based on the
 original work of John Gruber with substantial contributions from
 Aaron Swartz, released in 2004 [MARKDOWN]. Since its release a number
 of web or web-facing applications have incorporated Markdown into
 their text entry systems, frequently with proprietary extensions. Fed
 up with the complexity and security pitfalls of formal markup
 languages (e.g., HTML5) and proprietary binary formats (e.g.,
 commercial word processing software), yet unwilling to be confined to
 the restrictions of plain text, many users have turned to Markdown
 for document processing. Whole toolchains now exist to support
 Markdown for online and offline projects.

 Due to Markdown's intentional informality, there is no standard
 specifying the Markdown syntax, and no governing body that guides or
 impedes its development. Markdown works for users for two key
 reasons. First, the markup instructions (in text) look similar to the
 markup that they represent; therefore the cognitive burden to learn
 the syntax is very low. Second, the primary arbiter of the syntax's
 success is *running code*. The tool that converts the Markdown to a
 presentable format, and not a series of formal pronouncements by a
 standards body, is the basis for whether syntactic elements matter.

 To support identifying and conveying Markdown (as distinguished from
 plain text), this document defines a media type and parameters that
 indicate, in broad strokes, the author's intent on how to interpret
 the Markdown.

Leonard Exp. March 13, 2015 [Page 3]

Internet-Draft The text/markdown Media Type September 9, 2014

1.1. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Markdown Media Type Registration Applications

 This section provides the media type registration application for the
 text/markdown media type (see [RFC6838], Section 5.6).

 Type name: text

 Subtype name: markdown

 Required parameters: charset. Per Section 4.2.1 of [RFC6838], charset
 is REQUIRED. There is no default value. UTF-8 is RECOMMENDED;
 however, neither [MDSYNTAX] nor popular implementations at the time
 of this registration actually require or assume any particular
 encoding. In fact, many Markdown processors can get along just fine
 by operating on character codes that lie in the Portable Character
 Set (i.e., printable US-ASCII), blissfully oblivious to coded values
 outside of that range.

 Optional parameters:

 The following parameters reflect how the author intends the
 content to be processed. If rules and processor parameters are
 both supplied, the processor parameters take precedence.

 rules: A whitespace-delimited list of Markdown processing rules
 that apply to this content. This parameter represents the intent
 of the author, namely, that the Markdown will be interpreted
 "best" (i.e., as the author intended) when processed with the
 rules as specified and ordered in this list. Identifiers MUST
 match the <token> production of [RFC2045]; whitespace MUST match
 the <FWS> production of [RFC5322].

 Each identifier specifies a set of processing rules that are to
 be applied to the content during a processing operation. Rules
 are prioritized in order--later rules override earlier rules. For
 example, if this parameter is "Example1 Example2", and both
 Example1 and Example2 have specific rules to process { }-
 delimited content in conflicting ways, then the author's intent
 is to apply Example2's rules, not Example1's rules. However, the
 author intends for Example1's other rules (for example, to
 process "fenced code blocks") that are not overridden by Example2
 to be applied to the content.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6838#section-5.6
https://datatracker.ietf.org/doc/html/rfc6838#section-4.2.1
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc5322

Leonard Exp. March 13, 2015 [Page 4]

Internet-Draft The text/markdown Media Type September 9, 2014

 Rule identifiers are drawn from and registered in the IANA
 registry discussed below. Rule identifiers that represent
 significant variations of Markdown SHOULD begin with a capital
 letter, e.g., "GitHub", "Original", "Multi". Rule identifiers
 that represent single or small collections of rules SHOULD begin
 with a lowercase letter, e.g., "fenced-code-blocks", "fancy-
 lists", "strikeout".

 When this parameter conveyed (even if empty), the implicit first
 rule is "Original", namely, the original Markdown rules provided
 in John Gruber's Markdown Syntax from 2004 [MDSYNTAX]. When this
 parameter is not conveyed, the author does not express any intent
 about which rules apply: [MDSYNTAX] may not necessarily be the
 author's intent.

 In practice, Markdown implementations that are aware of this
 parameter will only be able to process a limited list of rules in
 an automated fashion. Therefore, when composing this parameter,
 it is RECOMMENDED that the composing process limit itself to
 small lists of broadly recognizable rules, namely lists with just
 one item (specifically, some major variation of Markdown).

 processor: An identifier for the specific Markdown implementation
 that processes the Markdown into another format, such as HTML. If
 conveyed, this value cannot be empty. If not conveyed, the author
 does not express any intent about which processor should be used.

 Processor identifiers are registered in the IANA registry
 discussed below. Each processor registration (which is expected
 to be updated over time) also defines the versions and arguments
 that are considered valid. The repertoire of this string is any
 number of characters (e.g., any Unicode character); however,
 registrations SHOULD stick to US-ASCII-based strings unless there
 is a compelling reason to do otherwise.

 processor-ver: An identifier for the version of the processor
 identified in the processor parameter. If conveyed, this value
 cannot be empty. If not conveyed, the author does not express any
 intent regarding a particular version to be used. This parameter
 has no meaning if it is conveyed without a sibling processor
 parameter.

 For purposes of this specification, the version is a string; the
 set of valid strings are registered and updated as a part of the
 processor registration. A version "2.0" does not necessarily
 imply that version 2.0 of an executable should be used instead of
 2.0.1, 2.1, or even 3.0. If the processor has a way to be invoked
 "as if" it is a different version (e.g., version 3.0 of a

Leonard Exp. March 13, 2015 [Page 5]

Internet-Draft The text/markdown Media Type September 9, 2014

 processor can process some content "as if" it were 2.0), then the
 receiver is free to use that invocation method. Updates to
 processor registrations SHOULD only add new versions when those
 new versions have a material difference on the interpretation of
 the Markdown content. If a processor has a version 2014.10 and a
 version 2014.11, for example, but 2014.11 only provides security
 updates, then the processor registration SHOULD NOT have a
 separate registration for the 2014.11 version.

 The repertoire of this string is any number of characters (e.g.,
 any Unicode character); however, registrations SHOULD stick to
 US-ASCII-based strings unless there is a compelling reason to do
 otherwise.

 processor-args: A string conforming to a subset of the POSIX Shell
 Command Language in Volume 3, Chapter 2 of [POSIX.1-2008] for
 arguments that are to be passed in an invocation to the
 processor. The format of this parameter also has a facility to
 reference resources by URI. [[TODO: Put in a separate section?
 [[Section X]] discusses the details of this parameter.]]

 If conveyed but empty, the author's intent is to turn off any
 optional arguments that the receiver would typically pass to the
 processor. If not conveyed, the author does not express any
 intent regarding particular arguments to be used. This parameter
 has no meaning if it is conveyed without a sibling processor
 parameter.

 If conveyed and not empty, the string MUST be parseable to the
 <cmd_suffix> item in Volume 3, Section 2.10.2 of [POSIX.1-2008]
 with accommodations for embedded URIs as specified below;
 however, <io_redirect> items MUST NOT appear. Effectively, the
 string is a sequence of <WORD> tokens. The string MUST NOT
 contain any sequences that would cause any shell processing other
 than newline and quote removal. For example, the string MUST NOT
 contain redirects, pipelines, or comments. Section 2.6 Word
 Expansions (Section 2.6.7 Quote Removal notwithstanding) are
 right out!

 A processor-args string MUST NOT include arguments regarding the
 input content or the output markup. For example, if a processor
 normally reads Markdown input using the arguments "-i filename"
 or "< filename" (i.e., from standard input), those arguments MUST
 be omitted. A processor-args string MUST NOT include arguments
 that have no bearing on the output, such as arguments that
 control verbosity of the processor (-v) or that cause side-
 effects (such as writing diagnostic messages to some other file).
 Of course, if warnings or errors are signaled within the output,

Leonard Exp. March 13, 2015 [Page 6]

Internet-Draft The text/markdown Media Type September 9, 2014

 arguments enabling that output MAY be used.

 Some authors may wish to combine inputs from multiple resources.
 For security reasons, file references MUST NOT be included in
 processor-args. Instead, references to resources are encoded in
 strictly-conforming URIs [RFC3986] delimited with angle brackets
 <>, which MUST NOT be escaped according to [POSIX.1-2008] (i.e.,
 the brackets cannot be escaped with preceding backslash
 characters). A receiver may retrieve the resource specified by
 the URI, and then pass it to the processor in an appropriate way,
 such as via a temporary file. The intent of this option is to
 provide a means to include additional data that might accompany
 the Markdown content, for example, using cid: or mid: URLs
 [RFC2392] in the context of MIME messages.

 Prior to invoking a Markdown processor, the preprocess routine
 MUST first analyze the processor-args string for URIs. Depending
 on privacy and security considerations, the routine either
 dereferences the URIs--retrieving the contents--or rejects the
 string. The URIs (including <> delimiters) shall then be replaced
 with appropriate, complete file paths or descriptors, and the
 resulting string shall be checked for conformance with a sequence
 of arguments as defined by the POSIX Shell Command Language in
 Volume 3, Chapter 2 of [POSIX.1-2008].

 Not all processors are literally invoked from an operating
 system's command facility; some may be invoked from within
 another process as a library call. In such cases, the processor
 SHOULD be invoked in such a way to communicate the semantics of
 the arguments. One strategy might be to provide a library call
 with one or more explicit argument parameters; for example,
 either a string type of parameter (if the library does the
 parsing), or an "argc" plus "argv" pair of parameters (if the
 caller does the parsing). Another strategy might be to provide
 several different library calls, which the caller would choose to
 invoke depending on the directions of the arguments. In the
 registration for the processor, argument handling MUST be
 discussed.

 The repertoire of this string is any number of characters that
 conform to a [POSIX.1-2008] implementation. (Note that the NULL
 character is excluded, because POSIX uses it to terminate
 strings.) When characters in the arguments lie outside of the
 Portable Character Set (i.e., outside of US-ASCII), this
 parameter MUST be encoded to preserve those characters and to
 signal the required encoding to the receiver. Then, the processor
 MUST be invoked in such a way that it properly understands these
 characters in the required encoding (or a superset thereof). When

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc2392

Leonard Exp. March 13, 2015 [Page 7]

Internet-Draft The text/markdown Media Type September 9, 2014

 encoded in a MIME Content-Type header, use of [RFC2231] is
 RECOMMENDED. The rationale for this (convoluted) requirement is
 because POSIX defines command lines and arguments with the C
 language char * data type, but leaves the character set dependent
 on locale environment variables (see Volume 1, Chapter 7 of
 [POSIX.1-2008]). Therefore, it is not sufficient to pass
 arguments from the processor-args parameter "as is" to the
 processor: the routine MUST change the locale or transform the
 arguments to an appropriate character encoding so that there is
 no ambiguity.

 Encoding considerations: Text.

 Security considerations:

 Markdown interpreted as plain text is relatively harmless. A text
 editor need only display the text. The editor SHOULD take care to
 handle control characters appropriately, and to limit the effect of
 the Markdown to the text editing area itself; malicious Unicode-
 based Markdown could, for example, surreptitiously change the
 directionality of the text. An editor for normal text would already
 take these control characters into consideration, however.

 Markdown interpreted as a precursor to other formats, such as HTML,
 carry all of the security considerations as the target formats. For
 example, HTML can contain instructions to execute scripts, redirect
 the user to other webpages, download remote content, and upload
 personally identifiable information. Markdown also can contain
 islands of formal markup, such as HTML. These islands of formal
 markup may be passed as-is, transformed, or ignored (perhaps
 because the islands are conditional or incompatible) when the
 Markdown is interpreted into the target format. Since Markdown may
 have different interpretations depending on the tool and the
 environment, a better approach is to analyze (and sanitize or
 block) the output markup, rather than attempting to analyze the
 Markdown.

 [[TODO: discuss the implications of processor-args, and
 safeguards.]] [[TODO: discuss the security implications of
 combining supplementary resources in processor-args...the
 supplementary resources could be config files or scripts.]] [[TODO:
 discuss the privacy implications of dereferencing URIs.]]

 Interoperability considerations:

 Markdown flavors are designed to be broadly compatible with humans
 ("humane"), but not necessarily with each other. Therefore, syntax
 in one Markdown flavor may be ignored or treated differently in

https://datatracker.ietf.org/doc/html/rfc2231

Leonard Exp. March 13, 2015 [Page 8]

Internet-Draft The text/markdown Media Type September 9, 2014

 another flavor. The overall effect is a general degradation of the
 output, proportional to the quantity of flavor-specific Markdown
 used in the text. When it is desirable to reflect the author's
 intent in the output, stick with the flavor identified in the
 flavor parameter.

 Published specification: This specification.

 Applications that use this media type:

 Markdown conversion tools, Markdown WYSIWYG editors, and plain text
 editors and viewers; target markup processors indirectly use
 Markdown (e.g., web browsers for Markdown converted to HTML).

 Additional information:

 Magic number(s): None
 File extension(s): .md, .markdown
 Macintosh file type code(s): TEXT

 Person & email address to contact for further information:

 Sean Leonard <dev+ietf@seantek.com>

 Restrictions on usage: None.

 Author/Change controller: Sean Leonard <dev+ietf@seantek.com>

 Intended usage: COMMON

 Provisional registration? Yes

Leonard Exp. March 13, 2015 [Page 9]

Internet-Draft The text/markdown Media Type September 9, 2014

3. Example

 The following is an example of Markdown as an e-mail attachment:

 MIME-Version: 1.0
 Content-Type: text/markdown; charset=UTF-8; rules=GitHub
 Content-Disposition: attachment; filename=readme.md

 Sample GitHub Markdown
 =============

 This is some sample GitHub Flavored Markdown (*GFM*).
 The generated HTML is then run through filters in the
 [html-pipeline](https://github.com/jch/html-pipeline)
 to perform things like [sanitization](#html-sanitization) and
 [syntax highlighting](#syntax-highlighting).

 Bulleted Lists

 Here are some bulleted lists...

 * One Potato
 * Two Potato
 * Three Potato

 - One Tomato
 - Two Tomato
 - Three Tomato

 More Information

 [.markdown, .md](http://daringfireball.net/projects/markdown/)
 has more information.

4. IANA Considerations

 IANA is asked to register the media type text/markdown in the
 Standards tree using the application provided in Section 2 of this
 document.

 IANA is also asked to establish a subtype registry called "Markdown
 Parameters". Entries in these registries is by Expert Review
 [RFC5226]. The registry has two sub-registries: a registry of rules
 and a registry of processors.

https://github.com/jch/html-pipeline
http://daringfireball.net/projects/markdown/
https://datatracker.ietf.org/doc/html/rfc5226

Leonard Exp. March 13, 2015 [Page 10]

Internet-Draft The text/markdown Media Type September 9, 2014

4.1 Registry of Rules

 Each entry in this registry shall consist of a) a rule identifier and
 b) whether the rule is defined in the registry entry, or in some
 external document.

 If the rule is defined in the registry entry, then the entry must
 also include: i) a list of rules in prose text, and ii) for each
 rule, an example illustrating the rule. Additionally, each registry
 entry shall describe in prose text iii) which rules take precedence
 over other rules, or how conflicts between rules may be resolved. The
 Expert will review the rule to determine whether the rule is
 plausible and whether the rule can be implemented.

 If the rule is defined in some external document, the Expert will
 determine whether the registration represents a bona-fide variation
 of the Markdown syntax (i.e., neither a duplicate of an existing
 registration nor a syntax that is something other than Markdown;
 [MDSYNTAX] SHALL be used as a normative basis), a brief description,
 one or more responsible parties, whether the document is being
 maintained at the time of registration, and the existence of at least
 one complete tool (with or without documentation) that processes the
 Markdown syntax into a formal document language.

 A responsible party can be an individual author or maintainer, a
 corporate author or maintainer (plus an individual contact), or a
 representative of a community of interest dedicated to the Markdown
 syntax.

 The registry shall have the following initial value:

 Identifier: Original

 Description:
 The Markdown syntax as it exists in the Markdown 1.0.1 Perl script
 at [MARKDOWN], with accompanying documentation at [MDSYNTAX].

 Responsible Parties:
 (individual)
 John Gruber <http://daringfireball.net/>
 <comments@daringfireball.net>

 Currently Maintained? No

 Tool:
 Name: Markdown 1.0.1
 Reference: <http://daringfireball.net/projects/markdown/>
 Purpose: Converts to HTML or XHTML circa 2004.

http://daringfireball.net/
http://daringfireball.net/projects/markdown/

Leonard Exp. March 13, 2015 [Page 11]

Internet-Draft The text/markdown Media Type September 9, 2014

 Additionally, the registry shall have the following identifiers
 reserved for future versions of this draft:
 Standard
 Common
 Regular
 Community
 Uniform
 Vanilla
 Compatible
 Gruber
 GitHub
 Multi
 PageDown

4.2 Registry of Processors

 Each entry in this registry shall consist of a) a processor
 identifier, b) a concise description of the processor, c) one or more
 responsible parties, d) whether the processor is being maintained at
 the time of the registration (or registration update), (optionally)
 e) a list of version strings, and (optionally) f) documentation about
 the arguments.

 If arguments are to be used, documentation MUST be provided as a part
 of the registry entry. However, the documentation MAY merely refer to
 external documentation, such as a manpage, webpage, or user manual.

 [[TODO: figure out if the list should be more formal, so a receiver
 can validate the safety/correctness of the arguments before passing
 them along.]]

5. Security Considerations

 See the answer to the Security Considerations template questions in
Section 2.

6. References

6.1. Normative References

 [MARKDOWN] Gruber, J., "Daring Fireball: Markdown", WWW
http://daringfireball.net/projects/markdown/, December

 2004.

 [MDSYNTAX] Gruber, J., "Daring Fireball: Markdown Syntax
 Documentation", WWW
 <http://daringfireball.net/projects/markdown/syntax>,
 December 2004.

http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/syntax

Leonard Exp. March 13, 2015 [Page 12]

Internet-Draft The text/markdown Media Type September 9, 2014

 [POSIX.1-2008] IEEE Std 1003.1, 2013 Edition (incorporates IEEE Std
 1003.1-2008 and IEEE Std 1003.1-2008/Cor 1-2013, "Standard
 for Information Technology - Portable Operating System
 Interface (POSIX(R)) Base Specifications, Issue 7"
 (incorporating Technical Corrigendum 1), April 2013.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

 [RFC5226] Narten, T., and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 5226, May 2008.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 October 2008.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13, RFC

6838, January 2013.

6.2. Informative References

 [HUMANE] Atwood, J., "Is HTML a Humane Markup Language?", WWW
http://blog.codinghorror.com/is-html-a-humane-markup-
language/, May 2008.

 [RFC2392] Levinson, E., "Content-ID and Message-ID Uniform Resource
 Locators", RFC 2392, August 1998.

Appendix A. Change Log

 This draft is a continuation from draft-seantek-text-markdown-media-
type-00.txt (since renamed). These technical changes were made:

 1. The flavor parameter was replaced with the rules, processor,
 processor-ver, and processor-args parameters.
 2. The IANA Considerations now covers the rules and processors.
 3. The charset parameter was modified.
 4. The example was updated to reflect the current specification.

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
https://datatracker.ietf.org/doc/html/rfc6838
http://blog.codinghorror.com/is-html-a-humane-markup-language/
http://blog.codinghorror.com/is-html-a-humane-markup-language/
https://datatracker.ietf.org/doc/html/rfc2392
https://datatracker.ietf.org/doc/html/draft-seantek-text-markdown-media-type-00.txt
https://datatracker.ietf.org/doc/html/draft-seantek-text-markdown-media-type-00.txt

Leonard Exp. March 13, 2015 [Page 13]

Internet-Draft The text/markdown Media Type September 9, 2014

Author's Address

 Sean Leonard
 Penango, Inc.
 5900 Wilshire Boulevard
 21st Floor
 Los Angeles, CA 90036
 USA

 EMail: dev+ietf@seantek.com
 URI: http://www.penango.com/

Leonard Exp. March 13, 2015 [Page 14]

http://www.penango.com/

