
Applications Area Working Group S. Leonard
Internet-Draft Penango, Inc.
Intended Status: Informational September 22, 2014
Expires: March 26, 2015

The text/markdown Media Type
draft-ietf-appsawg-text-markdown-02.txt

Abstract

 This document registers the text/markdown media type for use with
 Markdown, a family of plain text formatting syntaxes that optionally
 can be converted to formal markup languages such as HTML.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

[[TODO: add table of contents.]]

Leonard Exp. March 26, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft The text/markdown Media Type September 2014

1. Introduction

1.1. On Formats

 In computer systems, textual data is stored and processed using a
 continuum of techniques. On the one end is plain text: a linear
 sequence of characters in some character set (code), possibly
 interrupted by line breaks, page breaks, or other control characters.
 Plain text provides /some/ fixed facilities for formatting
 instructions, namely codes in the character set that have meanings
 other than "represent this character on the output medium"; however,
 these facilities are not particularly extensible. Compare with

[RFC6838] Section 4.2.1. Applications may neuter the effects of these
 special characters by prohibiting them or by ignoring their dictated
 meanings, as is the case with how modern applications treat most
 control characters in US-ASCII. On this end, any text reader or
 editor that interprets the character set can be used to see or
 manipulate the text. If some characters are corrupted, the corruption
 is unlikely to affect the ability of a computer system to process the
 text (even if the human meaning is changed).

 On the other end is binary format: a sequence of instructions
 intended for some computer application to interpret and act upon.
 Binary formats are flexible in that they can store non-textual data
 efficiently (perhaps storing no text at all, or only storing certain
 kinds of text for very specialized purposes). Binary formats require
 an application to be coded specifically to handle the format; no
 partial interoperability is possible. Furthermore, if even one byte
 or bit are corrupted in a binary format, it may prevent an
 application from processing any of the data correctly.

 Between these two extremes lies formatted text, i.e., text that
 includes non-textual information coded in a particular way, that
 affects the interpretation of the text by computer programs.
 Formatted text is distinct from plain text and binary format in that
 the non-textual information is encoded into textual characters, which
 are assigned specialized meanings /not/ defined by the character set.
 With a regular text editor and a standard keyboard (or other standard
 input mechanism), a user can enter these textual characters to
 express the non-textual meanings. For example, a character like "<"
 no longer means "LESS-THAN SIGN"; it means the start of a tag or
 element that affects the document in some way.

 On the formal end of the spectrum is markup, a family of languages
 for annotating a document in such a way that the annotations are
 syntactically distinguishable from the text. Markup languages are
 (reasonably) well-specified and tend to follow (mostly) standardized
 syntax rules. Examples of markup languages include SGML, HTML, XML,

https://datatracker.ietf.org/doc/html/rfc6838#section-4.2.1

Leonard Exp. March 26, 2015 [Page 2]

Internet-Draft The text/markdown Media Type September 2014

 and LaTeX. [[TODO: CITE.]] Standardized rules lead to
 interoperability between markup processors, but a skill requirement
 for new (human) users of the language that they learn these rules in
 order to do useful work. This imposition makes markup less accessible
 for non-technical users (i.e., users who are unwilling or unable to
 invest in the requisite skill development).

 informal /---------formatted text----------\ formal
 <------v-------------v-------------v-----------------------v---->
 plain text informal markup formal markup binary format
 (Markdown) (HTML, XML, etc.)

 Figure 1: Degrees of Formality in Data Storage Formats for Text

 On the informal end of the spectrum are lightweight markup languages.
 In comparison with formal markup like XML, lightweight markup uses
 simple syntax, and is designed to be easy for humans to enter with
 basic text editors. Markdown, the subject of this document, is an
 /informal/ plain text formatting syntax that is intentionally
 targeted at non-technical users (i.e., users upon whom little to no
 skill development is imposed) using unspecialized tools (i.e., text
 boxes). Jeff Atwood once described these informal markup languages as
 "humane" [HUMANE].

1.2. Markdown Design Philosophy

 Markdown specifically is a family of syntaxes that are based on the
 original work of John Gruber with substantial contributions from
 Aaron Swartz, released in 2004 [MARKDOWN]. Since its release a number
 of web or web-facing applications have incorporated Markdown into
 their text entry systems, frequently with custom extensions. Fed up
 with the complexity and security pitfalls of formal markup languages
 (e.g., HTML5) and proprietary binary formats (e.g., commercial word
 processing software), yet unwilling to be confined to the
 restrictions of plain text, many users have turned to Markdown for
 document processing. Whole toolchains now exist to support Markdown
 for online and offline projects.

 Informality is a bedrock premise of Gruber's design. Gruber created
 Markdown after disastrous experiences with strict XML and XHTML
 processing of syndicated feeds. In Mark Pilgrim's "thought
 experiment", several websites went down because one site included
 invalid XHTML in a blog post, which was automatically copied via
 trackbacks across other sites [DIN2MD]. These scenarios led Gruber to
 believe that clients (e.g., web browsers) SHOULD try to make sense of
 data that they receive, rather than rejecting data simply because it
 fails to adhere to strict, unforgiving standards. (In [DIN2MD],
 Gruber compared Postel's Law [RFC0793] with the XML standard, which

https://datatracker.ietf.org/doc/html/rfc0793

Leonard Exp. March 26, 2015 [Page 3]

Internet-Draft The text/markdown Media Type September 2014

 says: "Once a fatal error is detected [...] the processor MUST NOT
 continue normal processing" [XML1.0-3].) As a result, there is no
 such thing as "invalid" Markdown; there is no standard demanding
 adherence to the Markdown syntax; there is no governing body that
 guides or impedes its development. If the Markdown syntax does not
 result in the "right" output (defined as output that the author
 wants, not output that adheres to some dictated system of rules),
 Gruber's view is that the author either should keep on experimenting,
 or should change the processor to address the author's particular
 needs (see [MARKDOWN] Readme and [MD102b8] perldoc; see also
 [CATPICS]).

1.3. Uses of Markdown

 Since its introduction in 2004, Markdown has enjoyed remarkable
 success. Markdown works for users for three key reasons. First, the
 markup instructions (in text) look similar to the markup that they
 represent; therefore the cognitive burden to learn the syntax is low.
 Second, the primary arbiter of the syntax's success is *running
 code*. The tool that converts the Markdown to a presentable format,
 and not a series of formal pronouncements by a standards body, is the
 basis for whether syntactic elements matter. Third, Markdown has
 become something of an Internet meme [INETMEME], in that Markdown
 gets received, reinterpreted, and reworked as additional communities
 encounter it. There are communities that are using Markdown for
 scholarly writing [CITE], for screenplays [CITE], for mathematical
 formulae [CITE], and even for music annotation [CITE]. Clearly, a
 screenwriter has no use for specialized Markdown syntax for
 mathematicians; likewise, mathematicians do not need to identify
 characters or props in common ways. The overall gist is that all of
 these communities can take the common elements of Markdown (which are
 rooted in the common elements of HTML circa 2004) and build on them
 in ways that best fit their needs.

1.4. Uses of Labeling Markdown Content as text/markdown

 To support identifying and conveying Markdown (as distinguished from
 plain text), this document defines a media type and parameters that
 indicate, in broad strokes, the author's intent on how to interpret
 the Markdown. This registration draws particular inspiration from the
 text/troff registration [RFC4263]; troff is an informal plain text
 formatting syntax primarily intended for output to monospace line-
 oriented printers and screen devices. In that sense, Markdown is a
 kind of troff for modern computing.

 The primary purpose of an Internet media type is to label "content"
 on the Internet, as distinct from "files". Content is any computer-
 readable format that can be represented as a primary sequence of

https://datatracker.ietf.org/doc/html/rfc4263

Leonard Exp. March 26, 2015 [Page 4]

Internet-Draft The text/markdown Media Type September 2014

 octets, along with type-specific metadata (parameters) and type-
 agnostic metadata (protocol dependent). From this description, it is
 apparent that appending ".markdown" to the end of a filename is not a
 sufficient means to identify Markdown. Filenames are properties of
 files in file systems, but Markdown frequently exists in databases or
 content management systems (CMSes) where the file metaphor does not
 apply. One CMS [RAILFROG] uses media types to select appropriate
 processing, so a media type is necessary for the safe and
 interoperable use of Markdown.

 Unlike complete HTML documents, [MDSYNTAX] provides no means to
 include metadata into the content stream. Several derivative flavors
 have invented metadata incorporation schemes (e.g., [MULTIMD]), but
 these schemes only address specific use cases. In general, the
 metadata must be supplied via supplementary means in an encapsulating
 protocol, format, or convention. The relationship between the content
 and the metadata is not directly addressed by this specification;
 however, by identifying Markdown with a media type, Markdown content
 can participate as a first-class citizen with a wide spectrum of
 metadata schemes.

 Finally, registering a media type through the IETF process is not
 trivial. Markdown can no longer be considered a "vendor"-specific
 innovation, but the registration requirements even in the vendor tree
 have proven to be overly burdensome for most Markdown implementers.
 Moreover, registering hundreds of Markdown variants with distinct
 media types would impede interoperability: virtually all Markdown
 content can be processed by virtually any Markdown processor, with
 varying degrees of success. The goal of this specification is to
 reduce all of these burdens by having one media type that
 accommodates diversity and eases registration.

1.3. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

Leonard Exp. March 26, 2015 [Page 5]

Internet-Draft The text/markdown Media Type September 2014

2. Example

 The following is an example of Markdown as an e-mail attachment:

 MIME-Version: 1.0
 Content-Type: text/markdown; charset=UTF-8; flavor=Original;
 processor="Markdown.pl-1.0.2b8 --html4tags"
 Content-Disposition: attachment; filename=readme.md

 Sample HTML 4 Markdown
 =============

 This is some sample Markdown. [Hooray!][foo]
 (Remember that link names are not case-sensitive.)

 Bulleted Lists

 Here are some bulleted lists...

 * One Potato
 * Two Potato
 * Three Potato

 - One Tomato
 - Two Tomato
 - Three Tomato

 More Information

 [.markdown, .md](http://daringfireball.net/projects/markdown/)
 has more information.

 [fOo]: http://example.com/some/foo/location
 'This Title Will Not Work with Markdown.pl-1.0.1'

3. Markdown Media Type Registration Application

 This section provides the media type registration application for the
 text/markdown media type (see [RFC6838], Section 5.6).

 Type name: text

 Subtype name: markdown

 Required parameters: charset. Per Section 4.2.1 of [RFC6838],
 charset is REQUIRED. There is no default value. UTF-8 is

http://daringfireball.net/projects/markdown/
https://datatracker.ietf.org/doc/html/rfc6838#section-5.6
https://datatracker.ietf.org/doc/html/rfc6838#section-4.2.1

Leonard Exp. March 26, 2015 [Page 6]

Internet-Draft The text/markdown Media Type September 2014

 RECOMMENDED; however, neither [MDSYNTAX] nor popular
 implementations at the time of this registration actually require
 or assume any particular encoding. In fact, many Markdown
 processors can get along just fine by operating on character codes
 that lie in the Portable Character Set (i.e., printable US-ASCII),
 blissfully oblivious to coded values outside of that range.

 Optional parameters:

 The following parameters reflect the author's intent regarding the
 content. A detailed specification can be found in Section 4.

 flavor: The variant, or "flavor" of the Markdown content, with
 optional rules (qualifiers). Default value: "Original".

 processor: A specific Markdown implementation, with optional
 arguments. Default value: none (receiver's choice).

 output-type: The Content-Type (Internet media type) of the output,
 with optional parameters. Default value: "text/html".

 Encoding considerations: Text.

 Security considerations:

 Markdown interpreted as plain text is relatively harmless. A text
 editor need only display the text. The editor SHOULD take care to
 handle control characters appropriately, and to limit the effect of
 the Markdown to the text editing area itself; malicious Unicode-
 based Markdown could, for example, surreptitiously change the
 directionality of the text. An editor for normal text would already
 take these control characters into consideration, however.

 Markdown interpreted as a precursor to other formats, such as HTML,
 carry all of the security considerations as the target formats. For
 example, HTML can contain instructions to execute scripts, redirect
 the user to other webpages, download remote content, and upload
 personally identifiable information. Markdown also can contain
 islands of formal markup, such as HTML. These islands of formal
 markup may be passed as-is, transformed, or ignored (perhaps
 because the islands are conditional or incompatible) when the
 Markdown is interpreted into the target format. Since Markdown may
 have different interpretations depending on the tool and the
 environment, a better approach is to analyze (and sanitize or
 block) the output markup, rather than attempting to analyze the
 Markdown.

 Specific security considerations apply to the optional parameters;

Leonard Exp. March 26, 2015 [Page 7]

Internet-Draft The text/markdown Media Type September 2014

 for details, consult Section 4.

 Interoperability considerations:

 Markdown flavors are designed to be broadly compatible with humans
 ("humane"), but not necessarily with each other. Therefore, syntax
 in one Markdown flavor may be ignored or treated differently in
 another flavor. The overall effect is a general degradation of the
 output, proportional to the quantity of flavor-specific Markdown
 used in the text. When it is desirable to reflect the author's
 intent in the output, stick with the flavor identified in the
 flavor parameter.

 Published specification: This specification.

 Applications that use this media type:

 Markdown conversion tools, Markdown WYSIWYG editors, and plain text
 editors and viewers; target markup processors indirectly use
 Markdown (e.g., web browsers for Markdown converted to HTML).

 Additional information:

 Magic number(s): None
 File extension(s): .md, .markdown
 Macintosh file type code(s): TEXT

 Person & email address to contact for further information:

 Sean Leonard <dev+ietf@seantek.com>

 Restrictions on usage: None.

 Author/Change controller: Sean Leonard <dev+ietf@seantek.com>

 Intended usage: COMMON

 Provisional registration? Yes

4. Optional Parameters

 The following optional parameters can be used by an author to
 indicate the author's intent regarding how the Markdown ought to be
 processed. For security and accuracy, IANA registries will be
 created. However, authors who wish to use custom values by private
 agreement may do so via an extension mechanism; all unregistered
 identifiers MUST start with an exclamation mark "!".

Leonard Exp. March 26, 2015 [Page 8]

Internet-Draft The text/markdown Media Type September 2014

 All identifiers are case-sensitive; receivers MUST compare for exact
 equality. Identifiers MUST NOT be registered if another registration
 differs only in the casing, as these registrations may cause
 confusion.

 The following ABNF definitions are used in this section:

 EXTCHAR = <any character outside the US-ASCII range,
 essentially amounting to any Unicode
 code point beyond U+007F without requiring
 Unicode or any particular encoding>

 REXTCHAR = <EXTCHAR without spaces (Zs category) or
 control characters>

 Figure X: ABNF Used in This Section

 The discussion in this section presumes that the parameter values are
 discrete strings. When encoded in protocols such as MIME [RFC2045],
 however, the value strings MUST be escaped properly.

4.1. flavor

 The flavor parameter indicates the Markdown variant in which the
 author composed the content. The overall intent of this parameter is
 to provide a facility for Markdown tools, such as graphical editors,
 to be able to broadly categorize the content and perform useful
 services such as syntax highlighting without resorting to executing
 the Markdown processor. Of course, actual recipients may use this
 information for any useful purpose, including picking and configuring
 an appropriate Markdown processor. The entire parameter is case-
 sensitive.

 An IANA registry of flavors will be created as discussed in Section
5. A flavor identifier is composed of two or more Unicode characters

 excluding spaces (Zs category), control characters, the hyphen-minus
 "-", quotation marks """, and the plus sign "+"; however, ASCII
 characters alone SHOULD be used. Additionally, registered flavor
 identifiers MUST NOT begin with "!", the exclamation mark. By
 convention, flavor identifiers start with a capital letter (when
 using Roman characters), but this is not a requirement. Unregistered
 flavor identifiers MUST begin with "!" (plus two additional
 characters).

 When omitted, the default value is "Original". Its meaning is covered
 in Section 5. Generators MUST NOT emit empty flavor parameters, but
 parsers MUST treat empty flavor parameters the same as if omitted.

https://datatracker.ietf.org/doc/html/rfc2045

Leonard Exp. March 26, 2015 [Page 9]

Internet-Draft The text/markdown Media Type September 2014

 The full ABNF of the flavor parameter is:

 flavor-param = flavor *(*WSP rule) *WSP

 flavor = registered-fid / unregistered-fid

 registered-fid = fid-char 1*("!" / fid-char)

 unregistered-fid = "!" 2*fid-char

 fid-char = %d35-%d42 / %d44 / %d46-%d126 / REXTCHAR

 rule = "+" (should-rule / any-rule)

 should-rule = should-rule-char [*(should-rule-char / "_")
 should-rule-char]
 any-rule = 1*rule-char

 rule-char = %d35-%d42 / %d44-%d126 / REXTCHAR

 Figure X: ABNF of the flavor parameter

4.1.1. flavor rules

 [[TODO: consider. This section is mainly inspired from pandoc.]]
 Most flavors are self-contained, with no options. However, some
 flavors have optional rules that may be applied with discretion. For
 those flavors where optional rules are an integral feature, the
 author MAY indicate that those extra rules be applied in a plus sign-
 delimited list.

 Because Markdown has no inherent concept of validity, authors SHOULD
 be aware that receivers are not required to honor these optional
 rules--the special characters in the Markdown content may well be
 interpreted as plain text, rather than Markdown markup. Generally
 speaking, defining a new (simple) flavor is preferable to defining a
 complex flavor with multiple optional rules.

 A flavor rule identifier is composed of any sequence of Unicode
 characters excluding spaces (Zs category), control characters,
 quotation marks """, exclamation marks "!", and the plus sign "+";
 however, lowercase ASCII letters and the underscore "_" alone SHOULD
 be used, where the underscore SHOULD NOT be at the beginning or end.
 The syntax for flavor rules derives in significant part from pandoc
 [PANDOC].

 [[TODO: There are no requirements about exclamation marks for
 unregistered rules...flavor rules SHOULD be registered along with the

Leonard Exp. March 26, 2015 [Page 10]

Internet-Draft The text/markdown Media Type September 2014

 flavor, but a receiver does not need to reject the flavor parameter
 simply because it does not recognize a rule...it can just ignore the
 rule.]]

4.2. processor

 The processor parameter indicates the specific Markdown
 implementation that the author intends be used. The purpose of this
 parameter is to control the automatic processing of Markdown into
 some output format, but of course actual recipients may use this
 information for any useful purpose. The entire parameter is case-
 sensitive.

 An IANA registry of processors will be created as discussed in
Section 5. A processor identifier is composed of two or more Unicode

 characters excluding spaces (Zs category), control characters, the
 hyphen-minus "-", quotation marks """, the less-than sign "<", and
 the greater-than sign ">"; however, ASCII characters alone SHOULD be
 used. Additionally, registered processor identifiers MUST NOT begin
 with "!", the exclamation mark. Unregistered processor identifiers
 MUST begin with "!" (plus two additional characters).

 When omitted, the default value is to use whatever processor the
 receiver prefers. Generators MUST NOT emit empty processor
 parameters, but parsers MUST treat empty processor parameters the
 same as if omitted.

 The full ABNF of the processor parameter is:

 processor-param = processor ["-" version]
 *(1*WSP argument) *WSP

 processor = registered-pid / unregistered-pid

 registered-pid = pid-char 1*("!" / pid-char)

 unregistered-pid = "!" 2*pid-char

 version = pid-char *("!" / pid-char)

 argument = regular-argument / uri-argument

 regular-argument = 1*(regular-char / quoted-chars)

 pid-char = %d35-%d44 / %d46-%d59 / %d61 /
 %d63-126 / REXTCHAR

 regular-char = %d33 / %d35-%d59 / %d61 / %d63-126 / REXTCHAR

Leonard Exp. March 26, 2015 [Page 11]

Internet-Draft The text/markdown Media Type September 2014

 quoted-chars = DQUOTE *pqcontent DQUOTE

 pqcontent = %d1-%d33 / %d35-127 / EXTCHAR / DQUOTE DQUOTE

 uri-argument = "<" URI-reference ">" ; from [RFC3986]

 Figure X: processor parameter ABNF

4.2.1. processor version

 For better precision, an author MAY include the processor version.
 The version is delimited from the processor identifier with a hyphen-
 minus "-"; the version string itself is an opaque string. Version
 strings (e.g., "2.0", "3.0.5") are registered and updated along with
 the processor registration. Updates to processor registrations SHOULD
 only add new versions when those new versions have a material
 difference on the interpretation of the Markdown content. If a
 processor has a version "2014.10" and a version "2014.11", for
 example, but "2014.11" only provides performance updates, then the
 processor registration SHOULD NOT separately register the "2014.11"
 version. The repertoire of the version string is the same as the
 processor identifier (and like the processor identifier, ASCII
 characters alone SHOULD be used).

 A receiver that recognizes the processor but not the processor
 version MAY use any version of the processor, preferably the latest
 version.

4.2.2. processor arguments

 Processor arguments MAY be supplied for finer-grained control over
 how the processor behaves. Multiple arguments and URI references are
 supported.

4.2.2.1. Quoted Arguments

 According to the ABNF above, arguments are delimited by whitespace.
 Quotation marks are used to support zero-length arguments, as well as
 whitespace or quotation marks in a single argument. If a quotation
 mark appears anywhere in the argument, the following text is
 considered quoted; two successive quotation marks "" mean one
 quotation mark. A single quotation mark ends the quoting. Because of
 this rule, quotation marks do not have to appear at the termini of an
 argument; embedded quotation marks start (and end) quoting within a
 single argument. For example:
 a""b
 means:
 ab

https://datatracker.ietf.org/doc/html/rfc3986

Leonard Exp. March 26, 2015 [Page 12]

Internet-Draft The text/markdown Media Type September 2014

 for the actual argument.

4.2.2.2. URI Reference Arguments

 Certain processors can take supplementary content, such as metadata,
 from other resources. To support these workflows, an author MAY use
 the URI delimiters <> to signal a URI, such as cid: or mid: URLs
 [RFC2392] in the context of MIME messages. The URI MUST comply with
 [RFC3986], and MAY be a relative reference if the subject Markdown
 content has a base URI. The receiver is to interpret this as a
 request to retrieve the resource, and to supply that resource in a
 local reference form that the processor can use (e.g., via a
 temporary file). The URI MUST be entire argument; the URI cannot be
 combined with other text to constitute the argument (and the ABNF
 above supports this restriction). The reason for this restriction is
 security, so that a maliciously constructed argument string cannot
 resolve to some other file reference (such as parent directories like
 ../ or special files such as /dev/hd0). If the processor accepts URI
 strings directly, the string is to be supplied as a regular string
 without <> delimiters. For security reasons, direct file references
 MUST NOT be included in the processor arguments.

 The prior paragraph notwithstanding, certain workflows may require
 file references. In such cases, file: URLs [RFC1738] (including
 relative references) are appropriate. The receiver SHOULD apply the
 same security and privacy analyses to file: URLs as it would to any
 other URI.

4.2.2.3. Appropriate Arguments and Security Considerations

 Not all arguments are appropriate for inclusion in the processor
 parameter. Appropriate arguments are basically limited to those that
 affect the output markup, without side-effects. Arguments MUST NOT
 identify input sources or output destinations. For example, if a
 processor normally reads Markdown input using the arguments "-i
 filename" or "< filename" (i.e., from standard input), those
 arguments MUST be omitted. Arguments that have no bearing on the
 output MUST be omitted as well, such as arguments that control
 verbosity of the processor (-v) or that cause side-effects (such as
 writing diagnostic messages to some other file). Of course, if
 warnings or errors are signaled within the output, arguments enabling
 that output MAY be used.

 When in doubt, a receiver SHOULD omit arguments with unknown or
 undocumented effects, and MAY ignore author-supplied arguments
 entirely, but SHALL NOT reorder arguments. An author has very little
 assurance that a receiver will honor unregistered arguments.
 Consequently, the burden is squarely on processor registrants

https://datatracker.ietf.org/doc/html/rfc2392
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc1738

Leonard Exp. March 26, 2015 [Page 13]

Internet-Draft The text/markdown Media Type September 2014

 (Section 5.2) to document their arguments properly.

 For security reasons, the parsed argument array (or a string
 unambiguously representing the delimited argument array) MUST be
 passed directly to the processor. Emitting the argument array as-is
 in a batch script (for example) may cause risky side effects, such as
 automatic substitutions, alias activation, or macro execution. The
 arguments in this parameter MUST be encoded to preserve characters
 outside of US-ASCII, and to signal the required encoding to the
 receiver. When going between (system) processes, some implementations
 may interpret character codes based on locale environment variables.
 Therefore, it is not sufficient to pass arguments from this parameter
 "as-is" to the processor: the routine MUST change the locale or
 transform the arguments to an appropriate character encoding so that
 there is no ambiguity. Furthermore, the NUL character (%d0, U+0000)
 is not permitted because most common operating systems use that code
 point as a delimiter.

4.2.3. Examples of processor parameters

 [[TODO: provide examples.]]

4.3. output-type

 The output-type parameter indicates the Internet media type (and
 parameters) of the output from the processor.

 When omitted, the default value is "text/html". Generators MUST NOT
 emit empty output-type parameters, but parsers MUST treat empty
 output-type parameters the same as if omitted.

 The default value of text/html ought to be suitable for the majority
 of current purposes. However, Markdown is increasingly becoming
 integral to workflows where HTML is not the target output; examples
 range from TeX [CITE], to PDF [CITE], to OPML [CITE], and even to
 entire e-books [CITE].

 Security provides a significant motivator for this parameter. Most
 Markdown processors emit byte (octet) streams; without a well-defined
 means for a Markdown processor to pass metadata onwards, it is
 perilous for post-processing to assume that the content is always
 HTML. A processor might emit PostScript (application/postscript)
 content, for example, in which case an HTML sanitizer would fail to
 excise dangerous instructions.

 The value of output-type is an Internet media type with optional
 parameters. The syntax (including case sensitivity considerations) is
 the same as specified in [RFC2045] for the Content-Type header (with

https://datatracker.ietf.org/doc/html/rfc2045

Leonard Exp. March 26, 2015 [Page 14]

Internet-Draft The text/markdown Media Type September 2014

 updates over time), namely:

 type "/" subtype *(";" parameter)
 ; Matching of media type and subtype
 ; is ALWAYS case-insensitive.

 Figure X: Content-Type ABNF (from [RFC2045])

 The Internet media type in the output-type parameter MUST be
 observed. Processors or processor arguments that conflict with the
 output-type parameter MUST be re-chosen, ignored, or rejected.

 Although arbitrary optional parameters may be passed along with the
 Internet media type, receivers are under no obligation to honor or
 interpret them in any particular way. For example, the parameter
 value "text/plain; format=flowed; charset=ISO-2022-JP" obligates the
 receiver to output text/plain (and to treat the output as plain text-
 -no sneaking in or labeling the output as HTML!). In contrast, such a
 parameter value neither obligates the receiver to follow [RFC3676]
 (for flowed output) nor to output ISO-2022-JP Japanese character
 encoding (see [RFC1468]).

 Markdown implementations for all kinds of formats already exist,
 including formats that are not registered Internet media types, or
 that are inexpressible as Internet media types. For example, one
 Markdown processor for the mass media industry outputs formatted
 screenplays [CITE to fountain.io]: none of applicable media types
 application/pdf, text/html, or text/plain adequately distinguish this
 kind of output. Such distinctions SHOULD be made in the processor
 parameter (and to a lesser extent, the flavor parameter),
 underscoring that the primary concern of the output-type parameter is
 making technical and security-related decisions.

 The output-type parameter does not distinguish between fragment
 content and whole-document content. A Markdown processor MAY (and
 typically will) output HTML or XHTML fragment content, without
 preambles or postambles such as <!DOCTYPE>, <html>, <head>, </head>,
 <body>, </body>, or </html> elements. Receivers MUST be aware of this
 behavior and take appropriate precautions.

 [[TODO: consider.]]
 The author may specify the output-type "text/markdown", which has a
 special meaning. "text/markdown" means that the author does not want
 to invoke Markdown processing at all: the receiver SHOULD view the
 Markdown source as-is. In this case, the processor choice has little
 practical effect because the Markdown is not actually processed, but
 other tools can use the flavor parameter (and secondarily if so
 inclined, the processor parameter) to perform useful services such as

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc3676
https://datatracker.ietf.org/doc/html/rfc1468

Leonard Exp. March 26, 2015 [Page 15]

Internet-Draft The text/markdown Media Type September 2014

 syntax highlighting. This output-type is not the default because one
 generally assumes that Markdown is meant for composing rather than
 reading: readers expect to see the output format (or dual-display of
 the output and the Markdown). However, if authors are collaboratively
 editing a document or are discussing Markdown, "text/markdown" may
 make sense. While the optional parameter output-type may be used
 recursively (as a sneaky way to stash the author's follow-on or
 secondary intent), receivers are not obligated to recognize it;
 optional parameters internal to output-type MAY be ignored.

5. IANA Considerations

 IANA is asked to register the media type text/markdown in the
 Standards tree using the application provided in Section 2 of this
 document.

 IANA is also asked to establish a subtype registry called "Markdown
 Parameters". The registry has two sub-registries: a registry of
 flavors and a registry of processors.

5.1. Registry of Flavors

 Each entry in this registry shall consist of a flavor identifier and
 information about the flavor, as follows:

5.1.1. Flavor Template

 Identifier: [Identifier]

 Description: [Concise, prose description of the syntax,
 with emphasis on its purpose, the community
 that it addresses, and notable variations
 from [MDSYNTAX] or another flavor.]

 Documentation: [References to documentation.]

 Rules:
 {for each rule}
 Identifier: [Identifier]
 Description: [Concise, prose description of the rule.]
 Documentation: [References to documentation.]

 Responsible Parties:
 {for each party}
 ([type: individual, corporate, representative])
 [Name] <contact info 1>...<contact info n>

 Currently Maintained? [Yes/No]

Leonard Exp. March 26, 2015 [Page 16]

Internet-Draft The text/markdown Media Type September 2014

 Tools:
 {for each tool}
 Name: [Name]
 Version(s): [Significant version or versions that
 implement the flavor]
 Type: ["Processor" or some other type]
 Reference(s): <contact info 1>...<contact info n>
 Purpose: [Concise, prose description of the tool.]

 A responsible party can be an individual author or maintainer, a
 corporate author or maintainer (plus an individual contact), or a
 representative of a community of interest dedicated to the Markdown
 syntax.

 Multiple tools MAY be listed, but only one is necessary for a
 successful registration. If a tool is a Markdown processor, it MUST
 be registered; however, any Markdown-related tool (for example,
 graphical editors, emacs "major modes", web apps) is acceptable. The
 purpose of the tool requirement is to ensure that the flavor is
 actually used in practice.

5.1.2. Initial Registration

 The registry shall have the following initial registration:

 Identifier: Original

 Description: Gruber's original Markdown syntax.

 Documentation: [MDSYNTAX]

 Rules: None.

 Responsible Parties:
 (individual) John Gruber <http://daringfireball.net/>
 <comments@daringfireball.net>

 Currently Maintained? No

 Tools:
 Name: Markdown.pl
 Version(s): 1.0.1, 1.0.2b8
 Type: Processor
 Reference(s): <http://daringfireball.net/projects/markdown/>
 Purpose: Converts Markdown to HTML or XHTML circa 2004.

5.1.3. Reserved Identifiers

http://daringfireball.net/
http://daringfireball.net/projects/markdown/

Leonard Exp. March 26, 2015 [Page 17]

Internet-Draft The text/markdown Media Type September 2014

 The flavors registry SHALL have the following identifiers RESERVED.
 No one is allowed to register them (or any case variations of them).
 Standard
 Common
 Markdown

5.1.4. Standard of Review

 Registrations are made by a highly constrained Expert Review
 [RFC5226] that amounts more-or-less to First-Come, First-Served with
 sanity checking.

 The designated expert SHALL review the flavor registration. The
 identifier MUST comply with the syntax specified in this document.
 Additionally, the identifier MUST NOT differ from other registered
 identifiers merely by case. The description and documentation SHOULD
 provide sufficient guidance to an implementer to implement a tool to
 handle the flavor. The designated expert SHOULD warn the registrant
 if the description and documentation are inadequate; however,
 inadequacy (in the opinion of the designated expert) will not bar a
 registration.

 All references (including contact information) MUST be verified as
 functional at the time of the registration.

 If rules are included in the registration, the rule identifiers MUST
 comply with the syntax specified in this document. The description
 and documentation of each rule SHOULD provide sufficient guidance to
 an implementer to implement a tool to handle the rule. The designated
 expert SHOULD warn the registrant if the description and
 documentation are inadequate; however, inadequacy (in the opinion of
 the designated expert) will not bar a registration.

 The designated expert MUST determine that all tools listed in the
 registration are real implementations. If a tool is a Markdown
 processor, the processor MUST be registered in the Registry of
 Flavors in Section 5.2. The designated expert MAY request that the
 registrant provide evidence that a tool actually works (for example,
 that it passes certain test suites); however, the failure of a tool
 to work according to the flavor registration will not bar a
 registration. (For example, not even Gruber's own Markdown.pl
 implementation complies with [MDSYNTAX]. C'est la vie!)

 If a registration is being updated, the designated expert SHOULD
 verify that the updating registrant matches the contact information
 on the prior registration, and if not, that the updating registrant
 has authority from the prior registrant to update it. All fields may
 be updated except the Identifier, which is permanent: not even case

https://datatracker.ietf.org/doc/html/rfc5226

Leonard Exp. March 26, 2015 [Page 18]

Internet-Draft The text/markdown Media Type September 2014

 may be changed.

5.2. Registry of Processors

 Each entry in this registry SHALL consist of a processor identifier
 and information about the processor, as follows:

5.2.1. Processor Template

 Identifier: [Identifier]

 Description: [Concise, prose description of the processor,
 with emphasis on its purpose, the community
 that it addresses, and notable variations
 from [MDSYNTAX] or another flavor.]

 Documentation: [References to documentation.]

 Versions:
 {for each version}
 Identifier: [Identifier]
 Description: [Optional, concise, prose description of the
 version. "N/A" SHALL be used to indicate no description.]

 Arguments:
 {in general}
 Argument Ordering: [Concise, prose description of how
 arguments need to be ordered.]
 {for each argument}
 Argument Syntax: [Syntax here; multiple consecutive argument
 positions are allowed, separated by a single space. Use
 braces for variable information (add : for example input),
 <URI> for URI references, and .. for sequences of arguments
 with # as a placeholder for the number of arguments or
 ..-.. to indicate the first character of the subsequent
 argument that ends the sequence, e.g.:
 -c
 --title {title: "The Rain in Spain"}
 --metadata <URI>
 --bullet-chars:{#} {char 1}..{char #}
 --verbs {verb: walk, run, sleep}..-..
]
 Description: [Concise, prose description of the argument.]
 Documentation: [References to documentation.]

 Output Type(s): [Internet media types, comma-separated
 (with optional LWSP)]

Leonard Exp. March 26, 2015 [Page 19]

Internet-Draft The text/markdown Media Type September 2014

 Security Considerations: [Sufficient description of risks and
 other considerations; "N/A" or
 "None" responses are insufficient.]

 Responsible Parties:
 {for each party}
 ([type: individual, corporate, representative])
 [Name] <contact info 1>...<contact info n>

 Currently Maintained? [Yes/No]

 A responsible party can be an individual author or maintainer, a
 corporate author or maintainer (plus an individual contact), or a
 representative of a community of interest dedicated to the Markdown
 processor.

5.2.2. Initial Registration

 The registry shall have the following initial registration:

 Identifier: Markdown.pl

 Description: Gruber's original Markdown processor, written in
 Perl. Requires Perl 5.6.0 or later. "Welcome to
 the 21st Century." Works with Movable Type 2.6+,
 Blosxom 2.0+, BBEdit 6.1+, and the command-line.

 Documentation: [MARKDOWN]

 Versions:
 Identifier: 1.0.1
 Description: The 2004-12-17 version.

 Identifier: 1.0.2b8
 Description: The 2007-05-09 version. Fixes many bugs
 and adds several new features; see
 VERSION HISTORY in Markdown.pl.

Leonard Exp. March 26, 2015 [Page 20]

Internet-Draft The text/markdown Media Type September 2014

 Arguments:
 Argument Syntax: --html4tags
 Description:
 "Use the --html4tags command-line switch to produce HTML
 output from a Unix-style command line."
 Without this argument, Markdown.pl outputs XHTML style
 tags by default, e.g.:
. Even though XHTML style
 is the default, the output SHOULD be analyzed as
 text/html; the processor makes no attempt to make
 its output well-formed application/html+xml
 (not surprising--see the design philosophy).
 Documentation: [MARKDOWN]

 Output Type: text/html

 Security Considerations: The security of this implementation
 has not been fully analyzed.

 Responsible Parties:
 (individual) John Gruber <http://daringfireball.net/>
 <comments@daringfireball.net>

 Currently Maintained? No [[TODO: maybe?]]

5.2.3. Reserved Identifiers

 The processors registry SHALL have the following identifiers
 RESERVED. No one is allowed to register them (or any case variations
 of them).
 Standard
 Markdown
 md

5.2.4. Standard of Review

 Registrations are First-Come, First-Served [RFC5226]. The checks
 prescribed by this section can be performed automatically.

 The identifier MUST comply with the syntax specified in this
 document. Additionally, the identifier MUST NOT differ from other
 registered identifiers merely by case. The description and
 documentation SHOULD provide sufficient guidance to an implementer to
 know how to invoke the processor and handle the output.

 All references (including contact information) MUST be verified as
 functional at the time of the registration.

 If arguments are included in the registration, the Argument Syntax

http://daringfireball.net/
https://datatracker.ietf.org/doc/html/rfc5226

Leonard Exp. March 26, 2015 [Page 21]

Internet-Draft The text/markdown Media Type September 2014

 MUST comply with the template instructions in Section 5.2.1. Each
 description and documentation field SHOULD provide sufficient
 guidance to an implementer to know how to invoke the processor and
 handle the output.

 The Security Considerations field is not optional; it MUST be
 provided.

 If a registration is being updated, the contact information MUST
 either match the prior registration and be verified, or the prior
 registrant MUST confirm that the updating registrant has authority to
 update the registration. All fields may be updated except the
 Identifier, which is permanent: not even case may be changed.

6. Security Considerations

 See the answer to the Security Considerations template questions in
Section 2.

 Security considerations for the optional parameters are integrated
 throughout Section 4.

7. References

7.1. Normative References

 [MARKDOWN] Gruber, J., "Daring Fireball: Markdown", December 2004,
 <http://daringfireball.net/projects/markdown/>.

 [MDSYNTAX] Gruber, J., "Daring Fireball: Markdown Syntax
 Documentation", December 2004,
 <http://daringfireball.net/projects/markdown/syntax>.

 [RFC1738] Berners-Lee, T., Masinter, L., and M. McCahill, "Uniform
 Resource Locators (URL)", RFC 1738, December 1994.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

 [RFC5226] Narten, T., and H. Alvestrand, "Guidelines for Writing an

http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/syntax
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

Leonard Exp. March 26, 2015 [Page 22]

Internet-Draft The text/markdown Media Type September 2014

 IANA Considerations Section in RFCs", RFC 5226, May 2008.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 October 2008.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13, RFC

6838, January 2013.

7.2. Informative References

 [HUMANE] Atwood, J., "Is HTML a Humane Markup Language?", May 2008,
 <http://blog.codinghorror.com/is-html-a-humane-markup-

language/>.

 [DIN2MD] Gruber, J., "Dive Into Markdown", March 2004,
 <http://daringfireball.net/2004/03/dive_into_markdown>.

 [MD102b8] Gruber, J., "[ANN] Markdown.pl 1.0.2b8", May 2007,
 <http://six.pairlist.net/pipermail/markdown-discuss/2007-

May/000615.html>, <http://daringfireball.net/projects/
downloads/Markdown_1.0.2b8.tbz>.

 [CATPICS] Gruber, J. and M. Arment, "The Talk Show: Ep. 88: 'Cat
 Pictures' (Side 1)", July 2014,
 <http://daringfireball.net/thetalkshow/2014/07/19/ep-088>.

 [INETMEME] Solon, O., "Richard Dawkins on the internet's hijacking of
 the word 'meme'", June 2013,
 <http://www.wired.co.uk/news/archive/2013-06/20/richard-

dawkins-memes>, <http://www.webcitation.org/6HzDGE9Go>.

 [MULTIMD] Penney, F., "MultiMarkdown", April 2014,
 <http://fletcherpenney.net/multimarkdown/>.

 [PANDOC] MacFarlane, J., "Pandoc", 2014,
 <http://johnmacfarlane.net/pandoc/>.

 [RAILFROG] Railfrog Team, "Railfrog", April 2009,
 <http://railfrog.com/>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

 [RFC2392] Levinson, E., "Content-ID and Message-ID Uniform Resource
 Locators", RFC 2392, August 1998.

 [RFC4263] Lilly, B., "Media Subtype Registration for Media Type

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
https://datatracker.ietf.org/doc/html/rfc6838
http://blog.codinghorror.com/is-html-a-humane-markup-language/
http://blog.codinghorror.com/is-html-a-humane-markup-language/
http://daringfireball.net/2004/03/dive_into_markdown
http://six.pairlist.net/pipermail/markdown-discuss/2007-May/000615.html
http://six.pairlist.net/pipermail/markdown-discuss/2007-May/000615.html
http://daringfireball.net/projects/downloads/Markdown_1.0.2b8.tbz
http://daringfireball.net/projects/downloads/Markdown_1.0.2b8.tbz
http://daringfireball.net/thetalkshow/2014/07/19/ep-088
http://www.wired.co.uk/news/archive/2013-06/20/richard-dawkins-memes
http://www.wired.co.uk/news/archive/2013-06/20/richard-dawkins-memes
http://www.webcitation.org/6HzDGE9Go
http://fletcherpenney.net/multimarkdown/
http://johnmacfarlane.net/pandoc/
http://railfrog.com/
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2392

Leonard Exp. March 26, 2015 [Page 23]

Internet-Draft The text/markdown Media Type September 2014

 text/troff", RFC 4263, January 2006.

 [XML1.0-3] Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Third
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20040204, February 2004,
 <http://www.w3.org/TR/2004/REC-xml-20040204#dt-fatal>.

 [TODO] [[Add remaining references.]]

Appendix A. Change Log

 This draft is a continuation from draft-ietf-appsawg-text-markdown-
01.txt. These technical changes were made:

 1. The entire document was reorganized: optional parameters now
 have their own section, and the Introduction section is
 divided into four subsections.
 2. The Introduction section provides substantial background
 information, along with goals and use cases for both Markdown
 and the Internet media type registration.
 3. The rules parameter was reverted back to flavor, and flavor
 was beefed up.
 4. The processor parameters were consolidated and simplified.
 5. Dependencies on POSIX were removed.
 6. The output-type parameter was added.
 7. Unregistered identifiers can be used with their own ! syntax.
 8. The IANA Considerations section was fleshed out in great
 detail, with emphasis on easing the registration process.
 9. Security considerations were weaved throughout the
 specification. Overall, most of the complexity in this
 specification comes directly from the security considerations.
 Those considerations are necessary since a lot of bad things
 can and will happen when HTML, URIs, and executable code get
 together.
 10. Changed the example in Section 2 to use initially registered
 identifiers.
 11. Added output-type="text/markdown" for recursive handling
 (i.e., don't process this Markdown, just show it like it is).

https://datatracker.ietf.org/doc/html/rfc4263
http://www.w3.org/TR/2004/REC-xml-20040204#dt-fatal
https://datatracker.ietf.org/doc/html/draft-ietf-appsawg-text-markdown-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-appsawg-text-markdown-01.txt

Leonard Exp. March 26, 2015 [Page 24]

Internet-Draft The text/markdown Media Type September 2014

Author's Address

 Sean Leonard
 Penango, Inc.
 5900 Wilshire Boulevard
 21st Floor
 Los Angeles, CA 90036
 USA

 EMail: dev+ietf@seantek.com
 URI: http://www.penango.com/

Leonard Exp. March 26, 2015 [Page 25]

http://www.penango.com/

