
Network Working Group Paul E. Jones
Internet Draft Gonzalo Salgueiro
Intended status: Standards Track Cisco Systems
Expires: April 19, 2013 Joseph Smarr
 Google
 October 19, 2012

WebFinger
draft-ietf-appsawg-webfinger-01.txt

Abstract

 This specification defines the WebFinger protocol. WebFinger may be
 used to discover information about people on the Internet, such as a
 person's personal profile address, identity service, telephone
 number, or preferred avatar. WebFinger may also be used to discover
 information about objects on the network, such as the amount of toner
 in a printer or the physical location of a server.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 19, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Jones, et al. Expires April 19, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft WebFinger October 2012

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction...2
2. Terminology..3
3. Overview...3
4. Example Uses of WebFinger......................................4

4.1. Locating a User's Blog....................................4
4.2. Simplifying the Login Process.............................7
4.3. Retrieving Device Information.............................8

5. WebFinger Protocol...8
5.1. Performing a WebFinger Query..............................9
5.2. The Web Host Metadata "resource" Parameter...............10
5.3. The Web Host Metadata "rel" Parameter....................12
5.4. WebFinger and URIs.......................................14

6. The "acct" Link Relation......................................14
6.1. Purpose for the "acct" Link Relation.....................14
6.2. Example Message Exchange Using the "acct" Link Relation..15

7. Cross-Origin Resource Sharing (CORS)..........................16
8. Controlling Access to Information.............................17
9. Hosted and Distributed WebFinger Services.....................17

9.1. Hosting the Entire Domain................................17
9.2. Distributed WebFinger Services...........................18

10. Web Host Metadata Interoperability Considerations............20
11. Security Considerations......................................20
12. IANA Considerations..21

12.1. Registration of the "acct" Link Relation Type...........21
13. Acknowledgments..21
14. References...21

14.1. Normative References....................................21
14.2. Informative References..................................22

 APPENDIX A: XRD Usage (Non-normative)............................24
A.1. How XRD Documents are Requested via WebFinger............24
A.2. WebFinger Example using XRDs.............................24
A.3. Security Considerations Related to XRDs..................25

 Author's Addresses...26

1. Introduction

 There is a utility found on UNIX systems called "finger" [14] that
 allows a person to access information about another person or entity
 that has a UNIX account. The information queried might be on the
 same computer or a computer anywhere in the world. What is returned
 via "finger" is simply a plain text file that contains unstructured
 information provided by the queried user, stored in a file named

 .plan in the user's home directory.

Jones, et al. Expires April 19, 2013 [Page 2]

Internet-Draft WebFinger October 2012

 WebFinger borrows the concept of the legacy finger protocol, but
 introduces a very different approach to sharing information. Rather
 than return a simple unstructured text file, Webfinger uses
 structured documents that contain link relations. These link
 relations point to information and might return properties related to
 information a user or entity on the Internet wishes to expose. For a
 person, the kinds of information that might be exposed include a
 personal profile address, identity service, telephone number, or
 preferred avatar. WebFinger may also be used to discover information
 about objects on the network, such as the amount of toner in a
 printer or the physical location of a server.

 Information returned via WebFinger might be for direct human
 consumption (e.g., another user's phone number) or it might be used
 by systems to help carry out some operation (e.g., facilitate logging
 into a web site by determining a user's identity service).

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

 WebFinger makes heavy use of "Link Relations". Briefly, a Link
 Relation is an attribute and value pair used on the Internet wherein
 the attribute identifies the type of link to which the associated
 value refers. In Hypertext Transfer Protocol (HTTP) [2] and Web
 Linking [4], the attribute is a "rel" and the value is an "href".

3. Overview

 WebFinger enables the discovery of information about accounts,
 devices, and other entities that are associated with a host.
 Discover involves two distinct steps that may be optimized as a
 single step, as will be explained later. The first step is to query
 the host to find out how to discover information about accounts,
 devices, and other entities associated with that host. The second
 step is to query explicitly for a specific resource (e.g., user
 account) to discover a set of link relations that point to resource-
 specific information about the entity being queried.

 This protocol makes heavy use of well-known URIs as defined in RFC
5785 [3] and "Link Relations" as defined in RFC 5988 [4]. Further,

 the protocol builds on RFC 6415 [11], which provides the foundation
 for the procedures described in this document.

 Briefly, a link is a typed connection between two web resources that
 are identified by Internationalized Resource Identifiers (IRIs) [13];
 this connection consists of a context IRI, a link relation type, a

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc6415

Jones, et al. Expires April 19, 2013 [Page 3]

Internet-Draft WebFinger October 2012

 target IRI, and optionally some target attributes, resulting in
 statements of the form "{context IRI} has a {relation type} resource
 at {target IRI}, which has {target attributes}". When used in the
 Link HTTP header, the context IRI is the IRI of the requested
 resource, the relation type is the value of the "rel" parameter, the
 target IRI is URI-Reference contained in the Link header, and the
 target attributes are the parameters such as "hreflang", "media",
 "title", "title*", "type", and any other link-extension parameters.

 Thus the framework for WebFinger consists of several building blocks:

 1. To query the host, one requests a web host metadata document
 located at the well-known URI /.well-known/host-meta or /.well-
 known/host-meta.json (referred to as the host-meta resources) at
 the host.
 2. The web server at the host returns a JavaScript Object Notation
 (JSON) [5] Resource Descriptor (JRD) or an Extensible Resource
 Descriptor (XRD) [10] document, including a Link-based Resource
 Descriptor Document (LRDD) link relation.
 3. To discover information about accounts, devices, or other entities
 associated with the host, one requests the actual Link-based
 Resource Descriptor Document associated with a particular URI at
 the host (e.g., an "acct" URI, "http" URI, or "mailto" URI).
 4. The web server at the host returns a JRD or XRD document for the
 requested URI, which includes link relations pointing to resources
 that contain more detailed information about the entity.

 This model is illustrated in the examples in Section 4, then
 described more formally in Section 5. Steps 2 and 3 above can be
 accomplished simultaneously by utilizing the "resource" parameter
 defined in Section 5.2.

4. Example Uses of WebFinger

 In this section, we describe just a few sample uses for WebFinger and
 show what the protocol looks like. This is not an exhaustive list of
 possible uses and the entire section should be considered non-
 normative. The list of potential use cases is virtually unlimited
 since a user can share any kind of machine-consumable information via
 WebFinger.

 All of the following examples utilize JRDs, as that is the only
 mandatory format required to be supported by WebFinger servers. For
 completeness, an example utilizing XRDs is presented in Appendix A.

4.1. Locating a User's Blog

 Assume you receive an email from Bob and he refers to something he
 posted on his blog, but you do not know where Bob's blog is located.

Jones, et al. Expires April 19, 2013 [Page 4]

Internet-Draft WebFinger October 2012

 It would be simple to discover the address of Bob's blog if he makes
 that information available via WebFinger.

 Let's assume your email client discovers that blog automatically for
 you. After receiving the message from Bob (bob@example.com), your
 email client performs the following steps behind the scenes.

 First, your email client tries to get the host metadata information
 for the host example.com. It does this by issuing the following
 HTTPS query to example.com:

 GET /.well-known/host-meta.json HTTP/1.1
 Host: example.com

 The server replies with a JRD document:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/json; charset=UTF-8

 {
 "links" :
 [
 {
 "rel" : "lrdd",
 "type" : "application/json",
 "template" : "https://example.com/lrdd/?f=json&uri={uri}"
 }
]
 }

 The client then processes the received JRD in accordance with the Web
 Host Metadata procedures. The client will see the LRDD link relation
 and issue a query with the user's account URI [6] or other URI that
 serves as an alias for the account. (The account URI is discussed in

Section 4.2.) The query might look like this:

 GET /lrdd/?f=json&uri=acct%3Abob%40example.com HTTP/1.1
 Host: example.com

 The server might then respond with a message like this:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/json; charset=UTF-8

 {
 "expires" : "2012-10-12T20:56:11Z",
 "subject" : "acct:bob@example.com",

Jones, et al. Expires April 19, 2013 [Page 5]

Internet-Draft WebFinger October 2012

 "aliases" :
 [
 "http://www.example.com/~bob/"
],
 "links" :
 [
 {
 "rel" : "http://webfinger.net/rel/avatar",
 "href" : "http://www.example.com/~bob/bob.jpg"
 },
 {
 "rel" : "http://webfinger.net/rel/profile-page",
 "href" : "http://www.example.com/~bob/"
 },
 {
 "rel" : "http://packetizer.com/rel/blog",
 "href" : "http://blogs.example.com/bob/"
 },
 {
 "rel" : "vcard",
 "href" : "http://www.example.com/~bob/bob.vcf"
 }
]
 }

 The email client might take note of the "blog" link relation in the
 above JRD document that refers to Bob's blog. This URL would then be
 presented to you so that you could then visit his blog. The email
 client might also note that Bob has published an avatar link relation
 and use that picture to represent Bob inside the email client.
 Lastly, the client might consider the vcard [16] link relation in
 order to update contact information for Bob.

 Note in the above example that an alias is provided that can also be
 used to return information about the user's account. Had the "http:"
 URI shown as an alias been used to query for information about Bob,
 the query would have appeared as:

 GET /lrdd/?uri=http%3A%2F%2Fwww.example.com%2F~bob%2F HTTP/1.1
 Host: example.com

 The response would have been substantially the same, with the subject
 and alias information changed as necessary. Other information, such
 as the expiration time might also change, but the set of link
 relations and properties would be the same with either response.

Jones, et al. Expires April 19, 2013 [Page 6]

Internet-Draft WebFinger October 2012

4.2. Simplifying the Login Process

 OpenID (http://www.openid.net) is great for allowing users to log
 into a web site, though one criticism is that it is challenging for
 users to remember the URI they are assigned. WebFinger can help
 address this issue by allowing users to use user@domain-style
 addresses. Using a user's account URI, a web site can perform a
 query to discover the associated OpenID identifier for a user.

 Let's assume Carol is trying to use OpenID to log into a blog. The
 blog server might issue the following query to discover the OpenID
 identity provider URL for Carol and to get Carol's avatar. In this
 example, we utilize the "rel" and "resource" parameters as described
 in sections 5.2 and 5.3:

 GET /.well-known/host-meta.json?\
 rel=avatar%20\
 http%3A%3F%3Fspecs.openid.net%3Fauth%3F2.0%3Fprovider&\
 resource=acct%3Acarol%40example.com HTTP/1.1
 Host: example.com

 The server might return a response like this:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/json; charset=UTF-8

 {
 "subject" : "acct:carol@example.com",
 "links" :
 [
 {
 "rel" : "http://webfinger.net/rel/avatar",
 "href" : "http://example.com/~alice/alice.jpg"
 },
 {
 "rel" : "http://specs.openid.net/auth/2.0/provider",
 "href" : "https://openid.example.com/carol"
 }
]
 }

 At this point, the blog server knows that Carol's OpenID identifier
 is https://openid.example.com/carol and could then proceed with the
 login process as usual. Her avatar can also be displayed for the
 benefit of other users on the blog.

http://www.openid.net

Jones, et al. Expires April 19, 2013 [Page 7]

Internet-Draft WebFinger October 2012

4.3. Retrieving Device Information

 While the examples thus far have been focused on information about
 humans, WebFinger does not limit queries to only those that use the
 account URI scheme. Any URI scheme that contains host information
 MAY be used with WebFinger. Let's suppose there are devices on the
 network like printers and you would like to check the current toner
 level for a particular printer identified via the URI like
 device:p1.example.com. While the "device" URI scheme is not
 presently specified, we use it here only for illustrative purposes.

 Following the procedures similar to those above, a query may be
 issued to get link relations specific to this URI like this:

 GET /.well-known/host-meta.json?resource=\
 device%3Ap1.example.com HTTP/1.1
 Host: example.com

 The link relations that are returned may be quite different than
 those for user accounts. Perhaps we may see a response like this:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/json; charset=UTF-8

 {
 "subject" : "device:p1.example.com",
 "links" :
 [
 {
 "rel" : "tipsi",
 "href" : "http://192.168.1.5/npap/"
 }
]
 }

 While this example is entirely fictitious, you can imagine that
 perhaps the Transport Independent, Printer/System Interface [18] may
 be enhanced with a web interface that allows a device that
 understands the TIP/SI web interface specification to query the
 printer for toner levels.

5. WebFinger Protocol

 WebFinger does not actually introduce a new protocol, per se.
 Rather, it builds upon the existing Web Host Metadata specification
 and leverages the Cross-Origin Resource Sharing (CORS) [9]
 specification.

Jones, et al. Expires April 19, 2013 [Page 8]

Internet-Draft WebFinger October 2012

 While WebFinger strives to maintain backward-compatibility with RFC
6415, this specification introduces a fundamental change in

 requirements. Specifically, support for server-side production of
 JSON Resource Descriptor (JRD) documents is mandatory and support for
 server-side production Extensible Resource Descriptor (XRD) documents
 is optional. Please refer to Section 10 for interoperability
 considerations.

5.1. Performing a WebFinger Query

 The first step a client performs in executing a WebFinger query is to
 query for the host metadata using HTTPS or HTTP. The procedures are
 defined in the Web Host Metadata specification. It is strongly
 RECOMMENDED that WebFinger servers return content using secure
 (HTTPS) connections. Clients MUST first attempt queries using HTTPS
 before attempting a query using HTTP.

 WebFinger clients MUST locate the LRDD link relation and perform a
 query for that link relation, if present. All other link templates
 found must be processed to form a complete resource descriptor. The
 processing rules in Section 4.2 of RFC 6415 MUST be followed.

 WebFinger servers MAY accept requests for both JRD and XRD documents,
 but MUST support requests for JRD documents. For interoperability
 with RFC 6415 implementations, the default representation returned by
 a server via the resource at /.well-known/host-meta MUST be an XRD
 document if XRD is supported by the server and a JRD document is not
 explicitly requested by the client. The default format returned via
 the resource /.well-known/host-meta.json MUST be a JRD document.

 As per RFC 6415, a JRD document MUST be returned by the WebFinger
 server if the client explicitly requests it by querying /.well-
 known/host-meta.json or by querying /.well-known/host-meta and
 including an "Accept" header in the HTTP request with a type of
 "application/json" [5]. Additionally, the server MUST return a JRD
 document if it does not support production of XRD documents (or any
 other format requested by the client). Servers MUST indicate the
 type of document returned using the "Content-Type" header in the HTTP
 response.

 To avoid the possibility of receiving the wrong document format,
 WebFinger clients SHOULD submit queries to the server via the /.well-
 known/host-meta.json resource.

 If the client requests a JRD document when querying for host
 metadata, the WebFinger server MUST assume that the client will want
 a JRD document when querying the LRDD resource. Thus when the
 WebFinger server returns a JRD document containing host metadata that

https://datatracker.ietf.org/doc/html/rfc6415
https://datatracker.ietf.org/doc/html/rfc6415
https://datatracker.ietf.org/doc/html/rfc6415#section-4.2
https://datatracker.ietf.org/doc/html/rfc6415
https://datatracker.ietf.org/doc/html/rfc6415

 contains an LRDD link relation, it MUST include a URI for the LRDD

Jones, et al. Expires April 19, 2013 [Page 9]

Internet-Draft WebFinger October 2012

 resource(s) that will return a JRD document. Likewise, if a client
 requests an XRD document when querying the host metadata resource,
 the server MUST, unless unable due to external factors, return LRDD
 link relations that would return XRD documents.

 It is important to note that unless the "resource" parameter is used
 as per section 5.2, it is the responsibility of the client to process
 each of the LRDD link relations as per Section 4.2 of RFC 6415 if a
 server returns multiple LRDD link relations. Multiple LRDD link
 relations in a server response do not represent alternative URIs for
 the same LRDD document.

 If the client queries the LRDD resource and provides a URI for which
 the server has no information, the server MUST return a 404 status
 code. Likewise, any query to a URI in the resource descriptor that
 is unknown to the server MUST result in the server returning a 404
 status code.

 WebFinger servers MAY include cache validators in a response to
 enable conditional requests by clients and/or expiration times as per

RFC 2616 section 13.

5.2. The Web Host Metadata "resource" Parameter

 In addition to the traditional processing logic for processing host
 metadata information, WebFinger defines the "resource" parameter for
 querying for host metadata and returning all of the link relations
 from LRDD and other resource-specific link templates in a single
 response. This parameter essentially pushes the work to the server
 to form a complete resource descriptor for the specified resource.

 WebFinger servers compliant with this specification MUST support for
 the "resource" parameter as a means of improving performance and
 reducing client complexity. Note that an RFC 6415-compliant server
 might not implement the "resource" parameter, though the server would
 respond to queries from the client as described in RFC 6415. Thus,
 WebFinger clients MUST check the server response to ensure that the
 "resource" parameter is supported as explained below.

 To utilize the host-meta "resource" parameter, a WebFinger client
 issues a request to /.well-known/host-meta.json (RECOMMENDED) or
 /.well-known/host-meta as usual, but then appends a "resource"
 parameter as shown in this example:

 GET /.well-known/host-meta.json?resource=\
 acct%3Abob%40example.com HTTP/1.1
 Host: example.com

 When processing this request, the WebFinger server MUST

https://datatracker.ietf.org/doc/html/rfc6415#section-4.2
https://datatracker.ietf.org/doc/html/rfc2616#section-13
https://datatracker.ietf.org/doc/html/rfc6415
https://datatracker.ietf.org/doc/html/rfc6415

Jones, et al. Expires April 19, 2013 [Page 10]

Internet-Draft WebFinger October 2012

 * Return a 404 status code if the URI provided in the resource
 parameter is unknown to the server; and

 * Set the "Subject" returned in the response to the value of the
 "resource" parameter if the URI provided in the resource
 parameter is known to the server; and

 * Collect and expand all resource-specific link relations,
 including those returned by querying for any LRDD link
 relations, discard any host-wide link relations, and return a
 complete resource descriptor following the processing rules in

Section 4.2 of RFC 6415; and

 The WebFinger server MUST NOT issue HTTP queries for any link
 relations other than LRDD link relations. It is not the
 responsibility of the WebFinger server to verify, for example, that a
 URI pointing to a person's avatar is a valid URI. When querying an
 LRDD resource to collect additional resource-specific information,
 any errors (e.g., 500 or 404) MUST be ignored by the server. When a
 request for an LRDD fails, the server MUST NOT attempt to augment
 missing resource information or return a "template" type link
 relation to a client that utilizes the "resource" parameter.

 The WebFinger client MUST verify support for the "resource" parameter
 by checking the value of the Subject returned in the response. If
 the Subject matches the value of the "resource" parameter, then the
 "resource" parameter is supported by the server. The Subject would
 be absent if the "resource" parameter is not supported.

 For illustrative purposes, the following is an example usage of the
 "resource" parameter that aligns with the example in Section 1.1.1 of
 RFC 6415. The WebFinger client would issue this request:

 GET /.well-known/host-meta.json?resource=\
 http%3A%2F%2Fexample.com%2Fxy HTTP/1.1
 Host: example.com

 Note: The "\" character shown above and used throughout this document
 indicates that the line breaks at this point and continues on the
 next line. The content of the next line should be concatenated to
 the previous line without any whitespace characters, replacing the
 "\" character. This is shown only to avoid line wrapping in this
 document.

 The WebFinger server would reply with this response:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/json; charset=UTF-8

https://datatracker.ietf.org/doc/html/rfc6415#section-4.2
https://datatracker.ietf.org/doc/html/rfc6415#section-1.1.1
https://datatracker.ietf.org/doc/html/rfc6415#section-1.1.1

Jones, et al. Expires April 19, 2013 [Page 11]

Internet-Draft WebFinger October 2012

 {
 "subject" : "http://example.com/xy",
 "properties" :
 {
 "http://spec.example.net/color" : "red"
 },
 "links" :
 [
 {
 "rel" : "hub",
 "href" : "http://example.com/hub"
 },
 {
 "rel" : "hub",
 "href" : "http://example.com/another/hub"
 },
 {
 "rel" : "author",
 "href" : "http://example.com/john"
 },
 {
 "rel" : "author",
 "href" : "http://example.com/author?\
 q=http%3A%2F%2Fexample.com%2Fxy"
 }
]
 }

5.3. The Web Host Metadata "rel" Parameter

 WebFinger also defines the "rel" parameter for use when querying for
 host metadata or resource-specific information. It is used to return
 a subset of the information that would otherwise be returned without
 the "rel" parameter. When the "rel" parameter is used, only the link
 relations that match the space-separated list of link relations
 provided via "rel" are included in the list of links returned in the
 resource descriptor. All other information normally present in a
 resource descriptor is present in the resource descriptor, even when
 "rel" is employed.

 The purpose of the "rel" parameter is to return a subset of
 resource's link relations. It is not intended to reduce the work
 required of a server to produce a response. That said, use of the
 parameter might reduce processing requirements on either the client
 or server, and it might also reduce the bandwidth required to convey
 the partial resource descriptor, especially if there are numerous
 link relation values to convey for a given resource.

Jones, et al. Expires April 19, 2013 [Page 12]

Internet-Draft WebFinger October 2012

 Support for the "rel" parameter is OPTIONAL, but support is
 RECOMMENDED for the host-meta resources and LRDD resources.

 For illustrative purposes, the following is an example usage of the
 "rel" parameter that aligns with the example in Section 1.1.1 of RFC

6415. The WebFinger client would issue this request to receive links
 that are of the type "hub" and "copyright":

 GET /.well-known/host-meta.json?resource=\
 http%3A%2F%2Fexample.com%2Fxy&rel=hub%20copyright HTTP/1.1
 Host: example.com

 The WebFinger server would reply with this response:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/json; charset=UTF-8

 {
 "subject" : "http://example.com/xy",
 "properties" :
 {
 "http://spec.example.net/color" : "red"
 },
 "links" :
 [
 {
 "rel" : "hub",
 "href" : "http://example.com/hub"
 },
 {
 "rel" : "hub",
 "href" : "http://example.com/another/hub"
 }
]
 }

 Note that in this example, the "author" links are removed, though all
 other content is present. Since there were no "copyright" links,
 none are returned.

 In the event that a client requests links for link relations that are
 not defined for the specified resource, a resource descriptor MUST be
 returned, void of any links. When a JRD is returned, the "links"
 array MAY be either absent or empty. The server MUST NOT return a
 404 status code when a particular link relation specified via "rel"
 is not defined for the resource, as a 404 status code is reserved for
 indicating that the resource itself (e.g., either /.well-known/host-

https://datatracker.ietf.org/doc/html/rfc6415
https://datatracker.ietf.org/doc/html/rfc6415

Jones, et al. Expires April 19, 2013 [Page 13]

Internet-Draft WebFinger October 2012

 meta.json or the resource indicated via the "resource" parameter)
 does not exist.

5.4. WebFinger and URIs

 Requests for both LRDD documents and host metadata can include a
 parameter specifying the URI of an account, device, or other entity
 (for LRDD this is the "uri" parameter as defined by the operative JRD
 or XRD template and for host metadata this is the "resource"
 parameter). WebFinger itself is agnostic regarding the scheme of
 such a URI: it could be an "acct" URI [7], an "http" or "https" URI,
 a "mailto" URI, or some other scheme.

 For resources associated with a user account at a host, use of the
 "acct" URI scheme is RECOMMENDED, since it explicitly identifies an
 account accessible via WebFinger. Further, the "acct" URI scheme is
 not associated with other protocols as, by way of example, the
 "mailto" URI scheme is associated with email. Since not every host
 offers email service, using the "mailto" URI scheme [8] is not ideal
 for identifying user accounts on all hosts. That said, use of the
 "mailto" URI scheme would be ideal for use with WebFinger to discover
 mail server configuration information for a user, for example.

 A host MAY utilize one or more URIs that serve as aliases for the
 user's account, such as URIs that use the "http" URI scheme [2]. A
 WebFinger server MUST return substantially the same response to both
 an "acct" URI and any alias URI for the account, including the same
 set of link relations and properties. In addition, the server SHOULD
 include the entire list aliases for the user's account in the JRD or
 XRD returned when querying the LRDD resource or when utilizing the
 "resource" parameter.

6. The "acct" Link Relation

6.1. Purpose for the "acct" Link Relation

 Users of some services might have an "acct" URI that looks
 significantly different from his or her email address, perhaps using
 an entirely different domain name. It is also possible for a user to
 have multiple accounts that a user wants to have cross-referenced
 from another account. To address both of these needs, this
 specification defines the "acct" link relation.

 The "acct" link relation allows a resource descriptor to reference
 one or more other user account URIs. The "acct" link relation is
 intended to allow a client to incorporate additional link relations
 by reference so that it might utilize a more complete set of link
 relations for a user. For example, a user acct:bob@example.com might
 wish to allow a client to discover additional information about him

Jones, et al. Expires April 19, 2013 [Page 14]

Internet-Draft WebFinger October 2012

 by including an "acct" link relation with the URI
 acct:bob@example.net.

 Note that the "acct" link relation does not replace the use of
 standard HTTP 3xx response codes to indicate the new temporary or
 permanent location of a user account. If a user account is moved to
 a different location, then a 3xx response code SHOULD be used. Also,
 the "acct" link relation does not replace Link-based Resource
 Descriptor Documents (LRDDs). A WebFinger server might return
 multiple LRDD link relations for a user, each of which perhaps
 containing link relations that are to be merged to form a complete
 resource descriptor. The "acct" link relation is different in that
 it would refer to an entirely different, separate resource
 descriptor. Further, only a client would act consider the "acct"
 link relations as it performs queries, not the WebFinger server.

 Since an account may make a reference to one or more different
 accounts, WebFinger clients that support automatic processing of the
 "acct" link relations MUST take steps to avoid loops wherein two
 account URIs, directly or indirectly, refer the client to each other.

 There are no limits on the number of "acct" link relations that might
 be returned in a WebFinger query.

 An "acct" link relation used within the context of a WebFinger query
 for a user's account MUST NOT return "acct" link relations for
 another user.

 Client-side consideration of the "acct" link relation is OPTIONAL and
 WebFinger server MUST NOT assume a client will perform additional
 processing in response to receiving an "acct" link relation.

6.2. Example Message Exchange Using the "acct" Link Relation

 Consider the following non-normative example.

 Suppose Alice receives an email from bob@example.net. While Bob's
 email identifier might be in the example.net domain, he holds a user
 account in the example.com domain and another account in the
 example.org domain. His email provider may provide WebFinger
 services, but is unable to serve information from other domains.

 Suppose Alice's client issues the following request:

 GET /.well-known/host-meta.json?resource=\
 acct%3Abob%40example.net HTTP/1.1
 Host: example.net

 The response that Alice's client receives back might be:

Jones, et al. Expires April 19, 2013 [Page 15]

Internet-Draft WebFinger October 2012

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/json; charset=UTF-8

 {
 "subject" : "acct:bob@example.net",
 "links" :
 [
 {
 "rel" : "acct",
 "href" : "acct:bob@example.com"
 },
 {
 "rel" : "acct",
 "href" : "acct:bob@example.org"
 },
 {
 "rel" : "acct",
 "href" : "mailto:bob@example.net"
 }
]
 }

 While these link relations provide Alice with very little
 information, Alice's WebFinger client could then perform subsequent
 queries against the URIs acct:bob@example.com, acct:bob@example.org,
 and mailto:bob@example.net in order to get the information Alice is
 seeking.

7. Cross-Origin Resource Sharing (CORS)

 WebFinger is most useful when it is accessible without restrictions
 on the Internet, and that includes web browsers. Therefore,
 WebFinger servers MUST support Cross-Origin Resource Sharing (CORS)
 [9] when serving content intended for public consumption.
 Specifically, all queries to /.well-known/host-meta.json, /.well-
 known/host-meta, and to any LRDD URIs MUST include the following HTTP
 header in the response:

 Access-Control-Allow-Origin: *

 Enterprise WebFinger servers that wish to restrict access to
 information from external entities SHOULD use a more restrictive
 Access-Control-Allow-Origin header and MAY exclude the header
 entirely.

Jones, et al. Expires April 19, 2013 [Page 16]

Internet-Draft WebFinger October 2012

8. Controlling Access to Information

 As with all web resources, access to the Host Metadata resource and
 the LRDD resource MAY require authentication. Further, failure to
 provide required credentials MAY result in the server forbidding
 access or providing a different response than had the client
 authenticated with the server.

 Likewise, a server MAY provide different responses to different
 clients based on other factors, such as whether the client is inside
 or outside a corporate network. As a concrete example, a query
 performed on the internal corporate network might return link
 relations to employee pictures whereas link relations for employee
 pictures might not be provided to external entities.

 Further, link relations provided in a WebFinger server response MAY
 point to web resources that impose access restrictions. For example,
 it is possible that the aforementioned corporate server may provide
 both internal and external entities with URIs to employee pictures,
 but further authentication MAY be required in order for the WebFinger
 client to access those picture resources if the request comes from
 outside the corporate network.

 The decisions made with respect to what set of link relations a
 WebFinger server provides to one client versus another and what
 resources require further authentication, as well as the specific
 authentication mechanisms employed, are outside the scope of this
 document.

9. Hosted and Distributed WebFinger Services

9.1. Hosting the Entire Domain

 As with most services provided on the Internet, it is possible for a
 domain owner to utilize "hosted" WebFinger services. By way of
 example, a domain owner might control most aspects of their domain,
 but use a third-party hosting service email. In the case of email,
 mail servers for a domain are identified by MX records. An MX record
 points to the mail server to which mail for the domain should be
 delivered. It does not matter to the sending mail server whether
 those MX records point to a server in the destination domain or a
 different domain.

 Likewise, a domain owner might utilize the services of a third party
 to provide WebFinger services on behalf of its users. Just as a
 domain owner was required to insert MX records into DNS to allow for
 hosted email serves, the domain owner is required to redirect HTTP(S)
 queries to its domain to allow for hosted WebFinger services.

Jones, et al. Expires April 19, 2013 [Page 17]

Internet-Draft WebFinger October 2012

 When a query is issued to /.well-known/host-meta.json or /.well-
 known/host-meta, the target domain's web server MUST return a 301,
 302, or 307 response status code that includes a Location header
 pointing to the location of the hosted WebFinger service URL. The
 WebFinger service URL does not need to point to /.well-known/* on the
 hosting service provider server. In fact, it should not, as that
 location would be reserved for queries relating to the service
 provider's domain. WebFinger clients MUST follow all 301, 302, or
 307 redirection requests.

 As an example, let's assume that example.com's WebFinger services are
 hosted by example.net. Suppose a client issues a query for
 acct:alice@example.com like this:

 GET /.well-known/host-meta.json?
 resource=acct%3Aalice%40example.com HTTP/1.1
 Host: example.com

 The server might respond with this:

 HTTP/1.1 301 Moved Permanently
 Location: http://wf.example.net/example.org/host-meta.json

 The client should follow the request, re-issuing the request to the
 URL provided in the Location header.

 Note that both of the /.well-known/host-meta.json and /.well-
 known/host-meta resources need to be considered when redirecting
 request to third party service providers. Those URLs requests SHOULD
 NOT be redirected to the same location and without any
 differentiation, since the default format returned by host-meta.json
 is a JRD and the default format returned by host-meta MAY be XRD.
 Each resource is distinct and should be redirected separately and to
 different service locations or differentiated with a URI parameter.
 Since the "Referer" HTTP header field is not mandatory, service
 providers cannot rely on that header to determine the URL of the
 original request.

9.2. Distributed WebFinger Services

 A domain owner may wish to manage only a part of its WebFinger
 services and WebFinger service providers or the domain owner may wish
 to distribute WebFinger services across a number of WebFinger service
 locations. The key to enabling this type of distribution is
 placement of resource-specific information in more than one LRDD
 document, each document existing at different locations.

 Assume that the company operating example.com manages its own
 WebFinger services, but also wants to utilize the services of

Jones, et al. Expires April 19, 2013 [Page 18]

Internet-Draft WebFinger October 2012

 example.org to serve link relations related to some aspects of its
 business. Suppose a client issued this request:

 GET /.well-known/host-meta.json HTTP/1.1
 Host: example.com

 The server might reply with this JRD document:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/json; charset=UTF-8

 {
 "links" :
 [
 {
 "rel" : "lrdd",
 "type" : "application/json",
 "template" : "https://example.com/lrdd/?f=json&uri={uri}"
 },
 {
 "rel" : "lrdd",
 "type" : "application/json",
 "template" : "https://wf.example.org/lrdd/?f=json&uri={uri}"
 }
]
 }

 This would indicate to the client that some of the resource-specific
 information is found at example.com and some is found at example.org,
 following those specific URLs. Observing the rules in Section 4.2 of
 RFC 6415, the client would issue queries to both URLs and construct a
 complete resource descriptor.

 As discussed in Section 5.2, a client may issue a query like this to
 the example.com domain:

 GET /.well-known/host-meta.json?resource=\
 acct%3Aalice%40example.com HTTP/1.1
 Host: example.com

 In that case, it would be the responsibility of the WebFinger server
 at example.com to query the LRDD URL at example.org and then compose
 a complete descriptor document. The client that uses the resource
 parameter remains entirely oblivious to the fact that link relation
 information is distributed across multiple servers or domains.

https://datatracker.ietf.org/doc/html/rfc6415#section-4.2
https://datatracker.ietf.org/doc/html/rfc6415#section-4.2

Jones, et al. Expires April 19, 2013 [Page 19]

Internet-Draft WebFinger October 2012

10. Web Host Metadata Interoperability Considerations

 As noted in Section 3, RFC 6415 required all servers to support the
 production of Extensible Resource Documents (XRDs) and optionally
 support the production of JSON Resource Documents (JRDs). This
 specification reverses that requirement: WebFinger-compliant servers
 MUST support JRD and MAY support XRD documents.

 Given that some servers might implement only RFC 6415 and other
 servers might implement only the minimum required set of features
 defined for WebFinger, all clients should take care to ensure to
 request a resource descriptor in the appropriate format. If a client
 wishes to receive only JRDs, for example, it SHOULD issue a request
 to /.well-known/host-meta.json, but MAY issue a request to /.well-
 known/host-meta and include the "Accept" header with the type
 "application/json".

 Further, clients MUST ensure that the response returned from the
 server contains the correct format. RFC 6415-compliant servers might
 return an XRD document, regardless of what is requested by the
 client.

 Lastly, RFC 6415 did not require clients to follow 301, 302, or 307
 redirection requests, but WebFinger clients MUST re-issue requests
 when redirected using any of those HTTP status codes.

11. Security Considerations

 All of the security considerations applicable to Web Host Metadata
 and Cross-Origin Resource Sharing [9] are also applicable to this
 specification. Of particular importance is the recommended use of
 HTTPS to ensure that information is not modified during transit.
 Clients SHOULD verify that the certificate used on an HTTPS
 connection is valid.

 Service providers and users should be aware that placing information
 on the Internet accessible through WebFinger means that any user can
 access that information. While WebFinger can be an extremely useful
 tool for allowing quick and easy access to one's avatar, blog, or
 other personal information, users should understand the risks, too.
 If one does not wish to share certain information with the world, do
 not allow that information to be freely accessible through WebFinger.

 The aforementioned word of caution is perhaps worth emphasizing again
 with respect to dynamic information one might wish to share, such as
 the current location of a user. WebFinger can be a powerful tool
 used to assemble information about a person all in one place, but
 service providers and users should be mindful of the nature of that
 information shared and the fact that it might be available for the

https://datatracker.ietf.org/doc/html/rfc6415
https://datatracker.ietf.org/doc/html/rfc6415
https://datatracker.ietf.org/doc/html/rfc6415
https://datatracker.ietf.org/doc/html/rfc6415

Jones, et al. Expires April 19, 2013 [Page 20]

Internet-Draft WebFinger October 2012

 entire world to see. Sharing location information, for example,
 would potentially put a person in danger from any individual who
 might seek to inflict harm on that person.

 The easy access to user information via WebFinger was a design goal
 of the protocol, not a limitation. If one wishes to limit access to
 information available via WebFinger, such as a WebFinger server for
 use inside a corporate network, the network administrator must take
 measures necessary to limit access from outside the network. Using
 standard methods for securing web resources, network administrators
 do have the ability to control access to resources that might return
 sensitive information. Further, WebFinger servers can be employed in
 such a way as to require authentication and prevent disclosure of
 information to unauthorized entities.

12. IANA Considerations

 RFC Editor: Please replace QQQQ in the following two sub-sections
 with a reference to this RFC.

12.1. Registration of the "acct" Link Relation Type

 Relation Name: acct

 Description: A link relation that refers to a user's WebFinger
 account identifier.

 Reference: RFC QQQQ

 Notes:

 Application Data:

13. Acknowledgments

 The authors would like to acknowledge Eran Hammer-Lahav, Blaine Cook,
 Brad Fitzpatrick, Laurent-Walter Goix, Joe Clarke, Mike Jones, and
 Peter Saint-Andre for their invaluable input.

14. References

14.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616

Jones, et al. Expires April 19, 2013 [Page 21]

Internet-Draft WebFinger October 2012

 [3] Nottingham, M., Hammer-Lahav, E., "Defining Well-Known Uniform
 Resource Identifiers (URIs)", RFC 5785, April 2010.

 [4] Nottingham, M., "Web Linking", RFC 5988, October 2010.

 [5] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [6] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986,
 January 2005.

 [7] Saint-Andre, P., "The 'acct' URI Scheme", draft-ietf-appsawg-
acct-uri-00, August 2012.

 [8] Duerst, M., Masinter, L., and J. Zawinski, "The 'mailto' URI
 Scheme", RFC 6068, October 2010.

 [9] Van Kesteren, A., "Cross-Origin Resource Sharing", W3C CORS
http://www.w3.org/TR/cors/, July 2010.

 [10] Hammer-Lahav, E. and W. Norris, "Extensible Resource Descriptor
 (XRD) Version 1.0", http://docs.oasis-

open.org/xri/xrd/v1.0/xrd-1.0.html.

 [11] Hammer-Lahav, E. and Cook, B., "Web Host Metadata", RFC 6415,
 October 2011.

 [12] American National Standards Institute, "Coded Character Set -
 7-bit American Standard Code for Information Interchange", ANSI
 X3.4, 1986.

 [13] Duerst, M., "Internationalized Resource Identifiers (IRIs)",
RFC 3987, January 2005.

14.2. Informative References

 [14] Zimmerman, D., "The Finger User Information Protocol", RFC
1288, December 1991.

 [15] Hansen, T., Hardie, T., and L. Masinter, "Guidelines and
 Registration Procedures for New URI Schemes", BCP 35, RFC 4395,
 February 2006.

 [16] Perreault, S., "vCard Format Specification", RFC 6350, August
 2011.

https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/draft-ietf-appsawg-acct-uri-00
https://datatracker.ietf.org/doc/html/draft-ietf-appsawg-acct-uri-00
https://datatracker.ietf.org/doc/html/rfc6068
http://www.w3.org/TR/cors/
http://docs.oasis-open.org/xri/xrd/v1.0/xrd-1.0.html
http://docs.oasis-open.org/xri/xrd/v1.0/xrd-1.0.html
https://datatracker.ietf.org/doc/html/rfc6415
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc1288
https://datatracker.ietf.org/doc/html/rfc1288
https://datatracker.ietf.org/doc/html/bcp35
https://datatracker.ietf.org/doc/html/rfc4395
https://datatracker.ietf.org/doc/html/rfc6350

Jones, et al. Expires April 19, 2013 [Page 22]

Internet-Draft WebFinger October 2012

 [17] Internet Assigned Numbers Authority (IANA) Registry, "Uniform
 Resource Identifier (URI) Schemes",
 <http://www.iana.org/assignments/uri-schemes.html>.

 [18] "Transport Independent, Printer/System Interface", IEEE Std
 1284.1-1997, 1997.

 [19] Hoffman, P., Yergeau, F., "UTF-16, an encoding of ISO 10646",
RFC 2781, February 2000.

Jones, et al. Expires April 19, 2013 [Page 23]

http://www.iana.org/assignments/uri-schemes.html
https://datatracker.ietf.org/doc/html/rfc2781

Internet-Draft WebFinger October 2012

APPENDIX A: XRD Usage (Non-normative)

A.1. How XRD Documents are Requested via WebFinger

 The framework for using XRD documents with WebFinger is as follows:

 1. WebFinger clients issue request for XRD documents by requesting
 the Web Host Metadata document located at the well-known URI
 /.well-known/host-meta at the host.
 2. The web server at the host returns an XRD document, including a
 Link-based Resource Descriptor Document (LRDD) link relation.
 3. To discover information about accounts, devices, or other
 entities associated with the host, a request is issued for the
 Link-based Resource Descriptor Document(s) associated with a
 particular URI at the host (e.g., an "acct" URI, "http" URI, or
 "mailto" URI).
 4. The web server at the host would return an XRD document about
 the requested URI, which included those resource-specific link
 relations pointing to resources that contain information about
 the entity.
 5. Following the procedures in Section 4.2 of RFC 6415, the client
 would assemble all of the resource-specific link relations from
 the host-meta resource and LRDD resource(s) into a complete
 resource descriptor.

 The LRDD resources return resource descriptor documents of the type
 "application/xrd+xml".

A.2. WebFinger Example using XRDs

Section 4 introduces examples where JRD documents are returned to
 clients. For completeness, this section shows an example where a
 client requests an XRD document.

 Recall the example from Section 4.1 where the email client tried to
 retrieve information about Bob to discover the URL for his blog. If
 the client implemented support for XRD, it tries to get the host
 metadata information for the domain example.com in a similar way. As
 with the original example, it issues the following HTTPS query to
 example.com:

 GET /.well-known/host-meta HTTP/1.1
 Host: example.com

 The server replies with an XRD document:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/xrd+xml; charset=UTF-8

https://datatracker.ietf.org/doc/html/rfc6415#section-4.2

Jones, et al. Expires April 19, 2013 [Page 24]

Internet-Draft WebFinger October 2012

 <?xml version="1.0" encoding="UTF-8"?>
 <XRD xmlns="http://docs.oasis-open.org/ns/xri/xrd-1.0">
 <Link rel="lrdd"
 type="application/xrd+xml"
 template="https://example.com/lrdd/?uri={uri}"/>
 </XRD>

 The client then processes the received XRD in accordance with the Web
 Host Metadata procedures. The client will see the LRDD link relation
 and issue a query with the user's account URI [6] or other URI that
 serves as an alias for the account. (The account URI is discussed in

Section 4.2.) The query might look like this:

 GET /lrdd/?uri=acct%3Abob%40example.com HTTP/1.1
 Host: example.com

 The server might then respond with a message like this:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/xrd+xml; charset=UTF-8

 <?xml version="1.0" encoding="UTF-8"?>
 <XRD xmlns="http://docs.oasis-open.org/ns/xri/xrd-1.0">
 <Expires>2012-10-12T20:56:11Z</Expires>
 <Subject>acct:bob@example.com</Subject>
 <Alias>http://www.example.com/~bob/</Alias>
 <Link rel="http://webfinger.net/rel/avatar"
 href="http://www.example.com/~bob/bob.jpg"/>
 <Link rel="http://webfinger.net/rel/profile-page"
 href="http://www.example.com/~bob/"/>
 <Link rel="http://packetizer.com/rel/blog"
 href="http://blogs.example.com/bob/"/>
 </XRD>

 The email client might take note of the "blog" link relation in the
 above XRD document that refers to Bob's blog. This URL would then be
 presented to you so that you could then visit his blog.

A.3. Security Considerations Related to XRDs

 When using HTTP to request an XRD document, WebFinger clients SHOULD
 verify the XRD document's signature, if present, to ensure that the
 XRD document has not been modified. Additionally, WebFinger servers
 SHOULD include a signature for XRD documents served over HTTP.

Jones, et al. Expires April 19, 2013 [Page 25]

Internet-Draft WebFinger October 2012

Author's Addresses

 Paul E. Jones
 Cisco Systems, Inc.
 7025 Kit Creek Rd.
 Research Triangle Park, NC 27709
 USA

 Phone: +1 919 476 2048
 Email: paulej@packetizer.com
 IM: xmpp:paulej@packetizer.com

 Gonzalo Salgueiro
 Cisco Systems, Inc.
 7025 Kit Creek Rd.
 Research Triangle Park, NC 27709
 USA

 Phone: +1 919 392 3266
 Email: gsalguei@cisco.com
 IM: xmpp:gsalguei@cisco.com

 Joseph Smarr
 Google

 Email: jsmarr@google.com

Jones, et al. Expires April 19, 2013 [Page 26]

