
Network Working Group Paul E. Jones
Internet Draft Gonzalo Salgueiro
Intended status: Standards Track Cisco Systems
Expires: June 2, 2013 Joseph Smarr
 Google
 December 2, 2012

WebFinger
draft-ietf-appsawg-webfinger-07.txt

Abstract

 This specification defines the WebFinger protocol, which can be used
 to discover information about people or other entities on the
 Internet using standard HTTP methods.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 2, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Jones, et al. Expires June 2, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft WebFinger December 2012

Table of Contents

1. Introduction...2
2. Terminology..3
3. Overview...3
4. Example Use of WebFinger.......................................3

4.1. Locating a User's Blog....................................3
4.2. Identity Provider Discovery for OpenID Connect............5
4.3. Auto-Configuration of Email Clients.......................6
4.4. Retrieving Device Information.............................7

5. WebFinger Protocol...8
5.1. Performing a WebFinger Query..............................8
5.2. The JSON Resource Descriptor (JRD)........................9

5.2.1. expires..9
5.2.2. subject...10
5.2.3. aliases...10
5.2.4. properties..10
5.2.5. links...11

5.3. The "rel" Parameter......................................13
5.4. WebFinger and URIs.......................................14

6. Cross-Origin Resource Sharing (CORS)..........................15
7. Access Control..15
8. Hosted WebFinger Services.....................................16
9. Security Considerations.......................................17
10. IANA Considerations..18
11. Acknowledgments..19
12. References...19

12.1. Normative References....................................19
12.2. Informative References..................................20

 Author's Addresses...20

1. Introduction

 WebFinger is used to discover information about people or other
 entities on the Internet using standard HTTP [2] methods. The
 WebFinger server returns a JavaScript Object Notation (JSON) [5]
 object that describes the resource being queried. The JSON object is
 referred to as the JSON Resource Descriptor (JRD). The JRD contains
 link relations, properties, titles, and other information that is
 suitable for automated processing. For a person, the kinds of
 information that might be shared via WebFinger include a personal
 profile address, identity service, telephone number, or preferred
 avatar. For other entities on the Internet, the server might return
 JRDs containing link relations that allow a client to discover the
 amount of toner in a printer or the physical location of a server.

 Information returned via WebFinger might be for direct human
 consumption (e.g., looking up someone's phone number), or it might be

Jones, et al. Expires June 2, 2013 [Page 2]

Internet-Draft WebFinger December 2012

 used by systems to help carry out some operation (e.g., facilitate
 logging into a web site by determining a user's identity service).

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

 WebFinger makes heavy use of "Link Relations". Briefly, a Link
 Relation is an attribute and value pair used on the Internet wherein
 the attribute identifies the type of link to which the associated
 value refers. In Hypertext Transfer Protocol (HTTP) and Web Linking
 [4], the attribute is a "rel" and the value is an "href". WebFinger
 also uses the "rel" attribute, where the "rel" value is either a
 single IANA-registered link relation type [11] or a URI [6].

3. Overview

 WebFinger enables the discovery of information about users, devices,
 and other entities that are associated with a host. Discovery
 involves a single HTTP GET request to the well-known [3] "webfinger"
 resource at the target host and receiving back a JavaScript Object
 Notation (JSON) [5] Resource Descriptor (JRD) (see section 5.2)
 containing link relations, properties, titles, and other useful
 information. The request MUST include the URI or IRI [7] for the
 entity for which information is sought as a parameter named
 "resource".

 Use of WebFinger is illustrated in the examples in Section 4, then
 described more formally in Section 5.

4. Example Use of WebFinger

 This non-normative section shows a few sample uses of WebFinger.

4.1. Locating a User's Blog

 Assume you receive an email from Bob and he refers to something he
 posted on his blog, but you do not know where Bob's blog is located.
 It would be simple to discover the address of Bob's blog if he makes
 that information available via WebFinger.

 Assume your email client can discover the blog for you. After
 receiving the message from Bob (bob@example.com), you instruct your
 email client to perform a WebFinger query. It does so by issuing the
 following HTTPS query to example.com:

https://datatracker.ietf.org/doc/html/rfc2119

Jones, et al. Expires June 2, 2013 [Page 3]

Internet-Draft WebFinger December 2012

 GET /.well-known/webfinger?
 resource=acct%3Abob%40example.com HTTP/1.1
 Host: example.com

 The server might then respond with a message like this:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/json; charset=UTF-8

 {
 "expires" : "2012-11-16T19:41:35Z",
 "subject" : "acct:bob@example.com",
 "aliases" :
 [
 "http://www.example.com/~bob/"
],
 "properties" :
 {
 "http://example.com/rel/role/" : "employee"
 },
 "links" :
 [
 {
 "rel" : "http://webfinger.net/rel/avatar",
 "type" : "image/jpeg",
 "href" : "http://www.example.com/~bob/bob.jpg"
 },
 {
 "rel" : "http://webfinger.net/rel/profile-page",
 "href" : "http://www.example.com/~bob/"
 },
 {
 "rel" : "blog",
 "type" : "text/html",
 "href" : "http://blogs.example.com/bob/",
 "titles" :
 {
 "en-us" : "The Magical World of Bob",
 "fr" : "Le monde magique de Bob"
 }
 },
 {
 "rel" : "vcard",
 "href" : "http://www.example.com/~bob/bob.vcf"
 }
]
 }

Jones, et al. Expires June 2, 2013 [Page 4]

Internet-Draft WebFinger December 2012

 The email client would take note of the "blog" link relation in the
 above JRD that refers to Bob's blog. This URL would then be
 presented to you so that you could then visit his blog. The email
 client might also note that Bob has published an avatar link relation
 and use that picture to represent Bob inside the email client.
 Lastly, the client might consider the vcard [15] link relation in
 order to update contact information for Bob.

 In the above example, an "acct" URI [8] is used in the query, though
 any valid alias for the user might also be used. An alias is a URI
 that is different from the "subject" URI that identifies the same
 entity. In the above example, there is one "http" alias returned,
 though there might have been more than one. Had the "http:" URI
 shown as an alias been used to query for information about Bob, the
 query would have appeared as:

 GET /.well-known/webfinger?
 resource=http%3A%2F%2Fwww.example.com%2F~bob%2F HTTP/1.1
 Host: example.com

 The response would have been substantially the same, with the subject
 and alias information changed as necessary. Other information, such
 as the expiration time might also change, but the set of link
 relations and properties would be the same with either response.

4.2. Identity Provider Discovery for OpenID Connect

 Suppose Carol wishes to authenticate with a web site she visits using
 OpenID Connect [17]. She would provide the web site with her OpenID
 Connect identifier, say carol@example.com. The visited web site
 would perform a WebFinger query looking for the OpenID Connect
 Provider. Since the site is interested in only one particular link
 relation, the server might utilize the "rel" parameter as described
 in section 5.3:

 GET /.well-known/webfinger?
 resource=acct%3Acarol%40example.com&
 rel=http%3A%2F%2Fopenid.net%2Fspecs%2Fconnect%2F1.0%2Fissuer
 HTTP/1.1
 Host: example.com

 The server might respond with a JRD like this:

 {
 "expires" : "2012-11-16T19:41:35Z",
 "subject" : "acct:carol@example.com",
 "aliases" :
 [
 "http://www.example.com/~carol/"

Jones, et al. Expires June 2, 2013 [Page 5]

Internet-Draft WebFinger December 2012

],
 "properties" :
 {
 "http://example.com/rel/role/" : "employee"
 },
 "links" :
 [
 {
 "rel" : "http://openid.net/specs/connect/1.0/issuer",
 "href" : "https://openid.example.com/"
 }
]
 }

 Since the "rel" parameter only filters the link relations returned by
 the server, other name/value pairs in the response, including any
 aliases or properties, would be returned. Also, since support for
 the "rel" parameter is optional, the client must not assume the
 "links" array will contain only the requested link relation.

4.3. Auto-Configuration of Email Clients

 WebFinger could be used to auto-provision an email client with basic
 configuration data. Suppose that sue@example.com wants to configure
 her email client. Her email client might issue the following query:

 GET /.well-known/webfinger?
 resource=mailto%3Asue%40example.com HTTP/1.1
 Host: example.com

 The response from the server would contain entries for the various
 protocols, transport options, and security options. If there are
 multiple options, the server might return a link relation that for
 each of the valid options and the client or Sue might select which
 option to choose. Since JRDs list link relations in a specific
 order, then the most-preferred choices could be presented first.
 Consider this response:

 {
 "subject" : "mailto:sue@example.com",
 "links" :
 [
 {
 "rel" : "http://example.net/rel/smtp-server",
 "properties" :
 {
 "http://example.net/email/host" : "smtp.example.com",
 "http://example.net/email/port" : "587",

 "http://example.net/email/login-required" : "yes",

Jones, et al. Expires June 2, 2013 [Page 6]

Internet-Draft WebFinger December 2012

 "http://example.net/email/transport" : "starttls"
 }
 },
 {
 "rel" : "http://example.net/rel/imap-server",
 "properties" :
 {
 "http://example.net/email/host" : "imap.example.com",
 "http://example.net/email/port" : "993",
 "http://example.net/email/transport" : "ssl"
 }
 }
]
 }

 In this example, you can see that the WebFinger server advertises an
 SMTP service and an IMAP service. In this example, the "href"
 entries associated with the link relation are absent. This is valid
 when there is no external reference that needs to be made.

4.4. Retrieving Device Information

 As another example, suppose there are printers on the network and you
 would like to check the current toner level for a particular printer
 identified via the URI device:p1.example.com. While the "device" URI
 scheme is not presently specified, we use it here for illustrative
 purposes.

 Following the procedures similar to those above, a query may be
 issued to get link relations specific to this URI like this:

 GET /.well-known/webfinger?resource=
 device%3Ap1.example.com HTTP/1.1
 Host: example.com

 The link relations that are returned for a device may be quite
 different than those for user accounts. Perhaps we may see a
 response like this:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/json; charset=UTF-8

 {
 "subject" : "device:p1.example.com",
 "links" :
 [
 {
 "rel" : "http://example.com/rel/tipsi",

Jones, et al. Expires June 2, 2013 [Page 7]

Internet-Draft WebFinger December 2012

 "href" : "http://192.168.1.5/npap/"
 }
]
 }

 While this example is fictitious, you can imagine that perhaps the
 Transport Independent, Printer/System Interface [16] may be enhanced
 with a web interface that allows a device that understands the TIP/SI
 web interface specification to query the printer for toner levels.

5. WebFinger Protocol

 WebFinger is a simple HTTP-based web service that returns a JSON
 Resource Descriptor (JRD) to convey information about an entity on
 the Internet and the Cross-Origin Resource Sharing (CORS) [10]
 specification to facilitate queries made via a web browser.

 This specification defines URI parameters that are passed from the
 client to the server when issuing a request. These parameters,
 "resource" and "rel", and the parameter values are included in the
 "query" component of the URI (see Section 3.4 of RFC 3986). To
 construct the "query" component, the client performs the following
 steps. First, each parameter value is percent-encoded as per Section

2.1 of RFC 3986. Next, the client constructs a string to be placed
 in the query component by concatenating the name of the first
 parameter together with an equal sign ("=") and the percent-encoded
 parameter value. For any subsequent parameters, the client appends
 an ampersand ("&") to the string, the name of the next parameter, an
 equal sign, and percent-encoded parameter value. The client MUST NOT
 insert any spaces while constructing the string. The order in which
 the client places each parameter and its corresponding parameter
 value is unspecified.

5.1. Performing a WebFinger Query

 WebFinger clients issue queries to the well-known resource /.well-
 known/webfinger. All queries MUST include the "resource" parameter
 exactly once and set to the value of the URI for which information is
 being sought. If the "resource" parameter is absent or malformed,
 the WebFinger server MUST return a 400 status code.

 Clients MUST query the server using HTTPS and utilize HTTP only if an
 HTTPS connection cannot be established, and then only if the client
 issuing the query will not utilize information in the response in
 such a way as to compromise user security or privacy. As an example,
 a client using WebFinger to facilitate logging into a web site MUST
 only utilize HTTPS to ensure that a user is not misdirected to a
 rogue web site that might steal the user's credentials. If the HTTPS

https://datatracker.ietf.org/doc/html/rfc3986#section-3.4
https://datatracker.ietf.org/doc/html/rfc3986#section-2.1
https://datatracker.ietf.org/doc/html/rfc3986#section-2.1

 server has an invalid certificate or returns an HTTP status code

Jones, et al. Expires June 2, 2013 [Page 8]

Internet-Draft WebFinger December 2012

 indicating some error, including a 4xx or 5xx, the client MUST NOT
 use HTTP in attempt to complete the discovery.

 WebFinger servers MUST return a JRD as the representation for the
 resource if the client requests no format explicitly via the HTTP
 "Accept" header. A client MAY include the "Accept" header to
 indicate a desired representation, though no other representation is
 defined in this specification. The media type used for the JSON
 Resource Descriptor (JRD) is "application/json" [5].

 If the client queries the WebFinger server and provides a URI for
 which the server has no information, the server MUST return a 404
 status code.

 WebFinger servers can include cache validators in a response to
 enable conditional requests by clients and/or expiration times as per

RFC 2616 section 13.

5.2. The JSON Resource Descriptor (JRD)

 The JSON Resource Descriptor (JRD) is a JSON object that is comprised
 of name/value pairs appearing in this RECOMMENDED order:

 o expires
 o subject
 o aliases
 o properties
 o links

 The members "expires" and "subject" are name/value pairs whose value
 are strings, "aliases" is an array of strings, "properties" is an
 object comprised of name/value pairs whose values are strings, and
 "links" is an array of objects that contain link relation
 information.

 When processing a JRD, the client MUST ignore any unknown member and
 not treat the presence of an unknown member as an error.

 Below, each of these members of the JRD is described in more detail.

5.2.1. expires

 The value of the "expires" member is a string that indicates the date
 and time after which the JRD SHOULD be considered expired and no
 longer utilized. The format of the date/time string is:

 YYYY-MM-DDTHH:MM:SSZ

https://datatracker.ietf.org/doc/html/rfc2616#section-13

Jones, et al. Expires June 2, 2013 [Page 9]

Internet-Draft WebFinger December 2012

 Here, "YYYY" indicates the four-digit year, "MM" indicates the two-
 digit month (in the range of 01 to 12), and "DD" indicates the two-
 digit day of the month (in the range of 01 to 31). The "T" is
 literally an ASCII "T" that exists merely as a separator between the
 date and the time. The "HH" indicates the two-digit hour of the day
 (in the range of 01 to 12), "MM" indicates the two-digit minute of
 the day (in the range of 00 to 59), and "SS" indicates the two-digit
 number of seconds (in the range of 00 to 59). A colon (":")
 character MUST separate the hours, minutes, and seconds values, and a
 hyphen ("-") MUST separate the year, month, and day in the string.
 The "Z" at the end of the string is literally an ASCII "Z" that
 indicates UTC time and MUST be present. The "expires" string MUST
 utilize UTC time. An example of the "expires" member is:

 "expires" : "2012-11-16T19:41:35Z"

 The server MAY include the "expires" header in a JRD and clients
 SHOULD honor the value if present.

5.2.2. subject

 The value of the "subject" member is a string that MUST be set to the
 same value as the "resource" parameter in the client request. This
 is a URI that identifies the entity for which the client queried the
 server.

 The "subject" member MUST be included in the JRD.

5.2.3. aliases

 The "aliases" array is an array of zero or more URI strings that
 identify the same entity as the "subject" URI. Each URI must be an
 absolute URI.

 The server MAY include the "aliases" array in the JRD.

5.2.4. properties

 The "properties" object is comprised of zero or more name/value pairs
 whose names are absolute URIs and whose values are strings or null.
 Properties are used to convey additional information about the
 subject of the JRD. As an example, consider this use of
 "properties":

 "properties" : { "http://webfinger.net/rel/name" : "Bob Smith" }

 The server MAY include the "properties" member in the JRD.

Jones, et al. Expires June 2, 2013 [Page 10]

Internet-Draft WebFinger December 2012

5.2.5. links

 The "links" array contains zero or more elements that contain the
 link relation information. Each element of the array is an object
 comprised of the following name/value pairs in this RECOMMENDED
 order:

 o rel
 o type
 o href
 o titles
 o properties

 The members "rel", "type", and "href" are a name/value pairs whose
 values are strings, "titles" and "properties" are objects comprised
 of name/value pairs whose values are strings.

 The order of elements in the "links" array indicates an order of
 preference. Thus, if there are two or more link relations having the
 same "rel" value, the first link relation would indicate the user's
 preferred link relation.

 Servers MAY include the "links" array in the JRD.

 Below, each of the members of the objects found in the "links" array
 is described in more detail. Each object in the "links" array,
 referred to as a "link relation object", is completely independent
 from any other object in the array; any requirement on the server to
 include a given member in the link relation object refers only to
 that particular object.

5.2.5.1. rel

 The value of the "rel" member is a string that is either an absolute
 URI or a registered relation type [11] (see RFC 5988 [4]). The value
 of the "rel" member MUST contain exactly one URI string or registered
 relation type and MUST NOT contain a space-separated list of URIs or
 registered relation types. The URI or registered relation type
 identifies the type of the link relation. The other members of the
 object have meaning only once the type of link relation is
 understood. In some instances, the link relation will have
 associated semantics that allow a client to query for other resources
 on the Internet. In other instances, the link relation will have
 associated semantics that allow the client to utilize the other
 members of the link relation object without fetching additional
 external resources.

 Servers MUST include the "rel" member in the link relation object.

https://datatracker.ietf.org/doc/html/rfc5988

Jones, et al. Expires June 2, 2013 [Page 11]

Internet-Draft WebFinger December 2012

5.2.5.2. type

 The value of the "type" member is a string that indicates the media
 type [12] of the linked resource (see RFC 4288 [13]).

 Servers MAY include the "type" member in the link relation object.

5.2.5.3. href

 The value of the "href" member is a string that contains a URI
 pointing to the linked resource.

 Servers MAY include the "href" member in the link relation object.

5.2.5.4. titles

 The "titles" object is comprised of zero or more name/value pairs
 whose name is a language tag [14] or the string "default". The
 string is human-readable and describes the link relation. More than
 one title for the link relation MAY be provided for the benefit of
 users who utilize the link relation and, if used, a language
 identifier SHOULD be duly used as the name. If the language is
 unknown or unspecified, then the name is "default".

 A server SHOULD NOT include more than one title named with the same
 language tag (or "default") within the link relation object. The
 client behavior is undefined if a link relation object includes more
 than one title named with the same language tag (or "default"),
 though the client MUST NOT treat this as an error. The client can
 select whichever title or titles it wishes to utilize.

 Here is an example of the titles object:

 "titles" :
 {
 "en-us" : "The Magical World of Bob",
 "fr" : "Le monde magique de Bob"
 }

 The server MAY include the "titles" member in the link relation
 object.

5.2.5.5. properties

 The "properties" object within the link relation object is comprised
 of zero or more name/value pairs whose names are absolute URIs and
 whose values are strings or null. Properties are used to convey
 additional information about the link relation. As an example,
 consider this use of "properties":

https://datatracker.ietf.org/doc/html/rfc4288

Jones, et al. Expires June 2, 2013 [Page 12]

Internet-Draft WebFinger December 2012

 "properties" : { "http://example.net/mail/port" : "993" }

 The server MAY include the "properties" member in the link relation
 object.

5.3. The "rel" Parameter

 When issuing a request to the server, the client MAY utilize the
 "rel" parameter to request only a subset of the information that
 would otherwise be returned without the "rel" parameter. When the
 "rel" parameter is used, only the link relations that match the link
 relations provided via "rel" are included in the array of links
 returned in the JRD. All other information normally present in a
 resource descriptor is present in the resource descriptor, even when
 "rel" is employed.

 The "rel" parameter MAY be transmitted to the server multiple times
 in order to request multiple types of link relations.

 The purpose of the "rel" parameter is to return a subset of
 resource's link relations. Use of the parameter might reduce
 processing requirements on either the client or server, and it might
 also reduce the bandwidth required to convey the partial resource
 descriptor, especially if there are numerous link relation values to
 convey for a given resource.

 Support for the "rel" parameter is OPTIONAL, but RECOMMENDED on the
 server. Should the server not support the "rel" parameter, it MUST
 ignore it and process the request as if no "rel" parameter values
 were present.

 The following example presents the same example as found in section
4.1, but uses the "rel" parameter in order to select two link

 relations:

 GET /.well-known/webfinger?
 resource=acct%3Abob%40example.com&
 rel=http%3A%2F%2Fwebfinger.net%2Frel%2Fprofile-page&
 rel=vcard HTTP/1.1
 Host: example.com

 In this example, the client requests the link relations of type
 "http://webfinger.net/rel/profile-page" and "vcard". The server then
 responds with a message like this:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/json; charset=UTF-8

Jones, et al. Expires June 2, 2013 [Page 13]

Internet-Draft WebFinger December 2012

 {
 "expires" : "2012-11-16T19:41:35Z",
 "subject" : "acct:bob@example.com",
 "aliases" :
 [
 "http://www.example.com/~bob/"
],
 "properties" :
 {
 "http://example.com/rel/role/" : "employee"
 },
 "links" :
 [
 {
 "rel" : "http://webfinger.net/rel/profile-page",
 "href" : "http://www.example.com/~bob/"
 },
 {
 "rel" : "vcard",
 "href" : "http://www.example.com/~bob/bob.vcf"
 }
]
 }

 As you can see, the server returned only the link relations requested
 by the client, but also included the other parts of the JRD.

 In the event that a client requests links for link relations that are
 not defined for the specified resource, a resource descriptor MUST be
 returned. In the returned JRD, the "links" array MAY be absent,
 empty, or contain only links that did match a provided "rel" value.
 The server MUST NOT return a 404 status code when a particular link
 relation specified via "rel" is not defined for the resource, as a
 404 status code is reserved for indicating that the resource itself
 (e.g., either /.well-known/webfinger or the resource indicated via
 the "resource" parameter) does not exist.

5.4. WebFinger and URIs

 WebFinger requests can include a parameter specifying the URI of an
 account, device, or other entity. WebFinger is agnostic regarding
 the scheme of such a URI: it could be an "acct" URI [7], an "http" or
 "https" URI, a "mailto" URI, or some other scheme.

 For resources associated with a user account at a host, use of the
 "acct" URI scheme is RECOMMENDED, since it explicitly identifies an
 account accessible via WebFinger. Further, the "acct" URI scheme is
 not associated with other protocols as, by way of example, the

 "mailto" URI scheme is associated with email. Since not every host

Jones, et al. Expires June 2, 2013 [Page 14]

Internet-Draft WebFinger December 2012

 offers email service, using the "mailto" URI scheme [9] is not ideal
 for identifying user accounts on all hosts. That said, use of the
 "mailto" URI scheme would be ideal for use with WebFinger to discover
 mail server configuration information for a user.

 A host MAY utilize one or more URIs that serve as aliases for the
 user's account, such as URIs that use the "http" URI scheme [2]. A
 WebFinger server MUST return substantially the same response to both
 an "acct" URI and any alias URI for the account, including the same
 set of link relations and properties. The only name/value pairs in
 the response that MAY be different include "subject", "expires", and
 "aliases". In addition, the server SHOULD include the entire list
 aliases for the user's account in the JRD returned when querying the
 LRDD resource or when utilizing the "resource" parameter.

6. Cross-Origin Resource Sharing (CORS)

 WebFinger resources might not be accessible from a web browser due to
 "Same-Origin" policies. The current best practice is to make
 resources available to browsers through Cross-Origin Resource Sharing
 (CORS) [10], and servers MUST include the Access-Control-Allow-Origin
 HTTP header in responses. Servers SHOULD support the least
 restrictive setting by allowing any domain access to the WebFinger
 resources:

 Access-Control-Allow-Origin: *

 There are cases where defaulting to the least restrictive setting is
 not appropriate, for example a WebFinger server on an intranet that
 provides sensitive company information should not allow CORS requests
 from any domain, as that could allow leaking of that sensitive
 information. WebFinger servers that wish to restrict access to
 information from external entities SHOULD use a more restrictive
 Access-Control-Allow-Origin header.

7. Access Control

 As with all web resources, access to the /.well-known/webfinger
 resource MAY require authentication. Further, failure to provide
 required credentials MAY result in the server forbidding access or
 providing a different response than had the client authenticated with
 the server.

 Likewise, a server MAY provide different responses to different
 clients based on other factors, such as whether the client is inside
 or outside a corporate network. As a concrete example, a query
 performed on the internal corporate network might return link
 relations to employee pictures, whereas link relations for employee
 pictures might not be provided to external entities.

Jones, et al. Expires June 2, 2013 [Page 15]

Internet-Draft WebFinger December 2012

 Further, link relations provided in a WebFinger server response MAY
 point to web resources that impose access restrictions. For example,
 the aforementioned corporate server may provide both internal and
 external entities with URIs to employee pictures, but further
 authentication might be required in order for the client to access
 the picture resources if the request comes from outside the corporate
 network.

 The decisions made with respect to what set of link relations a
 WebFinger server provides to one client versus another and what
 resources require further authentication, as well as the specific
 authentication mechanisms employed, are outside the scope of this
 document.

8. Hosted WebFinger Services

 As with most services provided on the Internet, it is possible for a
 domain owner to utilize "hosted" WebFinger services. By way of
 example, a domain owner might control most aspects of their domain,
 but use a third-party hosting service for email. In the case of
 email, mail servers for a domain are identified by MX records. An MX
 record points to the mail server to which mail for the domain should
 be delivered. It does not matter to the sending mail server whether
 those MX records point to a server in the destination domain or a
 different domain.

 Likewise, a domain owner might utilize the services of a third party
 to provide WebFinger services on behalf of its users. Just as a
 domain owner was required to insert MX records into DNS to allow for
 hosted email serves, the domain owner is required to redirect HTTP(S)
 queries to its domain to allow for hosted WebFinger services.

 When a query is issued to /.well-known/webfinger, the web server MUST
 return a 301, 302, or 307 response status code that includes a
 Location header pointing to the location of the hosted WebFinger
 service URL. The WebFinger service URL does not need to point to
 /.well-known/* on the hosting service provider server. WebFinger
 clients MUST follow all 301, 302, or 307 redirection requests.

 As an example, assume that example.com's WebFinger services are
 hosted by example.net. Suppose a client issues a query for
 acct:alice@example.com like this:

 GET /.well-known/webfinger?
 resource=acct%3Aalice%40example.com HTTP/1.1
 Host: example.com

 The server might respond with this:

Jones, et al. Expires June 2, 2013 [Page 16]

Internet-Draft WebFinger December 2012

 HTTP/1.1 307 Temporary Redirect
 Location: http://wf.example.net/example.com/webfinger?
 resource=acct%3Aalice%40example.com HTTP/1.1

 The client MUST follow the redirection, re-issuing the request to the
 URL provided in the Location header.

9. Security Considerations

 Since this specification utilizes Cross-Origin Resource Sharing
 (CORS) [10], all of the security considerations applicable CORS are
 also applicable to this specification.

 The recommended use of HTTPS is to ensure that information is not
 modified during transit. It should be appreciated that in
 environments where an HTTPS server is normally available, there
 exists the possibility that a compromised network might have its
 WebFinger server operating on HTTPS replaced with one operating only
 over HTTP. As such, clients that need to ensure data is not
 compromised SHOULD NOT issue queries over a non-secure connection.
 While Section 5.1 allows for clients that fail to establish an HTTPS
 connection to attempt a query using HTTP, a client and any underlying
 client libraries are not required to re-issue queries using HTTP and
 SHOULD NOT when security for a given application that uses WebFinger
 is paramount.

 When using HTTPS, clients MUST verify that the certificate used on an
 HTTPS connection is valid.

 Service providers and users should be aware that placing information
 on the Internet accessible through WebFinger means that any user can
 access that information. While WebFinger can be an extremely useful
 tool for allowing quick and easy access to one's avatar, blog, or
 other personal information, users should understand the risks, too.
 If one does not wish to share certain information with the world, do
 not allow that information to be freely accessible through WebFinger
 and do not use any service supporting WebFinger. Further, WebFinger
 servers MUST NOT be used to provide any personal information to any
 party unless explicitly or implicitly authorized by the person whose
 information is being shared. Implicit authorization can be determined
 by the user's voluntary utilization of a service as defined by that
 service's relevant terms of use or published privacy policy.

 The aforementioned word of caution is perhaps worth emphasizing again
 with respect to dynamic information one might wish to share, such as
 the current location of a user. WebFinger can be a powerful tool
 used to assemble information about a person all in one place, but
 service providers and users should be mindful of the nature of that

 information shared and the fact that it might be available for the

Jones, et al. Expires June 2, 2013 [Page 17]

Internet-Draft WebFinger December 2012

 entire world to see. Sharing location information, for example,
 would potentially put a person in danger from any individual who
 might seek to inflict harm on that person.

 The easy access to user information via WebFinger was a design goal
 of the protocol, not a limitation. If one wishes to limit access to
 information available via WebFinger, such as a WebFinger server for
 use inside a corporate network, the network administrator must take
 measures necessary to limit access from outside the network. Using
 standard methods for securing web resources, network administrators
 do have the ability to control access to resources that might return
 sensitive information. Further, WebFinger servers can be employed in
 such a way as to require authentication and prevent disclosure of
 information to unauthorized entities.

 Finally, a WebFinger server has no means of ensuring that information
 provided by a user is accurate. Likewise, neither the server nor the
 client can be absolutely guaranteed that information has not been
 manipulated either at the server or along the communication path
 between the client and server. Use of HTTPS helps to address some
 concerns with manipulation of information along the communication
 path, but it clearly cannot address issues where the server provided
 incorrect information, either due to being provided false information
 or due to malicious behavior on the part of the server administrator.
 As with any information service available on the Internet, users
 should wary of information received from untrusted sources.

10. IANA Considerations

 This specification registers the "webfinger" well-known URI in the
 Well-Known URI Registry as defined by [3].

 URI suffix: webfinger

 Change controller: IETF

 Specification document(s): RFC QQQ

 Related information: The response from WebFinger server will be a
 JSON Resource Descriptor (JRD) as described in Section 5.2 of RFC
 QQQ.

 [RFC EDITOR: Please replace "QQQ" references in this section with the
 number for this RFC.]

Jones, et al. Expires June 2, 2013 [Page 18]

Internet-Draft WebFinger December 2012

11. Acknowledgments

 The authors would like to acknowledge Eran Hammer-Lahav, Blaine Cook,
 Brad Fitzpatrick, Laurent-Walter Goix, Joe Clarke, Michael B. Jones,
 Peter Saint-Andre, Dick Hardt, Tim Bray, and Joe Gregorio for their
 invaluable input.

12. References

12.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [3] Nottingham, M., Hammer-Lahav, E., "Defining Well-Known Uniform
 Resource Identifiers (URIs)", RFC 5785, April 2010.

 [4] Nottingham, M., "Web Linking", RFC 5988, October 2010.

 [5] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [6] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986,
 January 2005.

 [7] Duerst, M., "Internationalized Resource Identifiers (IRIs)",
RFC 3987, January 2005.

 [8] Saint-Andre, P., "The 'acct' URI Scheme", draft-ietf-appsawg-
acct-uri-01, October 2012.

 [9] Duerst, M., Masinter, L., and J. Zawinski, "The 'mailto' URI
 Scheme", RFC 6068, October 2010.

 [10] Van Kesteren, A., "Cross-Origin Resource Sharing", W3C CORS
http://www.w3.org/TR/cors/, July 2010.

 [11] IANA, "Link Relations", http://www.iana.org/assignments/link-
relations/.

 [12] IANA, "MIME Media Types",
http://www.iana.org/assignments/media-types/index.html.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/draft-ietf-appsawg-acct-uri-01
https://datatracker.ietf.org/doc/html/draft-ietf-appsawg-acct-uri-01
https://datatracker.ietf.org/doc/html/rfc6068
http://www.w3.org/TR/cors/
http://www.iana.org/assignments/link-relations/
http://www.iana.org/assignments/link-relations/
http://www.iana.org/assignments/media-types/index.html

Jones, et al. Expires June 2, 2013 [Page 19]

Internet-Draft WebFinger December 2012

 [13] Freed, N., Klensin, J., "Media Type Specifications and
 Registration Procedures", RFC 4288, December 2005.

 [14] Phillips, A., Davis, M., "Tags for Identifying Languages", RFC
5646, January 2001.

12.2. Informative References

 [15] Perreault, S., "vCard Format Specification", RFC 6350, August
 2011.

 [16] "Transport Independent, Printer/System Interface", IEEE Std
 1284.1-1997, 1997.

 [17] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B.,
 Mortimore, C., and E. Jay, "OpenID Connect Messages 1.0", June
 2012, http://openid.net/specs/openid-connect-messages-1_0.html.

Author's Addresses

 Paul E. Jones
 Cisco Systems, Inc.
 7025 Kit Creek Rd.
 Research Triangle Park, NC 27709
 USA

 Phone: +1 919 476 2048
 Email: paulej@packetizer.com
 IM: xmpp:paulej@packetizer.com

 Gonzalo Salgueiro
 Cisco Systems, Inc.
 7025 Kit Creek Rd.
 Research Triangle Park, NC 27709
 USA

 Phone: +1 919 392 3266
 Email: gsalguei@cisco.com
 IM: xmpp:gsalguei@cisco.com

 Joseph Smarr
 Google

 Email: jsmarr@google.com

https://datatracker.ietf.org/doc/html/rfc4288
https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/rfc6350
http://openid.net/specs/openid-connect-messages-1_0.html

Jones, et al. Expires June 2, 2013 [Page 20]

