
Network Working Group Paul E. Jones
Internet Draft Gonzalo Salgueiro
Intended status: Standards Track Cisco Systems
Expires: February 9, 2014 Joseph Smarr
 Google
 August 9, 2013

WebFinger
draft-ietf-appsawg-webfinger-17.txt

Abstract

 This specification defines the WebFinger protocol, which can be used
 to discover information about people or other entities on the
 Internet using standard HTTP methods. WebFinger discovers
 information for a URI that might not be usable as a locator
 otherwise, such as account or email URIs.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 9, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Jones, et al. Expires February 9, 2014 [Page 1]

Internet-Draft WebFinger August 2013

Table of Contents

1. Introduction...2
2. Terminology..3
3. Example Uses of WebFinger......................................4

3.1. Identity Provider Discovery for OpenID Connect............4
3.2. Getting Author and Copyright Information for a Web Page...5

4. WebFinger Protocol...6
4.1. Constructing the Query Component of the Request URI.......7
4.2. Performing a WebFinger Query..............................7
4.3. The "rel" Parameter.......................................8
4.4. The JSON Resource Descriptor (JRD).......................10

4.4.1. subject...10
4.4.2. aliases...10
4.4.3. properties..10
4.4.4. links...11

4.5. WebFinger and URIs.......................................13
5. Cross-Origin Resource Sharing (CORS)..........................13
6. Access Control..13
7. Hosted WebFinger Services.....................................14
8. Definition of WebFinger Applications..........................15

8.1. Specification of the URI Scheme and URI..................15
8.2. Host Resolution..15
8.3. Specification of Properties..............................16
8.4. Specification of Links...................................16
8.5. One URI, Multiple Applications...........................16
8.6. Registration of Link Relation Types and Properties.......17

9. Security Considerations.......................................17
9.1. Transport-Related Issues.................................17
9.2. User Privacy Considerations..............................17
9.3. Abuse Potential..18
9.4. Information Reliability..................................19

10. IANA Considerations..20
10.1. Well-Known URI..20
10.2. JSON Resource Descriptor (JRD) Media Type...............20
10.3. Registering Link Relation Types.........................21
10.4. Establishment of the WebFinger Properties Registry......22

10.4.1. The Registration Template..........................22
10.4.2. The Registration Procedures........................22

11. Acknowledgments..23
12. References...23

12.1. Normative References....................................23
12.2. Informative References..................................24

 Author's Addresses...25

1. Introduction

 WebFinger is used to discover information about people or other

 entities on the Internet that are identified by a URI [6] using
 standard Hypertext Transfer Protocol (HTTP) [2] methods over a secure
 transport [12]. A WebFinger resource returns a JavaScript Object

Jones, et al. Expires February 9, 2014 [Page 2]

Internet-Draft WebFinger August 2013

 Notation (JSON) [5] object describing the entity that is queried.
 The JSON object is referred to as the JSON Resource Descriptor (JRD).

 For a person, the kinds of information that might be discoverable via
 WebFinger include a personal profile address, identity service,
 telephone number, or preferred avatar. For other entities on the
 Internet, a WebFinger resource might return JRDs containing link
 relations [8] that enable a client to discover, for example, the that
 a printer can print in color on A4 paper, the physical location of a
 server, or other static information.

 Information returned via WebFinger might be for direct human
 consumption (e.g., looking up someone's phone number), or it might be
 used by systems to help carry out some operation (e.g., facilitate,
 with additional security mechanisms, logging into a web site by
 determining a user's identity service). The information is intended
 to be static in nature and, as such, WebFinger is not intended to be
 used to return dynamic information like the temperature of a CPU or
 the current toner level in a laser printer.

 The WebFinger protocol is designed to be used across many
 applications. Applications that wish to utilize WebFinger will need
 to specify properties, titles, and link relation types that are
 appropriate for the application. Further, applications will need to
 define the appropriate URI scheme to utilize for the query target.

 Use of WebFinger is illustrated in the examples in Section 3 and
 described more formally in Section 4.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

 WebFinger makes heavy use of "Link Relations". A Link Relation is an
 attribute-and-value pair in which the attribute identifies the type
 of relationship between the linked entity or resource and the
 information specified in the value. In Web Linking [4], the link
 relation is represented using an HTTP entity-header of "Link", where
 the "rel" attribute specifies the type of relationship and the "href"
 attribute specifies the information that is linked to the entity or
 resource. In WebFinger, the same concept is represented using a JSON
 array of "links" objects, where each member named "rel" specifies the
 type of relationship and each member named "href" specifies the
 information that is linked to the entity or resource. Note that
 WebFinger narrows the scope of a link relation beyond what is defined
 for Web Linking by stipulating that the value of the "rel" member

https://datatracker.ietf.org/doc/html/rfc2119

 needs to be either a single IANA-registered link relation type [8] or
 a URI [6].

Jones, et al. Expires February 9, 2014 [Page 3]

Internet-Draft WebFinger August 2013

 The use of URIs throughout this document refers to URIs following the
 syntax specified in Section 3 of RFC 3986 [6]. Relative URIs, having
 syntax following that of Section 4.2 or RFC 3986, are not used with
 WebFinger.

3. Example Uses of WebFinger

 This non-normative section shows a few sample uses of WebFinger.

3.1. Identity Provider Discovery for OpenID Connect

 Suppose Carol wishes to authenticate with a web site she visits using
 OpenID Connect [15]. She would provide the web site with her OpenID
 Connect identifier, say carol@example.com. The visited web site
 would perform a WebFinger query looking for the OpenID Connect
 Provider. Since the site is interested in only one particular link
 relation, the WebFinger resource might utilize the "rel" parameter as
 described in Section 4.3:

 GET /.well-known/webfinger?
 resource=acct%3Acarol%40example.com&
 rel=http%3A%2F%2Fopenid.net%2Fspecs%2Fconnect%2F1.0%2Fissuer
 HTTP/1.1
 Host: example.com

 The server might respond like this:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/jrd+json

 {
 "subject" : "acct:carol@example.com",
 "links" :
 [
 {
 "rel" : "http://openid.net/specs/connect/1.0/issuer",
 "href" : "https://openid.example.com"
 }
]
 }

 Since the "rel" parameter only serves to filter the link relations
 returned by the resource, other name/value pairs in the response,
 including any aliases or properties, would be returned. Also, since
 support for the "rel" parameter is not guaranteed, the client must
 not assume the "links" array will contain only the requested link
 relation.

https://datatracker.ietf.org/doc/html/rfc3986#section-3
https://datatracker.ietf.org/doc/html/rfc3986

Jones, et al. Expires February 9, 2014 [Page 4]

Internet-Draft WebFinger August 2013

3.2. Getting Author and Copyright Information for a Web Page

 Suppose an application would like to retrieve metadata information
 about a web page URL, such as author and copyright information. To
 do that, the application can utilize WebFinger to issue a query for
 the specific URL. Suppose the URL of interest is
 http://blog.example.com/article/id/314. The application would issue
 a query similar to the following:

 GET /.well-known/webfinger?
 resource=http%3A%2F%2Fblog.example.com%2Farticle%2Fid%2F314
 HTTP/1.1
 Host: blog.example.com

 The server might then reply in this way:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/jrd+json

 {
 "subject" : "http://blog.example.com/article/id/314",
 "aliases" :
 [
 "http://blog.example.com/cool_new_thing",
 "http://blog.example.com/steve/article/7"
],
 "properties" :
 {
 "http://blgx.example.net/ns/version" : "1.3",
 "http://blgx.example.net/ns/ext" : null
 },
 "links" :
 [
 {
 "rel" : "copyright",
 "href" : "http://www.example.com/copyright"
 },
 {
 "rel" : "author",
 "href" : "http://blog.example.com/author/steve",
 "titles" :
 {
 "en-us" : "The Magical World of Steve",
 "fr" : "Le Monde Magique de Steve"
 },
 "properties" :
 {

 "http://example.com/role" : "editor"
 }
 }

Jones, et al. Expires February 9, 2014 [Page 5]

Internet-Draft WebFinger August 2013

]
 }

 In the above example, we see that the server returned a list of
 aliases, properties, and links related to the subject URL. The links
 contain references to information for each link relation type. For
 the author link, the server provided a reference to the author's
 blog, along with a title for the blog in two languages. The server
 also returned a single property related to the author, indicating the
 author's role as editor of the blog.

 It is worth noting that, while the server returned just two links in
 the links array in this example, a server might return any number of
 links when queried.

4. WebFinger Protocol

 The WebFinger protocol is used to request information about an entity
 identified by a query target (a URI). The client can optionally
 specify one or more link relation types for which it would like to
 receive information.

 A WebFinger request is an HTTPS request to a WebFinger resource. A
 WebFinger resource is a well-known URI [3] using the HTTPS scheme,
 constructed along with the required query target and optional link
 relation types. WebFinger resources MUST NOT be served with any
 other URI scheme (such as HTTP).

 A WebFinger resource is always given a query target, which is another
 URI that identifies the entity whose information is sought. GET
 requests to a WebFinger resource convey the query target in the
 "resource" parameter in the WebFinger URI's query string; see Section

4.1 for details.

 The host to which a WebFinger query is issued is significant. If the
 query target contains a "host" portion (Section 3.2.2 of RFC 3986),
 then the host to which the WebFinger query is issued MUST be the same
 as the "host" portion of the query target, unless the client receives
 instructions through some out-of-band mechanism to send the query to
 another host. If the query target does not contain a "host" portion,
 then the client chooses a host to which it directs the query using
 additional information it has.

 The path component of a WebFinger URI MUST be the well-known path
 "/.well-known/webfinger". A WebFinger URI MUST contain a query
 component that encodes the query target and optional link relation
 types as specified in Section 4.1.

 The WebFinger resource returns a JSON Resource Descriptor (JRD) as

https://datatracker.ietf.org/doc/html/rfc3986#section-3.2.2

 the resource representation to convey information about an entity on
 the Internet. Also, the Cross-Origin Resource Sharing (CORS) [7]

Jones, et al. Expires February 9, 2014 [Page 6]

Internet-Draft WebFinger August 2013

 specification is utilized to facilitate queries made via a web
 browser.

4.1. Constructing the Query Component of the Request URI

 A WebFinger URI MUST contain a query component (see Section 3.4 of
 RFC 3986). The query component MUST contain a "resource" parameter
 and MAY contain one or more "rel" parameters. The "resource"
 parameter MUST contain the query target (URI) and the "rel"
 parameters MUST contain encoded link relation types according to the
 encoding described in this section.

 To construct the query component, the client performs the following
 steps. First, each parameter value is percent-encoded, as per

Section 2.1 of RFC 3986. The encoding is done to conform to the
 query production in Section 3.4 of that specification, with the
 addition that any instances of the "=" and "&" characters within the
 parameter values are also percent-encoded. Next, the client
 constructs a string to be placed in the query component by
 concatenating the name of the first parameter together with an equal
 sign ("=") and the percent-encoded parameter value. For any
 subsequent parameters, the client appends an ampersand ("&") to the
 string, the name of the next parameter, an equal sign, and the
 parameter value. The client MUST NOT insert any spaces while
 constructing the string. The order in which the client places each
 attribute-and-value pair within the query component does not matter
 in the interpretation of the query component.

4.2. Performing a WebFinger Query

 A WebFinger client issues a query using the GET method to the well-
 known [3] resource identified by the URI whose path component is
 "/.well-known/webfinger" and whose query component MUST include the
 "resource" parameter exactly once and set to the value of the URI for
 which information is being sought.

 If the "resource" parameter is absent or malformed, the WebFinger
 resource MUST indicate that the request is bad as per Section 10.4.1
 of RFC 2616 [2].

 If the "resource" parameter is a value for which the server has no
 information, the server MUST indicate that it was unable to match the
 request as per Section 10.4.5 of RFC 2616.

 A client MUST query the WebFinger resource using HTTPS only. If the
 client determines that the resource has an invalid certificate, the
 resource returns a 4xx or 5xx status code, or the HTTPS connection
 cannot be established for any reason, then the client MUST accept
 that the WebFinger query has failed and MUST NOT attempt to reissue

https://datatracker.ietf.org/doc/html/rfc3986#section-3.4
https://datatracker.ietf.org/doc/html/rfc3986#section-3.4
https://datatracker.ietf.org/doc/html/rfc3986#section-2.1
https://datatracker.ietf.org/doc/html/rfc2616#section-10.4.1
https://datatracker.ietf.org/doc/html/rfc2616#section-10.4.1
https://datatracker.ietf.org/doc/html/rfc2616#section-10.4.5

 the WebFinger request using HTTP over a non-secure connection.

Jones, et al. Expires February 9, 2014 [Page 7]

Internet-Draft WebFinger August 2013

 A WebFinger resource MUST return a JRD as the representation for the
 resource if the client requests no other supported format explicitly
 via the HTTP "Accept" header. The client MAY include the "Accept"
 header to indicate a desired representation; representations other
 than JRD might be defined in future specifications. The WebFinger
 resource MUST silently ignore any requested representations that it
 does not understand and support. The media type used for the JSON
 Resource Descriptor (JRD) is "application/jrd+json" (see Section

9.2).

 The properties, titles, and link relation types returned by the
 server in a JRD might be varied and numerous. For example, the
 server might return information about a person's blog, vCard [14],
 avatar, OpenID Connect provider, RSS or ATOM feed, and so forth in a
 reply. Likewise, if a server has no information to provide it might
 return a JRD with an empty links array or no links array.

 A WebFinger resource MAY redirect the client; if it does, the
 redirection MUST only be to an "https" URI and the client MUST
 perform certificate validation again when redirected.

 A WebFinger resource can include cache validators in a response to
 enable conditional requests by the client and/or expiration times as
 per Section 13 of RFC 2616.

4.3. The "rel" Parameter

 When issuing a request to a WebFinger resource, the client MAY
 utilize the "rel" parameter to request only a subset of the
 information that would otherwise be returned without the "rel"
 parameter. When the "rel" parameter is used and accepted, only the
 link relation types that match the link relation types provided via
 the "rel" parameter are included in the array of links returned in
 the JRD. If there are no matching link relation types defined for
 the resource, the "links" array in the JRD will either be absent or
 empty. All other information present in a resource descriptor
 remains present, even when "rel" is employed.

 The "rel" parameter MAY be included multiple times in order to
 request multiple link relation types.

 The purpose of the "rel" parameter is to return a subset of "link
 relation objects" (see Section 4.4.4) that would otherwise be
 returned in the resource descriptor. Use of the parameter might
 reduce processing requirements on either the client or server, and it
 might also reduce the bandwidth required to convey the partial
 resource descriptor, especially if there are numerous link relation
 values to convey for a given "resource" value. Note that if a client

https://datatracker.ietf.org/doc/html/rfc2616#section-13

 requests a particular link relation type for which the server has no
 information, the server MAY return a JRD with an empty links array or
 no links array.

Jones, et al. Expires February 9, 2014 [Page 8]

Internet-Draft WebFinger August 2013

 WebFinger resources SHOULD support the "rel" parameter. If the
 resource does not support the "rel" parameter, it MUST ignore the
 parameter and process the request as if no "rel" parameter values
 were present.

 The following example uses the "rel" parameter to request links for
 two link relation types:

 GET /.well-known/webfinger?
 resource=acct%3Abob%40example.com&
 rel=http%3A%2F%2Fwebfinger.example%2Frel%2Fprofile-page&
 rel=http://webfinger.example/rel/businesscard HTTP/1.1
 Host: example.com

 In this example, the client requests the link relations of type
 "http://webfinger.example/rel/profile-page" and
 "http://webfinger.example/rel/businesscard". The server then
 responds with a message like this:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/jrd+json

 {
 "subject" : "acct:bob@example.com",
 "aliases" :
 [
 "https://www.example.com/~bob/"
],
 "properties" :
 {
 "http://example.com/ns/role/" : "employee"
 },
 "links" :
 [
 {
 "rel" : "http://webfinger.example/rel/profile-page",
 "href" : "https://www.example.com/~bob/"
 },
 {
 "rel" : "http://webfinger.example/rel/businesscard",
 "href" : "https://www.example.com/~bob/bob.vcf"
 }
]
 }

 As you can see in the response, the resource representation contains
 only the links of the types requested by the client and for which the

 server had information, but the other parts of the JRD are still
 present. Note also in the above example that the links returned in
 the links array all use HTTPS, which is important if the data
 indirectly obtained via WebFinger needs to returned securely.

Jones, et al. Expires February 9, 2014 [Page 9]

Internet-Draft WebFinger August 2013

4.4. The JSON Resource Descriptor (JRD)

 The JSON Resource Descriptor (JRD), originally introduced in RFC 6415
 [16] and based on the Extensible Resource Descriptor (XRD) format
 [17], is a JSON object that comprises the following name/value pairs:

 o subject
 o aliases
 o properties
 o links

 The member "subject" is a name/value pair whose value is a string,
 "aliases" is an array of strings, "properties" is an object
 comprising name/value pairs whose values are strings, and "links" is
 an array of objects that contain link relation information.

 When processing a JRD, the client MUST ignore any unknown member and
 not treat the presence of an unknown member as an error.

 Below, each of these members of the JRD is described in more detail.

4.4.1. subject

 The value of the "subject" member is a URI that identifies the entity
 that the JRD describes.

 The "subject" value returned by a WebFinger resource MAY differ from
 the value of the "resource" parameter used in the client's request.
 This might happen, for example, when the subject's identity changes
 (e.g., a user moves his or her account to another service) or when
 the resource prefers to express URIs in canonical form.

 The "subject" member SHOULD be present in the JRD.

4.4.2. aliases

 The "aliases" array is an array of zero or more URI strings that
 identify the same entity as the "subject" URI.

 The "aliases" array is OPTIONAL in the JRD.

4.4.3. properties

 The "properties" object comprises zero or more name/value pairs whose
 names are URIs and whose values are strings or null. Properties are
 used to convey additional information about the subject of the JRD.
 As an example, consider this use of "properties":

 "properties" : { "http://webfinger.example/ns/name" : "Bob Smith" }

https://datatracker.ietf.org/doc/html/rfc6415

 The "properties" member is OPTIONAL in the JRD.

Jones, et al. Expires February 9, 2014 [Page 10]

Internet-Draft WebFinger August 2013

4.4.4. links

 The "links" array has any number of member objects, each of which
 represents a link [4]. Each of these link objects can have the
 following members:

 o rel
 o type
 o href
 o titles
 o properties

 The "rel" and "href" members are strings representing the link's
 relation type and the target URI, respectively. The context of the
 link is the "subject" (see Section 4.4.1).

 The "type" member is a string indicating what the media type of the
 result of dereferencing the link ought to be.

 The order of elements in the "links" array indicates an order of
 preference. Thus, if there are two or more link relations having the
 same "rel" value, the first link relation would indicate the user's
 preferred link.

 The "links" array is OPTIONAL in the JRD.

 Below, each of the members of the objects found in the "links" array
 is described in more detail. Each object in the "links" array,
 referred to as a "link relation object", is completely independent
 from any other object in the array; any requirement to include a
 given member in the link relation object refers only to that
 particular object.

4.4.4.1. rel

 The value of the "rel" member is a string that is either a URI or a
 registered relation type [8] (see RFC 5988 [4]). The value of the
 "rel" member MUST contain exactly one URI or registered relation
 type. The URI or registered relation type identifies the type of the
 link relation.

 The other members of the object have meaning only once the type of
 link relation is understood. In some instances, the link relation
 will have associated semantics enabling the client to query for other
 resources on the Internet. In other instances, the link relation
 will have associated semantics enabling the client to utilize the
 other members of the link relation object without fetching additional
 external resources.

https://datatracker.ietf.org/doc/html/rfc5988

 URI link relation type values are compared using the "Simple String
 Comparison" algorithm of section 6.2.1 of RFC 3986.

Jones, et al. Expires February 9, 2014 [Page 11]

https://datatracker.ietf.org/doc/html/rfc3986#section-6.2.1

Internet-Draft WebFinger August 2013

 The "rel" member MUST be present in the link relation object.

4.4.4.2. type

 The value of the "type" member is a string that indicates the media
 type [9] of the target resource (see RFC 6838 [10]).

 The "type" member is OPTIONAL in the link relation object.

4.4.4.3. href

 The value of the "href" member is a string that contains a URI
 pointing to the target resource.

 The "href" member is OPTIONAL in the link relation object.

4.4.4.4. titles

 The "titles" object comprises zero or more name/value pairs whose
 name is a language tag [11] or the string "und". The string is
 human-readable and describes the link relation. More than one title
 for the link relation MAY be provided for the benefit of users who
 utilize the link relation and, if used, a language identifier SHOULD
 be duly used as the name. If the language is unknown or unspecified,
 then the name is "und".

 A JRD SHOULD NOT include more than one title identified with the same
 language tag (or "und") within the link relation object. Meaning is
 undefined if a link relation object includes more than one title
 named with the same language tag (or "und"), though this MUST NOT be
 treated as an error. A client MAY select whichever title or titles
 it wishes to utilize.

 Here is an example of the titles object:

 "titles" :
 {
 "en-us" : "The Magical World of Steve",
 "fr" : "Le Monde Magique de Steve"
 }

 The "titles" member is OPTIONAL in the link relation object.

4.4.4.5. properties

 The "properties" object within the link relation object comprises
 zero or more name/value pairs whose names are URIs and whose values
 are strings or null. Properties are used to convey additional
 information about the link relation. As an example, consider this

https://datatracker.ietf.org/doc/html/rfc6838

 use of "properties":

 "properties" : { "http://webfinger.example/mail/port" : "993" }

Jones, et al. Expires February 9, 2014 [Page 12]

Internet-Draft WebFinger August 2013

 The "properties" member is OPTIONAL in the link relation object.

4.5. WebFinger and URIs

 WebFinger requests include a "resource" parameter (see Section 4.1)
 specifying the query target (URI) for which the client requests
 information. WebFinger is neutral regarding the scheme of such a
 URI: it could be an "acct" URI [18], an "http" or "https" URI, a
 "mailto" URI [19], or some other scheme.

5. Cross-Origin Resource Sharing (CORS)

 WebFinger resources might not be accessible from a web browser due to
 "Same-Origin" policies. The current best practice is to make
 resources available to browsers through Cross-Origin Resource Sharing
 (CORS) [7], and servers MUST include the Access-Control-Allow-Origin
 HTTP header in responses. Servers SHOULD support the least
 restrictive setting by allowing any domain access to the WebFinger
 resource:

 Access-Control-Allow-Origin: *

 There are cases where defaulting to the least restrictive setting is
 not appropriate, for example a server on an intranet that provides
 sensitive company information SHOULD NOT allow CORS requests from any
 domain, as that could allow leaking of that sensitive information. A
 server that wishes to restrict access to information from external
 entities SHOULD use a more restrictive Access-Control-Allow-Origin
 header.

6. Access Control

 As with all web resources, access to the WebFinger resource could
 require authentication. Further, failure to provide required
 credentials might result in the server forbidding access or providing
 a different response than had the client authenticated with the
 server.

 Likewise, a WebFinger resource MAY provide different responses to
 different clients based on other factors, such as whether the client
 is inside or outside a corporate network. As a concrete example, a
 query performed on the internal corporate network might return link
 relations to employee pictures, whereas link relations for employee
 pictures might not be provided to external entities.

 Further, link relations provided in a WebFinger resource
 representation might point to web resources that impose access
 restrictions. For example, the aforementioned corporate server may
 provide both internal and external entities with URIs to employee

 pictures, but further authentication might be required in order for
 the client to access the picture resources if the request comes from
 outside the corporate network.

Jones, et al. Expires February 9, 2014 [Page 13]

Internet-Draft WebFinger August 2013

 The decisions made with respect to what set of link relations a
 WebFinger resource provides to one client versus another and what
 resources require further authentication, as well as the specific
 authentication mechanisms employed, are outside the scope of this
 document.

7. Hosted WebFinger Services

 As with most services provided on the Internet, it is possible for a
 domain owner to utilize "hosted" WebFinger services. By way of
 example, a domain owner might control most aspects of their domain,
 but use a third-party hosting service for email. In the case of
 email, MX records identify mail servers for a domain. An MX record
 points to the mail server to which mail for the domain should be
 delivered. It does not matter to the sending mail server whether
 those MX records point to a server in the destination domain or a
 different domain.

 Likewise, a domain owner might utilize the services of a third party
 to provide WebFinger services on behalf of its users. Just as a
 domain owner was required to insert MX records into DNS to allow for
 hosted email serves, the domain owner is required to redirect HTTP
 queries to its domain to allow for hosted WebFinger services.

 When a query is issued to the WebFinger resource, the web server MUST
 return a response with a redirection status code that includes a
 Location header pointing to the location of the hosted WebFinger
 service URI. This WebFinger service URI does not need to point to
 the well-known WebFinger location on the hosting service provider
 server.

 As an example, assume that example.com's WebFinger services are
 hosted by wf.example.net. Suppose a client issues a query for
 acct:alice@example.com like this:

 GET /.well-known/webfinger?
 resource=acct%3Aalice%40example.com HTTP/1.1
 Host: example.com

 The server might respond with this:

 HTTP/1.1 307 Temporary Redirect
 Access-Control-Allow-Origin: *
 Location: https://wf.example.net/example.com/webfinger?
 resource=acct%3Aalice%40example.com

 The client can then follow the redirection, re-issuing the request to
 the URI provided in the Location header. Note that the server will
 include any required URI parameters in the Location header value,

 which could be different than the URI parameters the client
 originally used.

Jones, et al. Expires February 9, 2014 [Page 14]

Internet-Draft WebFinger August 2013

8. Definition of WebFinger Applications

 This specification details the protocol syntax used to query a domain
 for information about a URI, the syntax of the JSON Resource
 Descriptor (JRD) that is returned in response to that query, security
 requirements and considerations, hosted WebFinger services, various
 expected HTTP status codes, and so forth. However, this
 specification does not enumerate the various possible properties or
 link relation types that might be used in conjunction with WebFinger
 for a particular application, nor does it define what properties or
 link relation types one might expect to see in response to querying
 for a particular URI or URI scheme. Nonetheless, all of these
 unspecified elements are important in order to implement an
 interoperable application that utilizes the WebFinger protocol and
 MUST be specified in the relevant document(s) defining the particular
 application making use of the WebFinger protocol according to the
 procedures described in this section.

8.1. Specification of the URI Scheme and URI

 Any application that uses WebFinger MUST specify the URI scheme(s)
 and, to the extent appropriate, what forms the URI(s) might take.
 For example, when querying for information about a user's account at
 some domain, it might make sense to specify the use of the acct URI
 scheme [18]. When trying to obtain the copyright information for a
 web page, it makes sense to specify the use of the web page URI
 (either http or https).

 The examples in Sections 3.1 and 3.2 illustrate the use of different
 URI schemes with WebFinger applications. In the example in Section

3.1, WebFinger is used to retrieve information pertinent to OpenID
 Connect. In the example in Section 3.2, WebFinger is used to
 discover metadata information about a web page, including author and
 copyright information. Each of these applications of WebFinger needs
 to be fully specified to ensure interoperability.

8.2. Host Resolution

 As explained in Section 4, the host to which a WebFinger query is
 issued is significant. In general, WebFinger applications would
 adhere to the procedures described in Section 4 in order to properly
 direct a WebFinger query.

 However, some URI schemes do not have host portions and there might
 be some applications of WebFinger for which the host portion of a URI
 cannot or should not be utilized. In such instances, the application
 specification MUST clearly define the host resolution procedures,
 which might include provisioning a "default" host within the client

 to which queries are directed.

Jones, et al. Expires February 9, 2014 [Page 15]

Internet-Draft WebFinger August 2013

8.3. Specification of Properties

 WebFinger defines both subject-specific properties (i.e., properties
 related to the URI that for which information is queried) and link-
 specific properties. This section refers to subject-specific
 properties.

 Properties are name/value pairs whose names are URIs and whose values
 are strings or null. Applications that utilize subject-specific
 properties MUST define the URIs used in identifying those properties,
 along with valid property values.

 Consider this portion of the JRD found in the example in Section 3.2.

 "properties" :
 {
 "http://blgx.example.net/ns/version" : "1.3",
 "http://blgx.example.net/ns/ext" : null
 }

 Here, two properties are returned in the WebFinger response. Each of
 these would be defined in a WebFinger application specification.
 These two properties might be defined in the same WebFinger
 application specification or separately in different specifications.
 Since the latter is possible, it is important that WebFinger clients
 not assume that one property has any specific relationship with
 another property unless some relationship is explicitly defined in
 the particular WebFinger application specification.

8.4. Specification of Links

 The links returned in a WebFinger response are each comprised of
 several pieces of information, some of which are optional (refer to

Section 4.4.4). The WebFinger application specification MUST define
 each link and any values associated with a link, including the link
 relation type ("rel"), the expected media type ("type"), properties,
 and titles.

 The target URI to which the link refers (i.e., the "href"), if
 present, would not normally be specified in an application
 specification. However, the URI scheme or any special
 characteristics of the URI would usually be specified. If a
 particular link does not require an external reference, then all of
 the semantics related to the use of that link MUST be defined within
 the application specification. Such links might rely only on
 properties or titles in the link to convey meaning.

8.5. One URI, Multiple Applications

 It is important to be mindful of the fact that different WebFinger
 applications might specify the use of the same URI scheme and, in
 effect, the same URI for different purposes. That should not be a

Jones, et al. Expires February 9, 2014 [Page 16]

Internet-Draft WebFinger August 2013

 problem, since each of property identifier and link relation type
 would be uniquely defined for a specific application.

 It should be noted that when a client requests information about a
 particular URI and receives a response with a number of different
 property identifiers or link relation types that the response is
 providing information about the URI without any particular semantics.
 How the client interprets the information SHOULD be in accordance
 with the particular application specification or set of
 specifications the client implements.

 Any syntactically valid properties or links the client receives and
 that are not fully understood SHOULD be ignored and MUST NOT cause
 the client to report an error.

8.6. Registration of Link Relation Types and Properties

 Application specifications MAY define a simple token as a link
 relation type for a link. In that case, the link relation type MUST
 be registered with IANA as specified in Sections 10.3.

 Further, any defined properties MUST be registered with IANA as
 described in Section 10.4.

9. Security Considerations

9.1. Transport-Related Issues

 Since this specification utilizes Cross-Origin Resource Sharing
 (CORS) [7], all of the security considerations applicable to CORS are
 also applicable to this specification.

 The use of HTTPS is REQUIRED to ensure that information is not
 modified during transit. It should be appreciated that in
 environments where a web server is normally available, there exists
 the possibility that a compromised network might have its WebFinger
 resource operating on HTTPS replaced with one operating only over
 HTTP. As such, clients MUST NOT issue queries over a non-secure
 connection.

 Clients MUST verify that the certificate used on an HTTPS connection
 is valid (as defined in [12]) and accept a response only if the
 certificate is valid.

9.2. User Privacy Considerations

 Service providers and users should be aware that placing information
 on the Internet means that any user can access that information and
 WebFinger can be used to make it even easier to discover that

 information. While WebFinger can be an extremely useful tool for
 discovering one's avatar, blog, or other personal data, users should
 understand the risks, too.

Jones, et al. Expires February 9, 2014 [Page 17]

Internet-Draft WebFinger August 2013

 Systems or services that expose personal data via WebFinger MUST
 provide an interface by which users can select which data elements
 are exposed through the WebFinger interface. For example, social
 networking sites might allow users to mark certain data as "public"
 and then utilize that marking as a means of determining what
 information to expose via WebFinger. The information published via
 WebFinger would thus comprise only the information marked as public
 by the user. Further, the user has the ability to remove information
 from publication via WebFinger by removing this marking.

 WebFinger MUST NOT be used to provide any personal data unless
 publishing that data via WebFinger by the relevant service was
 explicitly authorized by the person whose information is being
 shared. Publishing one's personal data within an access-controlled
 or otherwise limited environment on the Internet does not equate to
 providing implicit authorization of further publication of that data
 via WebFinger.

 The privacy and security concerns with publishing personal data via
 WebFinger are worth emphasizing again with respect to personal data
 that might reveal a user's current context (e.g., the user's
 location). The power of WebFinger comes from providing a single
 place where others can find pointers to information about a person,
 but service providers and users should be mindful of the nature of
 that information shared and the fact that it might be available for
 the entire world to see. Sharing location information, for example,
 would potentially put a person in danger from any individual who
 might seek to inflict harm on that person.

 Users should be aware of how easily personal data one might publish
 can be used in unintended ways. In one study relevant to WebFinger-
 like services, Balduzzi et al. [20] took a large set of leaked email
 addresses and demonstrated a number of potential privacy concerns,
 including the ability to cross-correlate the same user's accounts
 over multiple social networks. The authors also describe potential
 mitigation strategies.

 The easy access to user information via WebFinger was a design goal
 of the protocol, not a limitation. If one wishes to limit access to
 information available via WebFinger, such as WebFinger resources for
 use inside a corporate network, the network administrator needs to
 take necessary measures to limit access from outside the network.
 Using standard methods for securing web resources, network
 administrators do have the ability to control access to resources
 that might return sensitive information. Further, a server can be
 employed in such a way as to require authentication and prevent
 disclosure of information to unauthorized entities.

9.3. Abuse Potential

 Service providers should be mindful of the potential for abuse using
 WebFinger.

Jones, et al. Expires February 9, 2014 [Page 18]

Internet-Draft WebFinger August 2013

 As one example, one might query a WebFinger server only to discover
 whether a given URI is valid or not. With such a query, the person
 may deduce that an email identifier is valid, for example. Such an
 approach could help spammers maintain a current list of known email
 addresses and to discover new ones.

 WebFinger could be used to associate a name or other personal data
 with an email address, allowing spammers to craft more convincing
 email messages. This might be of particular value in phishing
 attempts.

 It is RECOMMENDED that implementers of WebFinger server software take
 steps to mitigate abuse, including malicious over-use of the server
 and harvesting of user information. Although there is no mechanism
 that can guarantee that publicly-accessible WebFinger databases won't
 be harvested, rate-limiting by IP address will prevent or at least
 dramatically slow harvest by private individuals without access to
 botnets or other distributed systems. The reason these mitigation
 strategies are not mandatory is that the correct choice of mitigation
 strategy (if any) depends greatly on the context. Implementers
 should not construe this as meaning that they do not need to consider
 whether to use a mitigation strategy, and, if so, what strategy to
 use.

 WebFinger client developers should also be aware of potential abuse
 by spammers or those phishing for information about users. As an
 example, suppose a mail client was configured to automatically
 perform a WebFinger query on the sender of each received mail
 message. If a spammer sent an email using a unique identifier in the
 'From' header, then when the WF query was performed the spammer would
 be able to associate the request with a particular user's email
 address. This would provide information to the spammer, including
 the user's IP address, the fact the user just checked email, what
 kind of WebFinger client the user utilized, and so on. For this
 reason, it is strongly advised that clients not perform WebFinger
 queries unless authorized by the user to do so.

9.4. Information Reliability

 A WebFinger resource has no means of ensuring that information
 provided by a user is accurate. Likewise, neither the resource nor
 the client can be absolutely guaranteed that information has not been
 manipulated either at the server or along the communication path
 between the client and server. Use of HTTPS helps to address some
 concerns with manipulation of information along the communication
 path, but it clearly cannot address issues where the resource
 provided incorrect information, either due to being provided false
 information or due to malicious behavior on the part of the server

 administrator. As with any information service available on the
 Internet, users should be wary of information received from untrusted
 sources.

Jones, et al. Expires February 9, 2014 [Page 19]

Internet-Draft WebFinger August 2013

10. IANA Considerations

10.1. Well-Known URI

 This specification registers the "webfinger" well-known URI in the
 Well-Known URI Registry as defined by [3].

 URI suffix: webfinger

 Change controller: IETF

 Specification document(s): RFC XXXX

 Related information: The query to the WebFinger resource will
 include one or more parameters in the query string; see Section 4.1
 of RFCXXXX. Resources at this location are able to return a JSON
 Resource Descriptor (JRD) as described in Section 4.4 of RFCXXXX.

 [RFC EDITOR: Please replace "XXXX" references in this section and the
 following section with the number for this RFC.]

10.2. JSON Resource Descriptor (JRD) Media Type

 This specification registers the media type application/jrd+json for
 use with WebFinger in accordance with media type registration
 procedures defined in [10].

 Type name: application

 Subtype name: jrd+json

 Required parameters: N/A

 Optional parameters: N/A

 In particular, because RFC 4627 already defines the character
 encoding for JSON, no "charset" parameter is used.

 Encoding considerations: See RFC 6839, section 3.1.

 Security considerations:

 The JSON Resource Descriptor (JRD) is a JavaScript Object Notation
 (JSON) object. It is a text format that must be parsed by entities
 that wish to utilize the format. Depending on the language and
 mechanism used to parse a JSON object, it is possible for an
 attacker to inject behavior into a running program. Therefore,
 care must be taken to properly parse a received JRD to ensure that
 only a valid JSON object is present and that no JavaScript or other

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc6839#section-3.1

 code is injected or executed unexpectedly.

 Interoperability considerations:

Jones, et al. Expires February 9, 2014 [Page 20]

Internet-Draft WebFinger August 2013

 This media type is a JavaScript Object Notation (JSON) object and
 can be consumed by any software application that can consume JSON
 objects.

 Published specification: RFC XXXX

 Applications that use this media type:

 The JSON Resource Descriptor (JRD) is used by the WebFinger
 protocol (RFC XXXX) to enable the exchange of information between a
 client and a WebFinger resource over HTTPS.

 Fragment identifier considerations:

 The syntax and semantics of fragment identifiers SHOULD be as
 specified for "application/json". (At publication of this
 document, there is no fragment identification syntax defined for
 "application/json".)

 Additional information:

 Deprecated alias names for this type: N/A

 Magic number(s): N/A

 File extension(s): jrd

 Macintosh file type code(s): N/A

 Person & email address to contact for further information:

 Paul E. Jones <paulej@packetizer.com>

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Paul E. Jones <paulej@packetizer.com>

 Change controller:

 IESG has change control over this registration.

 Provisional registration? (standards tree only): N/A

10.3. Registering Link Relation Types

RFC 5988 established a Link Relation Type Registry that is re-used by
 WebFinger applications.

https://datatracker.ietf.org/doc/html/rfc5988

 Link relation types used by WebFinger applications are registered in
 the Link Relations Type Registry as per the procedures of Section

Jones, et al. Expires February 9, 2014 [Page 21]

Internet-Draft WebFinger August 2013

 6.2.1 of RFC 5988. The "Notes" entry for the registration SHOULD
 indicate if property values associated with the link relation type
 are registered in the WebFinger Properties registry with a link to
 the registry.

10.4. Establishment of the WebFinger Properties Registry

 WebFinger utilizes URIs to identify properties of a subject or link
 and the associated values (see Section 8.3 and Section 8.6). This
 specification establishes a new "WebFinger Properties" registry to
 record property identifiers.

10.4.1. The Registration Template

 The registration template for WebFinger properties is:

 o Property URI:

 o Link Type:

 o Description:

 o Reference:

 o Notes: [optional]

 The "Property URI" must be a URI that identifies the property being
 registered.

 The "Link Type" contains the name of a Link Relation Type with which
 this property identifier is used. If the property is a subject-
 specific property, then this field is specified as "N/A".

 The "Description" is intended to explaining the purpose of the
 property.

 The "Reference" field points to the specification that defines the
 registered property.

 The optional "Notes" field is for conveying any useful information
 about the property that might be of value to implementers.

10.4.2. The Registration Procedures

 The IETF has created a mailing list, webfinger@ietf.org, which can be
 used for public discussion of the WebFinger protocol and any
 applications that use it. Prior to registration of a WebFinger
 property, discussion on the mailing list is strongly encouraged. The
 IESG has appointed Designated Experts who will monitor the

https://datatracker.ietf.org/doc/html/rfc5988

 webfinger@ietf.org mailing list and review registrations.

Jones, et al. Expires February 9, 2014 [Page 22]

Internet-Draft WebFinger August 2013

 A WebFinger property is registered with a Specification Required (see
RFC 5226 [13]) after a two-week review period by the Designated

 Expert(s). However, the Designated Expert(s) may approve a
 registration prior to publication of a specification once the
 Designated Expert(s) are satisfied that such a specification will be
 published. In evaluating registration requests, the Designated
 Expert(s) should make an effort to avoid registering two different
 properties that have the same meaning. Where a proposed property is
 similar to an already-defined property, Designated Expert(s) should
 insist that enough text be included in the description or notes
 section of the template to sufficiently differentiate the new
 property from an existing one.

 The registration procedure begins when a completed registration
 template (as defined above) sent to webfinger@ietf.org and
 iana@iana.org. IANA will track the review process and communicate
 the results to the registrant. The WebFinger mailing list provides
 an opportunity for community discussion and input, and the Designated
 Expert(s) may use that input to inform their review. Denials should
 include an explanation and, if applicable, suggestions as to how to
 make the request successful if re-submitted.

 The specification registering the WebFinger property MUST include the
 completed registration template shown above. Once the registration
 procedure concludes successfully, IANA creates or modifies the
 corresponding record in the "WebFinger Properties" registry.

11. Acknowledgments

 This document has benefited from extensive discussion and review of
 many of the members of the APPSAWG working group. The authors would
 like to especially acknowledge the invaluable input of Eran Hammer-
 Lahav, Blaine Cook, Brad Fitzpatrick, Laurent-Walter Goix, Joe
 Clarke, Michael B. Jones, Peter Saint-Andre, Dick Hardt, Tim Bray,
 James Snell, Melvin Carvalho, Evan Prodromou, Mark Nottingham, Barry
 Leiba, Elf Pavlik, Bjoern Hoehrmann, Subramanian Moonesamy, Joe
 Gregorio, John Bradley, Pete Resnick and others that we have
 undoubtedly, but inadvertently, missed. Special thanks go to the
 chairs of APPSAWG, especially Salvatore Loreto for his assistance in
 shepherding this document.

12. References

12.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

 Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

Jones, et al. Expires February 9, 2014 [Page 23]

https://datatracker.ietf.org/doc/html/rfc2616

Internet-Draft WebFinger August 2013

 [3] Nottingham, M., Hammer-Lahav, E., "Defining Well-Known Uniform
 Resource Identifiers (URIs)", RFC 5785, April 2010.

 [4] Nottingham, M., "Web Linking", RFC 5988, October 2010.

 [5] Crockford, D., "The application/json Media Type for JavaScript
 Object Notation (JSON)", RFC 4627, July 2006.

 [6] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986,
 January 2005.

 [7] Van Kesteren, A., "Cross-Origin Resource Sharing", W3C CORS
http://www.w3.org/TR/cors/, July 2010.

 [8] IANA, "Link Relations", http://www.iana.org/assignments/link-
relations/.

 [9] IANA, "MIME Media Types",
http://www.iana.org/assignments/media-types/index.html.

 [10] Freed, N., Klensin, J., Hansen, T., "Media Type Specifications
 and Registration Procedures", RFC 6838, January 2013.

 [11] Phillips, A., Davis, M., "Tags for Identifying Languages", RFC
5646, January 2009.

 [12] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [13] Narten, T. and H. Alvestrand, "Guidelines for Writing an, IANA
 Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.

12.2. Informative References

 [14] Perreault, S., "vCard Format Specification", RFC 6350, August
 2011.

 [15] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B.,
 Mortimore, C., and E. Jay, "OpenID Connect Messages 1.0",
 January 2013, http://openid.net/specs/openid-connect-messages-

1_0.html.

 [16] Hammer-Lahav, E. and Cook, B., "Web Host Metadata", RFC 6415,
 October 2011.

 [17] Hammer-Lahav, E. and W. Norris, "Extensible Resource Descriptor
 (XRD) Version 1.0", http://docs.oasis-

open.org/xri/xrd/v1.0/xrd-1.0.html.

https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc3986
http://www.w3.org/TR/cors/
http://www.iana.org/assignments/link-relations/
http://www.iana.org/assignments/link-relations/
http://www.iana.org/assignments/media-types/index.html
https://datatracker.ietf.org/doc/html/rfc6838
https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc6350
http://openid.net/specs/openid-connect-messages-1_0.html
http://openid.net/specs/openid-connect-messages-1_0.html
https://datatracker.ietf.org/doc/html/rfc6415
http://docs.oasis-open.org/xri/xrd/v1.0/xrd-1.0.html
http://docs.oasis-open.org/xri/xrd/v1.0/xrd-1.0.html

 [18] Saint-Andre, P., "The 'acct' URI Scheme", draft-ietf-appsawg-
acct-uri-06, July 2013.

Jones, et al. Expires February 9, 2014 [Page 24]

https://datatracker.ietf.org/doc/html/draft-ietf-appsawg-acct-uri-06
https://datatracker.ietf.org/doc/html/draft-ietf-appsawg-acct-uri-06

Internet-Draft WebFinger August 2013

 [19] Duerst, M., Masinter, L., and J. Zawinski, "The 'mailto' URI
 Scheme", RFC 6068, October 2010.

 [20] Balduzzi, Marco, et al., "Abusing social networks for automated
 user profiling", Recent Advances in Intrusion Detection,
 Springer Berlin Heidelberg, 2010,

https://www.eurecom.fr/en/publication/3042/download/rs-publi-
3042_1.pdf.

Author's Addresses

 Paul E. Jones
 Cisco Systems, Inc.
 7025 Kit Creek Rd.
 Research Triangle Park, NC 27709
 USA

 Phone: +1 919 476 2048
 Email: paulej@packetizer.com
 IM: xmpp:paulej@packetizer.com

 Gonzalo Salgueiro
 Cisco Systems, Inc.
 7025 Kit Creek Rd.
 Research Triangle Park, NC 27709
 USA

 Phone: +1 919 392 3266
 Email: gsalguei@cisco.com
 IM: xmpp:gsalguei@cisco.com

 Joseph Smarr
 Google

 Email: jsmarr@google.com

https://datatracker.ietf.org/doc/html/rfc6068
https://www.eurecom.fr/en/publication/3042/download/rs-publi-3042_1.pdf
https://www.eurecom.fr/en/publication/3042/download/rs-publi-3042_1.pdf

Jones, et al. Expires February 9, 2014 [Page 25]

