
AQM K. Nichols
Internet-Draft Pollere, Inc.
Intended status: Informational V. Jacobson
Expires: December 4, 2016 A. McGregor, ed.
 J. Iyengar, ed.
 Google
 June 2, 2016

Controlled Delay Active Queue Management
draft-ietf-aqm-codel-04

Abstract

 This document describes a general framework called CoDel (Controlled
 Delay) [CODEL2012] that controls bufferbloat-generated excess delay
 in modern networking environments. CoDel consists of an estimator, a
 setpoint, and a control loop. It requires no configuration in normal
 Internet deployments. CoDel comprises some major technical
 innovations and has been made available as open source so that the
 framework can be applied by the community to a range of problems. It
 has been implemented in Linux (and available in the Linux
 distribution) and deployed in some networks at the consumer edge. In
 addition, the framework has been successfully applied in other ways.

 Note: Code Components extracted from this document must include the
 license as included with the code in Section 5.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 4, 2016.

Nichols, et al. Expires December 4, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft CoDel June 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions used in this document 5
3. Building Blocks of Queue Management 5
3.1. Estimator . 6
3.2. Setpoint . 8
3.3. Control Loop . 9

 4. Putting it together: queue management for the network edge . 12
4.1. Overview of CoDel AQM 12
4.2. Non-starvation . 13
4.3. Using the interval 13
4.4. The target setpoint 14
4.5. Use with multiple queues 15

 4.6. Use of stochastic bins or sub-queues to improve
 performance . 15

4.7. Setting up CoDel AQM 16
5. Annotated Pseudo-code for CoDel AQM 17
5.1. Data Types . 18
5.2. Per-queue state (codel_queue_t instance variables) . . . 19
5.3. Constants . 19
5.4. Enqueue routine . 19
5.5. Dequeue routine . 19
5.6. Helper routines . 21
5.7. Implementation considerations 22

6. Adapting and applying CoDel's building blocks 23
6.1. Validations and available code 23
6.2. CoDel in the datacenter 24

7. Security Considerations 25
8. IANA Considerations . 25
9. Conclusions . 25
10. Acknowledgments . 25
11. References . 25

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Nichols, et al. Expires December 4, 2016 [Page 2]

Internet-Draft CoDel June 2016

11.1. Normative References 25
11.2. Informative References 25

 Authors' Addresses . 27

1. Introduction

 The need for queue management has been evident for decades. The
 "persistently full buffer" problem has been discussed in the IETF
 community since the early 80's [RFC896]. The IRTF's End-to-End
 Working Group called for the deployment of active queue management
 (AQM) to solve the problem in 1998 [RFC2309]. Despite this
 awareness, the problem has only gotten worse as Moore's Law growth in
 memory density fueled an exponential increase in buffer pool size.
 Efforts to deploy AQM have been frustrated by difficult configuration
 and negative impact on network utilization. This problem, recently
 christened "bufferbloat", [TSV2011] [BB2011] has become increasingly
 important throughout the Internet but particularly at the consumer
 edge. Recently, queue management has become more critical due to
 increased consumer use of the Internet, mixing large video
 transactions with time-critical VoIP and gaming. Gettys [TSV2011,
 BB2011] has been instrumental in publicizing the problem and the
 measurement work [CHARB2007, NETAL2010] and coining the term
 bufferbloat. Large content distributors such as Google have observed
 that bufferbloat is ubiquitous and adversely affects performance for
 many users. The solution is an effective AQM that remediates
 bufferbloat at a bottleneck while "doing no harm" at hops where
 buffers are not bloated.

 The development and deployment of effective active queue management
 has been hampered by persistent misconceptions about the cause and
 meaning of packet queues in network buffers. Network buffers exist
 to absorb the packet bursts that occur naturally in statistically
 multiplexed networks. Buffers helpfully absorb the queues created by
 such reasonable packet network behavior as short-term mismatches in
 traffic arrival and departure rates that arise from upstream resource
 contention, transport conversation startup transients and/or changes
 in the number of conversations sharing a link. Unfortunately, other
 less useful network behaviors can cause queues to fill and their
 effects are not nearly as benign. Discussion of these issues and the
 reason why the solution is not simply smaller buffers can be found in
 [RFC2309], [VANQ2006], [REDL1998], and [CODEL2012]. To understand
 queue management, it is critical to understand the difference between
 the necessary, useful "good" queue, and the counterproductive "bad"
 queue.

 Many approaches to active queue management (AQM) have been developed
 over the past two decades but none has been widely deployed due to
 performance problems. When designed with the wrong conceptual model

https://datatracker.ietf.org/doc/html/rfc896
https://datatracker.ietf.org/doc/html/rfc2309
https://datatracker.ietf.org/doc/html/rfc2309

Nichols, et al. Expires December 4, 2016 [Page 3]

Internet-Draft CoDel June 2016

 for queues, AQMs have limited operational range, require a lot of
 configuration tweaking, and frequently impair rather than improve
 performance. Today, the demands on an effective AQM are even
 greater: many network devices must work across a range of bandwidths,
 either due to link variations or due to the mobility of the device.
 The CoDel approach is designed to meet the following goals:

 o parameterless for normal operation - has no knobs for operators,
 users, or implementers to adjust

 o treat "good queue" and "bad queue" differently, that is, keep
 delay low while permitting necessary bursts of traffic

 o control delay while insensitive (or nearly so) to round trip
 delays, link rates and traffic loads; this goal is to "do no harm"
 to network traffic while controlling delay

 o adapt to dynamically changing link rates with no negative impact
 on utilization

 o simple and efficient implementation (can easily span the spectrum
 from low-end, linux-based access points and home routers up to
 high-end commercial router silicon)

 CoDel has five major innovations that distinguish it from prior AQMs:
 use of local queue minimum to track congestion ("bad queue"), use of
 an efficient single state variable representation of that tracked
 statistic, use of packet sojourn time as the observed datum, rather
 than packets, bytes, or rates, use of mathematically determined
 setpoint derived from maximizing the network power metric, and a
 modern state space controller.

 CoDel configures itself based on a round-trip time metric which can
 be set to 100ms for the normal, terrestrial Internet. With no
 changes to parameters, we have found CoDel to work across a wide
 range of conditions, with varying links and the full range of
 terrestrial round trip times.

 Since CoDel was first published [CODEL2012], a number of implementers
 have been using and adapting it with promising results. Much of this
 work is collected at http://www.bufferbloat.net/projects/codel .
 CoDel has been implemented in Linux very efficiently and should lend
 itself to silicon implementation. CoDel is well-adapted for use in
 multiple queued devices and has been used by Eric Dumazet with
 multiple queues in a sophisticated queue management approach,
 fq_codel [FQ-CODEL-ID].

http://www.bufferbloat.net/projects/codel

Nichols, et al. Expires December 4, 2016 [Page 4]

Internet-Draft CoDel June 2016

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying [RFC2119] significance.

3. Building Blocks of Queue Management

 Two decades of work on queue management failed to yield an approach
 that could be widely deployed in the Internet. Careful tuning for
 particular usages has enabled queue management techniques to "kind
 of" work; that is, they have been able to decrease queueing delays,
 but only at the undue cost of link utilization and/or fairness. At
 the heart of queue management is the notion of "good queue" and "bad
 queue" and the search for ways to get rid of the bad queue (which
 only adds delay) while preserving the good queue (which provides for
 good utilization). This section explains queueing, both good and
 bad, and covers the innovative CoDel building blocks that can be used
 to manage packet buffers to keep their queues in the "good" range.

 Packet queues form in buffers facing bottleneck links, i.e., where
 the line rate goes from high to low or where many links converge.
 The well-known bandwidth-delay product (sometimes called "pipe size")
 is the bottleneck's bandwidth multiplied by the sender-receiver-
 sender round-trip delay, and is the amount of data that has to be in
 transit between two hosts in order to run the bottleneck link at 100%
 utilization. To explore how queues can form, consider a long-lived
 TCP connection with a 25 packet window sending through a connection
 with a bandwidth-delay product of 20 packets. After an initial burst
 of packets the connection will settle into a five packet (+/-1)
 standing queue; this standing queue size is determined by the
 mismatch between the window size and the pipe size, and is unrelated
 to the connection's sending rate. The connection has 25 packets in
 flight at all times, but only 20 packets arrive at the destination
 over a round trip time. If the TCP connection has a 30 packet
 window, the queue will be ten packets with no change in sending rate.
 Similarly, if the window is 20 packets, there will be no queue but
 the sending rate is the same. Nothing can be inferred about the
 sending rate from the queue size, and any queue other than transient
 bursts only creates delays in the network. The sender needs to
 reduce the number of packets in flight rather than sending rate.

 In the above example, the five packet standing queue can be seen to
 contribute nothing but delay to the connection, and thus is clearly

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Nichols, et al. Expires December 4, 2016 [Page 5]

Internet-Draft CoDel June 2016

 "bad queue". If, in our example, there is a single bottleneck link
 and it is much slower than the link that feeds it (say, a high-speed
 ethernet link into a limited DSL uplink) a 20 packet buffer at the
 bottleneck might be necessary to temporarily hold the 20 packets in
 flight to keep the bottleneck link's utilization high. The burst of
 packets should drain completely (to 0 or 1 packets) within a round
 trip time and this transient queue is "good queue" because it allows
 the connection to keep the 20 packets in flight and for the
 bottleneck link to be fully utilized. In terms of the delay
 experienced, the "good queue" goes away in about a round trip time,
 while "bad queue" hangs around for longer, causing delays.

 Effective queue management detects "bad queue" while ignoring "good
 queue" and takes action to get rid of the bad queue when it is
 detected. The goal is a queue controller that accomplishes this
 objective. To control a queue, we need three basic components

 o Estimator - figure out what we've got

 o Setpoint - know what what we want

 o Control loop - if what we've got isn't what we want, we need a way
 to move it there

3.1. Estimator

 The estimator both observes the queue and detects when good queue
 turns to bad queue and vice versa. CoDel has two innovations in its
 estimator: what is observed as an indicator of queue and how the
 observations are used to detect good/bad queue.

 Queue length has been widely used as an observed indicator of
 congestion and is frequently conflated with sending rate. Use of
 queue length as a metric is sensitive to how and when the length is
 observed. A high speed arrival link to a buffer serviced at a much
 lower rate can rapidly build up a queue that might disperse
 completely or down to a single packet before a round trip time has
 elapsed. If the queue length is monitored at packet arrival (as in
 original RED) or departure time, every packet will see a queue with
 one possible exception. If the queue length itself is time sampled
 (as recommended in [REDL1998], a truer picture of the queue's
 occupancy can be gained at the expense of considerable implementation
 complexity.

 The use of queue length is further complicated in networks that are
 subject to both short and long term changes in available link rate
 (as in WiFi). Link rate drops can result in a spike in queue length
 that should be ignored unless it persists. It is not the queue

Nichols, et al. Expires December 4, 2016 [Page 6]

Internet-Draft CoDel June 2016

 length that should be controlled but the amount of excess delay
 packets experience due to a persistent or standing queue, which means
 that the packet sojourn time in the buffer is exactly what we want to
 track. Tracking the packet sojourn times in the buffer observes the
 actual delay experienced by each packet. Sojourn time allows queue
 management to be independent of link rate, gives superior performance
 to use of buffer size, and is directly related to user-visible
 performance. It works regardless of line rate changes or link
 sharing by multiple queues (which the individual queues may
 experience as changing rates).

 Consider a link shared by two queues with different priorities.
 Packets that arrive at the high priority queue are sent as soon as
 the link is available while packets in the other queue have to wait
 until the high priority queue is empty (i.e., a strict priority
 scheduler). The number of packets in the high priority queue might
 be large but the queue is emptied quickly and the amount of time each
 packet spends enqueued (the sojourn time) is not large. The other
 queue might have a smaller number of packets, but packet sojourn
 times will include the waiting time for the high priority packets to
 be sent. This makes the sojourn time a good sample of the congestion
 that each separate queue is experiencing. This example also shows
 how the metric of sojourn time is independent of the number of queues
 or the service discipline used, and is instead indicative of
 congestion seen by the individual queues.

 How can observed sojourn time be used to separate good queue from bad
 queue? Although averages, especially of queue length, have
 previously been widely used as an indicator of bad queue, their
 efficacy is questionable. Consider the burst that disperses every
 round trip time. The average queue will be one-half the burst size,
 though this might vary depending on when the average is computed and
 the timing of arrivals. The average queue sojourn time would be one-
 half the time it takes to clear the burst. The average then would
 indicate a persistent queue where there is none. Instead of averages
 we recommend tracking the minimum sojourn time, then, if there is one
 packet that has a zero sojourn time then there is no persistent
 queue. The value of the minimum in detecting persistent queue is
 apparent when looking at graphs of queue delay.

 A persistent queue can be detected by tracking the (local) minimum
 queue delay packets experience. To ensure that this minimum value
 does not become stale, it has to have been experienced recently, i.e.
 during an appropriate past time interval. This interval is the
 maximum amount of time a minimum value is considered to be in effect,
 and is related to the amount of time it takes for the largest
 expected burst to drain. Conservatively, this interval should be at
 least a round trip time to avoid falsely detecting a persistent queue

Nichols, et al. Expires December 4, 2016 [Page 7]

Internet-Draft CoDel June 2016

 and not a lot more than a round trip time to avoid delay in detecting
 the persistent queue. This suggests that the appropriate interval
 value is the maximum round-trip time of all the connections sharing
 the buffer.

 (The following key insight makes computation of the local minimum
 efficient: It is sufficient to keep a single state variable of how
 long the minimum has been above or below a target value rather than
 retaining all the local values to compute the minimum, leading to
 both storage and computational savings. We use this insight in the
 pseudo-code for CoDel later in the draft.)

 These two innovations, use of sojourn time as observed values and the
 local minimum as the statistic to monitor queue congestion are key to
 CoDel's estimator building block. The local minimum sojourn time
 provides an accurate and robust measure of standing queue and has an
 efficient implementation. In addition, use of the minimum sojourn
 time has important advantages in implementation. The minimum packet
 sojourn can only be decreased when a packet is dequeued which means
 that all the work of CoDel can take place when packets are dequeued
 for transmission and that no locks are needed in the implementation.
 The minimum is the only statistic with this property.

 A more detailed explanation with many pictures can be found in
http://pollere.net/Pdfdocs/QrantJul06.pdf and
http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-4.pdf .

3.2. Setpoint

 Now that we have a robust way of detecting standing queue, we need a
 setpoint that tells us when to act. If the controller is set to take
 action as soon as the estimator has a non-zero value, the average
 drop rate will be maximized, which minimizes TCP goodput
 [MACTCP1997]. Also, this policy results in no backlog over time (no
 persistent queue), which negates much of the value of having a
 buffer, since it maximizes the bottleneck link bandwidth lost due to
 normal stochastic variation in packet interarrival time. We want a
 setpoint that maximizes utilization while minimizing delay. Early in
 the history of packet networking, Kleinrock developed the analytic
 machinery to do this using a quantity he called 'power', which is the
 ratio of a normalized throughput to a normalized delay [KLEIN81].

 It is straightforward to derive an analytic expression for the
 average goodput of a TCP conversation at a given round-trip time r
 and setpoint f (where f is expressed as a fraction of r). Reno TCP,
 for example, yields:

 goodput = r (3 + 6f - f^2) / (4 (1+f))

http://pollere.net/Pdfdocs/QrantJul06.pdf
http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-4.pdf

Nichols, et al. Expires December 4, 2016 [Page 8]

Internet-Draft CoDel June 2016

 Since the peak queue delay is simply f r, power is solely a function
 of f since the r's in the numerator and denominator cancel:

 power is proportional to (1 + 2f - 1/3 f^2) / (1 + f)^2

 As Kleinrock observed, the best operating point, in terms of
 bandwidth / delay tradeoff, is the peak power point, since points off
 the peak represent a higher cost (in delay) per unit of bandwidth.
 The power vs. f curve for any AIMD TCP is monotone decreasing. But
 the curve is very flat for f < 0.1 followed by a increasing curvature
 with a knee around f = 0.2, then a steep, almost linear fall off
 [TSV84]. Since the previous equation showed that goodput is monotone
 increasing with f, the best operating point is near the right edge of
 the flat top since that represents the highest goodput achievable for
 a negligible increase in delay. However, since the r in the model is
 a conservative upper bound, a target of 0.1r runs the risk of pushing
 shorter RTT connections over the knee and giving them higher delay
 for no significant goodput increase. Generally, a more conservative
 target of 0.05r offers a good utilization vs. delay tradeoff while
 giving enough headroom to work well with a large variation in real
 RTT.

 As the above analysis shows, a very small standing queue gives close
 to 100% utilization of the bottleneck link. While this result was
 for Reno TCP, the derivation uses only properties that must hold for
 any 'TCP friendly' transport. We have verified by both analysis and
 simulation that this result holds for Reno, Cubic, and
 Westwood[TSV84]. This results in a particularly simple form for the
 setpoint: the ideal range for the permitted standing queue is between
 5% and 10% of the TCP connection's RTT. Thus target is simply 5% of
 the interval of section 3.1.

3.3. Control Loop

Section 3.1 describes a simple, reliable way to measure bad
 (persistent) queue. Section 3.2 shows that TCP congestion control
 dynamics gives rise to a setpoint for this measure that's a provably
 good balance between enhancing throughput and minimizing delay, and
 that this setpoint is a constant fraction of the same 'largest
 average RTT' interval used to distinguish persistent from transient
 queue. The only remaining building block needed for a basic AQM is a
 'control loop' algorithm to effectively drive the queueing system
 from any 'persistent queue above target' state to a state where the
 persistent queue is below target.

 Control theory provides a wealth of approaches to the design of
 control loops. Most of classical control theory deals with the
 control of linear, time-invariant, single-input-single-output (SISO)

Nichols, et al. Expires December 4, 2016 [Page 9]

Internet-Draft CoDel June 2016

 systems. Control loops for these systems generally come from a (well
 understood) class known as Proportional-Integral-Derivative (PID)
 controllers. Unfortunately, a queue is not a linear system and an
 AQM operates at the point of maximum non-linearity (where the output
 link bandwidth saturates so increased demand creates delay rather
 than higher utilization). Output queues are also not time-invariant
 since traffic is generally a mix of connections which start and stop
 at arbitrary times and which can have radically different behaviors
 ranging from "open loop" UDP audio/video to "closed-loop" congestion-
 avoiding TCP. Finally, the constantly changing mix of connections
 (which can't be converted to a single 'lumped parameter' model
 because of their transfer function differences) makes the system
 multi-input-multi-output (MIMO), not SISO.

 Since queueing systems match none of the prerequisites for a
 classical controller, a modern state-space controller is a better
 approach with states 'no persistent queue' and 'has persistent
 queue'. Since Internet traffic mixtures change rapidly and
 unpredictably, a noise and error tolerant adaptation algorithm like
 Stochastic Gradient is a good choice. Since there's essentially no
 information in the amount of persistent queue [TSV84], the adaptation
 should be driven by how long it has persisted.

 Consider the two extremes of traffic behavior, a single open-loop UDP
 video stream and a single, long-lived TCP bulk data transfer. If the
 average bandwidth of the UDP video stream is greater that the
 bottleneck link rate, the link's queue will grow and the controller
 will eventually enter 'has persistent queue' state and start dropping
 packets. Since the video stream is open loop, its arrival rate is
 unaffected by drops so the queue will persist until the average drop
 rate is greater than the output bandwidth deficit (= average arrival
 rate - average departure rate) so the job of the adaptation algorithm
 is to discover this rate. For this example, the adaptation could
 consist of simply estimating the arrival and departure rates then
 dropping at a rate slightly greater than their difference. But this
 class of algorithm won't work at all for the bulk data TCP stream.
 TCP runs in closed-loop flow balance [TSV84] so its arrival rate is
 almost always exactly equal to the departure rate - the queue isn't
 the result of a rate imbalance but rather a mismatch between the TCP
 sender's window and the source-destination-source round-trip path
 capacity (i.e., the connection's bandwidth-delay product). The
 sender's TCP congestion avoidance algorithm will slowly increase the
 send window (one packet per round-trip-time) [RFC2581] which will
 eventually cause the bottleneck to enter 'has persistent queue'
 state. But, since the average input rate is the same as the average
 output rate, the rate deficit estimation that gave the correct drop
 rate for the video stream would compute a drop rate of zero for the
 TCP stream. However, if the output link drops one packet as it

https://datatracker.ietf.org/doc/html/rfc2581

Nichols, et al. Expires December 4, 2016 [Page 10]

Internet-Draft CoDel June 2016

 enters 'has persistent queue' state, when the sender discovers this
 (via TCP's normal packet loss repair mechanisms) it will reduce its
 window by a factor of two [RFC2581] so, one round-trip-time after the
 drop, the persistent queue will go away.

 If there were N TCP conversations sharing the bottleneck, the
 controller would have to drop O(N) packets, one from each
 conversation, to make all the conversations reduce their window to
 get rid of the persistent queue. If the traffic mix consists of
 short (<= bandwidth-delay product) conversations, the aggregate
 behavior becomes more like the open-loop video example since each
 conversation is likely to have already sent all its packets by the
 time it learns about a drop so each drop has negligible effect on
 subsequent traffic.

 The controller does not know the number, duration, or kind of
 conversations creating its queue, so it has to learn the appropriate
 response. Since single drops can have a large effect if the degree
 of multiplexing (the number of active conversations) is small,
 dropping at too high a rate is likely to have a catastrophic effect
 on throughput. Dropping at a low rate (< 1 packet per round-trip-
 time) then increasing the drop rate slowly until the persistent queue
 goes below target is unlikely to overdrop and is guaranteed to
 eventually dissipate the persistent queue. This stochastic gradient
 learning procedure is the core of CoDel's control loop (the gradient
 exists because a drop always reduces the (instantaneous) queue so an
 increasing drop rate always moves the system "down" toward no
 persistent queue, regardless of traffic mix).

 The "next drop time" is decreased in inverse proportion to the square
 root of the number of drops since the dropping state was entered,
 using the well-known nonlinear relationship of drop rate to
 throughput to get a linear change in throughput [REDL1998],
 [MACTCP1997].

 Since the best rate to start dropping is at slightly more than one
 packet per RTT, the controller's initial drop rate can be directly
 derived from the estimator's interval, defined in section 3.1. When
 the minimum sojourn time first crosses the target and CoDel drops a
 packet, the earliest the controller could see the effect of the drop
 is the round trip time (interval) + the local queue wait time
 (target). If the next drop happens any earlier than this time
 (interval + target), CoDel will overdrop. In practice, the local
 queue waiting time tends to vary, so making the initial drop spacing
 (i.e., the time to the second drop) be exactly the minimum possible
 also leads to overdropping. Analysis of simulation and real-world
 measured data shows that the 75th percentile magnitude of this
 variation is less than the target, and so the initial drop spacing

https://datatracker.ietf.org/doc/html/rfc2581

Nichols, et al. Expires December 4, 2016 [Page 11]

Internet-Draft CoDel June 2016

 SHOULD be set to the estimator's interval plus twice the target
 (i.e., initial drop spacing = 1.1 * interval) to ensure that the
 controller has accounted for acceptable congestion delays.

 Use of the minimum statistic lets the controller be placed in the
 dequeue routine with the estimator. This means that the control
 signal (the drop) can be sent at the first sign of bad queue (as
 indicated by the sojourn time) and that the controller can stop
 acting as soon as the sojourn time falls below the setpoint.
 Dropping at dequeue has both implementation and control advantages.

4. Putting it together: queue management for the network edge

 CoDel was initially designed as a bufferbloat solution for the
 consumer network edge. The CoDel building blocks are able to adapt
 to different or time-varying link rates, to be easily used with
 multiple queues, to have excellent utilization with low delay, and to
 have a simple and efficient implementation. The only setting CoDel
 requires is its interval value, and as 100ms satisfies that
 definition for normal Internet usage, CoDel can be parameter-free for
 consumer use. CoDel was released to the open source community, where
 it has been widely promulgated and adapted to many problems. CoDel's
 efficient implementation and lack of configuration are unique
 features and make it suitable to manage modern packet buffers. For
 more background and results on CoDel, see [CODEL2012] and

http://pollere.net/CoDel.html .

4.1. Overview of CoDel AQM

 To ensure that link utilization is not adversely affected, CoDel's
 estimator sets its target to the setpoint that optimizes power and
 CoDel's controller does not drop packets when the drop would leave
 the queue empty or with fewer than a maximum transmission unit (MTU)
 worth of bytes in the buffer. Section 3.2 showed that the ideal
 setpoint is 5-10% of the connection RTT. In the open terrestrial-
 based Internet, especially at the consumer edge, we expect most
 unbloated RTTs to have a ceiling of 100ms [CHARB2007]. Using this
 RTT gives a minimum target of 5ms and the interval for tracking the
 minimum is 100ms. In practice, uncongested links will see sojourn
 times below target more often than once per RTT, so the estimator is
 not overly sensitive to the value of the interval.

 When the estimator finds a persistent delay above target, the
 controller enters the drop state where a packet is dropped and the
 next drop time is set. As discussed in section 3.3, the initial next
 drop spacing is intended to be long enough to give the endpoints time
 to react to the single drop so SHOULD be set to a value of 1.1 times
 the interval. If the estimator's output falls below target, the

http://pollere.net/CoDel.html

Nichols, et al. Expires December 4, 2016 [Page 12]

Internet-Draft CoDel June 2016

 controller cancels the next drop and exits the drop state. (The
 controller is more sensitive than the estimator to an overly short
 interval, since an unnecessary drop would occur and lower link
 utilization.) If next drop time is reached while the controller is
 still in drop state, the packet being dequeued is dropped and the
 next drop time is recalculated. Additional logic prevents re-
 entering the dropping state too soon after exiting it and resumes the
 dropping state at a recent control level, if one exists.

 Note that CoDel AQM only enters its dropping state when the local
 minimum sojourn delay has exceeded target for a time interval long
 enough for normal bursts to dissipate, ensuring that a burst of
 packets that fits in the pipe will not be dropped.

4.2. Non-starvation

 CoDel's goals are to control delay with little or no impact on link
 utilization and to be deployed on a wide range of link bandwidths,
 including variable-rate links, without reconfiguration. To keep from
 making drops when it would starve the output link, CoDel makes
 another check before dropping to see if at least an MTU worth of
 bytes remains in the buffer. If not, the packet SHOULD NOT be
 dropped and, therefore, CoDel exits the drop state. The MTU size can
 be set adaptively to the largest packet seen so far or can be read
 from the driver.

4.3. Using the interval

 The interval is chosen to give endpoints time to react to a drop
 without being so long that response times suffer. CoDel's estimator,
 setpoint, and control loop all use the interval. Understanding their
 derivation shows that CoDel is the most sensitive to the value of
 interval for single long-lived TCPs with a decreased sensitivity for
 traffic mixes. This is fortunate as RTTs vary across connections and
 are not known apriori. The best policy is to use an interval
 slightly larger than the RTT seen by most of the connections using a
 link, a value that can be determined as the largest RTT seen if the
 value is not an outlier (use of a 95-99th percentile value should
 work). In practice, this value is not known or measured (though see

Section 6.2 for an application where interval is measured. An
 interval setting of 100ms works well across a range of RTTs from 10ms
 to 1 second (excellent performance is achieved in the range from 10
 ms to 300ms). For devices intended for the normal terrestrial
 Internet, interval SHOULD have a value of 100ms. This will only
 cause overdropping where a long-lived TCP has an RTT longer than
 100ms and there is little or no mixing with other connections through
 the link.

Nichols, et al. Expires December 4, 2016 [Page 13]

Internet-Draft CoDel June 2016

 Some confusion concerns the roles of the target setpoint and the
 minimum-tracking interval. In particular, some experimenters believe
 the value of target needs to be increased when the lower layers have
 a bursty nature where packets are transmitted for short periods
 interspersed with idle periods where the link is waiting for
 permission to send. CoDel's estimator will "see" the effective
 transmission rate over an interval and increasing target will just
 lead to longer queue delays. On the other hand, where a significant
 additional delay is added to the intrinsic round trip time of most or
 all packets due to the waiting time for a transmission, it is
 necessary to increase interval by that extra delay. That is, target
 SHOULD NOT be adjusted but interval MAY need to be adjusted. For
 more on this (and pictures) see http://pollere.net/Pdfdocs/

noteburstymacs.pdf

4.4. The target setpoint

 The target is the maximum acceptable persistent queue delay above
 which CoDel is dropping or preparing to drop and below which CoDel
 will not drop. The calculations of section 3.2 showed that the best
 setpoint is 5-10% of the RTT, with the low end of 5% preferred. We
 used simulation to explore the impact when TCPs are mixed with other
 traffic and with connections of different RTTs. Accordingly, we
 experimented extensively with values in the 5-10% of RTT range and,
 overall, used target values between 1 and 20 milliseconds for RTTs
 from 30 to 500ms and link bandwidths of 64Kbps to 100Mbps to
 experimentally explore the setpoint that gives consistently high
 utilization while controlling delay across a range of bandwidths,
 RTTs, and traffic loads. Our results were notably consistent with
 the mathematics of section 3.2. Below a target of 5ms, utilization
 suffers for some conditions and traffic loads, and above 5ms we saw
 very little or no improvement in utilization. Thus target SHOULD be
 set to 5ms for normal Internet traffic.

 A congested (but not overloaded) CoDel link with traffic composed
 solely or primarily of long-lived TCP flows will have a median delay
 through the link will tend to the target. For bursty traffic loads
 and for overloaded conditions (where it is difficult or impossible
 for all the arriving flows to be accommodated) the median queues will
 be longer than target.

 The non-starvation drop inhibit feature dominates where the link rate
 becomes very small. By inhibiting drops when there is less than an
 (outbound link) MTU worth of bytes in the buffer, CoDel adapts to
 very low bandwidth links. This is shown in [CODEL2012] and
 interested parties should see the discussion of results there.
 Unpublished studies were carried out down to 64Kbps. The drop
 inhibit condition can be expanded to include a test to retain

http://pollere.net/Pdfdocs/noteburstymacs.pdf
http://pollere.net/Pdfdocs/noteburstymacs.pdf

Nichols, et al. Expires December 4, 2016 [Page 14]

Internet-Draft CoDel June 2016

 sufficient bytes or packets to fill an allocation in a request-and-
 grant MAC.

 Sojourn times must remain above the target for an entire interval in
 order to enter the drop state. Any packet with a sojourn time less
 than the target will reset the time that the queue was last below the
 target. Since Internet traffic has very dynamic characteristics, the
 actual sojourn delay experienced by packets varies greatly and is
 often less than the target unless the overload is excessive. When a
 link is not overloaded, it is not a bottleneck and packet sojourn
 times will be small or nonexistent. In the usual case, there are
 only one or two places along a path where packets will encounter a
 bottleneck (usually at the edge), so the total amount of queueing
 delay experienced by a packet should be less than 10ms even under
 extremely congested conditions. This net delay is substantially
 lower than common current queueing delays on the Internet that grow
 to orders of seconds [NETAL2010, CHARB2007].

4.5. Use with multiple queues

 Unlike other AQMs, CoDel is easily adapted to multiple queue systems.
 With other approaches there is always a question of how to account
 for the fact that each queue receives less than the full link rate
 over time and usually sees a varying rate over time. This is exactly
 what CoDel excels at: using a packet's sojourn time in the buffer
 completely circumvents this problem. In a multiple-queue setting, a
 separate CoDel algorithm runs on each queue, but each CoDel instance
 uses the packet sojourn time the same way a single-queue CoDel does.
 Just as a single-queue CoDel adapts to changing link bandwidths
 [CODEL2012], so does a multiple-queue CoDel system. As an
 optimization to avoid queueing more than necessary, when testing for
 queue occupancy before dropping, the total occupancy of all queues
 sharing the same output link should be used. This property of CoDel
 has been exploited in fq_codel, briefly discussed in the next section
 and in more detail in [FQ-CODEL-ID].

4.6. Use of stochastic bins or sub-queues to improve performance

 Shortly after the release of the CoDel pseudocode, Eric Dumazet
 created fq_codel, applying CoDel to each bin, or queue, used with
 stochastic fair queueing. (To understand further, see [SFQ1990] or
 the linux sfq documentation at http://linux.die.net/man/8/tc-sfq .)
 fq_codel hashes on the packet header fields to determine a specific
 bin, or sub-queue, for each five-tuple flow, and runs CoDel on each
 bin or sub-queue thus creating a well-mixed output flow and obviating
 issues of reverse path flows (including "ack compression").
 Dumazet's code is part of the CeroWrt project code at the
 bufferbloat.net's web site and described in [FQ-CODEL-ID]. Andrew

http://linux.die.net/man/8/tc-sfq

Nichols, et al. Expires December 4, 2016 [Page 15]

Internet-Draft CoDel June 2016

 McGregor has implemented a version of fq_codel for ns-3, which is
 being prepared for inclusion at http://code.nsnam.org/tomh/ns-3-dev-

aqm/ .

 We have also experimented with a similar multi-queue approach by
 creating an ns-2 simulator code module, sfqcodel, which uses
 Stochastic Fair Queueing (SFQ) to isolate flows into bins, each
 running CoDel. This setup has provided excellent results: median
 queues remain small across a range of traffic patterns that includes
 bidirectional file transfers (that is, the same traffic sent in both
 directions on a link), constant bit-rate VoIP-like flows, and
 emulated web traffic and utilizations are consistently better than
 single queue CoDel, generally very close to 100%. Our code, intended
 for simulation experiments, is available at http://pollere.net/

CoDel.html and being integrated into the ns-2 distribution.

 A number of open issues should be studied. In particular, if the
 number of different queues or bins is too large, the scheduling will
 be the dominant factor, not the AQM; it is NOT the case that more
 bins are always better. In our simulations, we have found good
 behavior across mixed traffic types with smaller numbers of queues,
 8-16 for a 5Mbps link. This configuration appears to give the best
 behavior for voice, web browsing and file transfers where increased
 numbers of bins seems to favor file transfers at the expense of the
 other traffic. Our work has been very preliminary and we encourage
 others to take this up and to explore analytic modeling. It would be
 instructive to see the effects of different numbers of bins on a
 range of traffic models, something like an updated version of
 [BMPFQ].

 Implementers SHOULD use the fq_codel multiple queue approach if
 possible as it deals with many problems beyond the reach of an AQM on
 a single queue.

4.7. Setting up CoDel AQM

 CoDel is set for use in devices in the open Internet. An interval of
 100ms is used, target is set to 5% of interval, and the initial drop
 spacing is also set to interval. These settings have been chosen so
 that a device, such as a small WiFi router, can be sold without the
 need for any values to be made adjustable, yielding a parameterless
 implementation. In addition, CoDel is useful in environments with
 significantly different characteristics from the normal Internet, for
 example, in switches used as a cluster interconnect within a data
 center. Since cluster traffic is entirely internal to the data
 center, round trip latencies are low (typically <100us) but
 bandwidths are high (1-40Gbps) so it's relatively easy for the
 aggregation phase of a distributed computation (e.g., the Reduce part

http://code.nsnam.org/tomh/ns-3-dev-aqm/
http://code.nsnam.org/tomh/ns-3-dev-aqm/
http://pollere.net/CoDel.html
http://pollere.net/CoDel.html

Nichols, et al. Expires December 4, 2016 [Page 16]

Internet-Draft CoDel June 2016

 of a Map/Reduce) to persistently fill then overflow the modest per-
 port buffering available in most high speed switches. A CoDel
 configured for this environment (target and interval in the
 microsecond rather than millisecond range) can minimize drops (or ECN
 marks) while keeping throughput high and latency low.

 Devices destined for these environments MAY use a different interval,
 where suitable. If appropriate analysis indicates, the target MAY be
 set to some other value in the 5-10% of interval and the initial drop
 spacing MAY be set to a value of 1.0 to 1.2 times the interval. But
 these settings will cause problems such as overdropping and low
 throughput if used on the open Internet, so devices that allow CoDel
 to be configured SHOULD default to Internet-appropriate values given
 in this document.

5. Annotated Pseudo-code for CoDel AQM

 What follows is the CoDel algorithm in C++-like pseudo-code. Since
 CoDel adds relatively little new code to a basic tail-drop fifo-
 queue, we have attempted to highlight just these additions by
 presenting CoDel as a sub-class of a basic fifo-queue base class.
 The reference code is included to aid implementers who wish to apply
 CoDel to queue management as described here or to adapt its
 principles to other applications.

 Implementors are strongly encouraged to also look at Eric Dumazet's
 Linux kernel version of CoDel - a well-written, well tested, real-
 world, C-based implementation. As of this writing, it is at

https://github.com/torvalds/linux/blob/master/net/sched/sch_codel.c.

 The following pseudo-code is open-source with a dual BSD/GPL license:

 Codel - The Controlled-Delay Active Queue Management algorithm.
 Copyright (C) 2011-2014 Kathleen Nichols <nichols@pollere.com>.
 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:

 o Redistributions of source code must retain the above copyright
 notice, this list of conditions, and the following disclaimer,
 without modification.

 o Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.

https://github.com/torvalds/linux/blob/master/net/sched/sch_codel.c

Nichols, et al. Expires December 4, 2016 [Page 17]

Internet-Draft CoDel June 2016

 o The names of the authors may not be used to endorse or promote
 products derived from this software without specific prior written
 permission.

 Alternatively, provided that this notice is retained in full, this
 software may be distributed under the terms of the GNU General Public
 License ("GPL") version 2, in which case the provisions of the GPL
 apply INSTEAD OF those given above.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

5.1. Data Types

 time_t is an integer time value in units convenient for the system.
 Resolution to at least a millisecond is required and better
 resolution is useful up to the minimum possible packet time on the
 output link; 64- or 32-bit widths are acceptable but with 32 bits the
 resolution should be no finer than 2^{-16} to leave enough dynamic
 range to represent a wide range of queue waiting times. Narrower
 widths also have implementation issues due to overflow (wrapping) and
 underflow (limit cycles because of truncation to zero) that are not
 addressed in this pseudocode. The code presented here uses 0 as a
 flag value to indicate "no time set."

 packet_t* is a pointer to a packet descriptor. We assume it has a
 tstamp field capable of holding a time_t and that field is available
 for use by CoDel (it will be set by the enqueue routine and used by
 the dequeue routine).

 queue_t is a base class for queue objects (the parent class for
 codel_queue_t objects). We assume it has enqueue() and dequeue()
 methods that can be implemented in child classes. We assume it has a
 bytes() method that returns the current queue size in bytes. This
 can be an approximate value. The method is invoked in the dequeue()
 method but shouldn't require a lock with the enqueue() method.

 flag_t is a Boolean.

Nichols, et al. Expires December 4, 2016 [Page 18]

Internet-Draft CoDel June 2016

5.2. Per-queue state (codel_queue_t instance variables)

 time_t first_above_time_ = 0; // Time to declare sojourn time above
 // target
 time_t drop_next_ = 0; // Time to drop next packet
 uint32_t count_ = 0; // Packets dropped in dropping state
 uint32_t lastcount_ = 0; // Count from previous iteration
 flag_t dropping_ = false; // Set to true if in drop state

5.3. Constants

 time_t target = MS2TIME(5); // 5ms target queue delay
 time_t interval = MS2TIME(100); // 100ms sliding-minimum window
 u_int maxpacket = 512; // Maximum packet size in bytes
 // (should use interface MTU)

5.4. Enqueue routine

 All the work of CoDel is done in the dequeue routine. The only CoDel
 addition to enqueue is putting the current time in the packet's
 tstamp field so that the dequeue routine can compute the packet's
 sojourn time.

 void codel_queue_t::enqueue(packet_t* pkt)
 {
 pkt->timestamp() = clock();
 queue_t::enqueue(pkt);
 }

5.5. Dequeue routine

 This is the heart of CoDel. There are two branches based on whether
 the controller is in dropping state: (i) if the controller is in
 dropping state (that is, the minimum packet sojourn time is greater
 than target) then the controller checks if it is time to leave
 dropping state or schedules the next drop(s); or (ii) if the
 controller is not in dropping state, it determines if it should enter
 dropping state and do the initial drop.

 packet_t* CoDelQueue::dequeue()
 {
 time_t now = clock();
 dodequeue_result r = dodequeue(now);
 uint32_t delta;

 if (dropping_) {
 if (! r.ok_to_drop) {
 // sojourn time below target - leave dropping state

Nichols, et al. Expires December 4, 2016 [Page 19]

Internet-Draft CoDel June 2016

 dropping_ = false;
 }
 // Time for the next drop. Drop current packet and dequeue
 // next. If the dequeue doesn't take us out of dropping
 // state, schedule the next drop. A large backlog might
 // result in drop rates so high that the next drop should
 // happen now, hence the 'while' loop.
 while (now >= drop_next_ && dropping_) {
 drop(r.p);
 ++count_;
 r = dodequeue(now);
 if (! r.ok_to_drop) {
 // leave dropping state
 dropping_ = false;
 } else {
 // schedule the next drop.
 drop_next_ = control_law(drop_next_, count_);
 }
 }
 // If we get here we're not in dropping state. The 'ok_to_drop'
 // return from dodequeue means that the sojourn time has been
 // above 'target' for 'interval' so enter dropping state.
 } else if (r.ok_to_drop) {
 drop(r.p);
 r = dodequeue(now);
 dropping_ = true;

 // If min went above target close to when it last went
 // below, assume that the drop rate that controlled the
 // queue on the last cycle is a good starting point to
 // control it now. ('drop_next' will be at most 'interval'
 // later than the time of the last drop so 'now - drop_next'
 // is a good approximation of the time from the last drop
 // until now.) Implementations vary slightly here; this is
 // the Linux version, which is more widely deployed and
 // tested.
 delta = count_ - lastcount_;
 count_ = (delta > 1 && now - drop_next_ < 16*interval_)?
 delta : 1;
 drop_next_ = control_law(now, count_);
 lastcount_ = count_;
 }
 return (r.p);
 }

Nichols, et al. Expires December 4, 2016 [Page 20]

Internet-Draft CoDel June 2016

5.6. Helper routines

 Since the degree of multiplexing and nature of the traffic sources is
 unknown, CoDel acts as a closed-loop servo system that gradually
 increases the frequency of dropping until the queue is controlled
 (sojourn time goes below target). This is the control law that
 governs the servo. It has this form because of the sqrt(p)
 dependence of TCP throughput on drop probability. Note that for
 embedded systems or kernel implementation, the inverse sqrt can be
 computed efficiently using only integer multiplication.

 time_t codel_queue_t::control_law(time_t t, uint32_t count)
 {
 return t + interval / sqrt(count);
 }

 Next is a helper routine the does the actual packet dequeue and
 tracks whether the sojourn time is above or below target and, if
 above, if it has remained above continuously for at least interval.
 It returns two values: a Boolean indicating if it is OK to drop
 (sojourn time above target for at least interval), and the packet
 dequeued.

Nichols, et al. Expires December 4, 2016 [Page 21]

Internet-Draft CoDel June 2016

 typedef struct {
 packet_t* p;
 flag_t ok_to_drop;
 } dodequeue_result;

 dodequeue_result codel_queue_t::dodequeue(time_t now)
 {
 dodequeue_result r = { queue_t::dequeue(), false };
 if (r.p == NULL) {
 // queue is empty - we can't be above target
 first_above_time_ = 0;
 return r;
 }

 // To span a large range of bandwidths, CoDel runs two
 // different AQMs in parallel. One is sojourn-time-based
 // and takes effect when the time to send an MTU-sized
 // packet is less than target. The 1st term of the "if"
 // below does this. The other is backlog-based and takes
 // effect when the time to send an MTU-sized packet is >=
 // target. The goal here is to keep the output link
 // utilization high by never allowing the queue to get
 // smaller than the amount that arrives in a typical
 // interarrival time (MTU-sized packets arriving spaced
 // by the amount of time it takes to send such a packet on
 // the bottleneck). The 2nd term of the "if" does this.
 time_t sojourn_time = now - r.p->tstamp;
 if (sojourn_time_ < target_ || bytes() <= maxpacket_) {
 // went below - stay below for at least interval
 first_above_time_ = 0;
 } else {
 if (first_above_time_ == 0) {
 // just went above from below. if still above at
 // first_above_time, will say it's ok to drop.
 first_above_time_ = now + interval_;
 } else if (now >= first_above_time_) {
 r.ok_to_drop = true;
 }
 }
 return r;
 }

5.7. Implementation considerations

 Since CoDel requires relatively little per-queue state and no direct
 communication or state sharing between the enqueue and dequeue
 routines, it is relatively simple to add CoDel to almost any packet
 processing pipeline, including ASIC- or NPU-based forwarding engines.

Nichols, et al. Expires December 4, 2016 [Page 22]

Internet-Draft CoDel June 2016

 One issue to consider is dodequeue()'s use of a 'bytes()' function to
 determine the current queue size in bytes. This value does not need
 to be exact. If the enqueue part of the pipeline keeps a running
 count of the total number of bytes it has put into the queue and the
 dequeue routine keeps a running count of the total bytes it has
 removed from the queue, 'bytes()' is simply the difference between
 these two counters (32-bit counters should be adequate.) Enqueue has
 to update its counter once per packet queued but it does not matter
 when (before, during or after the packet has been added to the
 queue). The worst that can happen is a slight, transient,
 underestimate of the queue size which might cause a drop to be
 briefly deferred.

6. Adapting and applying CoDel's building blocks

 CoDel has been implemented and tested in a range of environments.

6.1. Validations and available code

 An experiment by Stanford graduate students successfully used Linux
 CoDel to duplicate our published simulation work on CoDel's ability
 to adapt to drastic link rate changes. This experiment can be found
 at http://reproducingnetworkresearch.wordpress.com/2012/06/06/

solving-bufferbloat-the-codel-way/ .

 Our ns-2 simulations are available at http://pollere.net/CoDel.html .
 CableLabs has funded some additions to the simulator sfqcodel code,
 which have been made public. The basic algorithm of CoDel remains
 unchanged, but we continue to experiment with drop interval setting
 when resuming the drop state, inhibiting or canceling drop state when
 few bytes are in the queue, and other details. Our approach to
 changes is to only make them if we are convinced they do more good
 than harm, both operationally and in the implementation. With this
 in mind, some of these issues may continue to evolve as we get more
 deployment and as the building blocks are applied to a wider range of
 problems.

 CoDel is available in ns-2 version 2.35 and later.

 Andrew McGregor has an ns-3 implementation of both CoDel and
 fq_codel. CoDel is available in ns-3 version 3.21 and later at

https://www.nsnam.org/ . At the time of this writing, the ns-3
 implementation of fq_codel is available at

https://www.nsnam.org/wiki/GSOC2014Bufferbloat .

 CoDel is available in Linux. Eric Dumazet implemented CoDel in the
 Linux kernel.

http://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/
http://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/
http://pollere.net/CoDel.html
https://www.nsnam.org/
https://www.nsnam.org/wiki/GSOC2014Bufferbloat

Nichols, et al. Expires December 4, 2016 [Page 23]

Internet-Draft CoDel June 2016

 Dave Taht has been instrumental in the integration and distribution
 of CoDel as a bufferbloat solution
 (http://www.bufferbloat.net/projects/codel).

6.2. CoDel in the datacenter

 Nandita Dukkipati's team at Google was quick to realize that the
 CoDel building blocks could be applied to bufferbloat problems in
 datacenter servers, not just to Internet routers. The Linux CoDel
 queueing discipline (qdisc) was adapted in three ways to tackle this
 bufferbloat problem.

 1. The default CoDel action was modified to be a direct feedback
 from qdisc to the TCP layer at dequeue. The direct feedback
 simply reduces TCP's congestion window just as congestion control
 would do in the event of drop. The scheme falls back to ECN
 marking or packet drop if the TCP socket lock could not be
 acquired at dequeue.

 2. Being located in the server makes it possible to monitor the
 actual RTT to use as CoDel's interval rather than making a "best
 guess" of RTT. The CoDel interval is dynamically adjusted by
 using the maximum TCP round-trip time (RTT) of those connections
 sharing the same Qdisc/bucket. In particular, there is a history
 entry of the maximum RTT experienced over the last second. As a
 packet is dequeued, the RTT estimate is accessed from its TCP
 socket. If the estimate is larger than the current CoDel
 interval, the CoDel interval is immediately refreshed to the new
 value. If the CoDel interval is not refreshed for over a second,
 it is decreased it to the history entry and the process is
 repeated. The use of the dynamic TCP RTT estimate lets interval
 adapt to the actual maximum value currently seen and thus lets
 the controller space its drop intervals appropriately.

 3. Since the mathematics of computing the setpoint are invariant, a
 target of 5% of the RTT or CoDel interval was used here.

 Non-data packets were not dropped as these are typically small and
 sometimes critical control packets. Being located on the server,
 there is no concern with misbehaving users as there would be on the
 public Internet.

 In several data center workload benchmarks, which are typically
 bursty, CoDel reduced the queueing latencies at the qdisc, and
 thereby improved the mean and 99th-percentile latencies from several
 tens of milliseconds to less than one millisecond. The minimum
 tracking part of the CoDel framework proved useful in disambiguating
 "good" queue versus "bad" queue, particularly helpful in controlling

http://www.bufferbloat.net/projects/codel

Nichols, et al. Expires December 4, 2016 [Page 24]

Internet-Draft CoDel June 2016

 qdisc buffers that are inherently bursty because of TCP Segmentation
 Offload (TSO).

7. Security Considerations

 This document describes an active queue management algorithm for
 implementation in networked devices. There are no specific security
 exposures associated with CoDel.

8. IANA Considerations

 This document does not require actions by IANA.

9. Conclusions

 CoDel provides very general, efficient, parameterless building blocks
 for queue management that can be applied to single or multiple queues
 in a variety of data networking scenarios. It is a critical tool in
 solving bufferbloat. CoDel's settings MAY be modified for other
 special-purpose networking applications. We encourage
 experimentation, improvement, and rigorous testing.

 On-going projects are creating a deployable CoDel in Linux routers
 and experimenting with applying CoDel to stochastic queueing with
 promising results.

10. Acknowledgments

 The authors wish to thank Jim Gettys for the constructive nagging
 that made us get the work "out there" before we thought it was ready.
 We also want to thank Dave Taht, Eric Dumazet, and the open source
 community for showing the value of getting it "out there" and for
 making it real. We also wish to thank Nandita Dukkipati for
 contributions to Section 6 and for comments which helped to
 substantially improve this draft.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key Words for use in RFCs to Indicate
 Requirement Levels", March 1997.

11.2. Informative References

Nichols, et al. Expires December 4, 2016 [Page 25]

Internet-Draft CoDel June 2016

 [FQ-CODEL-ID]
 Hoeiland-Joergensen, T., McKenney, P.,
 dave.taht@gmail.com, d., Gettys, J., and E. Dumazet,
 "FlowQueue-Codel", draft-ietf-aqm-fq-codel-03 (work in
 progress), November 2015.

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC0896] Nagle, J., "Congestion control in IP/TCP internetworks",
RFC 896, January 1984.

 [RFC2309] Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering,
 S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G.,
 Partridge, C., Peterson, L., Ramakrishnan, K., Shenker,
 S., Wroclawski, J., and L. Zhang, "Recommendations on
 Queue Management and Congestion Avoidance in the
 Internet", RFC 2309, April 1998.

 [TSV2011] Gettys, J., "Bufferbloat: Dark Buffers in the Internet",
 IETF 80 presentation to Transport Area Open Meeting,
 March, 2011,
 <http://www.ietf.org/proceedings/80/tsvarea.html>.

 [BB2011] Gettys, J. and K. Nichols, "Bufferbloat: Dark Buffers in
 the Internet", Communications of the ACM 9(11) pp. 57-65.

 [BMPFQ] Suter, B., "Buffer Management Schemes for Supporting TCP
 in Gigabit Routers with Per-flow Queueing", IEEE Journal
 on Selected Areas in Communications Vol. 17 Issue 6, June,
 1999, pp. 1159-1169.

 [CMNTS] Allman, M., "Comments on Bufferbloat", Computer
 Communication Review Vol. 43 No. 1, January, 2013, pp.
 31-37.

 [CODEL2012]
 Nichols, K. and V. Jacobson, "Controlling Queue Delay",
 Communications of the ACM Vol. 55 No. 11, July, 2012, pp.
 42-50.

 [VANQ2006]
 Jacobson, V., "A Rant on Queues", talk at MIT Lincoln
 Labs, Lexington, MA July, 2006,
 <http://www.pollere.net/Pdfdocs/QrantJul06.pdf>.

https://datatracker.ietf.org/doc/html/draft-ietf-aqm-fq-codel-03
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc896
https://datatracker.ietf.org/doc/html/rfc2309
http://www.ietf.org/proceedings/80/tsvarea.html
http://www.pollere.net/Pdfdocs/QrantJul06.pdf

Nichols, et al. Expires December 4, 2016 [Page 26]

Internet-Draft CoDel June 2016

 [REDL1998]
 Nichols, K., Jacobson, V., and K. Poduri, "RED in a
 Different Light", Tech report, September, 1999,
 <http://www.cnaf.infn.it/~ferrari/papers/ispn/

red_light_9_30.pdf>.

 [NETAL2010]
 Kreibich, C., et. al., "Netalyzr: Illuminating the Edge
 Network", Proceedings of the Internet Measurement
 Conference Melbourne, Australia, 2010.

 [TSV84] Jacobson, V., "CoDel talk at TSV meeting IETF 84",
 <http://www.ietf.org/proceedings/84/slides/

slides-84-tsvarea-4.pdf>.

 [CHARB2007]
 Dischinger, M., et. al, "Characterizing Residential
 Broadband Networks", Proceedings of the Internet
 Measurement Conference San Diego, CA, 2007.

 [MACTCP1997]
 Mathis, M., Semke, J., and J. Mahdavi, "The Macroscopic
 Behavior of the TCP Congestion Avoidance Algorithm", ACM
 SIGCOMM Computer Communications Review Vol. 27 no. 1, Jan.
 2007.

 [SFQ1990] McKenney, P., "Stochastic Fairness Queuing", Proceedings
 of IEEE INFOCOMM 90 San Francisco, 1990.

 [KLEIN81] Kleinrock, L. and R. Gail, "An Invariant Property of
 Computer Network Power", International Conference on
 Communications June, 1981,
 <http://www.lk.cs.ucla.edu/data/files/Gail/power.pdf>.

Authors' Addresses

 Kathleen Nichols
 Pollere, Inc.
 PO Box 370201
 Montara, CA 94037
 USA

 Email: nichols@pollere.com

http://www.cnaf.infn.it/~ferrari/papers/ispn/red_light_9_30.pdf
http://www.cnaf.infn.it/~ferrari/papers/ispn/red_light_9_30.pdf
http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-4.pdf
http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-4.pdf
http://www.lk.cs.ucla.edu/data/files/Gail/power.pdf

Nichols, et al. Expires December 4, 2016 [Page 27]

Internet-Draft CoDel June 2016

 Van Jacobson
 Google

 Email: vanj@google.com

 Andrew McGregor
 Google

 Email: andrewmcgr@google.com

 Janardhan Iyengar
 Google

 Email: jri@google.com

Nichols, et al. Expires December 4, 2016 [Page 28]

