
Active Queue Management and Packet Scheduling (aqm) G. White
Internet-Draft CableLabs
Intended status: Informational R. Pan
Expires: September 28, 2015 Cisco Systems
 March 27, 2015

A PIE-Based AQM for DOCSIS Cable Modems
draft-ietf-aqm-docsis-pie-00

Abstract

 DOCSIS cable modems provide broadband Internet access to over one
 hundred million users worldwide. They are commonly positioned at the
 head of the bottleneck link for traffic in the upstream direction
 (from the customer), and as a result, the impact of buffering and
 bufferbloat in the cable modem can have a significant effect on user
 experience. The CableLabs DOCSIS 3.1 specification includes
 requirements for cable modems to support an Active Queue Management
 (AQM) algorithm that is intended to alleviate the impact that
 buffering has on latency sensitive traffic, while preserving bulk
 throughput performance. In addition, the CableLabs DOCSIS 3.0
 specifications have also been amended to contain similar
 requirements.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 28, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

White & Pan Expires September 28, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft docsis-pie March 2015

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Overview of DOCSIS AQM Requirements 2
2. The DOCSIS MAC Layer and Service Flows 3
3. DOCSIS-PIE vs. PIE . 4
3.1. Latency Target . 4
3.2. Departure rate estimation 5
3.3. Expanded auto-tuning range 6
3.4. Trigger for exponential decay 6

4. Implementation Guidance 6
5. References . 7
Appendix A. DOCSIS-PIE Algorithm definition 7
A.1. DOCSIS-PIE AQM Constants and Variables 7
A.1.1. Configuration parameters 7
A.1.2. Constant values 8
A.1.3. Variables . 8
A.1.4. Public/system functions: 9

A.2. DOCSIS-PIE AQM Control Path 9
A.3. DOCSIS-PIE AQM Data Path 11

 Authors' Addresses . 13

1. Overview of DOCSIS AQM Requirements

 CableLabs' DOCSIS 3.1 specification [DOCSIS_3.1] mandates that cable
 modems implement a specific variant of the Proportional Integral
 controller Enhanced (PIE) [I-D.ietf-aqm-pie] active queue management
 algorithm. This specific variant is provided for reference in

Appendix A. CableLabs' DOCSIS 3.0 specification [DOCSIS_3.0] has
 been amended to recommend that cable modems implement the same
 algorithm. Both specifications allow that cable modems can
 optionally implement additional algorithms, that can then be selected
 for use by the operator via the modem's configuration file.

 These requirements on the cable modem apply to upstream
 transmissions.

 Both specifications also include requirements (mandatory in DOCSIS
 3.1 and recommended in DOCSIS 3.0) that the Cable Modem Termination

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

White & Pan Expires September 28, 2015 [Page 2]

Internet-Draft docsis-pie March 2015

 System (CMTS) implement active queue management for downstream
 traffic, however no specific algorithm is defined for downstream use.

2. The DOCSIS MAC Layer and Service Flows

 The DOCSIS Media Access Control (sub-)layer provides tools for
 configuring differentiated Quality of Service for different
 applications by the use of Packet Classifiers and Service Flows.

 Each cable modem can be configured with multiple Packet Classifiers
 and Service Flows. The maximum number of such entities that a cable
 modem supports is an implementation decision for the manufacturer,
 but modems typically support 16 or 32 Service Flows and at least that
 many Packet Classifiers.

 Each Service Flow has an associated Quality of Service (QoS)
 parameter set that defines the treatment of the packets that traverse
 the Service Flow. These parameters include (for example) Minimum
 Reserved Traffic Rate, Maximum Sustained Traffic Rate, Peak Traffic
 Rate, Maximum Traffic Burst, Traffic Priority. Each upstream Service
 Flow corresponds to a queue in the cable modem, and each downstream
 Service Flow corresponds to a queue in the CMTS. The DOCSIS AQM
 requirements mandate that the CM and CMTS implement the AQM algorithm
 (and allow it to be disabled if need be) on each Service Flow queue
 independently.

 Packet Classifiers can match packets based upon several fields in the
 packet/frame headers including the Ethernet header, IP header, and
 TCP/UDP header. Matched packets are then queued in the associated
 Service Flow queue.

 It is typical that upstream and downstream Service Flows used for
 broadband Internet access are configured with a Maximum Sustained
 Traffic Rate. This QoS parameter rate-shapes the traffic onto the
 DOCSIS link, and is the main parameter that defines the service
 offering. Additionally, it is common that upstream and downstream
 Service Flows are configured with a Maximum Traffic Burst and a Peak
 Traffic Rate. These parameters allow the service to burst at a
 higher (sometimes significantly higher) rate than is defined in the
 Maximum Sustained Traffic Rate for the amount of bytes configured in
 Maximum Traffic Burst, as long as the long-term average data rate
 remains at or below the Maximum Sustained Traffic Rate.

 Mathematically, what is enforced is that the traffic placed on the
 DOCSIS link in the time interval (t1,t2) complies with the following
 rate shaping equations:

 TxBytes(t1,t2) <= (t2-t1)*R/8 + B

White & Pan Expires September 28, 2015 [Page 3]

Internet-Draft docsis-pie March 2015

 TxBytes(t1,t2) <= (t2-t1)*P/8 + 1522

 for all values t2>t1, where:

 R = Maximum Sustained Traffic Rate (bps)

 P = Peak Traffic Rate (bps)

 B = Maximum Traffic Burst (bytes)

 The result of this configuration is that the link rate available to
 the Service Flow varies based on the pattern of load. If the load
 that the Service Flow places on the link is less than the Maximum
 Sustained Traffic Rate, the Service Flow "earns" credit that it can
 then use (should the load increase) to burst at the Peak Traffic
 Rate. This dynamic is important since these rate changes
 (particularly the decrease in data rate once the traffic burst credit
 is exhausted) can induce a step increase in buffering latency.

3. DOCSIS-PIE vs. PIE

 There are a number of differences between the version of the PIE
 algorithm that is mandated for cable modems in the DOCSIS
 specifications and the version described in [I-D.ietf-aqm-pie].

 o 10 ms default latency target, configurable per service flow

 o departure rate estimation

 o expanded auto-tuning range

 o trigger for exponential decay

3.1. Latency Target

 The latency target (aka delay reference) is a key parameter that
 affects, among other things, the tradeoff in performance between
 latency-sensitive applications and bulk TCP applications. Via
 simulation studies, a value of 10ms was identified as providing a
 good balance of performance. However, it is recognized that there
 may be service offerings for which this value doesn't provide the
 best performance balance. As a result, this is provided as a
 configuration parameter that the operator can set independently on
 each upstream service flow. If not explicitly set by the operator,
 the modem will use 10 ms as the default value.

White & Pan Expires September 28, 2015 [Page 4]

Internet-Draft docsis-pie March 2015

3.2. Departure rate estimation

 The PIE algorithm utilizes a departure rate estimator to track
 fluctuations in the egress rate for the queue and to generate a
 smoothed estimate of this rate for use in the drop probability
 calculation. This estimator may be well suited to many link
 technologies, but is not ideal for DOCSIS upstream links for a number
 of reasons.

 First, the bursty nature of the upstream transmissions, in which the
 queue drains at line rate (up to ~100 Mbps for DOCSIS 3.0 and ~1 Gbps
 for DOCSIS 3.1) and then is blocked until the next transmit
 opportunity, results in the potential for inaccuracy in measurement,
 given that the PIE departure rate estimator starts each measurement
 during a transmission burst and ends each measurement during a
 (possibly different) transmission burst. For example, in the case
 where the start and end of measurement occur within a single burst,
 the PIE estimator will calculate the egress rate to be equal to the
 line rate, rather than the average rate available to the modem.

 Second, the latency introduced by the DOCSIS request-grant mechanism
 can result in some further inaccuracy. In typical conditions, the
 request-grant mechanism can add between ~4 ms and ~8 ms of latency to
 the forwarding of upstream traffic. Within that range, the amount of
 additional latency that affects any individual data burst is
 effectively random, being influenced by the arrival time of the burst
 relative to the next request transmit opportunity, among other
 factors.

 Third, in the significant majority of cases, the departure rate,
 while variable, is controlled by the modem itself via the pair of
 token bucket rate shaping equations described in Section 2.
 Together, these two equations enforce a maximum sustained traffic
 rate, a peak traffic rate, and a maximum traffic burst size for the
 modem's requested bandwidth. The implication of this is that the
 modem, in the significant majority of cases, will know precisely what
 the departure rate will be, and can predict exactly when transitions
 between peak rate and maximum sustained traffic rate will occur.
 Compare this to the PIE estimator, which would be simply reacting to
 (and smoothing its estimate of) those rate transitions after the
 fact.

 Finally, since the modem is already implementing the dual token
 bucket traffic shaper, it contains enough internal state to calculate
 predicted queuing delay with a minimum of computations. Furthermore,
 these computations only need to be run every drop probability update
 interval, as opposed to the PIE estimator, which runs a similar
 number of computations on each packet dequeue event.

White & Pan Expires September 28, 2015 [Page 5]

Internet-Draft docsis-pie March 2015

 For these reasons, the DOCSIS-PIE algorithm utilizes the
 configuration and state of the dual token bucket traffic shaper to
 translate queue depth into predicted queuing delay, rather than
 implementing the departure rate estimator defined in PIE.

3.3. Expanded auto-tuning range

 The PIE algorithm scales the PI coefficients based on the current
 drop probability. The DOCSIS-PIE algorithm extends this scaling to
 drop probabilities below 1e-4.

3.4. Trigger for exponential decay

 The PIE algorithm includes a mechanism by which the drop probability
 is allowed to decay exponentially (rather than linearly) when it is
 detected that the buffer is empty. In the DOCSIS case, recently
 arrived packets may reside in buffer due to the request-grant latency
 even if the link is effectively idle. As a result, the buffer may
 not be identically empty in the situations for which the exponential
 decay is intended. To compensate for this, we trigger exponential
 decay when the buffer occupancy is less than 5ms * Peak Traffic Rate.

4. Implementation Guidance

 The AQM space is an evolving one, and it is expected that continued
 research in this field may in the future result in improved
 algorithms.

 As part of defining the DOCSIS-PIE algorithm, we split the pseudocode
 definition into two components, a "data path" component and a
 "control path" component. The control path component contains the
 packet drop probability update functionality, whereas the data path
 component contains the per-packet operations, including the drop
 decision logic.

 It is understood that some aspects of the cable modem implementation
 may be done in hardware, particularly functions that handle packet-
 processing.

 While the DOCSIS specifications don't mandate the internal
 implementation details of the cable modem, modem implementers are
 strongly advised against implementing the control path functionality
 in hardware. The intent of this advice is to retain the possibility
 that future improvements in AQM algorithms can be accommodated via
 software updates to deployed devices.

White & Pan Expires September 28, 2015 [Page 6]

Internet-Draft docsis-pie March 2015

5. References

 [DOCSIS_3.0]
 CableLabs, "DOCSIS 3.0 MAC and Upper Layer Protocols
 Specification", November 2013, <http://www.cablelabs.com/

wp-content/uploads/specdocs/
CM-SP-MULPIv3.0-I23-131120.pdf>.

 [DOCSIS_3.1]
 CableLabs, "DOCSIS 3.1 MAC and Upper Layer Protocols
 Specification", October 2013, <http://www.cablelabs.com/

wp-content/uploads/specdocs/
CM-SP-MULPIv3.1-I01-131029.pdf>.

 [I-D.ietf-aqm-pie]
 Pan, R., Natarajan, P., Baker, F., and G. White, "PIE: A
 Lightweight Control Scheme To Address the Bufferbloat
 Problem", draft-ietf-aqm-pie-00 (work in progress),
 October 2014.

Appendix A. DOCSIS-PIE Algorithm definition

 PIE defines two functions organized here into two design blocks:

 1. Control path block, a periodically running algorithm that
 calculates a drop probability based on the estimated queuing
 latency and queuing latency trend.

 2. Data path block, a function that occurs on each packet enqueue:
 per-packet drop decision based on the drop probability.

 It is desired to have the ability to update the Control path block
 based on operational experience with PIE deployments.

A.1. DOCSIS-PIE AQM Constants and Variables

A.1.1. Configuration parameters

 o LATENCY_TARGET. AQM Latency Target for this Service Flow

 o PEAK_RATE. Service Flow configured Peak Traffic Rate, expressed
 in Bytes/sec.

 o MSR. Service Flow configured Max. Sustained Traffic Rate,
 expressed in Bytes/sec.

 o BUFFER_SIZE. The size (in bytes) of the buffer for this Service
 Flow.

http://www.cablelabs.com/wp-content/uploads/specdocs/CM-SP-MULPIv3.0-I23-131120.pdf
http://www.cablelabs.com/wp-content/uploads/specdocs/CM-SP-MULPIv3.0-I23-131120.pdf
http://www.cablelabs.com/wp-content/uploads/specdocs/CM-SP-MULPIv3.0-I23-131120.pdf
http://www.cablelabs.com/wp-content/uploads/specdocs/CM-SP-MULPIv3.1-I01-131029.pdf
http://www.cablelabs.com/wp-content/uploads/specdocs/CM-SP-MULPIv3.1-I01-131029.pdf
http://www.cablelabs.com/wp-content/uploads/specdocs/CM-SP-MULPIv3.1-I01-131029.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-aqm-pie-00

White & Pan Expires September 28, 2015 [Page 7]

Internet-Draft docsis-pie March 2015

A.1.2. Constant values

 o A=0.25, B=2.5. Weights in the drop probability calculation

 o INTERVAL=16 ms. Update interval for drop probability.

 o DELAY_HIGH=200 ms.

 o BURST_RESET_TIMEOUT = 1 s.

 o MAX_BURST = 142 ms (150 ms-8 ms(update error))

 o MEAN_PKTSIZE = 1024 bytes

 o MIN_PKTSIZE = 64 bytes

 o PROB_LOW = 0.85

 o PROB_HIGH = 8.5

 o LATENCY_LOW = 5 ms

A.1.3. Variables

 o drop_prob_. The current packet drop probability.

 o accu_prob_. accumulated drop prob. since last drop

 o qdelay_old_. The previous queue delay estimate.

 o burst_allowance_. Countdown for burst protection, initialize to 0

 o burst_reset_. counter to reset burst

 o burst_state_. Burst protection state encoding 3 states:

 NOBURST - no burst yet

 FIRST_BURST - first burst detected, no protection yet

 PROTECT_BURST - first burst detected, protecting burst if
 burst_allowance_ > 0

 o queue_. Holds the pending packets.

White & Pan Expires September 28, 2015 [Page 8]

Internet-Draft docsis-pie March 2015

A.1.4. Public/system functions:

 o drop(packet). Drops/discards a packet

 o random(). Returns a uniform r.v. in the range 0 ~ 1

 o queue_.is_full(). Returns true if queue_ is full

 o queue_.byte_length(). Returns current queue_ length in bytes,
 including all MAC PDU bytes without DOCSIS MAC overhead

 o queue_.enque(packet). Adds packet to tail of queue_

 o msrtokens(). Returns current token credits (in bytes) from the
 Max Sust. Traffic Rate token bucket

 o packet.size(). Returns size of packet

A.2. DOCSIS-PIE AQM Control Path

 The DOCSIS-PIE control path performs the following:

 o Calls control_path_init() at service flow creation

 o Calls calculate_drop_prob() at a regular INTERVAL (16ms)

 ================
 // Initialization function
 control_path_init() {
 drop_prob_ = 0;
 qdelay_old_ = 0;
 burst_reset_ = 0;
 burst_state_ = NOBURST;
 }

 // Background update, occurs every INTERVAL
 calculate_drop_prob() {

 if (queue_.byte_length() <= msrtokens()) {
 qdelay = queue_.byte_length() / PEAK_RATE;
 } else {
 qdelay = ((queue_.byte_length() - msrtokens()) / MSR \
 + msrtokens() / PEAK_RATE);
 }

 if (burst_allowance_ > 0) {
 drop_prob_ = 0;
 } else {

White & Pan Expires September 28, 2015 [Page 9]

Internet-Draft docsis-pie March 2015

 p = A * (qdelay - LATENCY_TARGET) + \
 B * (qdelay - qdelay_old_);
 // Since A=0.25 & B=2.5, can be implemented
 // with shift and add

 if (drop_prob_ < 0.000001) {
 p /= 2048;
 } else if (drop_prob_ < 0.00001) {
 p /= 512;
 } else if (drop_prob_ < 0.0001) {
 p /= 128;
 } else if (drop_prob_ < 0.001) {
 p /= 32;
 } else if (drop_prob_ < 0.01) {
 p /= 8;
 } else if (drop_prob_ < 0.1) {
 p /= 2;
 } else if (drop_prob_ < 1) {
 p /= 0.5;
 } else if (drop_prob_ < 10) {
 p /= 0.125;
 } else {
 p /= 0.03125;
 }

 if ((drop_prob_ >= 0.1) && (p > 0.02)) {
 p = 0.02;
 }
 drop_prob_ += p;

 /* for non-linear drop in prob */
 if (qdelay < LATENCY_LOW && qdelay_old_ < LATENCY_LOW) {
 drop_prob_ *= 0.98; // (1-1/64) is sufficient
 } else if (qdelay > DELAY_HIGH) {
 drop_prob_ += 0.02;
 }

 drop_prob_ = max(0, drop_prob_);
 drop_prob_ = min(drop_prob_, \
 PROB_LOW * MEAN_PKTSIZE/MIN_PKTSIZE);
 }

 if (burst_allowance_ < INTERVAL)
 burst_allowance_ = 0;
 else
 burst_allowance_ = burst_allowance_ - INTERVAL;

 // both old and new qdelay is well better than the

White & Pan Expires September 28, 2015 [Page 10]

Internet-Draft docsis-pie March 2015

 // target and drop_prob_ == 0, time to clear burst tolerance
 if ((qdelay < 0.5 * LATENCY_TARGET)
 && (qdelay_old_ < 0.5 * LATENCY_TARGET)
 && (drop_prob_ == 0)
 && (burst_allowance_ == 0)){

 if (burst_state_ == PROTECT_BURST) {
 burst_state_ = FIRST_BURST;
 burst_reset_ = 0;

 } else if (burst_state_ == FIRST_BURST) {
 burst_reset_ += INTERVAL ;
 if (burst_reset_ > BURST_RESET_TIMEOUT) {
 burst_reset_ = 0;
 burst_state_ = NOBURST;
 }
 }
 } else if (burst_state_ == FIRST_BURST) {
 burst_reset_ = 0;
 }

 qdelay_old_ = qdelay;

 }

A.3. DOCSIS-PIE AQM Data Path

 The DOCSIS-PIE data path performs the following:

 o Calls enque() in response to an incoming packet from the CMCI

 ================
 enque(packet) {
 if (queue_.is_full()) {
 drop(packet);
 accu_prob_ = 0;
 } else if (drop_early(packet, queue_.byte_length())) {
 drop(packet);
 } else {
 queue_.enque(packet);
 }
 }

 ////////////////
 drop_early(packet, queue_length) {
 if (burst_allowance_ > 0) {
 return FALSE;
 }

White & Pan Expires September 28, 2015 [Page 11]

Internet-Draft docsis-pie March 2015

 if (drop_prob_ == 0) {
 accu_prob_ = 0;
 }

 if (burst_state_ == NOBURST) { //first burst?
 if (queue_.byte_length() < BUFFER_SIZE/3) {
 return FALSE;
 } else {
 burst_state_ = FIRST_BURST; //burst detected
 }
 }

 //The CM can quantize packet.size to 64, 128, 256, 512, 768,
 // 1024, 1280, 1536, 2048 in the calculation below
 p1 = drop_prob_ * packet.size() / MEAN_PKTSIZE;
 p1 = min(p1, PROB_LOW);

 accu_prob_ += p1;

 // If latency is low, don't drop packets
 if ((qdelay_old_ < 0.5 * LATENCY_TARGET && drop_prob_ < 0.2)
 || (queue_.byte_length() <= 2 * MEAN_PKTSIZE)) {
 return FALSE;
 }

 drop = TRUE;
 if (accu_prob_ < PROB_LOW) { // avoid dropping too fast due
 drop = FALSE; // to bad luck of coin tosses...
 } else if (accu_prob_ >= PROB_HIGH) { // ...and avoid droppping
 drop = TRUE; // too slowly
 } else { //Random drop
 double u = random(); // 0 ~ 1
 if (u > p1) {
 drop = FALSE;
 }
 }

 if (drop == FALSE) return FALSE;

 // In case of packet drop:
 accu_prob_ = 0;

 // Not protecting burst yet? Start protecting burst.
 // This will set the burst_allowance_ value, and
 // calculate_drop_prob() will decrement it.
 // Could implement this as a 150ms timer instead.
 if (burst_state_ == FIRST_BURST) {
 burst_state_ = PROTECT_BURST;

White & Pan Expires September 28, 2015 [Page 12]

Internet-Draft docsis-pie March 2015

 burst_allowance_ = MAX_BURST;
 }
 return TRUE;
 }

Authors' Addresses

 Greg White
 CableLabs
 858 Coal Creek Circle
 Louisville, CO 80027-9750
 USA

 Email: g.white@cablelabs.com

 Rong Pan
 Cisco Systems
 510 McCarthy Blvd
 Milpitas, CA 95134
 USA

 Email: ropan@cisco.com

White & Pan Expires September 28, 2015 [Page 13]

