
Active Queue Management and Packet Scheduling (aqm) G. White
Internet-Draft CableLabs
Intended status: Informational R. Pan
Expires: August 15, 2016 Cisco Systems
 February 12, 2016

A PIE-Based AQM for DOCSIS Cable Modems
draft-ietf-aqm-docsis-pie-02

Abstract

 Cable modems based on the DOCSIS(R) specification provide broadband
 Internet access to over one hundred million users worldwide. In some
 cases, the cable modem connection is the bottleneck (lowest speed)
 link between the customer and the Internet. As a result, the impact
 of buffering and bufferbloat in the cable modem can have a
 significant effect on user experience. The CableLabs DOCSIS 3.1
 specification introduces requirements for cable modems to support an
 Active Queue Management (AQM) algorithm that is intended to alleviate
 the impact that buffering has on latency sensitive traffic, while
 preserving bulk throughput performance. In addition, the CableLabs
 DOCSIS 3.0 specifications have also been amended to contain similar
 requirements. This document describes the requirements on Active
 Queue Management that apply to DOCSIS equipment, including a
 description of the "DOCSIS-PIE" algorithm that is required on DOCSIS
 3.1 cable modems.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 15, 2016.

White & Pan Expires August 15, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft docsis-pie February 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Overview of DOCSIS AQM Requirements 3
3. The DOCSIS MAC Layer and Service Flows 3
4. DOCSIS-PIE vs. PIE . 5
4.1. Latency Target . 5
4.2. Departure rate estimation 5
4.3. Enhanced burst protection 6
4.4. Expanded auto-tuning range 7
4.5. Trigger for exponential decay 7
4.6. Drop probability scaling 7
4.7. Support for explicit congestion notification 8

5. Implementation Guidance 8
6. IANA Considerations . 8
7. Security Considerations 9
8. Informative References 9
Appendix A. DOCSIS-PIE Algorithm definition 9
A.1. DOCSIS-PIE AQM Constants and Variables 10
A.1.1. Configuration parameters 10
A.1.2. Constant values 10
A.1.3. Variables . 10
A.1.4. Public/system functions: 11

A.2. DOCSIS-PIE AQM Control Path 11
A.3. DOCSIS-PIE AQM Data Path 13

 Authors' Addresses . 15

1. Introduction

 A recent resurgence of interest in Active Queue Management, arising
 from a recognition of the inadequacies of drop tail queuing in the
 presence of loss-based congestion control algorithms, has resulted in
 the development of new algorithms that appear to provide very good

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

White & Pan Expires August 15, 2016 [Page 2]

Internet-Draft docsis-pie February 2016

 congestion feedback to current TCP algorithms, while also having
 operational simplicity and low complexity. One of these algorithms
 has been selected as a requirement for cable modems built according
 to the DOCSIS 3.1 specification [DOCSIS_3.1]. The Data Over Cable
 Service Interface Specifications (DOCSIS) define the broadband
 technology deployed worldwide for Ethernet and IP service over hybrid
 fiber-coaxial cable systems. The most recent revision of the DOCSIS
 technology, version 3.1, was published in October 2013 and provides
 support for up to 10 Gbps downstream (toward the customer) and 1 Gbps
 upstream (from the customer) capacity over existing cable networks.
 Previous versions of the DOCSIS technology did not contain
 requirements for AQM. This document outlines the high-level AQM
 requirements for DOCSIS systems, discusses some of the salient
 features of the DOCSIS MAC layer, and describes the DOCSIS-PIE
 algorithm - largely by comparing it to its progenitor, the
 [I-D.ietf-aqm-pie] algorithm.

2. Overview of DOCSIS AQM Requirements

 CableLabs' DOCSIS 3.1 specification [DOCSIS_3.1] mandates that cable
 modems implement a specific variant of the Proportional Integral
 controller Enhanced (PIE) [I-D.ietf-aqm-pie] active queue management
 algorithm. This specific variant is provided for reference in

Appendix A, and simulation results comparing it to drop tail queuing
 and other AQM options are given in [CommMag] and [DOCSIS-AQM]. In
 addition, CableLabs' DOCSIS 3.0 specification [DOCSIS_3.0] has been
 amended to recommend that cable modems implement the same algorithm.
 Both specifications allow that cable modems can optionally implement
 additional algorithms, that can then be selected for use by the
 operator via the modem's configuration file.

 These requirements on the cable modem apply to upstream transmissions
 (i.e. from the customer to the Internet).

 Both specifications also include requirements (mandatory in DOCSIS
 3.1 and recommended in DOCSIS 3.0) that the Cable Modem Termination
 System (CMTS) implement active queue management for downstream
 traffic, however no specific algorithm is defined for downstream use.

3. The DOCSIS MAC Layer and Service Flows

 The DOCSIS Media Access Control (sub-)layer provides tools for
 configuring differentiated Quality of Service for different
 applications by the use of Packet Classifiers and Service Flows.

 Each Service Flow has an associated Quality of Service (QoS)
 parameter set that defines the treatment of the packets that traverse
 the Service Flow. These parameters include (for example) Minimum

White & Pan Expires August 15, 2016 [Page 3]

Internet-Draft docsis-pie February 2016

 Reserved Traffic Rate, Maximum Sustained Traffic Rate, Peak Traffic
 Rate, Maximum Traffic Burst, and Traffic Priority. Each upstream
 Service Flow corresponds to a queue in the cable modem, and each
 downstream Service Flow corresponds to a queue in the CMTS. The
 DOCSIS AQM requirements mandate that the CM and CMTS implement the
 AQM algorithm (and allow it to be disabled if need be) on each
 Service Flow queue independently.

 Packet Classifiers can match packets based upon several fields in the
 packet/frame headers including the Ethernet header, IP header, and
 TCP/UDP header. Matched packets are then queued in the associated
 Service Flow queue.

 Each cable modem can be configured with multiple Packet Classifiers
 and Service Flows. The maximum number of such entities that a cable
 modem supports is an implementation decision for the manufacturer,
 but modems typically support 16 or 32 upstream Service Flows and at
 least that many Packet Classifiers. Similarly the CMTS supports
 multiple downstream Service Flows and multiple Packet Classifiers per
 cable modem.

 It is typical that upstream and downstream Service Flows used for
 broadband Internet access are configured with a Maximum Sustained
 Traffic Rate. This QoS parameter rate-shapes the traffic onto the
 DOCSIS link, and is the main parameter that defines the service
 offering. Additionally, it is common that upstream and downstream
 Service Flows are configured with a Maximum Traffic Burst and a Peak
 Traffic Rate. These parameters allow the service to burst at a
 higher (sometimes significantly higher) rate than is defined in the
 Maximum Sustained Traffic Rate for the amount of bytes configured in
 Maximum Traffic Burst, as long as the long-term average data rate
 remains at or below the Maximum Sustained Traffic Rate.

 Mathematically, what is enforced is that the traffic placed on the
 DOCSIS link in the time interval (t1,t2) complies with the following
 rate shaping equations:

 TxBytes(t1,t2) <= (t2-t1)*R/8 + B

 TxBytes(t1,t2) <= (t2-t1)*P/8 + 1522

 for all values t2>t1, where:

 R = Maximum Sustained Traffic Rate (bps)

 P = Peak Traffic Rate (bps)

 B = Maximum Traffic Burst (bytes)

White & Pan Expires August 15, 2016 [Page 4]

Internet-Draft docsis-pie February 2016

 The result of this configuration is that the link rate available to
 the Service Flow varies based on the pattern of load. If the load
 that the Service Flow places on the link is less than the Maximum
 Sustained Traffic Rate, the Service Flow "earns" credit that it can
 then use (should the load increase) to burst at the Peak Traffic
 Rate. This dynamic is important since these rate changes
 (particularly the decrease in data rate once the traffic burst credit
 is exhausted) can induce a step increase in buffering latency.

4. DOCSIS-PIE vs. PIE

 There are a number of differences between the version of the PIE
 algorithm that is mandated for cable modems in the DOCSIS
 specifications and the version described in [I-D.ietf-aqm-pie].
 These differences are described in the following subsections.

4.1. Latency Target

 The latency target (aka delay reference) is a key parameter that
 affects, among other things, the tradeoff in performance between
 latency-sensitive applications and bulk TCP applications. Via
 simulation studies, a value of 10ms was identified as providing a
 good balance of performance. However, it is recognized that there
 may be service offerings for which this value doesn't provide the
 best performance balance. As a result, this is provided as a
 configuration parameter that the operator can set independently on
 each upstream service flow. If not explicitly set by the operator,
 the modem will use 10 ms as the default value.

4.2. Departure rate estimation

 The PIE algorithm utilizes a departure rate estimator to track
 fluctuations in the egress rate for the queue and to generate a
 smoothed estimate of this rate for use in the drop probability
 calculation. This estimator may be well suited to many link
 technologies, but is not ideal for DOCSIS upstream links for a number
 of reasons.

 First, the bursty nature of the upstream transmissions, in which the
 queue drains at line rate (up to ~100 Mbps for DOCSIS 3.0 and ~1 Gbps
 for DOCSIS 3.1) and then is blocked until the next transmit
 opportunity, results in the potential for inaccuracy in measurement,
 given that the PIE departure rate estimator starts each measurement
 during a transmission burst and ends each measurement during a
 (possibly different) transmission burst. For example, in the case
 where the start and end of measurement occur within a single burst,
 the PIE estimator will calculate the egress rate to be equal to the
 line rate, rather than the average rate available to the modem.

White & Pan Expires August 15, 2016 [Page 5]

Internet-Draft docsis-pie February 2016

 Second, the latency introduced by the DOCSIS request-grant mechanism
 can result in some further inaccuracy. In typical conditions, the
 request-grant mechanism can add between ~4 ms and ~8 ms of latency to
 the forwarding of upstream traffic. Within that range, the amount of
 additional latency that affects any individual data burst is
 effectively random, being influenced by the arrival time of the burst
 relative to the next request transmit opportunity, among other
 factors.

 Third, in the significant majority of cases, the departure rate,
 while variable, is controlled by the modem itself via the pair of
 token bucket rate shaping equations described in Section 3.
 Together, these two equations enforce a maximum sustained traffic
 rate, a peak traffic rate, and a maximum traffic burst size for the
 modem's requested bandwidth. The implication of this is that the
 modem, in the significant majority of cases, will know precisely what
 the departure rate will be, and can predict exactly when transitions
 between peak rate and maximum sustained traffic rate will occur.
 Compare this to the PIE estimator, which would be simply reacting to
 (and smoothing its estimate of) those rate transitions after the
 fact.

 Finally, since the modem is already implementing the dual token
 bucket traffic shaper, it contains enough internal state to calculate
 predicted queuing delay with a minimum of computations. Furthermore,
 these computations only need to be run every drop probability update
 interval, as opposed to the PIE estimator, which runs a similar
 number of computations on each packet dequeue event.

 For these reasons, the DOCSIS-PIE algorithm utilizes the
 configuration and state of the dual token bucket traffic shaper to
 translate queue depth into predicted queuing delay, rather than
 implementing the departure rate estimator defined in PIE.

4.3. Enhanced burst protection

 The PIE [I-D.ietf-aqm-pie] algorithm has two states, INACTIVE and
 ACTIVE. During the INACTIVE state, AQM packet drops are suppressed.
 The algorithm transitions to the ACTIVE state when the queue exceeds
 1/3 of the buffer size. Upon transition to the ACTIVE state, PIE
 includes a burst protection feature in which the AQM packet drops are
 suppressed for the first 150ms. Since DOCSIS-PIE is predominantly
 deployed on consumer broadband connections, a more sophisticated
 burst protection was developed in order to provide better performance
 in the presence of a single TCP session.

 Where the PIE algorithm has two states, DOCSIS-PIE has three. The
 INACTIVE and ACTIVE states in DOCSIS-PIE are identical to those

White & Pan Expires August 15, 2016 [Page 6]

Internet-Draft docsis-pie February 2016

 states in PIE. The QUIESCENT state is a transitional state between
 INACTIVE and ACTIVE. The DOCSIS-PIE algorithm transitions from
 INACTIVE to QUIESCENT when the queue exceeds 1/3 of the buffer size.
 In the QUIESCENT state, packet drops are immediately enabled, and
 upon the first packet drop, the algorithm transitions to the ACTIVE
 state (where drop probability is reset to zero for the 150ms duration
 of the burst protection as in PIE). From the ACTIVE state, the
 algorithm transitions to QUIESCENT if the drop_probability has
 decayed to zero and the queuing latency has been less than half of
 the LATENCY_TARGET for two update intervals. The algorithm then
 fully resets to the INACTIVE state if this "quiet" condition exists
 for the duration of the BURST_RESET_TIMEOUT (1 second). One end
 result of the addition of the QUIESCENT state is that a single packet
 drop can occur relatively early on during an initial burst, whereas
 all drops would be suppressed for at least 150ms of the burst
 duration in PIE. The other end result is that if traffic stops and
 then resumes within 1 second, DOCSIS_PIE can directly drop a single
 packet and then re-enter burst protection, whereas PIE would require
 that the buffer exceed 1/3 full.

4.4. Expanded auto-tuning range

 The PIE algorithm scales the PI coefficients based on the current
 drop probability. The DOCSIS-PIE algorithm extends this scaling to
 drop probabilities below 1e-4.

4.5. Trigger for exponential decay

 The PIE algorithm includes a mechanism by which the drop probability
 is allowed to decay exponentially (rather than linearly) when it is
 detected that the buffer is empty. In the DOCSIS case, recently
 arrived packets may reside in buffer due to the request-grant latency
 even if the link is effectively idle. As a result, the buffer may
 not be identically empty in the situations for which the exponential
 decay is intended. To compensate for this, we trigger exponential
 decay when the buffer occupancy is less than 5ms * Peak Traffic Rate.

4.6. Drop probability scaling

 The DOCSIS-PIE algorithm scales the calculated drop probability based
 on the ratio of the packet size to a constant value of 1024 bytes
 (representing approximate average packet size). While [RFC7567] in
 general recommends against this type of scaling, we note that DOCSIS-
 PIE is expected to predominantly be used to manage upstream queues in
 residential broadband deployments, where we believe the benefits
 outweigh the disadvantages. As a safeguard to prevent a flood of
 small packets from starving flows that use larger packets, DOCSIS-PIE
 limits the scaled probability to a defined maximum value of 0.85.

https://datatracker.ietf.org/doc/html/rfc7567

White & Pan Expires August 15, 2016 [Page 7]

Internet-Draft docsis-pie February 2016

4.7. Support for explicit congestion notification

 DOCSIS-PIE does not include support for explicit congestion
 notification. Cable modems are essentially IEEE 802.1d Ethernet
 bridges and so are not designed to modify IP header fields.
 Additionally, the packet processing pipeline in a cable modem is
 commonly implemented in hardware. As a result, introducing support
 for ECN would have engendered a more significant redesign of cable
 modem data paths, and implementations would have been difficult or
 impossible to modify in the future. At the time of the development
 of DOCSIS-PIE, which coincided with the development of modem chip
 designs, the benefits of ECN marking relative to packet drop were
 considered to be relatively minor, there was considerable discussion
 about differential treatment of ECN capable packets in the AQM drop/
 mark decision, and there were some initial suggestions that a new ECN
 approach was needed. Due to this uncertainty, we chose not to
 include support for ECN.

5. Implementation Guidance

 The AQM space is an evolving one, and it is expected that continued
 research in this field may in the future result in improved
 algorithms.

 As part of defining the DOCSIS-PIE algorithm, we split the pseudocode
 definition into two components, a "data path" component and a
 "control path" component. The control path component contains the
 packet drop probability update functionality, whereas the data path
 component contains the per-packet operations, including the drop
 decision logic.

 It is understood that some aspects of the cable modem implementation
 may be done in hardware, particularly functions that handle packet-
 processing.

 While the DOCSIS specifications don't mandate the internal
 implementation details of the cable modem, modem implementers are
 strongly advised against implementing the control path functionality
 in hardware. The intent of this advice is to retain the possibility
 that future improvements in AQM algorithms can be accommodated via
 software updates to deployed devices.

6. IANA Considerations

 This document has no actions for IANA.

White & Pan Expires August 15, 2016 [Page 8]

Internet-Draft docsis-pie February 2016

7. Security Considerations

 This document describes an active queue management algorithm based on
 [I-D.ietf-aqm-pie] for implementation in DOCSIS cable modem devices.
 This algorithm introduces no specific security exposures.

8. Informative References

 [CommMag] White, G., "Active queue management in DOCSIS 3.1
 networks", IEEE Communications Magazine vol.53, no.3,
 pp.126-132, March 2015.

 [DOCSIS-AQM]
 White, G., "Active Queue Management in DOCSIS 3.x Cable
 Modems", May 2014, <http://www.cablelabs.com/wp-

content/uploads/2014/06/DOCSIS-AQM_May2014.pdf>.

 [DOCSIS_3.0]
 CableLabs, "DOCSIS 3.0 MAC and Upper Layer Protocols
 Specification", December 2015, <http://www.cablelabs.com/

wp-content/uploads/specdocs/
CM-SP-MULPIv3.0-I29-151210.pdf>.

 [DOCSIS_3.1]
 CableLabs, "DOCSIS 3.1 MAC and Upper Layer Protocols
 Specification", December 2015, <http://www.cablelabs.com/

wp-content/uploads/specdocs/
CM-SP-MULPIv3.1-I08-151210.pdf>.

 [I-D.ietf-aqm-pie]
 Pan, R., Natarajan, P., and F. Baker, "PIE: A Lightweight
 Control Scheme To Address the Bufferbloat Problem", draft-

ietf-aqm-pie-03 (work in progress), November 2015.

 [RFC7567] Baker, F., Ed. and G. Fairhurst, Ed., "IETF
 Recommendations Regarding Active Queue Management",

BCP 197, RFC 7567, DOI 10.17487/RFC7567, July 2015,
 <http://www.rfc-editor.org/info/rfc7567>.

Appendix A. DOCSIS-PIE Algorithm definition

 PIE defines two functions organized here into two design blocks:

 1. Control path block, a periodically running algorithm that
 calculates a drop probability based on the estimated queuing
 latency and queuing latency trend.

http://www.cablelabs.com/wp-content/uploads/2014/06/DOCSIS-AQM_May2014.pdf
http://www.cablelabs.com/wp-content/uploads/2014/06/DOCSIS-AQM_May2014.pdf
http://www.cablelabs.com/wp-content/uploads/specdocs/CM-SP-MULPIv3.0-I29-151210.pdf
http://www.cablelabs.com/wp-content/uploads/specdocs/CM-SP-MULPIv3.0-I29-151210.pdf
http://www.cablelabs.com/wp-content/uploads/specdocs/CM-SP-MULPIv3.0-I29-151210.pdf
http://www.cablelabs.com/wp-content/uploads/specdocs/CM-SP-MULPIv3.1-I08-151210.pdf
http://www.cablelabs.com/wp-content/uploads/specdocs/CM-SP-MULPIv3.1-I08-151210.pdf
http://www.cablelabs.com/wp-content/uploads/specdocs/CM-SP-MULPIv3.1-I08-151210.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-aqm-pie-03
https://datatracker.ietf.org/doc/html/draft-ietf-aqm-pie-03
https://datatracker.ietf.org/doc/html/bcp197
https://datatracker.ietf.org/doc/html/rfc7567
http://www.rfc-editor.org/info/rfc7567

White & Pan Expires August 15, 2016 [Page 9]

Internet-Draft docsis-pie February 2016

 2. Data path block, a function that occurs on each packet enqueue:
 per-packet drop decision based on the drop probability.

 It is desired to have the ability to update the Control path block
 based on operational experience with PIE deployments.

A.1. DOCSIS-PIE AQM Constants and Variables

A.1.1. Configuration parameters

 o LATENCY_TARGET. AQM Latency Target for this Service Flow

 o PEAK_RATE. Service Flow configured Peak Traffic Rate, expressed
 in Bytes/sec.

 o MSR. Service Flow configured Max. Sustained Traffic Rate,
 expressed in Bytes/sec.

 o BUFFER_SIZE. The size (in bytes) of the buffer for this Service
 Flow.

A.1.2. Constant values

 o A = 0.25, B = 2.5. Weights in the drop probability calculation

 o INTERVAL = 16 ms. Update interval for drop probability.

 o BURST_RESET_TIMEOUT = 1 s.

 o MAX_BURST = 142 ms (150 ms - 8 ms (update error))

 o MEAN_PKTSIZE = 1024 bytes

 o MIN_PKTSIZE = 64 bytes

 o PROB_LOW = 0.85

 o PROB_HIGH = 8.5

 o LATENCY_LOW = 5 ms

 o LATENCY_HIGH = 200 ms.

A.1.3. Variables

 o drop_prob_. The current packet drop probability.

 o accu_prob_. accumulated drop prob. since last drop

White & Pan Expires August 15, 2016 [Page 10]

Internet-Draft docsis-pie February 2016

 o qdelay_old_. The previous queue delay estimate.

 o burst_allowance_. Countdown for burst protection, initialize to 0

 o burst_reset_. counter to reset burst

 o aqm_state_. AQM activity state encoding 3 states:

 INACTIVE - queue staying below 1/3 full, suppress AQM drops

 QUIESCENT - transition state

 ACTIVE - normal AQM drops (after burst protection period)

 o queue_. Holds the pending packets.

A.1.4. Public/system functions:

 o drop(packet). Drops/discards a packet

 o random(). Returns a uniform r.v. in the range 0 ~ 1

 o queue_.is_full(). Returns true if queue_ is full

 o queue_.byte_length(). Returns current queue_ length in bytes,
 including all MAC PDU bytes without DOCSIS MAC overhead

 o queue_.enque(packet). Adds packet to tail of queue_

 o msrtokens(). Returns current token credits (in bytes) from the
 Max Sust. Traffic Rate token bucket

 o packet.size(). Returns size of packet

A.2. DOCSIS-PIE AQM Control Path

 The DOCSIS-PIE control path performs the following:

 o Calls control_path_init() at service flow creation

 o Calls calculate_drop_prob() at a regular INTERVAL (16ms)

 ================
 // Initialization function
 control_path_init() {
 drop_prob_ = 0;
 qdelay_old_ = 0;
 burst_reset_ = 0;

White & Pan Expires August 15, 2016 [Page 11]

Internet-Draft docsis-pie February 2016

 aqm_state_ = INACTIVE;
 }

 // Background update, occurs every INTERVAL
 calculate_drop_prob() {

 if (queue_.byte_length() <= msrtokens()) {
 qdelay = queue_.byte_length() / PEAK_RATE;
 } else {
 qdelay = ((queue_.byte_length() - msrtokens()) / MSR \
 + msrtokens() / PEAK_RATE);
 }

 if (burst_allowance_ > 0) {
 drop_prob_ = 0;
 burst_allowance_ = max(0, burst_allowance_ - INTERVAL);
 } else {
 p = A * (qdelay - LATENCY_TARGET) + \
 B * (qdelay - qdelay_old_);
 // Since A=0.25 & B=2.5, can be implemented
 // with shift and add

 if (drop_prob_ < 0.000001) {
 p /= 2048;
 } else if (drop_prob_ < 0.00001) {
 p /= 512;
 } else if (drop_prob_ < 0.0001) {
 p /= 128;
 } else if (drop_prob_ < 0.001) {
 p /= 32;
 } else if (drop_prob_ < 0.01) {
 p /= 8;
 } else if (drop_prob_ < 0.1) {
 p /= 2;
 } else if (drop_prob_ < 1) {
 p /= 0.5;
 } else if (drop_prob_ < 10) {
 p /= 0.125;
 } else {
 p /= 0.03125;
 }

 if ((drop_prob_ >= 0.1) && (p > 0.02)) {
 p = 0.02;
 }
 drop_prob_ += p;

 /* some special cases */

White & Pan Expires August 15, 2016 [Page 12]

Internet-Draft docsis-pie February 2016

 if (qdelay < LATENCY_LOW && qdelay_old_ < LATENCY_LOW) {
 drop_prob_ *= 0.98; // exponential decay
 } else if (qdelay > LATENCY_HIGH) {
 drop_prob_ += 0.02; // ramp up quickly
 }

 drop_prob_ = max(0, drop_prob_);
 drop_prob_ = min(drop_prob_, \
 PROB_LOW * MEAN_PKTSIZE/MIN_PKTSIZE);
 }

 // check if all is quiet
 quiet = (qdelay < 0.5 * LATENCY_TARGET)
 && (qdelay_old_ < 0.5 * LATENCY_TARGET)
 && (drop_prob_ == 0)
 && (burst_allowance_ == 0);

 // Update AQM state based on quiet or !quiet
 if ((aqm_state_ == ACTIVE) && quiet) {
 aqm_state_ = QUIESCENT;
 burst_reset_ = 0;
 } else if (aqm_state_ == QUIESCENT) {
 if (quiet) {
 burst_reset_ += INTERVAL ;
 if (burst_reset_ > BURST_RESET_TIMEOUT) {
 burst_reset_ = 0;
 aqm_state_ = INACTIVE;
 }
 } else {
 burst_reset_ = 0;
 }
 }

 qdelay_old_ = qdelay;

 }

A.3. DOCSIS-PIE AQM Data Path

 The DOCSIS-PIE data path performs the following:

 o Calls enque() in response to an incoming packet from the CMCI

 ================
 enque(packet) {
 if (queue_.is_full()) {
 drop(packet);
 accu_prob_ = 0;

White & Pan Expires August 15, 2016 [Page 13]

Internet-Draft docsis-pie February 2016

 } else if (drop_early(packet, queue_.byte_length())) {
 drop(packet);
 } else {
 queue_.enque(packet);
 }
 }

 ////////////////
 drop_early(packet, queue_length) {

 // if still in burst protection, suppress AQM drops
 if (burst_allowance_ > 0) {
 return FALSE;
 }

 // if drop_prob_ goes to zero, clear accu_prob_
 if (drop_prob_ == 0) {
 accu_prob_ = 0;
 }

 if (aqm_state_ == INACTIVE) {
 if (queue_.byte_length() < BUFFER_SIZE/3) {
 // if queue is still small, stay in
 // INACTIVE state and suppress AQM drops
 return FALSE;
 } else {
 // otherwise transition to QUIESCENT state
 aqm_state_ = QUIESCENT;
 }
 }

 //The CM can quantize packet.size to 64, 128, 256, 512, 768,
 // 1024, 1280, 1536, 2048 in the calculation below
 p1 = drop_prob_ * packet.size() / MEAN_PKTSIZE;
 p1 = min(p1, PROB_LOW);

 accu_prob_ += p1;

 // Suppress AQM drops in certain situations
 if ((qdelay_old_ < 0.5 * LATENCY_TARGET && drop_prob_ < 0.2)
 || (queue_.byte_length() <= 2 * MEAN_PKTSIZE)) {
 return FALSE;
 }

 if (accu_prob_ < PROB_LOW) { // avoid dropping too fast due
 return FALSE; // to bad luck of coin tosses...
 } else if (accu_prob_ >= PROB_HIGH) { // ...and avoid droppping
 drop = TRUE; // too slowly

White & Pan Expires August 15, 2016 [Page 14]

Internet-Draft docsis-pie February 2016

 } else { //Random drop
 double u = random(); // 0 ~ 1
 if (u > p1)
 return FALSE;
 else
 drop = TRUE;
 }

 // at this point, drop == TRUE, so packet will be dropped.

 // reset accu_prob_
 accu_prob_ = 0;

 // If in QUIESCENT state, packet drop triggers
 // ACTIVE state and start of burst protection
 if (aqm_state_ == QUIESCENT) {
 aqm_state_ = ACTIVE;
 burst_allowance_ = MAX_BURST;
 }
 return TRUE;
 }

Authors' Addresses

 Greg White
 CableLabs
 858 Coal Creek Circle
 Louisville, CO 80027-9750
 USA

 Email: g.white@cablelabs.com

 Rong Pan
 Cisco Systems
 510 McCarthy Blvd
 Milpitas, CA 95134
 USA

 Email: ropan@cisco.com

White & Pan Expires August 15, 2016 [Page 15]

