
AQM working group T. Hoeiland-Joergensen
Internet-Draft Karlstad University
Intended status: Experimental P. McKenney
Expires: September 19, 2016 IBM Linux Technology Center
 D. Taht
 Teklibre
 J. Gettys

 E. Dumazet
 Google, Inc.
 March 18, 2016

The FlowQueue-CoDel Packet Scheduler and Active Queue Management
Algorithm

draft-ietf-aqm-fq-codel-06

Abstract

 This memo presents the FQ-CoDel hybrid packet scheduler/Active Queue
 Management algorithm, a powerful tool for fighting bufferbloat and
 reducing latency.

 FQ-CoDel mixes packets from multiple flows and reduces the impact of
 head of line blocking from bursty traffic. It provides isolation for
 low-rate traffic such as DNS, web, and videoconferencing traffic. It
 improves utilisation across the networking fabric, especially for
 bidirectional traffic, by keeping queue lengths short; and it can be
 implemented in a memory- and CPU-efficient fashion across a wide
 range of hardware.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 19, 2016.

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft fq-codel March 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Conventions used in this document 4
1.2. Terminology and concepts 4
1.3. Informal summary of FQ-CoDel 5

2. CoDel . 6
3. Flow Queueing . 6
4. The FQ-CoDel scheduler 7
4.1. Enqueue . 7
4.1.1. Alternative classification schemes 8

4.2. Dequeue . 9
5. Implementation considerations 10
5.1. Data structures . 10
5.2. Parameters . 11
5.2.1. Interval . 11
5.2.2. Target . 11
5.2.3. Packet limit . 11
5.2.4. Quantum . 12
5.2.5. Flows . 12
5.2.6. Explicit Congestion Notification (ECN) 12
5.2.7. CE threshold . 13

5.3. Probability of hash collisions 13
5.4. Memory Overhead . 13
5.5. Per-Packet Timestamping 14
5.6. Limiting queueing in lower layers 15
5.7. Other forms of "Fair Queueing" 15
5.8. Differences between CoDel and FQ-CoDel behaviour 15

6. Limitations of flow queueing 16
6.1. Fairness between things other than flows 16
6.2. Flow bunching by opaque encapsulation 17
6.3. Low-priority congestion control algorithms 17

7. Deployment status and future work 18

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 2]

Internet-Draft fq-codel March 2016

8. Security Considerations 18
9. IANA Considerations . 19
10. Acknowledgements . 19
11. References . 19
11.1. Normative References 19
11.2. Informative References 21

 Authors' Addresses . 22

1. Introduction

 The FlowQueue-CoDel (FQ-CoDel) algorithm is a combined packet
 scheduler and Active Queue Management (AQM) [RFC3168] algorithm
 developed as part of the bufferbloat-fighting community effort
 [BLOATWEB]. It is based on a modified Deficit Round Robin (DRR)
 queue scheduler [DRR][DRRPP], with the CoDel AQM [I-D.ietf-aqm-codel]
 algorithm operating on each queue. This document describes the
 combined algorithm; reference implementations are available for the
 ns2 [NS2] and ns3 [NS3] network simulators, and it is included in the
 mainline Linux kernel as the fq_codel queueing discipline [LINUXSRC].

 FQ-CoDel is a general, efficient, nearly parameterless queue
 management approach combining flow queueing with CoDel. It is a
 powerful tool for solving bufferbloat [BLOAT], and we believe it to
 be safe to turn on by default, as has already happened in a number of
 Linux distributions. In this document we document the Linux
 implementation in sufficient detail for an independent
 implementation, to enable deployment outside of the Linux ecosystem.

 Since the FQ-CoDel algorithm was originally developed in the Linux
 kernel, that implementation is still considered canonical. This
 document strives to describe the algorithm in the abstract in the
 first sections and separate out most implementation details in
 subsequent sections, but does use the Linux implementation as
 reference for default behaviour in the algorithm description itself.

 The rest of this document is structured as follows: This section
 gives some concepts and terminology used in the rest of the document,
 and gives a short informal summary of the FQ-CoDel algorithm.

Section 2 gives an overview of the CoDel algorithm. Section 3 covers
 the flow hashing and DRR portion. Section 4 then describes the
 working of the algorithm in detail, while Section 5 describes
 implementation details and considerations. Section 6 lists some of
 the limitations of using flow queueing. Finally, Section 7 outlines
 the current status of FQ-CoDel deployment and lists some possible
 future areas of inquiry, and Section 8 reiterates some important
 security points that must be observed in the implementation.

https://datatracker.ietf.org/doc/html/rfc3168

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 3]

Internet-Draft fq-codel March 2016

1.1. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying [RFC2119] significance.

1.2. Terminology and concepts

 Flow: A flow is typically identified by a 5-tuple of source IP,
 destination IP, source port, destination port, and protocol number.
 It can also be identified by a superset or subset of those
 parameters, or by media access control (MAC) address, or other means.
 FQ-CoDel hashes flows into a configurable number of buckets to assign
 packets to internal Queues.

 Queue: A queue of packets represented internally in FQ-CoDel. In
 most instances each flow gets its own queue; however because of the
 possibility of hash collisions, this is not always the case. In an
 attempt to avoid confusion, the word 'queue' is used to refer to the
 internal data structure, and 'flow' to refer to the actual stream of
 packets being delivered to the FQ-CoDel algorithm.

 Scheduler: A mechanism to select which queue a packet is dequeued
 from.

 CoDel AQM: The Active Queue Management algorithm employed by FQ-CoDel
 [I-D.ietf-aqm-codel].

 DRR: Deficit round-robin scheduling [DRR].

 Quantum: The maximum amount of bytes to be dequeued from a queue at
 once.

 Interval: Characteristic time period used by the control loop of
 CoDel to detect when a persistent Queue is developing (see
 Section 4.3 of [I-D.ietf-aqm-codel]).

 Target: Setpoint value of the minimum sojourn time of packets in a
 Queue used as the target of the control loop in CoDel (see
 Section 4.4 of [I-D.ietf-aqm-codel]).

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 4]

Internet-Draft fq-codel March 2016

1.3. Informal summary of FQ-CoDel

 FQ-CoDel is a _hybrid_ of DRR [DRR] and CoDel [I-D.ietf-aqm-codel],
 with an optimisation for sparse flows similar to Shortest Queue First
 (SQF) [SQF] and DRR++ [DRRPP]. We call this "Flow Queueing" rather
 than "Fair Queueing" as flows that build a queue are treated
 differently from flows that do not.

 By default, FQ-CoDel stochastically classifies incoming packets into
 different queues by hashing the 5-tuple of IP protocol number and
 source and destination IP and port numbers, perturbed with a random
 number selected at initiation time (although other flow
 classification schemes can optionally be configured instead; see

Section 4.1.1). Each queue is managed by the CoDel AQM algorithm
 [CODEL]. Packet ordering within a queue is preserved, since queues
 have FIFO ordering.

 The FQ-CoDel algorithm consists of two logical parts: the scheduler
 which selects which queue to dequeue a packet from, and the CoDel AQM
 which works on each of the queues. The subtleties of FQ-CoDel are
 mostly in the scheduling part, whereas the interaction between the
 scheduler and the CoDel algorithm are fairly straight forward:

 At initialisation, each queue is set up to have a separate set of
 CoDel state variables. By default, 1024 queues are created. The
 Linux implementation at the time of writing supports anywhere from
 one to 64K separate queues, and each queue maintains the state
 variables throughout its lifetime, and so acts the same as the non-FQ
 CoDel variant would. This means that with only one queue, FQ-CoDel
 behaves essentially the same as CoDel by itself.

 On dequeue, FQ-CoDel selects a queue from which to dequeue by a two-
 tier round-robin scheme, in which each queue is allowed to dequeue up
 to a configurable quantum of bytes for each iteration. Deviations
 from this quantum is maintained as byte credits for the queue, which
 serves to make the fairness scheme byte-based rather than packet-
 based. The two-tier round-robin mechanism distinguishes between
 "new" queues (which don't build up a standing queue) and "old"
 queues, that have queued enough data to be around for more than one
 iteration of the round-robin scheduler.

 This new/old queue distinction has a particular consequence for
 queues that don't build up more than a quantum of bytes before being
 visited by the scheduler: Such queues are removed from the list, and
 then re-added as a new queue each time a packet arrives for it, and
 so will get priority over queues that do not empty out each round
 (except for a minor modification to protect against starvation,
 detailed below). Exactly how little data a flow has to send to keep

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 5]

Internet-Draft fq-codel March 2016

 its queue in this state is somewhat difficult to reason about,
 because it depends on both the egress link speed and the number of
 concurrent flows. However, in practice many things that are
 beneficial to have prioritised for typical internet use (ACKs, DNS
 lookups, interactive SSH, HTTP requests, VoIP) _tend_ to fall in this
 category, which is why FQ-CoDel performs so well for many practical
 applications. However, the implicitness of the prioritisation means
 that for applications that require guaranteed priority (for instance
 multiplexing the network control plane over the network itself),
 explicit classification is still needed.

 This scheduling scheme has some subtlety to it, which is explained in
 detail in the remainder of this document.

2. CoDel

 CoDel is described in the ACM Queue paper [CODEL], and the IETF
 document [I-D.ietf-aqm-codel]. The basic idea is to control queue
 length, maintaining sufficient queueing to keep the outgoing link
 busy, but avoiding building up the queue beyond that point. This is
 done by preferentially dropping packets that remain in the queue for
 "too long". Packets are dropped by head drop, which lowers the time
 for the drop signal to propagate back to the sender by the length of
 the queue, and helps trigger TCP fast retransmit sooner.

 The CoDel algorithm itself will not be described here; instead we
 refer the reader to the CoDel draft [I-D.ietf-aqm-codel].

3. Flow Queueing

 The intention of FQ-CoDel's scheduler is to give each _flow_ its own
 queue, hence the term _Flow Queueing_. Rather than a perfect
 realisation of this, a hashing-based scheme is used, where flows are
 hashed into a number of buckets which each has its own queue. The
 number of buckets is configurable, and presently defaults to 1024 in
 the Linux implementation. This is enough to avoid hash collisions on
 a moderate number of flows as seen for instance in a home gateway.
 Depending on the characteristics of the link, this can be tuned to
 trade off memory for a lower probability of hash collisions. See

Section 6 for a more in-depth discussion of this.

 By default, the flow hashing is performed on the 5-tuple of source
 and destination IP addresses and port numbers and IP protocol number.
 While the hashing can be customised to match on arbitrary packet
 bytes, care should be taken when doing so: Much of the benefit of the
 FQ-CoDel scheduler comes from this per-flow distinction. However,
 the default hashing does have some limitations, as discussed in

Section 6.

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 6]

Internet-Draft fq-codel March 2016

 FQ-CoDel's DRR scheduler is byte-based, employing a deficit round-
 robin mechanism between queues. This works by keeping track of the
 current number _byte credits_ of each queue. This number is
 initialised to the configurable quantum; each time a queue gets a
 dequeue opportunity, it gets to dequeue packets, decreasing the
 number of credits by the packet size for each packet. This continues
 until the value of _byte credits_ becomes zero or less, at which
 point it is increased by one quantum, and the dequeue opportunity
 ends.

 This means that if one queue contains packets of, for instance, size
 quantum/3, and another contains quantum-sized packets, the first
 queue will dequeue three packets each time it gets a turn, whereas
 the second only dequeues one. This means that flows that send small
 packets are not penalised by the difference in packet sizes; rather,
 the DRR scheme approximates a (single-)byte-based fairness queueing
 scheme. The size of the quantum determines the scheduling
 granularity, with the tradeoff from too small a quantum being
 scheduling overhead. For small bandwidths, lowering the quantum from
 the default MTU size can be advantageous.

 Unlike plain DRR there are two sets of flows - a "new" list for flows
 that have not built a queue recently, and an "old" list for queues
 that build a backlog. This distinction is an integral part of the
 FQ-CoDel scheduler and is described in more detail in Section 4.

4. The FQ-CoDel scheduler

 To make its scheduling decisions, FQ-CoDel maintains two ordered
 lists of active queues, called "new" and "old" queues. When a packet
 is added to a queue that is not currently active, that queue becomes
 active by being added to the list of new queues. Later on, it is
 moved to the list of old queues, from which it is removed when it is
 no longer active. This behaviour is the source of some subtlety in
 the packet scheduling at dequeue time, explained below.

4.1. Enqueue

 The packet enqueue mechanism consists of three stages: classification
 into a queue, timestamping and bookkeeping, and optionally dropping a
 packet when the total number of enqueued packets goes over the
 maximum.

 When a packet is enqueued, it is first classified into the
 appropriate queue. By default, this is done by hashing (using a
 Jenkins hash function [JENKINS]) on the 5-tuple of IP protocol, and
 source and destination IP addresses and port numbers (if they exist),
 and taking the hash value modulo the number of queues. The hash is

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 7]

Internet-Draft fq-codel March 2016

 salted by modulo addition of a random value selected at
 initialisation time, to prevent possible DoS attacks if the hash is
 predictable ahead of time (see Section 8). The Linux kernel
 implements the Jenkins hash function by mixing three 32-bit values
 into a single 32-bit output value. Inputs larger than 96 bits are
 reduced by additional mixing steps, 96 bits at a time.

 Once the packet has been successfully classified into a queue, it is
 handed over to the CoDel algorithm for timestamping. It is then
 added to the tail of the selected queue, and the queue's byte count
 is updated by the packet size. Then, if the queue is not currently
 active (i.e., if it is not in either the list of new or the list of
 old queues), it is added to the end of the list of new queues, and
 its number of credits is initiated to the configured quantum.
 Otherwise, the queue is left in its current queue list.

 Finally, the total number of enqueued packets is compared with the
 configured limit, and if it is _above_ this value (which can happen
 since a packet was just enqueued), a packet is dropped from the head
 of the queue with the largest current byte count. Note that this in
 most cases means that the packet that gets dropped is different from
 the one that was just enqueued, and may even be from a different
 queue.

4.1.1. Alternative classification schemes

 As mentioned previously, it is possible to modify the classification
 scheme to provide a different notion of a 'flow'. The Linux
 implementation provides this option in the form of the "tc filter"
 command. While this can add capabilities (for instance, matching on
 other possible parameters such as MAC address, diffserv code point
 values, firewall rules, flow specific markings, IPv6 flow label,
 etc.), care should be taken to preserve the notion of 'flow' as much
 of the benefit of the FQ-CoDel scheduler comes from keeping flows in
 separate queues.

 For protocols that do not contain a port number (such as ICMP), the
 Linux implementation simply sets the port numbers to zero and
 performs the hashing as usual. In practice, this results in such
 protocols to each get their own queue (except in the case of hash
 collisions). An implementation can perform other classifications for
 protocols that have their own notion of a flow, but SHOULD fall back
 to simply hashing on source and destination IP address and IP
 protocol number in the absence of other information.

 The default classification scheme can additionally be improved by
 performing decapsulation of tunnelled packets prior to hashing on the
 5-tuple in the encapsulated payload. The Linux implementation does

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 8]

Internet-Draft fq-codel March 2016

 this for common encapsulations known to the kernel, such as 6in4
 [RFC4213], IP-in-IP [RFC2003] and GRE (Generic Routing Encapsulation)
 [RFC2890]. This helps to distinguish between flows that share the
 same (outer) 5-tuple, but of course is limited to unencrypted tunnels
 (see Section 6.2).

4.2. Dequeue

 Most of FQ-CoDel's work is done at packet dequeue time. It consists
 of three parts: selecting a queue from which to dequeue a packet,
 actually dequeuing it (employing the CoDel algorithm in the process),
 and some final bookkeeping.

 For the first part, the scheduler first looks at the list of new
 queues; for the queue at the head of that list, if that queue has a
 negative number of credits (i.e., it has already dequeued at least a
 quantum of bytes), it is given an additional quantum of credits, the
 queue is put onto _the end of_ the list of old queues, and the
 routine selects the next queue and starts again.

 Otherwise, that queue is selected for dequeue. If the list of new
 queues is empty, the scheduler proceeds down the list of old queues
 in the same fashion (checking the credits, and either selecting the
 queue for dequeuing, or adding credits and putting the queue back at
 the end of the list).

 After having selected a queue from which to dequeue a packet, the
 CoDel algorithm is invoked on that queue. This applies the CoDel
 control law, which is the mechanism CoDel uses to determine when to
 drop packets (see [I-D.ietf-aqm-codel]). As a result of this, one or
 more packets may be discarded from the head of the selected queue,
 before the packet that should be dequeued is returned (or nothing is
 returned if the queue is or becomes empty while being handled by the
 CoDel algorithm).

 Finally, if the CoDel algorithm does not return a packet, then the
 queue must be empty, and the scheduler does one of two things: if the
 queue selected for dequeue came from the list of new queues, it is
 moved to _the end of_ the list of old queues. If instead it came
 from the list of old queues, that queue is removed from the list, to
 be added back (as a new queue) the next time a packet arrives that
 hashes to that queue. Then (since no packet was available for
 dequeue), the whole dequeue process is restarted from the beginning.

 If, instead, the scheduler _did_ get a packet back from the CoDel
 algorithm, it subtracts the size of the packet from the byte credits
 for the selected queue and returns the packet as the result of the
 dequeue operation.

https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc2890

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 9]

Internet-Draft fq-codel March 2016

 The step that moves an empty queue from the list of new queues to
 the end of the list of old queues before it is removed is crucial
 to prevent starvation. Otherwise the queue could reappear (the next
 time a packet arrives for it) before the list of old queues is
 visited; this can go on indefinitely even with a small number of
 active flows, if the flow providing packets to the queue in question
 transmits at just the right rate. This is prevented by first moving
 the queue to _the end of_ the list of old queues, forcing a pass
 through that, and thus preventing starvation. Moving it to the end
 of the list, rather than the front, is crucial for this to work.

 The resulting migration of queues between the different states is
 summarised in the following state diagram:

 +-----------------+ +------------------+
 | | Empty | |
 | Empty |<---------------+ Old +----+
 | | | | |
 +-------+---------+ +------------------+ |
 | ^ ^ |Credits
 |Arrival | | |Exhausted
 v | | |
 +-----------------+ | | |
 | | Empty or | | |
 | New +-------------------+ +-------+
 | | Credits exhausted
 +-----------------+

 Figure 1: Partial state diagram for queues between different states.
 Both the new and old queue states can additionally have arrival and
 dequeue events that do not change the state; these are omitted here.

5. Implementation considerations

 This section contains implementation details for the FQ-CoDel
 algorithm. This includes the data structures and parameters used in
 the Linux implementation, as well as discussion of some required
 features of the target platform and other considerations.

5.1. Data structures

 The main data structure of FQ-CoDel is the array of queues, which is
 instantiated with the number of queues specified by the _flows_
 parameter at instantiation time. Each queue consists simply of an
 ordered list of packets with FIFO semantics, two state variables
 tracking the queue credits and total number of bytes enqueued, and
 the set of CoDel state variables. Other state variables to track

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 10]

Internet-Draft fq-codel March 2016

 queue statistics can also be included: for instance, the Linux
 implementation keeps a count of dropped packets.

 In addition to the queue structures themselves, FQ-CoDel maintains
 two ordered lists containing references to the subset of queues that
 are currently active. These are the list of 'new' queues and the
 list of 'old' queues, as explained in Section 4 above.

 In the Linux implementation, queue space is shared: there's a global
 limit on the number of packets the queues can hold, but not one per
 queue.

5.2. Parameters

 The following are the user configuration parameters exposed by the
 Linux implementation of FQ-CoDel.

5.2.1. Interval

 The _interval_ parameter has the same semantics as CoDel and is used
 to ensure that the minimum sojourn time of packets in a queue used as
 an estimator by the CoDel control algorithm is a relatively up-to-
 date value. That is, CoDel only reacts to delay experienced in the
 last epoch of length interval. It SHOULD be set to be on the order
 of the worst-case RTT through the bottleneck to give end-points
 sufficient time to react.

 The default interval value is 100 ms.

5.2.2. Target

 The _target_ parameter has the same semantics as CoDel. It is the
 acceptable minimum standing/persistent queue delay for each FQ-CoDel
 Queue. This minimum delay is identified by tracking the local
 minimum queue delay that packets experience.

 The default target value is 5 ms, but this value should be tuned to
 be at least the transmission time of a single MTU-sized packet at the
 prevalent egress link speed (which for, e.g., 1Mbps and MTU 1500 is
 ~15ms), to prevent CoDel from being too aggressive at low bandwidths.
 It should otherwise be set to on the order of 5-10% of the configured
 interval.

5.2.3. Packet limit

 Routers do not have infinite memory, so some packet limit MUST be
 enforced.

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 11]

Internet-Draft fq-codel March 2016

 The _limit_ parameter is the hard limit on the real queue size,
 measured in number of packets. This limit is a global limit on the
 number of packets in all queues; each individual queue does not have
 an upper limit. When the limit is reached and a new packet arrives
 for enqueue, a packet is dropped from the head of the largest queue
 (measured in bytes) to make room for the new packet.

 In Linux, the default packet limit is 10240 packets, which is
 suitable for up to 10 Gigabit Ethernet speeds. In practice, the hard
 limit is rarely, if ever, hit, as drops are performed by the CoDel
 algorithm long before the limit is hit. For platforms that are
 severely memory constrained, a lower limit can be used.

5.2.4. Quantum

 The _quantum_ parameter is the number of bytes each queue gets to
 dequeue on each round of the scheduling algorithm. The default is
 set to 1514 bytes which corresponds to the Ethernet MTU plus the
 hardware header length of 14 bytes.

 In systems employing TCP Segmentation Offload (TSO), where a "packet"
 consists of an offloaded packet train, it can presently be as large
 as 64K bytes. In systems using Generic Receive Offload (GRO), they
 can be up to 17 times the TCP max segment size (or 25K bytes). These
 mega-packets severely impact FQ-CoDel's ability to schedule traffic,
 and hurt latency needlessly. There is ongoing work in Linux to make
 smarter use of offload engines.

5.2.5. Flows

 The _flows_ parameter sets the number of queues into which the
 incoming packets are classified. Due to the stochastic nature of
 hashing, multiple flows may end up being hashed into the same slot.

 This parameter can be set only at initialisation time in the current
 implementation, since memory has to be allocated for the hash table.

 The default value is 1024 in the current Linux implementation.

5.2.6. Explicit Congestion Notification (ECN)

 ECN is _enabled_ by default. Rather than do anything special with
 misbehaved ECN flows, FQ-CoDel relies on the packet scheduling system
 to minimise their impact, thus the number of unresponsive packets in
 a flow being marked with ECN can grow to the overall packet limit,
 but will not otherwise affect the performance of the system.

 It can be disabled by specifying the _noecn_ parameter.

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 12]

Internet-Draft fq-codel March 2016

5.2.7. CE threshold

 This parameter enables Date Centre TCP (DCTCP)-like processing
 resulting in CE (Congestion Encountered) marking on ECN-Capable
 Transport (ECT) packets [RFC3168] starting at a lower sojourn delay
 setpoint than the default CoDel Target. Details of DCTCP can be
 found in [I-D.ietf-tcpm-dctcp].

 The parameter, _ce_threshold_, is disabled by default and can be set
 to a number of microseconds to enable.

5.3. Probability of hash collisions

 Since the Linux FQ-CoDel implementation by default uses 1024 hash
 buckets, the probability that (say) 100 flows will all hash to the
 same bucket is something like ten to the power of minus 300. Thus,
 at least one of the flows will almost certainly hash to some other
 queue.

 Expanding on this, based on analytical equations for hash collision
 probabilities, for 100 flows, the probability of no collision is
 90.78%; the probability that no more than two of the 100 flows will
 be involved in any given collision = 99.57%; and the probability that
 no more than three of the 100 flows will be involved in any given
 collision = 99.99%. These probabilities assume a hypothetical
 perfect hashing function, so in practice they may be a bit lower. We
 have not found this difference to matter in practice.

 These probabilities can be improved upon by using set-associative
 hashing, a technique used in the Cake algorithm currently being
 developed as a further development upon the FQ-CoDel principles. For
 a 4-way associative hash with the same number of total queues, the
 probability of no collisions for 100 flows is 99.93%, while for an
 8-way associative hash it is ~100%.

5.4. Memory Overhead

 FQ-CoDel can be implemented with a low memory footprint (less than 64
 bytes per queue on 64 bit systems). These are the data structures
 used in the Linux implementation:

 <CODE BEGINS>

https://datatracker.ietf.org/doc/html/rfc3168

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 13]

Internet-Draft fq-codel March 2016

 struct codel_vars {
 u32 count; /* number of dropped packets */
 u32 lastcount; /* count entry to dropping state */
 bool dropping; /* currently dropping? */
 u16 rec_inv_sqrt; /* reciprocal sqrt computation */
 codel_time_t first_above_time; /* when delay above target */
 codel_time_t drop_next; /* next time to drop */
 codel_time_t ldelay; /* sojourn time of last dequeued packet */
 };

 struct fq_codel_flow {
 struct sk_buff *head;
 struct sk_buff *tail;
 struct list_head flowchain;
 int credits; /* current number of queue credits */
 u32 dropped; /* # of drops (or ECN marks) on flow */
 struct codel_vars cvars;
 };

 <CODE ENDS>

 The master table managing all queues looks like this:

 <CODE BEGINS>

 struct fq_codel_sched_data {
 struct tcf_proto *filter_list; /* optional external classifier */
 struct fq_codel_flow *flows; /* Flows table [flows_cnt] */
 u32 *backlogs; /* backlog table [flows_cnt] */
 u32 flows_cnt; /* number of flows */
 u32 perturbation; /* hash perturbation */
 u32 quantum; /* psched_mtu(qdisc_dev(sch)); */
 struct codel_params cparams;
 struct codel_stats cstats;
 u32 drop_overlimit;
 u32 new_flow_count;

 struct list_head new_flows; /* list of new flows */
 struct list_head old_flows; /* list of old flows */
 };

 <CODE ENDS>

5.5. Per-Packet Timestamping

 The CoDel portion of the algorithm requires per-packet timestamps be
 stored along with the packet. While this approach works well for
 software-based routers, it may be impossible to retrofit devices that

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 14]

Internet-Draft fq-codel March 2016

 do most of their processing in silicon and lack space or mechanism
 for timestamping.

 Also, while perfect resolution is not needed, timestamp resolution
 finer than the CoDel target setting is necessary. Furthermore,
 timestamping functions in the core OS need to be efficient as they
 are called at least once on each packet enqueue and dequeue.

5.6. Limiting queueing in lower layers

 When deploying a queue management algorithm such as FQ-CoDel, it is
 important to ensure that the algorithm actually runs in the right
 place to control the queue. In particular lower layers of the
 operating system networking stack can have queues of their own, as
 can device drivers and hardware. Thus, it is desirable that the
 queue management algorithm runs as close to the hardware as possible.
 However, scheduling such complexity at interrupt time is difficult,
 so a small standing queue between the algorithm and the wire is often
 needed at higher transmit rates.

 In Linux, the mechanism to ensure these different needs are balanced
 is called "Byte Queue Limits" [BQL], which controls the device driver
 ring buffer (for physical line rates). For cases where this
 functionality is not available, the queue can be controlled by means
 of a software rate limiter such as Hierarchical Token Bucket [HTB] or
 Hierarchical Fair-Service Curve [HFSC]. The Cake algorithm [CAKE]
 integrates a software rate limiter for this purpose.

 Other issues with queues at lower layers are described in [CODEL].

5.7. Other forms of "Fair Queueing"

 Much of the scheduling portion of FQ-CoDel is derived from DRR and is
 substantially similar to DRR++. Versions based on Stochastic Fair
 Queueing [SFQ] have also been produced and tested in ns2. Other
 forms of Fair Queueing, such as Weighted Fair Queueing [WFQ] or Quick
 Fair Queueing [QFQ], have not been thoroughly explored, but there's
 no a priori reason why the round-robin scheduling of FQ-CoDel
 couldn't be replaced with something else.

 For a comprehensive discussion of fairness queueing algorithms and
 their combination with AQM, see [I-D.ietf-aqm-fq-implementation].

5.8. Differences between CoDel and FQ-CoDel behaviour

 CoDel can be applied to a single queue system as a straight AQM,
 where it converges towards an "ideal" drop rate (i.e., one that

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 15]

Internet-Draft fq-codel March 2016

 minimises delay while keeping a high link utilisation), and then
 optimises around that control point.

 The scheduling of FQ-CoDel mixes packets of competing flows, which
 acts to pace bursty flows to better fill the pipe. Additionally, a
 new flow gets substantial leeway over other flows until CoDel finds
 an ideal drop rate for it. However, for a new flow that exceeds the
 configured quantum, more time passes before all of its data is
 delivered (as packets from it, too, are mixed across the other
 existing queue-building flows). Thus, FQ-CoDel takes longer (as
 measured in time) to converge towards an ideal drop rate for a given
 new flow, but does so within fewer delivered _packets_ from that
 flow.

 Finally, the flow isolation FQ-CoDel provides means that the CoDel
 drop mechanism operates on the flows actually building queues, which
 results in packets being dropped more accurately from the largest
 flows than CoDel alone manages. Additionally, flow isolation
 radically improves the transient behaviour of the network when
 traffic or link characteristics change (e.g., when new flows start up
 or the link bandwidth changes); while CoDel itself can take a while
 to respond, FQ-CoDel reacts almost immediately.

6. Limitations of flow queueing

 While FQ-CoDel has been shown in many scenarios to offer significant
 performance gains compared to alternative queue management
 strategies, there are some scenarios where the scheduling algorithm
 in particular is not a good fit. This section documents some of the
 known cases which either may require tweaking the default behaviour,
 or where alternatives to flow queueing should be considered.

6.1. Fairness between things other than flows

 In some parts of the network, enforcing flow-level fairness may not
 be desirable, or some other form of fairness may be more important.
 An example of this can be an Internet Service Provider that may be
 more interested in ensuring fairness between customers than between
 flows. Or a hosting or transit provider that wishes to ensure
 fairness between connecting Autonomous Systems or networks. Another
 issue can be that the number of simultaneous flows experienced at a
 particular link can be too high for flow-based fairness queueing to
 be effective.

 Whatever the reason, in a scenario where fairness between flows is
 not desirable, reconfiguring FQ-CoDel to match on a different
 characteristic can be a way forward. The implementation in Linux can
 leverage the packet matching mechanism of the _tc_ subsystem to use

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 16]

Internet-Draft fq-codel March 2016

 any available packet field to partition packets into virtual queues,
 to for instance match on address or subnet source/destination pairs,
 application layer characteristics, etc.

 Furthermore, as commonly deployed today, FQ-CoDel is used with three
 or more tiers of service classification: priority, best effort and
 background, based on diffserv markings. Some products do more
 detailed classification, including deep packet inspection and
 destination-specific filters to achieve their desired result.

6.2. Flow bunching by opaque encapsulation

 Where possible, FQ-CoDel will attempt to decapsulate packets before
 matching on the header fields for the flow hashing. However, for
 some encapsulation techniques, most notably encrypted VPNs, this is
 not possible. If several flows are bunched into one such
 encapsulated tunnel, they will be seen as one flow by the FQ-CoDel
 algorithm. This means that they will share a queue, and drop
 behaviour, and so flows inside the encapsulation will not benefit
 from the implicit prioritisation of FQ-CoDel, but will continue to
 benefit from the reduced overall queue length from the CoDel
 algorithm operating on the queue. In addition, when such an
 encapsulated bunch competes against other flows, it will count as one
 flow, and not assigned a share of the bandwidth based on how many
 flows are inside the encapsulation.

 Depending on the application, this may or may not be desirable
 behaviour. In cases where it is not, changing FQ-CoDel's matching to
 not be flow-based (as detailed in the previous subsection above) can
 be a mitigation. Going forward, having some mechanism for opaque
 encapsulations to express to the outer layer which flow a packet
 belongs to, could be a way to mitigate this. Naturally, care needs
 to be taken when designing such a mechanism to ensure no new privacy
 and security issues are raised by exposing information from inside
 the encapsulation to the outside world. Keeping the extra
 information out-of-band and dropping it before it hits the network
 could be one way to achieve this.

6.3. Low-priority congestion control algorithms

 In the presence of queue management schemes that limit latency under
 load, low-priority congestion control algorithms such as LEDBAT
 [RFC6817] (or, in general, algorithms that try to voluntarily use up
 less than their fair share of bandwidth) experiences little added
 latency when the link is congested. Thus, they lack the signal to
 back off that added latency previously afforded them. This effect is
 seen with FQ-CoDel as well as with any effective AQM [GONG2014].

https://datatracker.ietf.org/doc/html/rfc6817

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 17]

Internet-Draft fq-codel March 2016

 As such, these delay-based algorithms tend to revert to loss-based
 congestion control, and will consume the fair share of bandwidth
 afforded to them by the FQ-CoDel scheduler. However, low-priority
 congestion control mechanisms may be able to take steps to continue
 to be low priority, for instance by taking into account the vastly
 reduced level of delay afforded by an AQM, or by using a coupled
 approach to observing the behaviour of multiple flows.

7. Deployment status and future work

 The FQ-CoDel algorithm as described in this document has been shipped
 as part of the Linux kernel since version 3.5, released on the 21st
 of July, 2012, with the ce_threshold being added in version 4.2. The
 algorithm has seen widespread testing in a variety of contexts and is
 configured as the default queueing discipline in a number of mainline
 Linux distributions (as of this writing at least OpenWRT, Arch Linux
 and Fedora). We believe it to be a safe default and encourage people
 running Linux to turn it on: It is a massive improvement over the
 previous default FIFO queue.

 Of course there is always room for improvement, and this document has
 listed some of the known limitations of the algorithm. As such, we
 encourage further research into algorithm refinements and addressing
 of limitations. One such effort is undertaken by the bufferbloat
 community in the form of the Cake queue management scheme [CAKE]. In
 addition to this we believe the following (non-exhaustive) list of
 issues to be worthy of further enquiry:

 o Variations on the flow classification mechanism to fit different
 notions of flows. For instance, an ISP might want to deploy per-
 subscriber scheduling, while in other cases several flows can
 share a 5-tuple, as exemplified by the RTCWEB QoS recommendations
 [I-D.ietf-tsvwg-rtcweb-qos].

 o Interactions between flow queueing and delay-based congestion
 control algorithms and scavenger protocols.

 o Other scheduling mechanisms to replace the DRR portion of the
 algorithm, e.g., QFQ or WFQ.

 o Sensitivity of parameters, most notably the number of queues and
 the CoDel parameters.

8. Security Considerations

 There are no specific security exposures associated with FQ-CoDel
 that are not also present in current FIFO systems. On the contrary,
 some vulnerabilities of FIFO systems are reduced with FQ-CoDel (e.g.,

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 18]

Internet-Draft fq-codel March 2016

 simple minded packet floods). However, some care is needed in the
 implementation to ensure this is the case. These are included in the
 description above, however we reiterate them here:

 o To prevent packets in the new queues from starving old queues, it
 is important that when a queue on the list of new queues empties,
 it is moved to _the end of_ the list of old queues. This is
 described at the end of Section 4.2.

 o To prevent an attacker targeting a specific flow for a denial of
 service attack, the hash that maps packets to queues should not be
 predictable. To achieve this, FQ-CoDel salts the hash, as
 described in the beginning of Section 4.1. The size of the salt
 and the strength of the hash function is obviously a tradeoff
 between performance and security. The Linux implementation uses a
 32 bit random value as the salt and a Jenkins hash function. This
 makes it possible to achieve high throughput, and we consider it
 sufficient to ward off the most obvious attacks.

 o Packet fragments without a layer 4 header can be hashed into
 different bins than the first fragment with the header intact.
 This can cause reordering and/or adversely affect the performance
 of the flow. Keeping state to match the fragments to the
 beginning of the packet, or simply putting all packet fragments
 (including the first fragment of each fragmented packet) into the
 same queue, are two ways to alleviate this.

9. IANA Considerations

 This document has no actions for IANA.

10. Acknowledgements

 Our deepest thanks to Kathie Nichols, Van Jacobson, and all the
 members of the bufferbloat.net effort for all the help on developing
 and testing the algorithm. In addition, our thanks to Anil Agarwal
 for his help with getting the hash collision probabilities in this
 document right.

11. References

11.1. Normative References

 [I-D.ietf-aqm-codel]
 Nichols, K., Jacobson, V., McGregor, A., and J. Iyengar,
 "Controlled Delay Active Queue Management", draft-ietf-

aqm-codel-03 (work in progress), March 2016.

https://datatracker.ietf.org/doc/html/draft-ietf-aqm-codel-03
https://datatracker.ietf.org/doc/html/draft-ietf-aqm-codel-03

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 19]

Internet-Draft fq-codel March 2016

 [I-D.ietf-aqm-fq-implementation]
 Baker, F. and R. Pan, "On Queuing, Marking, and Dropping",

draft-ietf-aqm-fq-implementation-05 (work in progress),
 November 2015.

 [I-D.ietf-tcpm-dctcp]
 Bensley, S., Eggert, L., Thaler, D., Balasubramanian, P.,
 and G. Judd, "Datacenter TCP (DCTCP): TCP Congestion
 Control for Datacenters", draft-ietf-tcpm-dctcp-01 (work
 in progress), November 2015.

 [I-D.ietf-tsvwg-rtcweb-qos]
 Jones, P., Dhesikan, S., Jennings, C., and D. Druta, "DSCP
 and other packet markings for WebRTC QoS", draft-ietf-

tsvwg-rtcweb-qos-14 (work in progress), March 2016.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 DOI 10.17487/RFC2003, October 1996,
 <http://www.rfc-editor.org/info/rfc2003>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE",
RFC 2890, DOI 10.17487/RFC2890, September 2000,

 <http://www.rfc-editor.org/info/rfc2890>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <http://www.rfc-editor.org/info/rfc3168>.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213,
 DOI 10.17487/RFC4213, October 2005,
 <http://www.rfc-editor.org/info/rfc4213>.

 [RFC6817] Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
 "Low Extra Delay Background Transport (LEDBAT)", RFC 6817,
 DOI 10.17487/RFC6817, December 2012,
 <http://www.rfc-editor.org/info/rfc6817>.

https://datatracker.ietf.org/doc/html/draft-ietf-aqm-fq-implementation-05
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-dctcp-01
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rtcweb-qos-14
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rtcweb-qos-14
https://datatracker.ietf.org/doc/html/rfc2003
http://www.rfc-editor.org/info/rfc2003
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2890
http://www.rfc-editor.org/info/rfc2890
https://datatracker.ietf.org/doc/html/rfc3168
http://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc4213
http://www.rfc-editor.org/info/rfc4213
https://datatracker.ietf.org/doc/html/rfc6817
http://www.rfc-editor.org/info/rfc6817

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 20]

Internet-Draft fq-codel March 2016

11.2. Informative References

 [BLOAT] Gettys, J., "Bufferbloat: Dark buffers in the Internet.",
 in IEEE Internet Comput. 15, 3,
 DOI http://dx.doi.org/10.1109/MIC.2011.56, 2011,
 <http://www.bufferbloat.net/attachments/27/

IC-15-03-Backspace.pdf>.

 [BLOATWEB]
 "Bufferbloat web site", <https://www.bufferbloat.net>.

 [BQL] Herbert, T., "Network Byte Queue Limits", August 2011,
 <https://lwn.net/Articles/454390/>.

 [CAKE] "Cake comprehensive queue management system",
 <http://www.bufferbloat.net/projects/codel/wiki/Cake>.

 [CODEL] Nichols, K. and V. Jacobson, "Controlling Queue Delay",
 July 2012, <http://queue.acm.org/detail.cfm?id=2209336>.

 [DRR] Shreedhar, M. and G. Varghese, "Efficient Fair Queueing
 Using Deficit Round Robin", in IEEE/ACM Trans. Netw. 4, 3,
 June 1996,
 <http://users.ece.gatech.edu/~siva/ECE4607/presentations/

DRR.pdf>.

 [DRRPP] MacGregor, M. and W. Shi, "Deficits for Bursty Latency-
 critical Flows: DRR++", in Proceedings IEEE International
 Conference on Networks 2000 (ICON 2000), 2000,
 <http://ieeexplore.ieee.org/xpls/

abs_all.jsp?arnumber=875803>.

 [GONG2014]
 Gong, Y., Rossi, D., Testa, C., Valenti, S., and D. Taht,
 "Fighting the bufferbloat: on the coexistence of AQM and
 low priority congestion control", in 2013 IEEE Conference
 on Computer Communications Workshops (INFOCOM WKSHPS),
 July 2014, <http://perso.telecom-

paristech.fr/~drossi/paper/rossi14comnet-b.pdf>.

 [HFSC] Stoica, I., Zhang, H., and T. Eugene, "Hierarchical fair-
 service curve", in Sigcomm 1997 proceedings, 1997,
 <http://conferences.sigcomm.org/sigcomm/1997/papers/

p011.pdf>.

 [HTB] "Hierarchical Token Bucket",
 <https://en.wikipedia.org/wiki/Token_bucket#Variations>.

http://dx.doi.org/10.1109/MIC.2011.56
http://www.bufferbloat.net/attachments/27/IC-15-03-Backspace.pdf
http://www.bufferbloat.net/attachments/27/IC-15-03-Backspace.pdf
https://www.bufferbloat.net
https://lwn.net/Articles/454390/
http://www.bufferbloat.net/projects/codel/wiki/Cake
http://queue.acm.org/detail.cfm?id=2209336
http://users.ece.gatech.edu/~siva/ECE4607/presentations/DRR.pdf
http://users.ece.gatech.edu/~siva/ECE4607/presentations/DRR.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=875803
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=875803
http://perso.telecom-paristech.fr/~drossi/paper/rossi14comnet-b.pdf
http://perso.telecom-paristech.fr/~drossi/paper/rossi14comnet-b.pdf
http://conferences.sigcomm.org/sigcomm/1997/papers/p011.pdf
http://conferences.sigcomm.org/sigcomm/1997/papers/p011.pdf
https://en.wikipedia.org/wiki/Token_bucket#Variations

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 21]

Internet-Draft fq-codel March 2016

 [JENKINS] Jenkins, B., "A Hash Function for Hash Table Lookup",
 1996, <http://www.burtleburtle.net/bob/hash/doobs.html>.

 [LINUXSRC]
 "Current FQ-CoDel Linux source code", <https://git.kernel.

org/cgit/linux/kernel/git/torvalds/linux.git/tree/net/
sched/sch_fq_codel.c>.

 [NS2] "NS2 web site", <http://nsnam.sourceforge.net/wiki>.

 [NS3] "NS3 web site", <https://www.nsnam.org/wiki>.

 [QFQ] Checconi, F., Rizzo, L., and P. Valente, "QFQ: Efficient
 packet scheduling with tight guarantees", in IEEE/ACM
 Transactions on Networking (TON), 2013,
 <http://dl.acm.org/citation.cfm?id=2525552>.

 [SFQ] McKenney, P., "Stochastic fairness queueing", published as
 technical report, 2002,
 <https://web.archive.org/web/20151003174154/

http://www2.rdrop.com/~paulmck/scalability/paper/
sfq.2002.06.04.pdf>.

 [SQF] Bonald, T., Muscariello, L., and N. Ostallo, "On the
 impact of TCP and per-flow scheduling on Internet
 Performance", in IEEE/ACM transactions on Networking,
 April 2012, <http://perso.telecom-

paristech.fr/~bonald/Publications_files/BMO2011.pdf>.

 [WFQ] Demers, A., Keshav, S., and S. Shenker, "Analysis and
 simulation of a fair queueing algorithm", in SIGCOMM
 Comput. Commun. Rev., September 1989,
 <http://doi.acm.org/10.1145/75247.75248>.

Authors' Addresses

 Toke Hoeiland-Joergensen
 Karlstad University
 Dept. of Computer Science
 Karlstad 65188
 Sweden

 Email: toke.hoiland-jorgensen@kau.se

http://www.burtleburtle.net/bob/hash/doobs.html
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/net/sched/sch_fq_codel.c
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/net/sched/sch_fq_codel.c
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/net/sched/sch_fq_codel.c
http://nsnam.sourceforge.net/wiki
https://www.nsnam.org/wiki
http://dl.acm.org/citation.cfm?id=2525552
https://web.archive.org/web/20151003174154/
http://www2.rdrop.com/~paulmck/scalability/paper/sfq.2002.06.04
http://www2.rdrop.com/~paulmck/scalability/paper/sfq.2002.06.04
http://perso.telecom-paristech.fr/~bonald/Publications_files/BMO2011.pdf
http://perso.telecom-paristech.fr/~bonald/Publications_files/BMO2011.pdf
http://doi.acm.org/10.1145/75247.75248

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 22]

Internet-Draft fq-codel March 2016

 Paul McKenney
 IBM Linux Technology Center
 1385 NW Amberglen Parkway
 Hillsboro, OR 97006
 USA

 Email: paulmck@linux.vnet.ibm.com
 URI: http://www2.rdrop.com/~paulmck/

 Dave Taht
 Teklibre
 2104 W First street
 Apt 2002
 FT Myers, FL 33901
 USA

 Email: dave.taht@gmail.com
 URI: http://www.teklibre.com/

 Jim Gettys
 21 Oak Knoll Road
 Carlisle, MA 993
 USA

 Email: jg@freedesktop.org
 URI: https://en.wikipedia.org/wiki/Jim_Gettys

 Eric Dumazet
 Google, Inc.
 1600 Amphitheater Pkwy
 Mountain View, CA 94043
 USA

 Email: edumazet@gmail.com

http://www2.rdrop.com/~paulmck/
http://www.teklibre.com/
https://en.wikipedia.org/wiki/Jim_Gettys

Hoeiland-Joergensen, etExpires September 19, 2016 [Page 23]

