
Internet Draft R. Pan, P. Natarajan, F. Baker
Active Queue Management B. VerSteeg, M. Prabhu, C. Piglione
Working Group V. Subramanian, G. White
Intended Status: Standards Track

Expires: September 27, 2015 March 26, 2015

PIE: A Lightweight Control Scheme To Address the
Bufferbloat Problem

draft-ietf-aqm-pie-01

Abstract

 Bufferbloat is a phenomenon where excess buffers in the network cause
 high latency and jitter. As more and more interactive applications
 (e.g. voice over IP, real time video streaming and financial
 transactions) run in the Internet, high latency and jitter degrade
 application performance. There is a pressing need to design
 intelligent queue management schemes that can control latency and
 jitter; and hence provide desirable quality of service to users.

 We present here a lightweight design, PIE (Proportional Integral
 controller Enhanced) that can effectively control the average
 queueing latency to a target value. Simulation results, theoretical
 analysis and Linux testbed results have shown that PIE can ensure low
 latency and achieve high link utilization under various congestion
 situations. The design does not require per-packet timestamp, so it
 incurs very small overhead and is simple enough to implement in both
 hardware and software.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Pan et al. Expires September 27, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-aqm-pie-01
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

INTERNET DRAFT PIE March 26, 2015

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Terminology . 5
3. Design Goals . 5
4. The BASIC PIE Scheme . 6
4.1 Random Dropping . 6
4.2 Drop Probability Calculation 7
4.3 Departure Rate Estimation 8

5. Design Enhancement . 9
5.1 Turning PIE on and off 9
5.2 Auto-tuning of PIE's control parameters 9
5.3 Handling Bursts . 10
5.4 De-randomization . 11

6. Implementation and Discussions 11
7. Future Research . 13
8. Incremental Deployment . 13
9. IANA Considerations . 14
10. References . 14
10.1 Normative References 14
10.2 Informative References 14
10.3 Other References . 14

 Authors' Addresses . 15
10. The PIE pseudo Code . 16

http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Pan et al. Expires September 27, 2015 [Page 2]

INTERNET DRAFT PIE March 26, 2015

Pan et al. Expires September 27, 2015 [Page 3]

INTERNET DRAFT PIE March 26, 2015

1. Introduction

 The explosion of smart phones, tablets and video traffic in the
 Internet brings about a unique set of challenges for congestion
 control. To avoid packet drops, many service providers or data center
 operators require vendors to put in as much buffer as possible. With
 rapid decrease in memory chip prices, these requests are easily
 accommodated to keep customers happy. However, the above solution of
 large buffer fails to take into account the nature of the TCP
 protocol, the dominant transport protocol running in the Internet.
 The TCP protocol continuously increases its sending rate and causes
 network buffers to fill up. TCP cuts its rate only when it receives a
 packet drop or mark that is interpreted as a congestion signal.
 However, drops and marks usually occur when network buffers are full
 or almost full. As a result, excess buffers, initially designed to
 avoid packet drops, would lead to highly elevated queueing latency
 and jitter. It is a delicate balancing act to design a queue
 management scheme that not only allows short-term burst to smoothly
 pass, but also controls the average latency when long-term congestion
 persists.

 Active queue management (AQM) schemes, such as Random Early Discard
 (RED), have been around for well over a decade. AQM schemes could
 potentially solve the aforementioned problem. RFC 2309[RFC2309]
 strongly recommends the adoption of AQM schemes in the network to
 improve the performance of the Internet. RED is implemented in a wide
 variety of network devices, both in hardware and software.
 Unfortunately, due to the fact that RED needs careful tuning of its
 parameters for various network conditions, most network operators
 don't turn RED on. In addition, RED is designed to control the queue
 length which would affect delay implicitly. It does not control
 latency directly. Hence, the Internet today still lacks an effective
 design that can control buffer latency to improve the quality of
 experience to latency-sensitive applications.

 Recently, a new trend has emerged to control queueing latency
 directly to address the bufferbloat problem [CoDel]. Although
 following the new trend, PIE also aims to keep the benefits of RED:
 such as easy to implement and scalable to high speeds. Similar to
 RED, PIE randomly drops a packet at the onset of the congestion. The
 congestion detection, however, is based on the queueing latency
 instead of the queue length like RED. Furthermore, PIE also uses the
 latency moving trends: latency increasing or decreasing, to help
 determine congestion levels. The design parameters of PIE are chosen
 via stability analysis. While these parameters can be fixed to work
 in various traffic conditions, they could be made self-tuning to
 optimize system performance.

https://datatracker.ietf.org/doc/html/rfc2309
https://datatracker.ietf.org/doc/html/rfc2309

Pan et al. Expires September 27, 2015 [Page 4]

INTERNET DRAFT PIE March 26, 2015

 Separately, we assume any delay-based AQM scheme would be applied
 over a Fair Queueing (FQ) structure or its approximate design, Class
 Based Queueing (CBQ). FQ is one of the most studied scheduling
 algorithms since it was first proposed in 1985 [RFC970]. CBQ has been
 a standard feature in most network devices today[CBQ]. These designs
 help flows/classes achieve max-min fairness and help mitigate bias
 against long flows with long round trip times(RTT). Any AQM scheme
 that is built on top of FQ or CBQ could benefit from these
 advantages. Furthermore, we believe that these advantages such as per
 flow/class fairness are orthogonal to the AQM design whose primary
 goal is to control latency for a given queue. For flows that are
 classified into the same class and put into the same queue, we need
 to ensure their latency is better controlled and their fairness is
 not worse than those under the standard DropTail or RED design.

 In October 2013, CableLabs' DOCSIS 3.1 specification [DOCSIS_3.1]
 mandates that cable modems implement a specific variant of the PIE
 design as the active queue management algorithm. In addition to cable
 specific improvements, the PIE design in DOCSIS 3.1 [DOCSIS-PIE] has
 improved the original design in several areas: de-randomization of
 coin tosses, enhanced burst protection and expanded range of auto-
 tuning.

 The previous draft of PIE describes the overall design goals, system
 elements and implementation details of PIE. It also includes various
 design considerations: such as how auto-tuning can be done. This
 draft incorporates aforementioned DOCSIS-PIE improvements and
 integrate them into the PIE design. We also discusses a pure enque-
 based design where all the operations can be triggered by a packet
 arrival.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Design Goals

 We explore a queue management framework where we aim to improve the
 performance of interactive and delay-sensitive applications. Our
 design follows the general guidelines set by the AQM working group
 document "IETF Recommendations Regarding Active Queue Management"
 [AQM-GOAL]. More specifically our design has the following basic
 criteria.

https://datatracker.ietf.org/doc/html/rfc970
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Pan et al. Expires September 27, 2015 [Page 5]

INTERNET DRAFT PIE March 26, 2015

 * First, we directly control queueing latency instead of
 controlling queue length. Queue sizes change with queue draining
 rates and various flows' round trip times. Delay bloat is the
 real issue that we need to address as it impairs real time
 applications. If latency can be controlled, bufferbloat is not
 an issue. As a matter of fact, we would allow more buffers for
 sporadic bursts as long as the latency is under control.

 * Secondly, we aim to attain high link utilization. The goal of
 low latency shall be achieved without suffering link under-
 utilization or losing network efficiency. An early congestion
 signal could cause TCP to back off and avoid queue building up.
 On the other hand, however, TCP's rate reduction could result in
 link under-utilization. There is a delicate balance between
 achieving high link utilization and low latency.

 * Furthermore, the scheme should be simple to implement and
 easily scalable in both hardware and software. The wide adoption
 of RED over a variety of network devices is a testament to the
 power of simple random early dropping/marking. We strive to
 maintain similar design simplicity.

 * Finally, the scheme should ensure system stability for various
 network topologies and scale well with arbitrary number streams.
 Design parameters shall be set automatically. Users only need to
 set performance-related parameters such as target queue delay,
 not design parameters.

In the following, we will elaborate on the design of PIE and its
operation.

4. The BASIC PIE Scheme

As illustrated in Fig. 1, our scheme conceptually comprises three simple
components: a) random dropping at enqueing; b) periodic drop probability
update; c) dequeing rate estimation. The following sections describe
these components in further detail, and explain how they interact with
each other.

4.1 Random Dropping

Like any state-of-the-art AQM scheme, PIE would drop packets randomly
according to a drop probability, p, that is obtained from the drop-
probability-calculation component:

 * upon a packet arrival

 randomly drop a packet with a probability p.

Pan et al. Expires September 27, 2015 [Page 6]

INTERNET DRAFT PIE March 26, 2015

 Random Drop
 / --------------
 -------/ --------------> | | | | | -------------->
 /|\ | | | | | |
 | -------------- |
 | Queue Buffer |
 | | | Departure bytes
 | |queue |
 | |length |
 | | |
 | \|/ \|/
 | ----------------- -------------------
 | | Drop | | |
 -----<-----| Probability |<---| Departure Rate |
 | Calculation | | Estimation |
 ----------------- -------------------

 Figure 1. The PIE Structure

4.2 Drop Probability Calculation

The PIE algorithm periodically updates the drop probability as follows:

 * estimate current queueing delay using Little's law:

 est_del = qlen/depart_rate;

 * calculate drop probability p as:

 p = p + alpha*(est_del-target_del) + beta*(est_del-est_del_old);

 est_del_old = est_del.

Here, the current queue length is denoted by qlen. The draining rate of
the queue, depart_rate, is obtained from the departure-rate-estimation
block. Variables, est_del and est_del_old, represent the current and
previous estimation of the queueing delay. The target latency value is
expressed in target_del. The update interval is denoted as Tupdate.

Note that the calculation of drop probability is based not only on the
current estimation of the queueing delay, but also on the direction

Pan et al. Expires September 27, 2015 [Page 7]

INTERNET DRAFT PIE March 26, 2015

where the delay is moving, i.e., whether the delay is getting longer or
shorter. This direction can simply be measured as the difference between
est_del and est_del_old. This is the classic Proportional Integral
controller design that is adopted here for controlling queueing latency.
The controller parameters, in the unit of hz, are designed using
feedback loop analysis where TCP's behaviors are modeled using the
results from well-studied prior art[TCP-Models].

We would like to point out that this type of controller has been studied
before for controlling the queue length [PI, QCN]. PIE adopts the
Proportional Integral controller for controlling delay and makes the
scheme auto-tuning. The theoretical analysis of PIE is under paper
submission and its reference will be included in this draft once it
becomes available. Nonetheless, we will discuss the intuitions for these
parameters in Section 5.

4.3 Departure Rate Estimation

The draining rate of a queue in the network often varies either because
other queues are sharing the same link, or the link capacity fluctuates.
Rate fluctuation is particularly common in wireless networks. Hence, we
decide to measure the departure rate directly as follows.

 * we are in a measurement cycle if we have enough data in the queue:

 qlen > dq_threshold

 * if in a measurement cycle:

 upon a packet departure

 dq_count = dq_count + deque_pkt_size;

 * if dq_count > dq_threshold then

 depart_rate = dq_count/(now-start);

 dq_count = 0;

 start = now;

We only measure the departure rate when there are sufficient data in the

Pan et al. Expires September 27, 2015 [Page 8]

INTERNET DRAFT PIE March 26, 2015

buffer, i.e., when the queue length is over a certain threshold,
deq_threshold. Short, non-persistent bursts of packets result in empty
queues from time to time, this would make the measurement less accurate.
The parameter, dq_count, represents the number of bytes departed since
the last measurement. Once dq_count is over a certain threshold,
deq_threshold, we obtain a measurement sample. The threshold is
recommended to be set to 16KB assuming a typical packet size of around
1KB or 1.5KB. This threshold would allow us a long enough period to
obtain an average draining rate but also fast enough to reflect sudden
changes in the draining rate. Note that this threshold is not crucial
for the system's stability.

5. Design Enhancement

The above three components form the basis of the PIE algorithm. There
are several enhancements that we add to further augment the performance
of the basic algorithm. For clarity purpose, we include them here in
this section.

5.1 Turning PIE on and off

Traffic naturally fluctuates in a network. We would not want to
unnecessarily drop packets due to a spurious uptick in queueing latency.
If PIE is not active, we would only turn it on when the buffer occupancy
is over a certain threshold, which we set to 1/3 of the queue buffer
size. If PIE is on, we would turn it off when congestion is over, i.e.
when the drop probability, queue length and estimated queue delay all
reach 0.

5.2 Auto-tuning of PIE's control parameters

While the formal analysis can be found in [HPSR], we would like to
discuss the intuitions regarding how to determine the key control
parameters of PIE. Although the PIE algorithm would set them
automatically, they are not meant to be magic numbers. We hope to give
enough explanations here to help demystify them so that users can
experiment and explore on their own.

As it is obvious from the above, the crucial equation in the PIE
algorithm is

 p = p + alpha*(est_del-target_del) + beta*(est_del-est_del_old).

The value of alpha determines how the deviation of current latency from
the target value affects the drop probability. The beta term exerts
additional adjustments depending on whether the latency is trending up
or down. Note that the drop probability is reached incrementally, not

Pan et al. Expires September 27, 2015 [Page 9]

INTERNET DRAFT PIE March 26, 2015

through a single step. To avoid big swings in adjustments which often
leads to instability, we would like to tune p in small increments.
Suppose that p is in the range of 1%. Then we would want the value of
alpha and beta to be small enough, say 0.1%, adjustment in each step. If
p is in the higher range, say above 10%, then the situation would
warrant a higher single step tuning, for example 1%. There are could be
several regions of these tuning, extendable all the way to 0.001% if
needed. Finally, the drop probability would only be stabilized when the
latency is stable, i.e. est_del equals est_del_old; and the value of the
latency is equal to target_del. The relative weight between alpha and
beta determines the final balance between latency offset and latency
jitter.

The update interval, Tupdate, also plays a key role in stability. Given
the same alpha and beta values, the faster the update is, the higher the
loop gain will be. As it is not showing explicitly in the above
equation, it can become an oversight. Notice also that alpha and beta
have a unit of hz.

5.3 Handling Bursts

Although we aim to control the average latency of a congested queue, the
scheme should allow short term bursts to pass through without hurting
them. We would like to discuss how PIE manages bursts in this section
when it is active.

Bursts are well tolerated in the basic scheme for the following reasons:
first, the drop probability is updated periodically. Any short term
burst that occurs within this period could pass through without
incurring extra drops as it would not trigger a new drop probability
calculation. Secondly, PIE's drop probability calculation is done
incrementally. A single update would only lead to a small incremental
change in the probability. So if it happens that a burst does occur at
the exact instant that the probability is being calculated, the
incremental nature of the calculation would ensure its impact is kept
small.

Nonetheless, we would like to give users a precise control of the burst.
We introduce a parameter, max_burst, that is similar to the burst
tolerance in the token bucket design. By default, the parameter is set
to be 150ms. Users can certainly modify it according to their
application scenarios. The burst allowance is added into the basic PIE
design as follows:

 * if PIE_active == FALSE

 burst_allowance = max_burst;

Pan et al. Expires September 27, 2015 [Page 10]

INTERNET DRAFT PIE March 26, 2015

 * upon packet arrival

 if burst_allowance > 0 enqueue packet;

 * upon probability update when PIE_active == TRUE

 burst_allowance = burst_allowance - Tupdate;

The burst allowance, noted by burst_allowance, is initialized to
max_burst. As long as burst_allowance is above zero, an incoming packet
will be enqueued bypassing the random drop process. During each update
instance, the value of burst_allowance is decremented by the update
period, Tupdate. When the congestion goes away, defined by us as p
equals to 0 and both the current and previous samples of estimated delay
are less than target_del, we reset burst_allowance to max_burst.

5.4 De-randomization

Although PIE adopts random dropping to achieve latency control, coin
tosses could introduce outlier situations where packets are dropped too
close to each other or too far from each other. This would cause real
drop percentage to deviate from the intended drop probability p. PIE
introduces a de-randomization mechanism to avoid such scenarios. We keep
a parameter called accu_prob, which is reset to 0 after a drop. Upon a
packet arrival, accu_prob is incremented by the amount of drop
probability, p. If accu_prob is less than a low threshold, e.g. 0.85, we
enque the arriving packet; on the other hand, if accu_prob is more than
a high threshold, e.g. 8.5, we force a packet drop. We would only
randomly drop a packet if accu_prob falls in between the two thresholds.
Since accu_prob is reset to 0 after a drop, another drop will not happen
until 0.85/p packets later. This avoids packets are dropped too close to
each other. In the other extreme case where 8.5/p packets have been
enqued without incurring a drop, PIE would force a drop that prevents
much fewer drops than desired. Further analysis can be found in [AQM
DOCSIS].

6. Implementation and Discussions

PIE can be applied to existing hardware or software solutions. In this
section, we discuss the implementation cost of the PIE algorithm. There
are three steps involved in PIE as discussed in Section 4. We examine
their complexities as follows.

Upon packet arrival, the algorithm simply drops a packet randomly based

Pan et al. Expires September 27, 2015 [Page 11]

INTERNET DRAFT PIE March 26, 2015

on the drop probability p. This step is straightforward and requires no
packet header examination and manipulation. Besides, since no per packet
overhead, such as a timestamp, is required, there is no extra memory
requirement. Furthermore, the input side of a queue is typically under
software control while the output side of a queue is hardware based.
Hence, a drop at enqueueing can be readily retrofitted into existing
hardware or software implementations.

The drop probability calculation is done in the background and it occurs
every Tudpate interval. Given modern high speed links, this period
translates into once every tens, hundreds or even thousands of packets.
Hence the calculation occurs at a much slower time scale than packet
processing time, at least an order of magnitude slower. The calculation
of drop probability involves multiplications using alpha and beta. Since
the algorithm is not sensitive to the precise values of alpha and beta,
we can choose the values, e.g. alpha=0.25 and beta=2.5 so that
multiplications can be done using simple adds and shifts. As no
complicated functions are required, PIE can be easily implemented in
both hardware and software. The state requirement is only two variables
per queue: est_del and est_del_old. Hence the memory overhead is small.

In the departure rate estimation, PIE uses a counter to keep track of
the number of bytes departed for the current interval. This counter is
incremented per packet departure. Every Tupdate, PIE calculates latency
using the departure rate, which can be implemented using a
multiplication. Note that many network devices keep track an interface's
departure rate. In this case, PIE might be able to reuse this
information, simply skip the third step of the algorithm and hence
incurs no extra cost. We also understand that in some software
implementations, timestamps are added for other purposes. In this case,
we can also make use of the time-stamps and bypass the departure rate
estimation and directly used the timestamp information in the drop
probability calculation.

In some platforms, enqueueing and dequeueing functions belong to
different modules that are independent to each other. In such
situations, a pure enque-based design is preferred. As shown in Figure
2, we depict an enque-based design. The departure rate is deduced from
the number of packets enqueued and the queue length. The design is based
on the following key observation: over a certain time interval, the
number of departure packets = the number of enqueued packets - the
number of extra packets in queue. In this design, everything can be
triggered by a packet arrival including the background update process.
The design complexity here is similar to the original design.

Pan et al. Expires September 27, 2015 [Page 12]

INTERNET DRAFT PIE March 26, 2015

 Random Drop
 / --------------
 -------/ --------------------> | | | | | -------------->
 /|\ | | | | | |
 | | --------------
 | | Queue Buffer
 | | |
 | | |queue
 | | |length
 | | |
 | \|/ \|/
 | ------------------------------
 | | Departure Rate |
 -----<-----| & Drop Probability |
 | Calculation |

 Figure 2. The Enque-based PIE Structure

In summary, the state requirement for PIE is limited and computation
overheads are small. Hence, PIE is simple to be implemented. In
addition, since PIE does not require any user configuration, it does not
impose any new cost on existing network management system solutions. SFQ
can be combined with PIE to provide further improvement of latency for
various flows with different priorities. However, SFQ requires extra
queueing and scheduling structures. Whether the performance gain can
justify the design overhead needs to be further investigated.

7. Future Research

What is presented in this document is the design of the PIE algorithm,
which effectively controls the average queueing latency to a target
value. We foresee following areas that can be further studied. The
current design is auto-tuning based on the drop probability levels.
Future research can be done in adjusting the drop probability more
smoothly while keeping the design simple. Another further study can be
in the area of how to have an integrated solution for transitioning
between burst tolerance mode and drop early mode.

Since our design is separated into data path and control path. If
control path is implemented in software, any further improvement in
control path can be easily accommodated.

8. Incremental Deployment

Pan et al. Expires September 27, 2015 [Page 13]

INTERNET DRAFT PIE March 26, 2015

One nice property of the AQM design is that it can be independently
designed and operated without the requirement of being inter-operable.

Although all network nodes can not be changed altogether to adopt
latency-based AQM schemes, we envision a gradual adoption which would
eventually lead to end-to-end low latency service for real time
applications.

9. IANA Considerations

There are no actions for IANA.

10. References

10.1 Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

10.2 Informative References

 [RFC970] Nagle, J., "On Packet Switches With Infinite
 Storage",RFC970, December 1985.

10.3 Other References

 [AQM-GOAL] Baker, F., Fairhurst, G., "IETF Recommendations Regarding
 Active Queue Management", draft-ietf-aqm
 -recommendation-11.

 [CoDel] Nichols, K., Jacobson, V., "Controlling Queue Delay", ACM
 Queue. ACM Publishing. doi:10.1145/2209249.22W.09264.

 [CBQ] Cisco White Paper, "http://www.cisco.com/en/US/docs/12_0t
 /12_0tfeature/guide/cbwfq.html".

 [DOCSIS_3.1] http://www.cablelabs.com/wp-content/uploads/specdocs
/CM-SP-MULPIv3.1-I01-131029.pdf.

 [DOCSIS-PIE] White, G. and Pan, R., "A PIE-Based AQM for DOCSIS
 Cable Modems", IETF draft-white-aqm-docsis-pie-00.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc970
https://datatracker.ietf.org/doc/html/draft-ietf-aqm
http://www.cablelabs.com/wp-content/uploads/specdocs/CM-SP-MULPIv3.1-I01-131029.pdf
http://www.cablelabs.com/wp-content/uploads/specdocs/CM-SP-MULPIv3.1-I01-131029.pdf
https://datatracker.ietf.org/doc/html/draft-white-aqm-docsis-pie-00

Pan et al. Expires September 27, 2015 [Page 14]

INTERNET DRAFT PIE March 26, 2015

 [HPSR] Pan, R., Natarajan, P. Piglione, C., Prabhu, M.S.,
 Subramanian, V., Baker, F. Steeg and B. V., "PIE:
 A Lightweight Control Scheme to Address the
 Bufferbloat Problem", IEEE HPSR 2013.

 [AQM DOCSIS] http://www.cablelabs.com/wp-
content/uploads/2014/06/DOCSIS-AQM_May2014.pdf

 [TCP-Models] Misra, V., Gong, W., and Towsley, D., "Fluid-based
 Analysis of a Network of AQM Routers Supporting TCP
 Flows with an Application to RED", SIGCOMM 2000.

 [PI] Hollot, C.V., Misra, V., Towsley, D. and Gong, W.,
 "On Designing Improved Controller for AQM Routers
 Supporting TCP Flows", Infocom 2001.

 [QCN] "Data Center Bridging - Congestion Notification",
http://www.ieee802.org/1/pages/802.1au.html.

Authors' Addresses

 Rong Pan
 Cisco Systems
 3625 Cisco Way,
 San Jose, CA 95134, USA
 Email: ropan@cisco.com

 Preethi Natarajan,
 Cisco Systems
 725 Alder Drive,
 Milpitas, CA 95035, USA
 Email: prenatar@cisco.com

 Fred Baker
 Cisco Systems
 725 Alder Drive,
 Milpitas, CA 95035, USA
 Email: fred@cisco.com

 Bill Ver Steeg
 Cisco Systems
 5030 Sugarloaf Parkway
 Lawrenceville, GA, 30044, USA
 Email: versteb@cisco.com

 Mythili Prabhu*
 Akamai Technologies

http://www.cablelabs.com/wp-content/uploads/2014/06/DOCSIS-AQM_May2014.pdf
http://www.cablelabs.com/wp-content/uploads/2014/06/DOCSIS-AQM_May2014.pdf
http://www.ieee802.org/1/pages/802.1au.html

Pan et al. Expires September 27, 2015 [Page 15]

INTERNET DRAFT PIE March 26, 2015

 3355 Scott Blvd
 Santa Clara, CA - 95054
 Email: mythili@akamai.com

 Chiara Piglione*
 Broadcom Corporation
 3151 Zanker Road
 San Jose, CA 95134
 Email: chiara@broadcom.com

 Vijay Subramanian*
 PLUMgrid, Inc.
 350 Oakmead Parkway,
 Suite 250
 Sunnyvale, CA 94085
 Email: vns@plumgrid.com

 Greg White
 CableLabs
 858 Coal Creek Circle
 Louisville, CO 80027, USA
 Email: g.white@cablelabs.com

 * Formerly at Cisco Systems

10. The PIE pseudo Code

 Configurable Parameters:
 - QDELAY_REF. AQM Latency Target (default: 16ms)
 - BURST_ALLOWANCE. AQM Latency Target (default: 150ms)

 Internal Parameters:
 - Weights in the drop probability calculation (1/s):
 alpha (default: 1/8), beta(default: 1+1/4)
 - DQ_THRESHOLD (in bytes, default: 2^14 (in a power of 2))
 - T_UPDATE: a period to calculate drop probability (default:16ms)
 - QUEUE_SMALL = (1/3) * Buffer limit in bytes

 Table which stores status variables (ending with "_"):
 - active_: INACTIVE/ACTIVE
 - burst_count_: current burst_count
 - drop_prob_: The current packet drop probability. reset to 0
 - accu_prob_: Accumulated drop probability. reset to 0
 - qdelay_old_: The previous queue delay estimate. reset to 0
 - last_timestamp_: Timestamp of previous status update
 - dq_count_, measurement_start_, in_measurement_,

Pan et al. Expires September 27, 2015 [Page 16]

INTERNET DRAFT PIE March 26, 2015

 avg_dq_time_. variables for measuring avg_dq_rate_.

 Public/system functions:
 - queue_. Holds the pending packets.
 - drop(packet). Drops/discards a packet
 - now(). Returns the current time
 - random(). Returns a uniform r.v. in the range 0 ~ 1
 - queue_.is_full(). Returns true if queue_ is full
 - queue_.byte_length(). Returns current queue_ length in bytes
 - queue_.enque(packet). Adds packet to tail of queue_
 - queue_.deque(). Returns the packet from the head of queue_
 - packet.size(). Returns size of packet

============================

 enque(Packet packet) {
 if (queue_.is_full()) {
 drop(packet);
 PIE->accu_prob_ = 0;
 } else if (PIE->active_ == TRUE && drop_early() == TRUE
 && PIE->burst_count_ <= 0) {
 drop(packet);
 PIE->accu_prob_ = 0;
 } else {
 queue_.enque(packet);
 }

 //If the queue is over a certain threshold, turn on PIE
 if (PIE->active_ == INACTIVE
 && queue_.byte_length() >= QUEUE_SMALL) {
 PIE->active_ = ACTIVE;
 PIE->qdelay_old_ = 0;
 PIE->drop_prob_ = 0;
 PIE->in_measurement_ = TRUE;
 PIE->dq_count_ = 0;
 PIE->avg_dq_time_ = 0;
 PIE->last_timestamp_ = now;
 PIE->burst_count = BURST_ALLOWANCE;
 PIE->accu_prob_ = 0;
 PIE->measurement_start_ = now;
 }

Pan et al. Expires September 27, 2015 [Page 17]

INTERNET DRAFT PIE March 26, 2015

 //If the queue has been idle for a while, turn off PIE
 //reset counters when accessing the queue after some idle
 //period if PIE was active before
 if (PIE->drop_prob_ == 0 && PIE->qdelay_old == 0
 && queue_.byte_length() == 0) {
 PIE->active_ = INACTIVE;
 PIE->in_measurement_ = FALSE;
 }
 }

===========================

 drop_early() {

 //PIE is active but the queue is not congested, return ENQUE
 if ((PIE->qdelay_old_ < QDELAY_REF/2 && PIE->drop_prob_ < 20%)
 || (queue_.byte_length() <= 2 * MEAN_PKTSIZE)) {
 return ENQUE;
 }

 //Random drop
 PIE->accu_prob_ += PIE->drop_prob_;
 if (PIE->accu_prob_ < 0.85)
 return ENQUE;
 if (PIE->accu_prob_ >= 8.5)
 return DROP;
 double u = random();
 if (u < PIE->drop_prob_) {
 PIE->accu_prob_ = 0;
 return DROP;
 } else {
 return ENQUE;
 }
 }

============================
 //update periodically, T_UPDATE = 16ms
 status_update(state) {
 if ((now - PIE->last_timestampe_) >= T_UPDATE &&
 PIE->active_ == ACTIVE) {
 //can be implemented using integer multiply,
 //DQ_THRESHOLD is power of 2 value
 qdelay = queue_.byte_length() * avg_dq_time_/DQ_THRESHOLD;
 if (PIE->drop_prob_ < 0.1%) {

Pan et al. Expires September 27, 2015 [Page 18]

INTERNET DRAFT PIE March 26, 2015

 PIE->drop_prob_ += alpha*(qdelay - QDELAY_REF)/128
 + beta*(qdelay-PIE->qdelay_old_)/128;
 } else if (PIE->drop_prob_ < 1%) {
 PIE->drop_prob_ += alpha*(qdelay - QDELAY_REF)/16
 + beta*(qdelay-PIE->qdelay_old_)/16;
 } else if (PIE->drop_prob_ < 10%) {
 PIE->drop_prob_ += alpha*(qdelay - QDELAY_REF)/2
 + beta*(qdelay-PIE->qdelay_old_)/2;
 } else {
 PIE->drop_prob_ += alpha*(qdelay - QDELAY_REF)
 + beta*(qdelay-PIE->qdelay_old_);
 }

 //bound drop probability
 if (PIE->drop_prob_ < 0)
 PIE->drop_prob_ = 0
 if (PIE->drop_prob_ > 1)
 PIE->drop_prob_ = 1

 PIE->qdelay_old_ = qdelay;
 PIE->last_timestamp_ = now;
 if (PIE->burst_count_ > 0) {
 PIE->burst_count_ = PIE->burst_count_ - T_UPDATE;
 }
 }
}

==========================
 deque(Packet packet) {

 //dequeue rate estimation
 if (PIE->in_measurement_ == TRUE) {
 PIE->dq_count_ = packet.size() + PIE->dq_count_;
 //start a new measurement cycle if we have enough packets
 if (PIE->dq_count_ >= DQ_THRESHOLD) {
 dq_time = now - PIE->measurement_start_;
 if(PIE->avg_dq_time_ == 0) {
 PIE->avg_dq_time_ = dq_time;
 } else {
 PIE->avg_dq_time_ = dq_time*1/4 + PIE->avg_dq_time*3/4;
 }
 PIE->in_measurement = FALSE;
 }
 }

 //start a measurement cycle if we have enough data in the queue:
 if (queue_.byte_length() >= DQ_THRESHOLD &&

Pan et al. Expires September 27, 2015 [Page 19]

INTERNET DRAFT PIE March 26, 2015

 PIE->in_measurement_ == FALSE) {
 PIE->in_measurement_ = TRUE;
 PIE->measurement_start_ = now;
 PIE->dq_count_ = 0;
 }
 }

Pan et al. Expires September 27, 2015 [Page 20]

