
Workgroup: ASAP

Published: 24 October 2021

Intended Status: Standards Track

Expires: 27 April 2022

Authors: K. Inamdar

Unaffiliated

S. Narayanan

Cisco Systems

C. Jennings

Cisco Systems

Automatic Peering for SIP Trunks

Abstract

This draft specifies a configuration workflow to enable enterprise

Session Initiation Protocol (SIP) networks to solicit the capability

set of a SIP service provider network. The capability set can

subsequently be used to configure features and services on the

enterprise edge element, such as a Session Border Controller (SBC),

to ensure smooth peering between enterprise and service provider

networks.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Overview of Operations

2.1. Reference Architecture

2.2. Configuration Workflow

2.3. Transport

3. Conventions and Terminology

4. HTTP Transport

4.1. HTTP Methods

4.2. Integrity and Confidentiality

4.3. Authenticated Client Identity

4.4. Encoding the Request

4.5. Identifying the Request Target

4.6. Generating the response

5. State Deltas

6. Encoding the Service Provider Capability Set

7. Data Model for Capability Set

7.1. Tree Diagram

7.2. YANG Model

7.3. Node Definitions

7.4. Extending the Capability Set

8. Processing the Capability Set Response

9. Examples

9.1. JSON Capability Set Document

9.2. Example Exchange

10. Security Considerations

11. Acknowledgments

12. Normative References

Authors' Addresses

1. Introduction

The deployment of a Session Initiation Protocol [RFC3261] (SIP)-

based infrastructure in enterprise and service provider

communication networks is increasing at a rapid pace. Consequently,

direct IP peering between enterprise and service provider networks

is quickly replacing traditional methods of interconnection between

enterprise and service provider networks. Currently published

standards provide a strong foundation over which direct IP peering

can be realized. However, given the sheer number of these standards,

it is often not clear which behavioral subsets, extensions to

baseline protocols and operating principles ought to be implemented

by service provider and enterprise networks to ensure successful

peering.

The SIP Connect technical recommendations [SIP-Connect-TR] aim to

solve this problem by providing a master reference that promotes

seamless peering between enterprise and service provider SIP

¶

networks. However, despite the extensive set of implementation rules

and operating guidelines, interoperability issues between service

provider and enterprise networks persist. This is in large part

because service providers and equipment manufacturers aren't

required to enforce the guidelines of the technical specifications

and have a fair degree of freedom to deviate from them.

Consequently, enterprise administrators usually undertake a fairly

rigorous regimen of testing, analysis and troubleshooting to arrive

at a configuration block that ensures seamless service provider

peering. However, this workflow complements the SIP Connect

technical recommendations, in that both endeavours aim to promote/

achieve interop between the enterprise and service provider.

Another set of interoperability problems arise when enterprise

administrators are required to translate a set of technical

recommendations from service providers to configuration blocks

across one or more devices in the enterprise, which is usually an

error prone exercise. Additionally, such technical recommendations

might not be nuanced enough to intuitively allow the generation of

specific configuration blocks.

This draft introduces a mechanism using which an enterprise network

can solicit a detailed capability set from a SIP service provider;

the detailed capability set can subsequently be used by automaton or

an administrator to generate configuration blocks across one or more

devices within the enterprise to ensure successful service provider

peering.

2. Overview of Operations

This section details the configuration workflow proposed by this

draft.

2.1. Reference Architecture

Figure 1 illustrates a reference architecture that may be deployed

to support the mechanism described in this document. The enterprise

network consists of a SIP-PBX, media endpoints and a Session Border

Controller [RFC7092]. It may also include additional components such

as application servers for voicemail, recording, fax etc. At a high

level, the service provider consists of a SIP signaling entity (SP-

SSE), a media entity and a HTTPS [RFC7231] server.

¶

¶

¶

¶

¶

This draft makes use of the following terminology:

Enterprise Network: A communications network infrastructure

deployed by an enterprise which interconnects with the service

provider network over SIP. The enterprise network could include

devices such as application servers, endpoints, call agents and

edge devices, among others.

Edge Device: A device that is the last hop in the enterprise

network and that is the transit point for traffic entering and

leaving the enterprise. An edge device is typically a back-to-

back user agent (B2BUA) [RFC7092] such as a Session Border

Controller (SBC).

Service Provider Network: A communications network infrastructure

deployed by service providers. In the context of this draft, the

service provider network is accessible over SIP for the

establishment, modification and termination of calls and

accessible over HTTPS for the transfer of the capability set

document. The service provider network is also referred to as a

SIP Service Provider (SSP) or Internet Telephony Service Provider

(ITSP) network.

 +---+

 | +---------------+ +-----------------------+ |

 | | | | | |

 | | +----------+ | | +-------+ | |

 | | | Cap | | HTTPS | | | | |

 | | | Server |<-|---------|-->| | | |

 | | | | | | | | +-----+ | |

 | | +----------+ | | | | | SIP | | |

 | | | | | |<->| PBX | | |

 | | | | | | +-----+ | |

 | | +----------+ | | | SBC | | |

 | | | | | SIP | | | | |

 | | | SP - SSE |<-|---------|-->| | +-----+ | |

 | | | | | | | |<->| M.E.| | |

 | | +----------+ | | | | | | | |

 | | | | | | +-----+ | |

 | | +----------+ | (S)RTP | | | | |

 | | | Media |<-|---------|-->+-------+ | |

 | | +----------+ | | | |

 | +---------------+ +-----------------------+ |

 | |

 +---+

 Figure 1: Reference Architecture

¶

¶

*

¶

*

¶

*

¶

Call Control: Call Control within a telephony networks refers to

software that is responsible for delivering its core

functionality. Call control not only provides the basic

functionality of setting up, sustaining and terminating calls,

but also provides the necessary control and logic required for

additional services within the telephony network.

Capability Server: A server hosted in the service provider

network, such that this server is the target for capability set

document requests from the enterprise network.

Capability Set: The term capability set (or capability set

document) refers collectively to a set of characteristics within

the service provider network, which when communicated to the

enterprise network, provides the enterprise network the

information required to interconnect with the service provider

network. The various parameters that constitute the capability

set relate to characteristics that are specific to signalling,

media, transport and security. Certain aspects of interconnecting

with service providers are out of scope of the capability set.

For example, the access technology used to interconnect with

service provider networks.

2.2. Configuration Workflow

A workflow that facilitates an enterprise network to solicit the

capability set of a SIP service provider ought to take into account

the following considerations:

The configuration workflow must be based on a protocol or a set

of protocols commonly used between enterprise and service

provider telephony networks.

The configuration workflow must be flexible enough to allow the

service provider network to dynamically offload different

capability sets to different enterprise networks based on the

identity of the enterprise network.

Capability set documents obtained as a result of the

configuration workflow must be conducive to easy parsing by

automaton. Subsequently, automaton may be used for generation of

appropriate configuration blocks.

Taking the above considerations into account, this document proposes

a Hypertext Transfer Protocol (HTTP)-based workflow using which the

enterprise network can solicit and ultimately obtain the service

provider capability set. The enterprise network creates a well

formed HTTPS GET request to solicit the service provider capability

set. Subsequently, the HTTPS response from the SIP service provider

includes the capability set. The capability set is encoded in either

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

XML or JSON, thus ensuring that the response can be easily parsed by

automaton.

There are alternative mechanisms using which the SIP service

provider can offload its capability set. For example, the Session

Initiation Protocol (SIP) can be extended to define a new event

package [RFC6665], such that the enterprise network can establish a

SIP subscription with the service provider for its capability set;

the SIP service provider can subsequently use the SIP NOTIFY request

to communicate its capability set or any state deltas to its

baseline capability set.

This mechanism is likely to result in a barrier to adoption for SIP

service providers and enterprise networks as equipment manufacturers

would have to first add support for such a SIP extension. A HTTPS-

based approach would be relatively easier to adopt as most edge

devices deployed in enterprise networks today already support HTTPS;

from the perspective of service provider networks, all that is

required is for them to deploy HTTPS servers that function as

capability servers. Additionally, most SIP service providers require

enterprise networks to register with them (using a SIP REGISTER

message) before any other SIP methods that initiate subscriptions

(SIP SUBSCRIBE) or calls (SIP INVITE) are processed. As a result, a

SIP-based framework to obtain a capability set would require

operational changes on the part of service provider networks.

Yet another example of an alternative mechanism would be for service

providers and enterprise equipment manufacturers to agree on YANG

models [RFC6020] that enable configuration to be pushed over NETCONF

[RFC6241] to enterprise networks from a centralised source hosted in

service provider networks. The presence of proprietary software

logic for call and media handling in enterprise devices would

preclude the generation of a "one-size-fits-all" YANG model.

Additionally, service provider networks pushing configuration to

enterprises devices might lead to the loss of implementation

autonomy on the part of the enterprise network.

2.3. Transport

To solicit the capability set of a SIP service provider, the edge

element in an enterprise network generates a well-formed HTTPS GET

request. There are two reasons why it makes sense for the enterprise

edge element to generate the HTTPS request:

Edge elements are devices that normalise any mismatches between

the enterprise and service provider networks in the media and

signaling planes. As a result, when the capability set is

received from the SIP service provider network, the edge

¶

¶

¶

¶

¶

1.

element can generate appropriate configuration blocks (possibly

across multiple devices) to enable interconnection.

Given that edge elements are configured to "talk" to networks

external to the enterprise, the complexity in terms of NAT

traversal and firewall configuration would be minimal.

The HTTPS GET request is targeted at a capability server that is

managed by the SIP service provider such that this server processes,

and on successfully processing the request, includes the capability

set document in the response. The capability set document is

constructed according the guidelines of the YANG model described in

this draft. The capability set document included in a successful

response is formatted in either XML or JSON. The formatting depends

on the value of the "Accept" header field of the HTTP GET request.

More details about the formatting of the HTTP request and response

are provided in Section 4.

There could be situations wherein an enterprise telephony network

interconnects with its SIP service provider such that traffic

between the two networks traverses an intermediary SIP service

provider network. This could be a result of interconnect agreements

between the terminating and transit SIP service provider networks.

In such situations, the capability set provided to the enterprise

network by its SIP service provider must account for the

characteristics of the transit SIP service provider network from a

signalling and media perspective. For example, if the terminating

SIP service provider network supports the G.729 codec and the

transit SIP service provider network does not, G.729 must not be

advertised in the capability set. As another example, if the transit

SIP service provider network doesn't support a SIP extension, for

instance, the SIP extension for Reliable Provisional Responses as

defined in RFC 3262, the terminating SIP service provider network

must not advertise support for this extension in the capability set

provided to the enterprise network. How a terminating SIP service

provider obtains the characteristics of the intermediary SIP service

provider network is out of the scope of this document; however, one

method could be for the terminating SIP service provider to obtain

the characteristics of the intermediary SIP service provider by

leveraging the YANG model introduced in this document.

3. Conventions and Terminology

The The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL

NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL"

in this document are to be interpreted as described in BCP 14

¶

2.

¶

¶

¶

¶

https://www.rfc-editor.org/refs/ref-bcp14.txt

4. HTTP Transport

This section describes the use of HTTPS as a transport protocol for

the peering workflow. This workflow is based on HTTP version 1.1,

and as such is compatible with any future version of HTTP that is

backward compatible with HTTP 1.1.

4.1. HTTP Methods

The workflow defined in this document leverages the HTTPS GET method

and its corresponding response(s) to request for and subsequently

obtain the service provider capability set document.

4.2. Integrity and Confidentiality

Peering requests and responses are defined over HTTPS. However, due

to the sensitive nature of information transmitted between client

and server, it is required to secure HTTP using Transport Layer

Security [RFC5246]. The enterprise edge element and capability

server MUST be compliant with [RFC7235]. The enterprise edge element

and capability server MUST support the use of the HTTPS uri scheme

as defined in RFC 7230.

4.3. Authenticated Client Identity

HTTP usually adopts asymmetric methods of authentication. For

example, clients typically use certificate based authentication to

verify the server they are talking to, whereas, servers typically

use methods such as HTTP digest authentication or OAuth2.0 to

authenticate clients. Though OAuth2.0 is not an authentication

protocol, it nonetheless allows for client authentication to be

carried out with the use of OAuth tokens.

Figure 2 elucidates the use of this grant type.

In the context of the SIP Auto Peer framework, OAuth2.0 MUST be used

to carry out client authentication. Enterprise edge elements that

obtain the capability set document from SIP service providers could

have differing capabilities in terms of adhering to a specific

OAuth2.0 authorisation grant flow. For example, an SBC that is

configured and managed through a CLI and that does not have the

ability to launch a web-browser wouldn't be able to obtain an

authorisation code and subsequently an access token. Alternatively,

an SBC that is configured and managed via a GUI could redirect an

administrator to an appropriate OAuth2.0 authorisation server to

obtain an authorisation grant and subsequently an access token. In

order to ensure that OAuth2.0-based client authentication can be

carried out irrespective of enterprise edge element capabilities,

this draft requires that the Resource Owner Password Credentials

grant type be supported.

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/rfc7230

Using the resource owner password credentials grant type requires

the existence of a trust relationship between the resource owner(in

this context, the administrator/enterprise network) and the

client(in this context, an edge element such as an SBC). In SIP

trunking deployments between enterprise and service provider

networks, such a trust relationship between the administrator/

resource owner/enterprise network and the client(edge element)

already exists, as SIP trunk registration (and refreshing

registrations) require credentials - typically a username and

password, that are configured on the edge element by the

administrator.

The use of the resource owner credential grant type in the context

of the SIP Auto Peer framework, provides two advantages:

It enables OAuth2.0-based client authentication even in

deployments in wherein the edge element is not capable of

launching a web-browser to set in motion the authorisation code

grant flow of OAuth2.0

For situations in which a refresh token is not provided by the

authorisation endpoint, human/administrator involvement is not

required to obtain fresh tokens once an existing token expires.

Figure 2 provides a high-level diagrammatic illustration of how

OAuth2.0-based client authentication is achieved using resource

owner credentials in the context of SIP Auto Peer.

¶

¶

1.

¶

2.

¶

The flow illustrated in Figure 2 includes the following steps:

The enterprise SBC stores the enterprise credentials required

to authenticate with the authorization server located in the

service provider network. These credentials may be passed to

the enterprise from the service provider in an out-of-band

fashion such as an email or a self-management service provided

by the service provider to the enterprise.

The enterprise SBC contacts the service provider authorization

server to obtain an access token using the credentials acquired

in Step 1.

The service provider authorization server ratifies the

credentials and grants the access token to the enterprise SBC.

The server could also provide a refresh token to the SBC to

regenerate the access token in the future.

The enterprise SBC then contacts the capability server located

in the service provider network with an HTTPS GET request along

with the access token to retrieve the capability set document.

 +--------------+

 | Resource |

 | Owner |

 | (Enterprise) |

 +--------------+

 v

 | Resource Owner

 (1) Password Credentials

 |

 v

 +---------+ +---------------+

 | |>--(2)---- Resource Owner ------->| Service |

 | Client | Password Credentials | Provider |

 | | | Authorization |

 | (SBC) |<--(3)---- Access Token ---------<| Server |

 | | (w/ Optional Refresh Token) | |

 +---------+ +---------------+

 ^ v

 | |

 | | +--------------+

 | -------(4)---- Access Token --------->| Capability |

 -----------(5)---- Capability set -------<| Server |

 +--------------+

 Figure 2: Client Authentication Mechanism

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

The capability server checks for a valid access token and

returns the capability set document to the enterprise SBC.

4.4. Encoding the Request

The edge element in the enterprise network generates a HTTPS GET

request such that the request-target is obtained using the procedure

outlined in section 6.6 The MIME types for the capability set

document defined in this draft are "application/peering-info+json"

and "application/peering-info+xml". Accordingly, the Accept header

field value MUST be restricted only to these MIME types. It is

possible that the edge element supports responses formatted in both

JSON and XML. In such situations, the edge element might generate a

HTTPS GET request such that the Accept header field includes both

MIME types along with the corresponding "qvalue" for each MIME type.

The generated HTTPS GET request MUST NOT use the "Expect" and

"Range" header fields. The requests MUST also not use any

conditional request.

4.5. Identifying the Request Target

HTTPS GET requests from enterprise edge elements MUST carry a valid

request-target. The enterprise edge element might obtain the URL of

the resource hosted on the capability server in one of two ways:

Manual Configuration

Discovery using the Webfinger Protocol

The complete HTTPS URLs to be used when authenticating the

enterprise edge element (optional) and obtaining the SIP service

provider capability set can be obtained from the SIP service

provider beforehand and entered into the edge element manually via

some interface - for example, a CLI or GUI.

However, if the resource URL is unknown to the administrator (and by

extension of that to the edge element), the WebFinger protocol RFC

7033 may be leveraged.

If an enterprise edge element attempts to discover the URL of the

endpoints hosted in the ssp1.example.com domain, it issues the

following request (line wraps are for display purposes only).

5.

¶

¶

¶

¶

1. ¶

2. ¶

¶

¶

¶

https://tools.ietf.org/html/rfc5764
https://tools.ietf.org/html/rfc5764

Once the target URI is obtained by an enterprise telephony network,

the URI may be dereferenced to obtain a unique capability set

document that is specific to that given enterprise telephony

network. The ITSP may use credentials to determine the identity of

the enterprise telephony network and provide the appropriate

capability set document.

4.6. Generating the response

Capability servers include the capability set documents in the body

of a successful response. Capability set documents MUST be formatted

in XML or JSON. For requests that are incorrectly formatted, the

capability server must generate a "400 Bad Request" response. If the

client (enterprise edge element) includes any other MIME types in

Accept header field other than "application/peering-info+json" or

"application/peering-info+xml", the capability set must reject the

request with a "406 Not Acceptable" response.

The capability server can respond to client requests with redirect

responses, specifically, the server can respond with the following

redirect responses:

301 Moved Temporarily

302 Found

307 Temporary Redirect

 GET /.well-known/webfinger?

 resource=http%3A%2F%2Fssp1.example.com

 rel=capabilitySet

 HTTP/1.1

 Host: ssp1.example.com

 HTTP/1.1 200 OK

 Access-Control-Allow-Origin: *

 Content-Type: application/jrd+json

 {

 "subject" : "http://ssp1.example.com",

 "links" :

 [

 {

 "rel" : "capabilitySet",

 "href" :

 "https://capserver.ssp1.com/capserver/capdoc.json"

 },

]

 }

¶

¶

¶

¶

1. ¶

2. ¶

3. ¶

The server SHOULD include the Location header field in such

responses.

5. State Deltas

Given that the service provider capability set is largely expected

to remain static, the work needed to implement an asynchronous push

mechanism to encode minor changes in the capability set document

(state deltas) is not commensurate with the benefits. Rather,

enterprise edge elements can poll capability servers at pre-defined

intervals to obtain the full capability set document. It is

recommended that capability servers are polled every 24 hours.

6. Encoding the Service Provider Capability Set

In the context of this draft, the capability set of a service

provider refers collectively to a set of characteristics which when

communicated to an enterprise network, provides it with sufficient

information to directly peer with the service provider network. The

capability set document is not designed to encode extremely granular

details of all features, services, and protocol extensions that are

supported by the service provider network. For example, it is

sufficient to encode that the service provider uses T.38 relay for

faxing, it is not required to know the value of the

"T38FaxFillBitRemoval" parameter.

The parameters within the capability set document represent a wide

array of characteristics, such that these characteristics

collectively disseminate sufficient information to enable direct IP

peering between enterprise and service provider networks. The

various parameters represented in the capability set are chosen

based on existing practises and common problem sets typically seen

between enterprise and service provider SIP networks.

7. Data Model for Capability Set

This section defines a YANG module for encoding the service provider

capability set. Section 9.1 provides the tree diagram, which is

followed by a description of the various nodes within the module

defined in this draft.

7.1. Tree Diagram

This section provides a tree diagram [RFC8340] for the "ietf-

capability-set" module. The interpretation of the symbols appearing

in the tree diagram is as follows:

Brackets "[" and "]" enclose list keys.

¶

¶

¶

¶

¶

¶

* ¶

Abbreviations before data node names: "rw" means configuration

(read-write), and "ro" means state data (read-only).

Symbols after data node names: "?" means an optional node, "!"

means a presence container, and "*" denotes a list and leaf-list.

Parentheses enclose choice and case nodes, and case nodes are

also marked with a colon (":").

Ellipsis ("...") stands for contents of subtrees that are not

shown.

The data model for the peering capability document has the following

structure:

*

¶

*

¶

*

¶

*

¶

¶

module: ietf-sip-auto-peering

 +--rw peering-info

 +--rw variant string

 +--rw revision

 | +--rw notBefore? string

 | +--rw location? string

 +--rw transport-info

 | +--rw transport? enumeration

 | +--rw registrar* host-port

 | +--rw registrarRealm? string

 | +--rw callControl* host-port

 | +--rw dns* inet:ip-address

 | +--rw outboundProxy? host-port

 +--rw call-specs

 | +--rw earlyMedia? boolean

 | +--rw signalingForking? boolean

 | +--rw supportedMethods? string

 | +--rw callerId

 | | +--rw e164Format? boolean

 | | +--rw preferredMethod? string

 | +--rw numRange

 | +--rw numRangeType? string

 | +--rw count? int32

 | +--rw value* string

 +--rw media

 | +--rw mediaTypeAudio

 | | +--rw mediaFormat* string

 | +--rw fax

 | | +--rw protocol* enumeration

 | +--rw rtp

 | | +--rw RTPTrigger? boolean

 | | +--rw symmetricRTP? boolean

 | +--rw rtcp

 | +--rw symmetricRTCP? boolean

 | +--rw RTCPfeedback? boolean

 +--rw dtmf

 | +--rw payloadNumber? int8

 | +--rw iteration? boolean

 +--rw security

 | +--rw signaling

 | | +--rw type? string

 | | +--rw version? string

 | +--rw mediaSecurity

 | | +--rw keyManagement? string

 | +--rw certLocation? string

 | +--rw secureTelephonyIdentity

 | +--rw STIRCompliance? boolean

 | +--rw certDelegation? boolean

 | +--rw ACMEDirectory? string

 +--rw extensions? string

¶

7.2. YANG Model

This section defines the YANG module for the peering capability set

document. It imports modules (ietf-yang-types and ietf-inet-types)

from [RFC6991].¶

 module ietf-sip-auto-peering {

 namespace "urn:ietf:params:xml:ns:ietf-sip-auto-peering";

 prefix "peering";

 description

 "Data model for transmitting peering parameters from SP to

 Enterprise";

 revision 2019-05-06 {

 description "Initial revision of peering-response doc.";

 }

 import ietf-inet-types {

 prefix "inet";

 }

 typedef ipv4-address-port {

 type string {

 pattern "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])"

 + "\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])"

 + ":^()([1-9]|[1-5]?[0-9]{2,4}|6[1-4][0-9]{3}|65[1-4][0-9]"

 + "{2}|655[1-2][0-9]|6553[1-5])$";

 }

 description "The ipv4-address-port type represents an IPv4

 address in dotted-quad notation followed by a port number.";

 }

 typedef ipv6-address-port {

 type string {

 pattern "((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}"

 + "((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|"

 + "(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}"

 + "(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))"

 + ":^()([1-9]|[1-5]?[0-9]{2,4}|6[1-4][0-9]{3}|65[1-4][0-9]"

 + "{2}|655[1-2][0-9]|6553[1-5])$";

 pattern

 "(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|"

 + "((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)"

 + ":^()([1-9]|[1-5]?[0-9]{2,4}|6[1-4][0-9]{3}|65[1-4][0-9]"

 + "{2}|655[1-2][0-9]|6553[1-5])$";

 }

 description

 "The ipv6-address type represents an IPv6 address in full,

 mixed, shortened, and shortened-mixed notation followed by

 a port number.";

 }

 typedef ip-address-port {

 type union {

 type ipv4-address-port;

 type ipv6-address-port;

 }

 description

 "The ip-address-port type represents an IP address:port number

 and is IP version neutral.";

 }

 typedef domain-name-port {

 type string {

 pattern

 "((([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.)*"

 + "([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.?)"

 + "|\."

 + ":^()([1-9]|[1-5]?[0-9]{2,4}|6[1-4][0-9]{3}|65[1-4][0-9]"

 + "{2}655[1-2][0-9]|6553[1-5])$";

 length "1..258";

 }

 description

 "The domain-name-port type represents a DNS domain name

 followed by a port number. The name SHOULD be fully qualified

 whenever possible.";

 }

 typedef host-port {

 type union {

 type ip-address-port;

 type domain-name-port;

 }

 description

 "The host type represents either an IP address or a DNS

 domain name followed by a port number.";

 }

 container peering-info {

 leaf variant {

 type string;

 mandatory true;

 description "Variant of peering-response document";

 }

 container revision {

 leaf notBefore {

 type string;

 description "Time and date of activation of new

 capability set";

 }

 leaf location {

 type string;

 description "Location of the new version of

 capability set document";

 }

 }

 container transport-info {

 leaf transport {

 type enumeration {

 enum "TCP";

 enum "TLS";

 enum "UDP";

 enum "TCP;TLS";

 enum "TCP;TLS;UDP";

 enum "TCP;UDP";

 }

 description "Transport Protocol(s) used in SIP

 communication";

 }

 leaf-list registrar {

 type host-port;

 max-elements 3;

 description "List of service provider registrar servers";

 }

 leaf registrarRealm {

 type string;

 description "Realm for REGISTER requests carrying

 credentials";

 }

 leaf-list callControl {

 type host-port;

 max-elements 3;

 description "List of service provider call control

 servers";

 }

 leaf-list dns {

 type inet:ip-address;

 max-elements 2;

 description "IP address of the DNS Server(s) hosted by the

 service provider";

 }

 leaf outboundProxy {

 type host-port;

 description "SIP Outbound Proxy";

 }

 }

 container call-specs {

 leaf earlyMedia {

 type boolean;

 description "Flag indicating whether the service provider

 is expected to deliver early media.";

 }

 leaf signalingForking {

 type boolean;

 description "Flag indicating whether the service provider

 is capable of forking incoming calls ";

 }

 leaf supportedMethods {

 type string;

 description "Leaf/Leaf List indicating the different SIP

 methods support by the service provider.";

 }

 container callerId {

 leaf e164Format {

 type boolean;

 description "Flag indicating whether enterprise must

 format caller information into E.164";

 }

 leaf preferredMethod {

 type string;

 description "Field that instructs enterprise regarding

 which SIP header it must populate to communicate caller

 information.";

 }

 }

 container numRange {

 leaf numRangeType {

 type string;

 description "String indicating whether the DID number

 range is passed by value or by reference";

 }

 leaf count {

 when "../numRangeType = 'range' or

 ../numRangeType = 'block'";

 type int32;

 description "Number of DID numbers present in the number

 range.";

 }

 leaf-list value {

 type string;

 description "Value of the DID number range or URL being

 passed as reference.";

 }

 }

 }

 container media {

 container mediaTypeAudio {

 leaf-list mediaFormat {

 type string;

 description "Leaf List indicating the audio media formats

 supported.";

 }

 }

 container fax {

 leaf-list protocol {

 type enumeration {

 enum "pass-through";

 enum "t38";

 }

 max-elements 2;

 description "Leaf List indicating the different fax

 protocols supported by the service provider.";

 }

 }

 container rtp {

 leaf RTPTrigger {

 type boolean;

 description "Flag indicating whether the service provider

 expects to receive the first media packet.";

 }

 leaf symmetricRTP {

 type boolean;

 description "Flag indicating whether the service provider

 expects symmetric RTP defined in [@RFC4961]";

 }

 }

 container rtcp {

 leaf symmetricRTCP {

 type boolean;

 description "Flag indicating whether the service

 provider expects symmetric RTP defined in [@RFC4961].";

 }

 leaf RTCPfeedback {

 type boolean;

 description "Flag Indicating support for RTP profile

 extension for RTCP-based feedback, as defined in

 [@RFC4585]";

 }

 }

 }

 container dtmf {

 leaf payloadNumber {

 type int8 {

 range "96..127";

 }

 description "Leaf that indicates the payload number(s)

 supported by the service provider for DTMF relay via

 Named-Telephony-Events";

 }

 leaf iteration {

 type boolean;

 description "Flag identifying whether the service provider

 supports NTE DTMF relay using the procedures of [@RFC2833]

 or [@RFC4733] .";

 }

 }

 container security {

 container signaling {

 leaf type {

 type string {

 pattern "TLS";

 }

 description "Type of signaling security supported.";

 }

 leaf version {

 type string {

 pattern "([1-9]\.[0-9])(;[1-9]\.[0-9])?|(NULL)";

 }

 description "Indicates TLS version for SIP signaling";

 }

 }

 container mediaSecurity {

 leaf keyManagement {

 type string {

 pattern "(SDES(;DTLS-SRTP,version=[1-9]\.[0-9](,[1-9]"

 + "\.[0-9])?)?)|(DTLS-SRTP,version=[1-9]\.[0-9](,[1-9]"

 + "\.[0-9])?)|(NULL)";

 }

 description "Leaf that identifies the key management

 methods supported by the service provider for SRTP.";

 }

 }

 leaf certLocation {

 type string;

 description "Location of the service provider certificate

 chain for SIP over TLS.";

 }

 container secureTelephonyIdentity {

 leaf STIRCompliance {

 type boolean;

 description "Indicates whether the SIP service provider

 is STIR compliant.";

 }

 leaf certDelegation {

 type boolean;

 description "Indicates whether a SIP service provider is

 willing to delegate authority to the enterprise network

 over its allocated number range(s)";

 }

 leaf ACMEDirectory {

 when "../certDelegation = 1

 or ../certDelegation = 'true'";

 type string;

 description "Directory object URL, when de-referenced,

 provides a collection of field name-value pairs to

 kickstart ACME.";

 }

 }

 }

 leaf extensions {

 type string;

 description "Lists the various SIP extensions supported by

 the service provider.";

 }

 }

 }

¶

7.3. Node Definitions

This sub-sections provides the definition and encoding rules of the

various nodes of the YANG module defined in section 9.2

capability-set: This node serves as a container for all the other

nodes in the YANG module; the capability-set node is akin to the

root element of an json document.

variant: This node identifies the version number of the capability

set document. This draft defines the parameters for variant 1.0;

future specifications might define a richer parameter set, in which

case the variant must be changed to 2.0, 3.0 and so on. Future

extensions to the capability set document MUST also ensure that the

corresponding YANG module is defined.

revision: The revision node is a container that encapsulates

information regarding the availability of a new version of the

capability set document for the enterprise.

notBefore: The notBefore node indicates the date and time at which

the new capabilities go live in the service provider network.

location: This leaf node value provides the URL of the new revision

of the capability set document

transport-info: The transport-info node is a container that

encapsulates transport characteristics of SIP sessions between

enterprise and service provider networks.

transport: A leaf node that enumerates the different Transport Layer

protocols supported by the SIP service provider. Valid transport

layer protocols include: UDP, TCP, TLS or a combination of them

(with the exception of TLS and UDP).

registrar: A leaf-list that specifies the transport address of one

or more registrar servers in the service provider network. The

transport address of the registrar can be provided using a

combination of a valid IP address and port number, or a subdomain of

the SIP service provider network, or the fully qualified domain name

(FQDN) of the SIP service provider network. If the transport address

of a registrar is specified using either a subdomain or a fully

qualified domain name, the DNS element must be populated with one or

more valid DNS server IP addresses.

callControl: A leaf-list that specifies the transport address of the

call server(s) in the service provider network. The enterprise

network must use an applicable transport protocol in conjunction

with the call control server(s) transport address when transmitting

call setup requests. The transport address of a call server(s)

¶

¶

¶

¶

¶

¶

¶

¶

¶

within the service provider network can be specified using a

combination of a valid IP address and port number, or a subdomain of

the SIP service provider network, or a fully qualified domain name

of the SIP service provider network. If the transport address of a

call control server(s) is specified using either a subdomain or a

fully qualified domain name, the DNS element must be populated with

one or more valid DNS server IP addresses. The transport address

specified in this element can also serve as the target for non-call

requests such as SIP OPTIONS.

dns: A leaf list that encodes the IP address of one or more DNS

servers hosted by the SIP service provider. If the enterprise

network is unaware of the IP address, port number, and transport

protocol of servers within the service provider network (for

example, the registrar and call control server), it must use DNS

NAPTR and SRV. Alternatively, if the enterprise network has the

fully qualified domain name of the SIP service provider network, it

must use DNS to resolve the said FQDN to an IP address. The dns

element encodes the IP address of one or more DNS servers hosted in

the service provider network. If however, either the registrar or

callControl elements or both are populated with a valid IP address

and port pair, the dns element must be set to the quadruple octet of

0.0.0.0

outboundProxy: A leaf list that specifies the transport address of

one or more outbound proxies. The transport address can be specified

by using a combination of an IP address and a port number, a

subdomain of the SIP service provider network, or a fully qualified

domain name and port number of the SIP service provider network. If

the outbound-proxy sub-element is populated with a valid transport

address, it represents the default destination for all outbound SIP

requests and therefore, the registrar and callControl elements must

be populated with the quadruple octet of 0.0.0.0

call-specs: A container that encapsulates information about call

specifications, restrictions and additional handling criteria for

SIP calls between the enterprise and service provider network.

earlyMedia: A leaf that specifies whether the service provider

network is expected to deliver in-band announcements/tones before

call connect. The P-Early-Media header field can be used to indicate

pre-connect delivery of tones and announcements on a per-call basis.

However, given that signalling and media could traverse a large

number of intermediaries with varying capabilities (in terms of

handling of the P-Early-Media header field) within the enterprise,

such devices can be appropriately configured for media cut through

if it is known before-hand that early media is expected for some or

all of the outbound calls. This element is a Boolean type, where a

value of 1/true signifies that the service provider is capable of

¶

¶

¶

¶

early media. A value of 0/false signifies that the service provider

is not expected to generate early media.

signalingForking: A leaf that specifies whether outbound call

requests from the enterprise might be forked on the service provider

network that MAY lead to multiple early dialogs. This information

would be useful to the enterprise network in appropriately handling

multiple early dialogs reliably and in enforcing local policy. This

element is a Boolean type, where a value of 1/true signifies that

the service provider network can potentially fork outbound call

requests from the enterprise. A value of 0/false indicates that the

service provider will not fork outbound call requests.

supportedMethods: A leaf node that specifies the various SIP methods

supported by the SIP service provider. The list of supported methods

help to appropriately configuration various devices within the

enterprise network. For example, if the service provider enumerates

support for the OPTIONS method, the enterprise network could

periodically send OPTIONS requests as a keep-alive mechanism.

callerId: This is a container that encodes the preferences of SIP

Service Providers in terms calling number presentation by the

enterprise network. Certain ITSPs require that the calling number be

formatted in E.164, whereas others place no such restrictions.

Additionally, some ITSPs require that the calling number be included

in a specific SIP header field, for example, the P-Asserted-ID

header field or the P-Asserted-ID field, whereas others place no

restrictions on the specific SIP header field used to convey the

calling number.

e164Format: A leaf node that indicates whether the service provider

requires enterprise to normalize the caller number into the E.164

format while communicating caller details. This node is of the

boolean type. A value of 'true' or '1' mandates the enterprise

format caller numbers into the E.164 format, while a 'false' or '0'

leaves the formatting of the caller number up to the enterprise.

preferredMethod: A leaf node that instructs the enterprise regarding

which SIP header to populate the caller information into when

communicating caller ID information. This node will contain the name

of the SIP Header.

numRange: Is a container that specifies the Direct Inward Dial (DID)

number range allocated to the enterprise network by the SIP service

provider. The DID number range allocated by the service provider to

the enterprise network might be a contiguous or a non-contiguous

block. The number range allocated to an enterprise can be

communicated as a value or as a reference. For large enterprise

networks, the size of the DID range might run into several hundred

¶

¶

¶

¶

¶

¶

numbers. For situations in which the enterprise is allocated a large

DID number range or a non-contiguous number range it is RECOMMENDED

that the SIP service provider communicate this information by

reference, that is, through a URL. The enterprise network is

required to de-reference this URL in order to obtain the DID number

range allocated by the SIP service provider. The numRange container

can be used more than once. Refer to the example provided in Section

10.1.

numRangeType: A leaf node that indicates whether the DID range is

communicated by value or by reference. It can have a value of

'range', 'block' or 'reference'.

count: A leaf node that indicates the size of the DID number range.

The number range may be contiguous or non-contiguous. This leaf node

MUST NOT be included when using the 'reference' numRangeType value.

value: A leaf-list that encapsulates the DID number range allocated

to the enterprise. If the numRangeType value is set to 'range' or

'block', this is the list of numbers allocated to the enterprise. If

the numRangeType value is set to 'reference', this is the URL of the

resource containing the DID number range. To ensure ease of parsing,

it is RECOMMENDED that the resource contain a number range formatted

as if it were being passed as a block or range.

media: A container that is used to collectively encapsulate the

characteristics of UDP-based audio streams. A future extension to

this draft may extend the media container to describe other media

types. The media container is also used to encapsulate basic

information about Real-Time Transport Protocol (RTP) and Real-Time

Transport Control Protocol (RTCP) from the perspective of the

service provider network. As of the date of writing this draft,

video media streams aren't exchanged between enterprise and service

provider SIP networks.

mediaTypeAudio: A container for the mediaFormat leaf-list. This

container collectively encapsulates the various audio media formats

supported by the SIP service provider.

mediaFormat: A leaf-list encoding the various audio media formats

supported by the SIP service provider. The relative ordering of

different media format leaf nodes from left to right indicates

preference from the perspective of the service provider. Each

mediaFormat node begins with the encoding name of the media format,

which is the same encoding name as used in the "RTP/AVP" and "RTP/

SAVP" profiles. The encoding name is followed by required and

optional parameters for the given media format as specified when the

media format is registered [RFC4855]. Given that the parameters of

media formats can vary from one communication session to another,

¶

¶

¶

¶

¶

¶

for example, across two separate communication sessions, the

packetization time (ptime) used for the PCMU media format might vary

from 10 to 30 ms, the parameters included in the format element must

be the ones that are expected to be invariant from the perspective

of the service provider. Providing information about supported media

formats and their respective parameters, allows enterprise networks

to configure the media plane characteristics of various devices such

as endpoints and middleboxes. The encoding name, one or more

required parameters, one or more optional parameters are all

separated by a semicolon. The formatting of a given media format

parameter, must follow the formatting rules as specified for that

media format.

fax: A container that encapsulates the fax protocol(s) supported by

the SIP service provider. The fax container encloses a leaf-list

(named protocol) that enumerates whether the service provider

supports t38 relay, protocol-based fax passthrough or both. The

relative ordering of leaf nodes within the leaf lists indicates

preference.

rtp: A container that encapsulates generic characteristics of RTP

sessions between the enterprise and service provider network. This

node is a container for the "RTPTrigger" and "SymmetricRTP" leaf

nodes.

RTPTrigger: A leaf node indicating whether the SIP service provider

network always expects the enterprise network to send the first RTP

packet for an established communication session. This information is

useful in scenarios such as "hairpinned" calls, in which the caller

and callee are on the service provider network and because of sub-

optimal media routing, an enterprise device such as an SBC is

retained in the media path. Based on the encoding of this node, it

is possible to configure enterprise devices such as SBCs to start

streaming media (possibly filled with silence payloads) toward the

address:port tuples provided by caller and callee. This node is a

Boolean type. A value of 1/true indicates that the service provider

expects the enterprise network to send the first RTP packet, whereas

a value of 0/false indicates that the service provider network does

not require the enterprise network to send the first media packet.

While the practise of preserving the enterprise network in a

hairpinned call flow is fairly common, it is recommended that SIP

service providers avoid this practise. In the context of a

hairpinned call, the enterprise device retained in the call flow can

easily eavesdrop on the conversation between the offnet parties.

symmetricRTP: A leaf node indicating whether the SIP service

provider expects the enterprise network to use symmetric RTP as

defined in RFC 4961. Uncovering this expectation is useful in

scenarios where "latching" [RFC7362] is implemented in the service

¶

¶

¶

¶

https://tools.ietf.org/html/rfc4961

provider network. This node is a Boolean type, a value of 1/true

indicates that the service provider expects the enterprise network

to use symmetric RTP, whereas a value of 0/false indicates that the

enterprise network can use asymmetric RTP.

rtcp: A container that encapsulates generic characteristics of RTCP

sessions between the enterprise and service provider network. This

node is a container for the "RTCPFeedback" and "SymmetricRTCP" leaf

nodes.

RTCPFeedback: A leaf node that indicates whether the SIP service

provider supports the RTP profile extension for RTCP-based feedback

RFC 4585. Media sessions spanning enterprise and service provider

networks, are rarely made to flow directly between the caller and

callee, rather, it is often the case that media traffic flows

through network intermediaries such as SBCs. As a result, RTCP

traffic from the service provider network is intercepted by these

intermediaries, which in turn can either pass across RTCP traffic

unmodified or modify RTCP traffic before it is forwarded to the

endpoint in the enterprise network. Modification of RTCP traffic

would be required, for example, if the intermediary has performed

media payload transformation operations such as transcoding or

transrating. In a similar vein, for the RTCP-based feedback

mechanism as defined in RFC 4585 to be truly effective,

intermediaries must ensure that feedback messages are passed

reliably and with the correct formatting to enterprise endpoints.

This might require additional configuration and considerations that

need to be dealt with at the time of provisioning the intermediary

device. This node is a Boolean type, a value of 1/true indicates

that the service provider supports the RTP profile extension for

RTP-based feedback and a value of 0/false indicates that the service

provider does not support the RTP profile extension for RTP-based

feedback.

symmetricRTCP: A leaf node indicating whether the SIP service

provider expects the enterprise network to use symmetric RTCP as

defined in RFC 4961. This node is a Boolean type, a value of 1

indicates that the service provider expects symmetric RTCP reports,

whereas a value of 0 indicates that the enterprise can use

asymmetric RTCP.

dtmf: A container that describes the various aspects of DTMF relay

via RTP Named Telephony Events. The dtmf container allows SIP

service providers to specify two facets of DTMF relay via Named

Telephony Events:

The payload type number using the payloadNumber leaf node.

Support for RFC 2833 or RFC 4733 using the iteration leaf node.

¶

¶

¶

¶

¶

1. ¶

2. ¶

https://tools.ietf.org/html/rfc4585
https://tools.ietf.org/html/rfc4585
https://tools.ietf.org/html/rfc4961
https://tools.ietf.org/html/rfc2833
https://tools.ietf.org/html/rfc4733

In the context of named telephony events, senders and receivers may

negotiate asymmetric payload type numbers. For example, the sender

might advertise payload type number 97 and the receiver might

advertise payload type number 101. In such instances, it is either

required for middleboxes to interwork payload type numbers or allow

the endpoints to send and receive asymmetric payload numbers. The

behaviour of middleboxes in this context is largely dependent on

endpoint capabilities or on service provider constraints. Therefore,

the payloadNumber leaf node can be used to determine middlebox

configuration before-hand.

RFC 4733 iterates over RFC 2833 by introducing certain changes in

the way NTE events are transmitted. SIP service providers can

indicate support for RFC 4733 by setting the iteration flag to 1 or

indicating support for RFC 2833 by setting the iteration flag to 0.

security: A container that encapsulates characteristics about

encrypting signalling streams between the enterprise and SIP service

provider networks.

signaling: A container that encapsulates the type of security

protocol for the SIP communication between the enterprise SBC and

the service provider.

type: A leaf node that specifies the protocol used for protecting

SIP signalling messages between the enterprise and service provider

network. The value of the type leaf node is only defined for

Transport Layer Security (TLS). Accordingly, if TLS is allowed for

SIP sessions between the enterprise and service provider network,

the type leaf node is set to the string "tls".

version: A leaf node that specifies the version(s) of TLS supported

in decimal format. If multiple versions of TLS are supported, they

should be separated by semi-colons. If the service provider does not

support TLS for protecting SIP sessions, the signalling element is

set to the string "NULL".

mediaSecurity: A container that describes the various

characteristics of securing media streams between enterprise and

service provider networks.

keyManagement: A leaf node that specifies the key management method

used by the service provider. Possible values of this node include:

"SDES" and "DTLS-SRTP". A value of "SDES" signifies that the SIP

service provider uses the methods defined in RFC 4568 for the

purpose of key management. A value of "DTLS-SRTP" signifies that the

SIP service provider uses the methods defined in RFC 5764 for the

purpose of key management. If the value of this leaf node is set to

"DTLS-SRTP", the various versions of DTLS supported by the SIP

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/rfc4733
https://tools.ietf.org/html/rfc2833
https://tools.ietf.org/html/rfc4733
https://tools.ietf.org/html/rfc2833
https://tools.ietf.org/html/rfc4568
https://tools.ietf.org/html/rfc5764

service provider MUST be encoded as per the formatting rules of

Section 9.2. If the service provider does not support media

security, the keyManagement node MUST be set to "NULL".

certLocation:: If the enterprise network is required to exchange SIP

traffic over TLS with the SIP service provider, and if the SIP

service provider is capable of accepting TLS connections from the

enterprise network, it may be required for the SIP service provider

certificates to be pre-installed on the enterprise edge element. In

such situations, the certLocation leaf node is populated with a URL,

which when dereferenced, provides a single PEM encoded file that

contains all certificates in the chain of trust. This is an optional

leaf node.

secureTelephonyIdentity: A container that is used to collectively

encapsulate Secure Telephony Identity Revisited (STIR)

characteristics.

STIRCompliance: A leaf node that indicates whether the SIP service

provider is STIR compliant. This node is a Boolean type, a value 1/

true indicates that the SIP service provider is STIR compliant. A

value of 0/false indicates that the SIP service provider is not STIR

compliant. A SIP service provider being STIR compliant has

implications for inbound and outbound calls, from the perspective of

the enterprise network.

For inbound calls received from a STIR compliant SIP service

provider, the enterprise edge element can be configured to

appropriately handle calls based on their "attestation value". For

example, calls with an attestation value of "A" (Full Attestation)

are allowed to go through, while calls with an attestation value of

"C" (Gateway Attestation) may be flagged for administrative

analysis.

For outgoing calls placed to a STIR compliant SIP service provider,

the enterprise edge element must ensure that the calling number

populated in SIP From header field (or in trusted environments, the

P-Asserted-Identity header field), is as per what the service

provider expects. This is so that the Authentication Service running

in the SIP service provider network can determine if it is

authoritative for the calling number presented by the enterprise

network.

certDelegation: A leaf node value that indicates whether a SIP

service provider that allocates one or more number ranges to an

enterprise network, is willing to delegate authority to the

enterprise network over that number range(s). This node is a Boolean

type, a value of 1/true indicates that the SIP service provider is

willing to delegate authority to the enterprise network over one or

¶

¶

¶

¶

¶

¶

more number ranges. A value of 0/false indicates that the SIP

service provider is not willing to delegate authority to the

enterprise network over one or more number ranges. This leaf node

MUST only be included in the capability set if the value of the

STIRCompliance leaf node is set to 1/true. In order to obtain

delegate certificates, the enterprise network must be made aware of

the scope of delegation - the number or number range(s) over which

the SIP service provider is willing to delegate authority. This

information is included in the numRange container.

ACMEDirectory: For delegate certificates that are obtained by the

enterprise network using Automatic Certificate Management

Environment (ACME), this leaf node value provides the URL of the

directory object (https://datatracker.ietf.org/doc/html/draft-ietf-

acme-acme-18#section-7.1.1). The directory object URL, when de-

referenced, provides a collection of field name-value pairs. Certain

field name-value pairs provided in the response are used to

bootstrap the process the obtaining delegate certificates. This leaf

node MUST only be included in the capability set if the value of the

certDelegation leaf node is set to 1/true.

extensions: A leaf node that is a semicolon separated list of all

possible SIP option tags supported by the service provider network.

These extensions must be referenced using name registered under

IANA. If the service provider network does not support any

extensions to baseline SIP, the extensions node must be set to

"NULL".

7.4. Extending the Capability Set

There are situations in which equipment manufactures or service

providers would benefit from extending the YANG module defined in

this draft. For example, service providers could extend the YANG

module to include information that further simplifies direct IP

peering. Such information could include: trunk group identifiers,

direct-inward-dial (DID) number ranges allocated to the enterprise,

customer/enterprise account numbers, service provider support

numbers, among others. Extension of the module can be achieved by

importing the module defined in this draft. An example is provided

below: Consider a new YANG module "vendorA" specified for VendorA's

enterprise SBC. The "vendorA-config" YANG module is configured as

follows:

¶

¶

¶

¶

In the example above, a custom module named "vendorA-config" uses

the "augment" statement as defined in Section 4.2.8 of [RFC7950] to

extend the module defined in this draft.

8. Processing the Capability Set Response

This section provides a non-normative description of the procedures

that could be carried out by the enterprise network after obtaining

the SIP service provider capability set. On obtaining the capability

set, the enterprise edge element can parse the various fields within

the capability set and generate configuration blocks. For example,

the configuration required to successfully register a SIP trunk with

the SIP registrar hosted in the service provider network, the

configuration required to ensure that fax calls are handled

appropriately, the configuration required to advertise only audio

codecs supported by the SIP service provider, among many other

 module vendorA-config {

 namespace "urn:ietf:params:xml:ns:yang:vendorA-config";

 prefix "vendorA";

 description

 "Data model for configuring VendorA Enterprise SBC";

 revision 2020-05-06 {

 description "Initial revision of VendorA Enterprise SBC

 configuration data model";

 }

 import ietf-peering {

 prefix "peering";

 }

 augment "/peering:peering-info" {

 container vendorAConfig {

 leaf vendorAConfigParam1 {

 type int32;

 description "vendorA configuration parameter 1

 (SBC Device ID)";

 }

 leaf vendorAConfigParam2 {

 type string;

 description "vendorA configuration parameter 2

 (SBC Device name)";

 }

 description "Container for vendorA SBC configuration";

 }

 }

 }

¶

¶

configuration blocks. A configuration block generated for an almost

identical SIP service provider capability set document is likely

going to differ drastically from one vendor to the next.

Enterprise edge elements are usually capable of normalising

mismatches in the signalling and media planes between the enterprise

and service provider SIP networks. As a result, most, if not all of

the configuration blocks required to enable successful SIP service

provider peering might need to be added on the edge element. In

situations wherein configuration blocks need to be distributed

across multiple devices, some mechanism, that is out of scope of

this document might be used to communicate the specific fields of

capacity set and their corresponding value. Alternatively, a human

administrator could go through the capability set document and

configure the edge element (and if required, other devices in the

enterprise network appropriately.

9. Examples

This section provides examples of how capability set documents that

leverage the YANG module defined in this document can be encoded

over JSON as well as the exchange of messages between the enterprise

edge element and the service provider to acquire the capability set

document.

¶

¶

¶

9.1. JSON Capability Set Document

 {

 "peering-info": {

 "variant": "1.0",

 "revision": {

 "notBefore": "2021-10-16T00:00:00.00000Z",

 "location":

 "https://capserver.ssp1.com/capserver/capdoc.json",

 },

 "transport-info": {

 "transport": "TCP;TLS;UDP",

 "registrar": ["registrar1.voip.example.com:5060",

 "registrar2.voip.example.com:5060"],

 "registerRealm": "voip.example.com",

 "callControl": ["callServer1.voip.example.com:5060",

 "192.168.12.25:5065"],

 "dns": ["8.8.8.8", "208.67.222.222"],

 "outboundProxy": "0.0.0.0"

 },

 "call-specs": {

 "earlyMedia": "true",

 "signalingForking": "false",

 "supportedMethods": "INVITE;OPTIONS;BYE;CANCEL;ACK;

 PRACK;SUBSCRIBE;NOTIFY;REGISTER",

 "callerId": {

 "e164Format": "true",

 "preferredMethod": "P-Asserted-Identity"

 },

 "numRange": {

 "type": "range",

 "count": "20",

 "value": "19725455000"

 },

 "numRange": {

 "type": "block",

 "count": "2",

 "value": ["19725455000", "19725455001"]

 }

 },

 "media": {

 "mediaTypeAudio": {

 "mediaFormat": ["PCMU;rate=8000;ptime=20",

 "G729;rate=8000;annexb=yes",

 "G722;rate=8000;bitrate=56k,64k"]

 },

 "fax": {

 "protocol": ["t38", "pass-through"]

 },

 "rtp": {

 "RTPTrigger": "true",

 "symmetricRTP": "true"

 },

 "rtcp": {

 "symmetricRTCP": "true",

 "RTCPFeedback": "true"

 }

 },

 "dtmf": {

 "payloadNumber": "101",

 "iteration": "0"

 },

 "security": {

 "signaling": {

 "type": "TLS",

 "version": "1.0;1.2"

 },

 "mediaSecurity": {

 "keyManagement": "SDES;DTLS-SRTP,version=1.2"

 },

 "certLocation":

 "https://sipserviceprovider.com/certificateList.pem",

 "secureTelephonyIdentity": {

 "STIRCompliance": "true",

 "certDelegation": "true",

 "ACMEDirectory":

 "https://sipserviceprovider.com/acme.html"

 }

 },

 "extensions": "timer;rel100;gin;path"

 }

 }

¶

[RFC2119]

[RFC2833]

[RFC3261]

9.2. Example Exchange

This section is an informational example depicting the configuration

flow that ultimately results in the enterprise edge element

obtaining the capability set document from the SIP service provider.

Assuming the enterprise edge element has been pre-configured with

the request target for the capability set document or has

dynamically found the request target, the edge element generates a

HTTPS GET request. This request can be challenged by the service

provider to authenticate the enterprise.

The capability set document is obtained in the body of the response

and is encoded in JSON.

10. Security Considerations

[TBD]

11. Acknowledgments

[TBD]

12. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Schulzrinne, H. and S. Petrack, "RTP Payload for DTMF

Digits, Telephony Tones and Telephony Signals", RFC 2833,

DOI 10.17487/RFC2833, May 2000, <https://www.rfc-

editor.org/info/rfc2833>.

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,

A., Peterson, J., Sparks, R., Handley, M., and E.

Schooler, "SIP: Session Initiation Protocol", RFC 3261,

¶

 GET /capdoc?trunkid=trunkent1456 HTTP/1.1

 Host: capserver.ssp1.com

 Accept:application/peering-info+json

¶

¶

 HTTP/1.1 200 OK

 Content-Type: application/peering-info+json

 Content-Length: nnn

 {

 "peering-info": ...

 }

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2833
https://www.rfc-editor.org/info/rfc2833

[RFC4585]

[RFC4733]

[RFC4855]

[RFC4961]

[RFC5246]

[RFC6020]

[RFC6241]

DOI 10.17487/RFC3261, June 2002, <https://www.rfc-

editor.org/info/rfc3261>.

Ott, J., Wenger, S., Sato, N., Burmeister, C., and J.

Rey, "Extended RTP Profile for Real-time Transport

Control Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC

4585, DOI 10.17487/RFC4585, July 2006, <https://www.rfc-

editor.org/info/rfc4585>.

Schulzrinne, H. and T. Taylor, "RTP Payload for DTMF

Digits, Telephony Tones, and Telephony Signals", RFC

4733, DOI 10.17487/RFC4733, December 2006, <https://

www.rfc-editor.org/info/rfc4733>.

Casner, S., "Media Type Registration of RTP Payload

Formats", RFC 4855, DOI 10.17487/RFC4855, February 2007,

<https://www.rfc-editor.org/info/rfc4855>.

Wing, D., "Symmetric RTP / RTP Control Protocol (RTCP)",

BCP 131, RFC 4961, DOI 10.17487/RFC4961, July 2007,

<https://www.rfc-editor.org/info/rfc4961>.

Dierks, T. and E. Rescorla, "The Transport Layer Security

(TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008, <https://www.rfc-editor.org/info/

rfc5246>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc4585
https://www.rfc-editor.org/info/rfc4585
https://www.rfc-editor.org/info/rfc4733
https://www.rfc-editor.org/info/rfc4733
https://www.rfc-editor.org/info/rfc4855
https://www.rfc-editor.org/info/rfc4961
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020

[RFC6665]

[RFC6749]

[RFC6991]

[RFC7033]

[RFC7092]

[RFC7231]

[RFC7235]

[RFC7362]

[RFC7950]

[RFC8340]

[RFC8446]

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Roach, A.B., "SIP-Specific Event Notification", RFC 6665,

DOI 10.17487/RFC6665, July 2012, <https://www.rfc-

editor.org/info/rfc6665>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Schoenwaelder, J., Ed., "Common YANG Data Types", RFC

6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-

editor.org/info/rfc6991>.

Jones, P., Salgueiro, G., Jones, M., and J. Smarr,

"WebFinger", RFC 7033, DOI 10.17487/RFC7033, September

2013, <https://www.rfc-editor.org/info/rfc7033>.

Kaplan, H. and V. Pascual, "A Taxonomy of Session

Initiation Protocol (SIP) Back-to-Back User Agents", RFC

7092, DOI 10.17487/RFC7092, December 2013, <https://

www.rfc-editor.org/info/rfc7092>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Authentication", RFC 7235,

DOI 10.17487/RFC7235, June 2014, <https://www.rfc-

editor.org/info/rfc7235>.

Ivov, E., Kaplan, H., and D. Wing, "Latching: Hosted NAT

Traversal (HNT) for Media in Real-Time Communication",

RFC 7362, DOI 10.17487/RFC7362, September 2014, <https://

www.rfc-editor.org/info/rfc7362>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6665
https://www.rfc-editor.org/info/rfc6665
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc7033
https://www.rfc-editor.org/info/rfc7092
https://www.rfc-editor.org/info/rfc7092
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7362
https://www.rfc-editor.org/info/rfc7362
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8446

[SIP-Connect-TR]
"SIP Connect Technical Recommendation", <https://

www.sipforum.org/download/sipconnect-technical-

recommendation-version-2-0/?wpdmdl=2818>.

Authors' Addresses

Kaustubh Inamdar

Unaffiliated

Email: kaustubh.ietf@gmail.com

Sreekanth Narayanan

Cisco Systems

Email: sreenara@cisco.com

Cullen Jennings

Cisco Systems

Email: fluffy@iii.ca

https://www.sipforum.org/download/sipconnect-technical-recommendation-version-2-0/?wpdmdl=2818
https://www.sipforum.org/download/sipconnect-technical-recommendation-version-2-0/?wpdmdl=2818
https://www.sipforum.org/download/sipconnect-technical-recommendation-version-2-0/?wpdmdl=2818
mailto:kaustubh.ietf@gmail.com
mailto:sreenara@cisco.com
mailto:fluffy@iii.ca

	Automatic Peering for SIP Trunks
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Overview of Operations
	2.1. Reference Architecture
	2.2. Configuration Workflow
	2.3. Transport

	3. Conventions and Terminology
	4. HTTP Transport
	4.1. HTTP Methods
	4.2. Integrity and Confidentiality
	4.3. Authenticated Client Identity
	4.4. Encoding the Request
	4.5. Identifying the Request Target
	4.6. Generating the response

	5. State Deltas
	6. Encoding the Service Provider Capability Set
	7. Data Model for Capability Set
	7.1. Tree Diagram
	7.2. YANG Model
	7.3. Node Definitions
	7.4. Extending the Capability Set

	8. Processing the Capability Set Response
	9. Examples
	9.1. JSON Capability Set Document
	9.2. Example Exchange

	10. Security Considerations
	11. Acknowledgments
	12. Normative References
	Authors' Addresses

