
Workgroup: T2TRG

Internet-Draft: draft-ietf-asdf-sdf-01

Published: 15 November 2020

Intended Status: Informational

Expires: 19 May 2021

Authors: M. Koster, Ed.

SmartThings

C. Bormann, Ed.

Universität Bremen TZI

Semantic Definition Format (SDF) for Data and Interactions of Things

Abstract

The Semantic Definition Format (SDF) is a format for domain experts

to use in the creation and maintenance of data and interaction

models in the Internet of Things. It was created as a common

language for use in the development of the One Data Model liaison

organization (OneDM) definitions. Tools convert this format to

database formats and other serializations as needed.

An SDF specification describes definitions of SDF Objects and their

associated interactions (Events, Actions, Properties), as well as

the Data types for the information exchanged in those interactions.

A JSON format representation of SDF 1.0 was defined in the previous

(-00) version of this document. SDF 1.1 is expected to be defined in

a future version; the present document represents a draft on the way

from 1.0 to 1.1. Hence, this is not an implementation draft.

Contributing

Recent versions of this document are available at its GitHub

repository https://github.com/ietf-wg-asdf/SDF -- this also provides

an issue tracker as well as a way to supply "pull requests".

General discussion of this SDF Internet-Draft happens on the mailing

list of the IETF ASDF Working Group, asdf@ietf.org (subscribe at

https://www.ietf.org/mailman/listinfo/asdf).

The IETF Note Well applies (https://www.ietf.org/about/note-well/).

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/ietf-wg-asdf/SDF
https://www.ietf.org/mailman/listinfo/asdf
https://www.ietf.org/about/note-well/
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 19 May 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology and Conventions

2. Overview

2.1. Example Definition

2.2. Elements of an SDF model

2.2.1. sdfObject

2.2.2. sdfProperty

2.2.3. sdfAction

2.2.4. sdfEvent

2.2.5. sdfData

2.2.6. sdfThing

2.2.7. sdfProduct

3. SDF structure

3.1. Information block

3.2. Namespaces section

3.3. Definitions section

4. Names and namespaces

4.1. Structure

4.2. Contributing global names

4.3. Referencing global names

4.4. sdfRef

4.5. sdfRequired

4.5.1. Optionality using the keyword "sdfRequired"

4.6. Common Qualities

4.7. Data Qualities

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

Thing:

5. Keywords for definition groups

5.1. sdfObject

5.2. sdfProperty

5.3. sdfAction

5.4. sdfEvent

5.5. sdfData

6. High Level Composition

6.1. Paths in the model namespaces

6.2. Modular Composition

6.2.1. Use of the "sdfRef" keyword to re-use a definition

6.3. sdfThing

6.4. sdfProduct

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Formal Syntax of SDF

Appendix B. json-schema.org Rendition of SDF Syntax

Acknowledgements

Contributors

Authors' Addresses

1. Introduction

The Semantic Definition Format (SDF) is a format for domain experts

to use in the creation and maintenance of data and interaction

models in the Internet of Things. It was created as a common

language for use in the development of the One Data Model liaison

organization (OneDM) definitions. Tools convert this format to

database formats and other serializations as needed.

An SDF specification describes definitions of SDF Objects and their

associated interactions (Events, Actions, Properties), as well as

the Data types for the information exchanged in those interactions.

A JSON format representation of SDF 1.0 was defined in the previous

(-00) version of this document. SDF 1.1 is expected to be defined in

a future version; the present document represents a draft on the way

from 1.0 to 1.1. Hence, this is not an implementation draft.

1.1. Terminology and Conventions

A physical device that is also made available in the

Internet of Things. The term is used here for Things that are

notable for their interaction with the physical world beyond

interaction with humans; a temperature sensor or a light might be

a Thing, but a router that employs both temperature sensors and

indicator lights might exhibit less Thingness, as the effects of

its functioning are mostly on the digital side.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Affordance:

Quality:

Entry:

Block:

Group:

Class Name Keyword:

Class:

Property:

Action:

Event:

Object:

An element of an interface offered for interaction,

defining its possible uses or making clear how it can or should

be used. The term is used here for the digital interfaces of a

Thing only; it might also have physical affordances such as

buttons, dials, and displays.

A metadata item in a definition or declaration which says

something about that definition or declaration. A quality is

represented in SDF as an entry in a JSON map (object) that serves

as a definition or declaration.

A key-value pair in a map. (In JSON maps, sometimes also

called "member".)

One or more entries in a JSON map that is part of an SDF

specification; these entries together serve a specific function.

An entry in the main SDF map and in certain nested

definitions that has a Class Name Keyword as its key and a map of

definition entries (Definition Group) as a value.

One of sdfThing, sdfProduct, sdfObject,

sdfProperty, sdfAction, sdfEvent, or sdfData; the Classes for

these type keywords are capitalized and prefixed with sdf.

Abstract term for the information that is contained in

groups identified by a Class Name Keyword.

An affordance that can potentially be used to read,

write, and/or observe state on an Object. (Note that Entries are

often called properties in other environments; in this document,

the term Property is specifically reserved for affordances, even

if the map key "properties" might be imported from a data

definition language with the other semantics.)

An affordance that can potentially be used to perform a

named operation on an Object.

An affordance that can potentially be used to obtain

information about what happened to an Object.

A grouping of Property, Action, and Event definitions; the

main "atom" of reusable semantics for model construction. (Note

that JSON maps are often called JSON objects due to JSON's

JavaScript heritage; in this document, the term Object is

specifically reserved for the above grouping, even if the type

name "object" might be imported from a data definition language

with the other semantics.)

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Element:

Definition:

Declaration:

Protocol Binding:

A part or an aspect of something abstract; used here in

its usual English definition. (Occasionally, also used

specifically for the elements of JSON arrays.)

An entry in a Definition Group; the entry creates a new

semantic term for use in SDF models and associates it with a set

of qualities.

A reference to and a use of a definition within an

enclosing definition, intended to create component instances

within that enclosing definition. Every declaration can also be

used as a definition for reference in a different place.

A companion document to an SDF specification that

defines how to map the abstract concepts in the specification

into the protocols in use in a specific ecosystem. Might supply

URL components, numeric IDs, and similar details.

Conventions:

The singular form is chosen as the preferred one for the keywords

defined here.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Overview

2.1. Example Definition

We start with an example for the SDF definition of a simple Object

called "Switch" (Figure 1).

¶

¶

¶

¶

¶

*

¶

¶

¶

Figure 1: A simple example of an SDF definition file

This is a model of a switch. The state value declared in the

sdfProperty group, represented by a Boolean, will be true for "on"

and will be false for "off". The actions on or off declared in the

sdfAction group are redundant with setting the value and are in the

example to illustrate that there are often different ways of

achieving the same effect. The action toggle will invert the value

of the sdfProperty value, so that 2-way switches can be created;

having such action will avoid the need for first retrieving the

current value and then applying/setting the inverted value.

The sdfObject group lists the affordances of instances of this

object. The sdfProperty group lists the property affordances

described by the model; these represent various perspectives on the

{

 "info": {

 "title": "Example file for OneDM Semantic Definition Format",

 "version": "2019-04-24",

 "copyright": "Copyright 2019 Example Corp. All rights reserved.",

 "license": "https://example.com/license"

 },

 "namespace": {

 "cap": "https://example.com/capability/cap"

 },

 "defaultNamespace": "cap",

 "sdfObject": {

 "Switch": {

 "sdfProperty": {

 "value": {

 "description": "The state of the switch; false for off and true for on."

 "type": "boolean"

 }

 },

 "sdfAction": {

 "on": {

 "description": "Turn the switch on; equivalent to setting value to true."

 },

 "off": {

 "description": "Turn the switch off; equivalent to setting value to false."

 },

 "toggle": {

 "description": "Toggle the switch; equivalent to setting value to its complement."

 }

 }

 }

 }

}

¶

state of the object. Properties can have additional qualities to

describe the state more precisely. Properties can be annotated to be

read, write or read/write; how this is actually done by the

underlying transfer protocols is not described in the SDF model but

left to companion protocol bindings. Properties are often used with

RESTful paradigms [I-D.irtf-t2trg-rest-iot], describing state. The

sdfAction group is the mechanism to describe other interactions in

terms of their names, input, and output data (no data are used in

the example), as in a POST method in REST or in a remote procedure

call. The example toggle is an Action that changes the state based

on the current state of the Property named value. (The third type of

affordance is Events, which are not described in this example.)

2.2. Elements of an SDF model

The SDF language uses seven predefined Class Name Keywords for

modeling connected Things, six of which are illustrated in Figure 2

(the seventh class sdfProduct is exactly like sdfThing).

sdfThing

sdfObject

sdfProperty sdfAction sdfEvent

sdfData

hasObject

0+

hasThing0+

hasProperty

0+

hasAction

0+

hasEvent

0+

hasInputData

1+

hasOutputData

0+

hasOutputData

1+

isInstanceOf

1

Figure 2: Main classes used in SDF models

The seven main Class Name Keywords are discussed below.

¶

¶

¶

¶

2.2.1. sdfObject

Objects, the items listed in an sdfObject group, are the main "atom"

of reusable semantics for model construction. It aligns in scope

with common definition items from many IoT modeling systems, for

example ZigBee Clusters [ZCL], OMA SpecWorks LwM2M Objects [OMA],

and OCF Resource Types [OCF].

An sdfObject contains a set of sdfProperty, sdfAction, and sdfEvent

definitions that describe the interaction affordances associated

with some scope of functionality.

For the granularity of definition, sdfObject definitions are meant

to be kept narrow enough in scope to enable broad reuse and

interoperability. For example, defining a light bulb using separate

sdfObject definitions for on/off control, dimming, and color control

affordances will enable interoperable functionality to be configured

for diverse product types. An sdfObject definition for a common on/

off control may be used to control may different kinds of Things

that require on/off control.

2.2.2. sdfProperty

sdfProperty is used to model elements of state within sdfObject

instances.

An instance of sdfProperty may be associated with some protocol

affordance to enable the application to obtain the state variable

and, optionally, modify the state variable. Additionally, some

protocols provide for in-time reporting of state changes. (These

three aspects are described by the qualities readable, writable,

and observable defined for an sdfProperty.)

Definitions in sdfProperty groups look like definitions in sdfData

groups, however, they actually also declare a Property with the

given qualities to be potentially present in the containing Object.

(Qualities beyond those of sdfData definitions could be defined for

sdfProperty declarations but currently aren't; this means that even

Property qualities such as readable and writable can be associated

with definitions in sdfData groups, as well.)

For definitions in sdfProperty and sdfData, SDF provides qualities

that can constrain the structure and values of data allowed in an

instance of these data, as well as qualities that associate

semantics to these data, for engineering units and unit scaling

information.

For the data definition within sdfProperty or sdfData, SDF borrows a

number of elements proposed for the drafts 4 and 7 of the json-

schema.org "JSON Schema" format [I-D.handrews-json-schema-

¶

¶

¶

¶

¶

¶

¶

validation], enhanced by qualities that are specific to SDF. For the

current version of SDF, data are constrained to be of simple types

(number, string, Boolean), JSON maps composed of named data

("objects"), and arrays of these types. Syntax extension points are

provided that can be used to provide richer types in future versions

of this specification (possibly more of which can be borrowed from

json-schema.org).

Note that sdfProperty definitions (and sdfData definitions in

general) are not intended to constrain the formats of data used for

communication over network interfaces. Where needed, data

definitions for payloads of protocol messages are expected to be

part of the protocol binding.

2.2.3. sdfAction

The sdfAction group contains declarations of Actions, model

affordances that, when triggered, have more effect than just

reading, updating, or observing Thing state, often resulting in some

outward physical effect (which, itself, cannot be modeled in SDF).

From a programmer's perspective, they might be considered to be

roughly analogous to method calls.

Actions may have data parameters; these are modeled as a single item

of input data and output data, each. (Where multiple parameters need

to be modeled, an "object" type can be used to combine these

parameters into one.) Actions may be long-running, that is to say

that the effects may not take place immediately as would be expected

for an update to an sdfPoperty; the effects may play out over time

and emit action results. Actions may also not always complete and

may result in application errors, such as an item blocking the

closing of an automatic door.

Actions may have (or lack) qualities of idempotency and side-effect

safety.

The current version of SDF only provides data constraint modeling

and semantics for the input and output data of definitions in

sdfAction groups. Again, data definitions for payloads of protocol

messages, and detailed protocol settings for invoking the action,

are expected to be part of the protocol binding.

2.2.4. sdfEvent

The sdfEvent group contains declarations of Events, which can model

affordances that inform about "happenings" associated with an

instance of an Object; these may result in a signal being stored or

emitted as a result.

¶

¶

¶

¶

¶

¶

¶

Note that there is a trivial overlap with sdfProperty state changes,

which may also be defined as events but are not generally required

to be defined as such. However, Events may exhibit certain ordering,

consistency, and reliability requirements that are expected to be

supported in various implementations of sdfEvent that do distinguish

sdfEvent from sdfProperty. For instance, while a state change may

simply be superseded by another state change, some events are

"precious" and need to be preserved even if further events follow.

The current version of SDF only provides data constraint modeling

and semantics for the output data of Event affordances. Again, data

definitions for payloads of protocol messages, and detailed protocol

settings for invoking the action, are expected to be part of the

protocol binding.

2.2.5. sdfData

Definitions in sdfData groups are provided separately from those in

sdfProperty groups to enable common modeling patterns, data

constraints, and semantic anchor concepts to be factored out for

data items that make up sdfProperty items and serve as input and

output data for sdfAction and sdfEvent items.

It is a common use case for such a data definition to be shared

between an sdfProperty item and input or output parameters of an

sdfAction or output data provided by an sdfEvent. sdfData

definitions also enable factoring out extended application data

types such as mode and machine state enumerations to be reused

across multiple definitions that have similar basic characteristics

and requirements.

2.2.6. sdfThing

Back at the top level, the sdfThing groups enables definition of

models for complex devices that will use one or more sdfObject

definitions.

A definition in an sdfThing group can refine the metadata of the

definitions it is composed from: other definitions in sdfThing

groups definitions in sdfObject groups.

2.2.7. sdfProduct

sdfThing has a derived class sdfProduct, which can be used to

indicate a top level inventory item with a Stock-Keeping Unit (SKU)

identifier and other particular metadata. Structurally, there is no

difference between definitions in either group; semantically, a

definition in an sdfProduct group is intended to describe a class of

complete Things.

¶

¶

¶

¶

¶

¶

¶

3. SDF structure

SDF definitions are contained in SDF files. One or more SDF files

can work together to provide the definitions and declarations that

are the payload of the SDF format.

A SDF definition file contains a single JSON map (JSON object). This

object has three sections: the information block, the namespaces

section, and the definitions section.

3.1. Information block

The information block contains generic meta data for the file itself

and all included definitions.

The keyword (map key) that defines an information block is "info".

Its value is a JSON map in turn, with a set of entries that

represent qualities that apply to the included definition.

Qualities of the information block are shown in Table 1.

Quality Type Required Description

title string yes
A short summary to be displayed in

search results, etc.

version string yes
The incremental version of the

definition, format TBD

copyright string yes
Link to text or embedded text containing

a copyright notice

license string yes
Link to text or embedded text containing

license terms

Table 1: Qualities of the Information Block

While the format of the version string is marked as TBD, it is

intended to be lexicographically increasing over the life of a

model: a newer model always has a version string that string-

compares higher than all previous versions. This is easily achieved

by following the convention to start the version with an [RFC3339]

date-time or, if new versions are generated less frequently than

once a day, just the full-date (i.e., YYYY-MM-DD); in many cases,

that will be all that is needed (see Figure 1 for an example).

The license string is preferably either a URI that points to a web

page with an unambiguous definition of the license, or an [SPDX]

license identifier. (For models to be handled by the One Data Model

liaison group, this will typically be "BSD-3-Clause".)

¶

¶

¶

¶

¶

¶

¶

3.2. Namespaces section

The namespaces section contains the namespace map and the

defaultNamespace setting.

The namespace map is a map from short names for URIs to the

namespace URIs themselves.

The defaultNamespace setting selects one of the entries in the

namespace map by giving its short name. The associated URI (value of

this entry) becomes the default namespace for the SDF definition

file.

Quality Type Required Description

namespace map no

Defines short names mapped to

namespace URIs, to be used as

identifier prefixes

defaultNamespace string no

Identifies one of the prefixes in

the namespace map to be used as a

default in resolving identifiers

Table 2: Namespaces Section

The following example declares a set of namespaces and defines cap

as the default namespace. By convention, the values in the namespace

map contain full URIs without a fragment identifier, and the

fragment identifier is then added, if needed, where the namespace

entry is used.

If no defaultNamespace setting is given, the SDF definition file

does not contribute to a global namespace. As the defaultNamespace

is set by giving a namespace short name, its presence requires a

namespace map that contains a mapping for that namespace short name.

If no namespace map is given, no short names for namespace URIs are

set up, and no defaultNamespace can be given.

3.3. Definitions section

The Definitions section contains one or more groups, each identified

by a Class Name Keyword (there can only be one group per keyword;

the actual grouping is just a shortcut and does not carry any

specific semantics). The value of each group is a JSON map (object),

the keys of which serve for naming the individual definitions in

¶

¶

¶

¶

"namespace": {

 "cap": "https://example.com/capability/cap",

 "zcl": "https://zcl.example.com/sdf"

},

"defaultNamespace": "cap",

¶

¶

¶

this group, and the corresponding values provide a set of qualities

(name-value pairs) for the individual definition. (In short, we

speak of the map entries as "named sets of qualities".)

Each group may contain zero or more definitions. Each identifier

defined creates a new type and term in the target namespace.

Declarations have a scope of the current definition block.

A definition may in turn contain other definitions. Each definition

is a named set of qualities, i.e., it consists of the newly defined

identifier and a set of key-value pairs that represent the defined

qualities and contained definitions.

An example for an Object definition is given in Figure 3:

Figure 3: Example Object definition

This example defines an Object "foo" that is defined in the default

namespace (full address: #/sdfObject/foo), containing a property

that can be addressed as #/sdfObject/foo/sdfProperty/bar, with data

of type boolean.

Some of the definitions are also declarations: the definition of the

entry "bar" in the property "foo" means that each instance of a

"foo" can have zero or one instance of a "bar". Entries within

sdfProperty, sdfAction, and sdfEvent, within sdfObject entries, are

declarations. Similarly, entries within an sdfThing describe

instances of sdfObject (or nested sdfThing) that form part of

instances of the Thing.

4. Names and namespaces

SDF definition files may contribute to a global namespace, and may

reference elements from that global namespace. (An SDF definition

file that does not set a defaultNamespace does not contribute to a

global namespace.)

¶

¶

¶

¶

"sdfObject": {

 "foo": {

 "sdfProperty": {

 "bar": {

 "type": "boolean"

 }

 }

 }

}

¶

¶

¶

4.1. Structure

Global names look exactly like https:// URIs with attached fragment

identifiers.

There is no intention to require that these URIs can be

dereferenced. (However, as future versions of SDF might find a use

for dereferencing global names, the URI should be chosen in such a

way that this may become possible in the future.)

The absolute URI of a global name should be a URI as per Section 3

of [RFC3986], with a scheme of "https" and a path (hier-part in

[RFC3986]). For the present version of this specification, the query

part should not be used (it might be used in later versions).

The fragment identifier is constructed as per Section 6 of

[RFC6901].

4.2. Contributing global names

The fragment identifier part of a global name defined in an SDF

definition file is constructed from a JSON pointer that selects the

element defined for this name in the SDF definition file.

The absolute URI part is a copy of the default namespace, i.e., the

default namespace is always the target namespace for a name for

which a definition is contributed. When emphasizing that name

definitions are contributed to the default namespace, we therefore

also call it the "target namespace" of the SDF definition file.

E.g., in Figure 1, definitions for the following global names are

contributed:

https://example.com/capability/cap#/sdfObject/Switch

https://example.com/capability/cap#/sdfObject/Switch/sdfProperty/

value

https://example.com/capability/cap#/sdfObject/Switch/sdfAction/on

https://example.com/capability/cap#/sdfObject/Switch/sdfAction/

off

Note the #, which separates the absolute-URI part (Section 4.3 of

[RFC3986]) from the fragment identifier part.

4.3. Referencing global names

A name reference takes the form of the production curie in

[W3C.NOTE-curie-20101216] (note that this excludes the production

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

* ¶

*

¶

¶

safe-curie), but also limiting the IRIs involved in that production

to URIs as per [RFC3986] and the prefixes to ASCII characters

[RFC0020].

A name that is contributed by the current SDF definition file can be

referenced by a Same-Document Reference as per section 4.4 of

[RFC3986]. As there is little point in referencing the entire SDF

definition file, this will be a # followed by a JSON pointer. This

is the only kind of name reference to itself that is possible in an

SDF definition file that does not set a default namespace.

Name references that point outside the current SDF definition file

need to contain curie prefixes. These then reference namespace

declarations in the namespaces section.

For example, if a namespace prefix is defined:

Then this reference to that namespace:

references the global name:

Note that there is no way to provide a URI scheme name in a curie,

so all references outside of the document need to go through the

namespace map.

Name references occur only in specific elements of the syntax of

SDF:

copying elements via sdfRef values

pointing to elements via sdfRequired value elements

4.4. sdfRef

In a JSON map establishing a definition, the keyword "sdfRef" is

used to copy all of the qualities of the referenced definition,

indicated by the included name reference, into the newly formed

definition. (This can be compared to the processing of the "$ref"

keyword in [I-D.handrews-json-schema-validation].)

For example, this reference:

¶

¶

¶

¶

"namespace": {

 "foo": "https://example.com/"

}

¶

¶

{ "sdfRef": "foo:#/sdfData/temperatureData" }¶

¶

"https://example.com/#/sdfData/temperatureData"¶

¶

¶

* ¶

* ¶

¶

¶

creates a new definition "temperatureProperty" that contains all of

the qualities defined in the definition at /sdfData/temperatureData.

4.5. sdfRequired

The value of "sdfRequired" is an array of name references, each

pointing to one declaration the instantiation of which is declared

mandatory.

4.5.1. Optionality using the keyword "sdfRequired"

The keyword "sdfRequired" is provided to apply a constraint that

defines for which declarations corresponding data are mandatory in

an instance conforming the current definition.

The value of "sdfRequired" is an array of JSON pointers, each

indicating one declaration that is mandatory to be represented.

The example in Figure 4 shows two required elements in the sdfObject

definition for "temperatureWithAlarm", the sdfProperty

"temperatureData", and the sdfEvent "overTemperatureEvent". The

example also shows the use of JSON pointer with "sdfRef" to use a

pre-existing definition in this definition, for the "alarmType" data

(sdfOutputData) produced by the sdfEvent "overTemperatureEvent".

"temperatureProperty": {

 "sdfRef": "#/sdfData/temperatureData"

}

¶

¶

¶

¶

¶

¶

Figure 4: Using sdfRequired

4.6. Common Qualities

Definitions in SDF share a number of qualities that provide metadata

for them. These are listed in Table 3. None of these qualities are

required or have default values that are assumed if the quality is

absent. If a label is required for an application and no label is

given in the SDF model, the last part (reference-token, Section 3

of [RFC6901]) of the JSON pointer to the definition can be used.

Quality Type Description

description text long text (no constraints)

label text short text (no constraints)

$comment text source code comments only, no semantics

sdfRef (see Section 4.4)

{

 "sdfObject": {

 "temperatureWithAlarm": {

 "sdfRequired": [

 "#/sdfObject/temperatureWithAlarm/sdfData/temperatureData",

 "#/sdfObject/temperatureWithAlarm/sdfEvent/overTemperatureEvent"

],

 "sdfData":{

 "temperatureData": {

 "type": "number"

 }

 },

 "sdfEvent": {

 "overTemperatureEvent": {

 "sdfOutputData": {

 "type": "object",

 "properties": {

 "alarmType": {

 "sdfRef": "cap:/sdfData/alarmTypes/quantityAlarms",

 "const": "OverTemperatureAlarm"

 },

 "temperature": {

 "sdfRef": "#/sdfObject/temperatureWithAlarm/sdfData/temperatureData"

 }

 }

 }

 }

 }

 }

 }

}

¶

Quality Type Description

sdf-

pointer

sdfRequired
pointer-

list

(see Section 4.5, applies to qualities of

properties, of data)

Table 3: Common Qualities

4.7. Data Qualities

Data qualities are used in sdfData and sdfProperty definitions,

which are named sets of data qualities (abbreviated as named-sdq).

Table 4 lists data qualities borrowed from [I-D.handrews-json-

schema-validation]; the intention is that these qualities retain

their semantics from the versions of the json-schema.org proposal

they were imported from. A description that starts with a

parenthesized term means the quality is only applicable when type

has the value of the term.

Table 5 lists data qualities defined specifically for the present

specification.

The term "allowed types" stands for primitive JSON types, JSON maps

("objects")" as well as homogeneous arrays of numbers, text,

Booleans, or maps. (This list might be extended in a future version

of SDF.) An "allowed value" is a value allowed for one of these

types.

Quality Type Description

type

"number" / "string" /

"boolean" / "integer"

/ "array" / "object"

JSON data type (note 1)

enum
array of allowed

values
enumeration constraint

const allowed value
specifies a constant value

for a data item or property

default allowed value
specifies the default value

for initialization

minimum number
(number) lower limit of

value

maximum number
(number) upper limit of

value

exclusiveMinimum
number or boolean

(jso draft 7/4)

(number) lower limit of

value

exclusiveMaximum
number or boolean

(jso draft 7/4)

(number) lower limit of

value

multipleOf number
(number) resolution of the

number [NEEDED?]

¶

¶

¶

¶

Quality Type Description

minLength integer
(string) shortest length

string in octets

maxLength integer
(string) longest length

string in octets

pattern string

(string) regular expression

to constrain a string

pattern

format

"date-time" / "date"

/ "time" / "uri" /

"uri-reference" /

"uuid"

(string) JSON Schema

formats as per [I-

D.handrews-json-schema-

validation], Section 7.3

minItems number
(array) Minimum number of

items in array

maxItems number
(array) Maximum number of

items in array

uniqueItems boolean
(array) if true, requires

items to be all different

items

(subset of common/

data qualities; see

Appendix A

(array) constraints on

array items

required array of strings

(object) names of

properties (note 2) that

are required in the JSON

map ("object")

properties
named set of data

qualities

(object) entries allowed

for the JSON map ("object")

Table 4: Qualities of sdfProperty and sdfData borrowed from json-

schema.org

(1) A type value of integer means that only integral values of JSON

numbers can be used.

(2) Note that the term "properties" as used for map entries in [I-

D.handrews-json-schema-validation] is unrelated to sdfProperty.

Quality Type Description Default

(common) Section 4.6

unit string

SenML unit name as per

[IANA.senml], subregistry

SenML Units (note 3)

N/A

scaleMinimum number
lower limit of value in units

given by unit
N/A

scaleMaximum number
upper limit of value in units

given by unit
N/A

readable boolean Reads are allowed true

writable boolean Writes are allowed true

¶

¶

Quality Type Description Default

observable boolean
flag to indicate asynchronous

notification is available
true

nullable boolean
indicates a null value is

available for this type
true

contentFormat string

content type (IANA media type

string plus parameters),

encoding

N/A

subtype
"byte-string"

/ "unix-time"
subtype enumeration N/A

Table 5: SDF-defined Qualities of sdfProperty and sdfData

(3) note that the quality unit was called units in SDF 1.0.

5. Keywords for definition groups

The following SDF keywords are used to create definition groups in

the target namespace. All these definitions share some common

qualities as discussed in Section 4.6.

5.1. sdfObject

The sdfObject keyword denotes a group of zero or more Object

definitions. Object definitions may contain or include definitions

of Properties, Actions, Events declared for the object, as well as

data types (sdfData group) to be used in this or other Objects.

The qualities of an sdfObject include the common qualities,

additional qualities are shown in Table 6. None of these qualities

are required or have default values that are assumed if the quality

is absent.

Quality Type Description

(common) Section 4.6

sdfProperty property
zero or more named property definitions for

this object

sdfAction action
zero or more named action definitions for

this object

sdfEvent event
zero or more named event definitions for this

object

sdfData
named-

sdq

zero or more named data type definitions that

might be used in the above

Table 6: Qualities of sdfObject

5.2. sdfProperty

The sdfProperty keyword denotes a group of zero or more Property

definitions.

¶

¶

¶

¶

¶

Properties are used to model elements of state.

The qualities of a Property definition include the data qualities

(and thus the common qualities), see Section 4.7.

5.3. sdfAction

The sdfAction keyword denotes a group of zero or more Action

definitions.

Actions are used to model commands and methods which are invoked.

Actions have parameter data that are supplied upon invocation.

The qualities of an Action definition include the common qualities,

additional qualities are shown in Table 7.

Quality Type Description

(common) Section 4.6

sdfInputData map
data qualities of the input data for an

Action

sdfOutputData map
data qualities of the output data for an

Action

sdfData
named-

sdq

zero or more named data type definitions

that might be used in the above

Table 7: Qualities of sdfAction

sdfInputData defines the input data of the action. sdfOutputData

defines the output data of the action. As discussed in Section

2.2.3, a set of data qualities with type "object" can be used to

substructure either data item, with optionality indicated by the

data quality required.

5.4. sdfEvent

The sdfEvent keyword denotes zero or more Event definitions.

Events are used to model asynchronous occurrences that may be

communicated proactively. Events have data elements which are

communicated upon the occurrence of the event.

The qualities of sdfEvent include the common qualities, additional

qualities are shown in Table 8.

Quality Type Description

(common) Section 4.6

sdfOutputData map
data qualities of the output data for an

Event

¶

¶

¶

¶

¶

¶

¶

¶

¶

Quality Type Description

sdfData
named-

sdq

zero or more named data type definitions

that might be used in the above

Table 8: Qualities of sdfEvent

sdfOutputData defines the output data of the action. As discussed in

Section 2.2.4, a set of data qualities with type "object" can be

used to substructure the output data item, with optionality

indicated by the data quality required.

5.5. sdfData

The sdfData keyword denotes a group of zero or more named data type

definitions (named-sdq).

An sdfData definition provides a reusable semantic identifier for a

type of data item and describes the constraints on the defined type.

It is not itself a declaration, i.e., it does not cause any of these

data items to be included in an affordance definition.

The qualities of sdfData include the data qualities (and thus the

common qualities), see Section 4.7.

6. High Level Composition

The requirements for high level composition include the following:

The ability to represent products, standardized product types,

and modular products while maintaining the atomicity of Objects.

The ability to compose a reusable definition block from Objects,

for example a single plug unit of an outlet strip with on/off

control, energy monitor, and optional dimmer objects, while

retaining the atomicity of the individual objects.

The ability to compose Objects and other definition blocks into a

higher level thing that represents a product, while retaining the

atomicity of objects.

The ability to enrich and refine a base definition to have

product-specific qualities and quality values, e.g. unit, range,

and scale settings.

The ability to reference items in one part of a complex

definition from another part of the same definition, for example

to summarize the energy readings from all plugs in an outlet

strip.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

6.1. Paths in the model namespaces

The model namespace is organized according to terms that are defined

in the definition files that are present in the namespace. For

example, definitions that originate from an organization or vendor

are expected to be in a namespace that is specific to that

organization or vendor. There is expected to be an SDF namespace for

common SDF definitions used in OneDM.

The structure of a path in a namespace is defined by the JSON

Pointers to the definitions in the files in that namespace. For

example, if there is a file defining an object "Switch" with an

action "on", then the reference to the action would be "ns:/

sdfObject/Switch/sdfAction/on" where ns is the namespace prefix

(short name for the namespace).

6.2. Modular Composition

Modular composition of definitions enables an existing definition

(could be in the same file or another file) to become part of a new

definition by including a reference to the existing definition

within the model namespace.

6.2.1. Use of the "sdfRef" keyword to re-use a definition

An existing definition may be used as a template for a new

definition, that is, a new definition is created in the target

namespace which uses the defined qualities of some existing

definition. This pattern will use the keyword "sdfRef" as a quality

of a new definition with a value consisting of a reference to the

existing definition that is to be used as a template. Optionally,

new qualities may be added and values of optional qualities and

quality values may be defined.

ISSUE: Do we want to enable qualities from the source definition to

be overridden in future versions? The above only says "added". (Yes,

we do want to enable overriding, but need to warn specifiers not to

use this in a way that contradicts the referenced semantics.)

¶

¶

¶

¶

¶

6.3. sdfThing

An sdfThing is a set of declarations and qualities that may be part

of a more complex model. For example, the object declarations that

make up the definition of a single socket of an outlet strip could

be encapsulated in an sdfThing, and the socket-thing itself could be

used in a declaration in the sdfThing definition for the outlet

strip.

sdfThing definitions carry semantic meaning, such as a defined

refrigerator compartment and a defined freezer compartment, making

up a combination refrigerator-freezer product.

An sdfThing may be composed of sdfObjects and other sdfThings.

The qualities of sdfThing are shown in Table 9.

Quality Type Description

(common) Section 4.6

sdfThing thing

sdfObject object

Table 9: Qualities of sdfThing

and sdfProduct

6.4. sdfProduct

An sdfProduct provides the level of abstraction for representing a

unique product or a profile for a standardized type of product, for

example a "device type" definition with required minimum

functionality.

Products may be composed of Objects and Things at the high level,

and may include their own definitions of Properties, Actions, and

"sdfData":

 "length" : {

 "type": "number",

 "minimum": 0,

 "unit": "m"

 "description": "There can be no negative lengths."

 }

...

 "cable-length" : {

 "sdfRef": "#/sdfData/length"

 "minimum": 0.05,

 "description": "Cables must be at least 5 cm."

 }

¶

¶

¶

¶

¶

¶

[I-D.handrews-json-schema-validation]

[I-D.ietf-cbor-cddl-control]

[IANA.senml]

[RFC0020]

[RFC2119]

[RFC3986]

[RFC6901]

Events that can be used to extend or complete the included Object

definitions.

Product definitions may set optional defaults and constant values

for specific use cases, for example units, range, and scale settings

for properties, or available parameters for Actions.

The qualities of sdfProduct are the same as for sdfThing and are

shown in Table 9.

7. References

7.1. Normative References

Wright, A., Andrews, H., and B. Hutton, "JSON Schema

Validation: A Vocabulary for Structural Validation of

JSON", Work in Progress, Internet-Draft, draft-handrews-

json-schema-validation-02, 17 September 2019, <http://

www.ietf.org/internet-drafts/draft-handrews-json-schema-

validation-02.txt>.

Bormann, C., "Additional Control Operators for CDDL",

Work in Progress, Internet-Draft, draft-ietf-cbor-cddl-

control-00, 29 September 2020, <http://www.ietf.org/

internet-drafts/draft-ietf-cbor-cddl-control-00.txt>.

IANA, "Sensor Measurement Lists (SenML)", <http://

www.iana.org/assignments/senml>.

Cerf, V., "ASCII format for network interchange", STD 80,

RFC 20, DOI 10.17487/RFC0020, October 1969, <https://

www.rfc-editor.org/info/rfc20>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,

"JavaScript Object Notation (JSON) Pointer", RFC 6901,

DOI 10.17487/RFC6901, April 2013, <https://www.rfc-

editor.org/info/rfc6901>.

¶

¶

¶

http://www.ietf.org/internet-drafts/draft-handrews-json-schema-validation-02.txt
http://www.ietf.org/internet-drafts/draft-handrews-json-schema-validation-02.txt
http://www.ietf.org/internet-drafts/draft-handrews-json-schema-validation-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-cbor-cddl-control-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-cbor-cddl-control-00.txt
http://www.iana.org/assignments/senml
http://www.iana.org/assignments/senml
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901

[RFC8174]

[RFC8610]

[SPDX]

[W3C.NOTE-curie-20101216]

[I-D.irtf-t2trg-rest-iot]

[OCF]

[OMA]

[RFC3339]

[ZCL]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

"SPDX License List", <https://spdx.org/licenses/>.

Birbeck, M. and S. McCarron, "CURIE Syntax

1.0", World Wide Web Consortium NOTE NOTE-curie-20101216,

16 December 2010, <https://www.w3.org/TR/2010/NOTE-

curie-20101216>.

7.2. Informative References

Keranen, A., Kovatsch, M., and K. Hartke, "RESTful Design

for Internet of Things Systems", Work in Progress,

Internet-Draft, draft-irtf-t2trg-rest-iot-06, 11 May

2020, <http://www.ietf.org/internet-drafts/draft-irtf-

t2trg-rest-iot-06.txt>.

"OCF Resource Type Specification", <https://

openconnectivity.org/specs/

OCF_Resource_Type_Specification.pdf>.

"OMA LightweightM2M (LwM2M) Object and Resource

Registry", <http://www.openmobilealliance.org/wp/omna/

lwm2m/lwm2mregistry.html>.

Klyne, G. and C. Newman, "Date and Time on the Internet:

Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

<https://www.rfc-editor.org/info/rfc3339>.

"The ZigBee Cluster Library", Zigbee Wireless Networking

pp. 239-271, DOI 10.1016/b978-0-7506-8597-9.00006-9,

2008, <https://doi.org/10.1016/

b978-0-7506-8597-9.00006-9>.

Appendix A. Formal Syntax of SDF

This appendix describes the syntax of SDF using CDDL [RFC8610]. Note

that this appendix was derived from Ari Keranen's "alt-schema" and

Michael Koster's "schema", with a view of covering the syntax that

is currently in use at the One Data Model playground repository.¶

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8610
https://spdx.org/licenses/
https://www.w3.org/TR/2010/NOTE-curie-20101216
https://www.w3.org/TR/2010/NOTE-curie-20101216
http://www.ietf.org/internet-drafts/draft-irtf-t2trg-rest-iot-06.txt
http://www.ietf.org/internet-drafts/draft-irtf-t2trg-rest-iot-06.txt
https://openconnectivity.org/specs/OCF_Resource_Type_Specification.pdf
https://openconnectivity.org/specs/OCF_Resource_Type_Specification.pdf
https://openconnectivity.org/specs/OCF_Resource_Type_Specification.pdf
http://www.openmobilealliance.org/wp/omna/lwm2m/lwm2mregistry.html
http://www.openmobilealliance.org/wp/omna/lwm2m/lwm2mregistry.html
https://www.rfc-editor.org/info/rfc3339
https://doi.org/10.1016/b978-0-7506-8597-9.00006-9
https://doi.org/10.1016/b978-0-7506-8597-9.00006-9

This appendix shows the framework syntax only, i.e., a syntax with

liberal extension points. Since this syntax is nearly useless in

finding typos in an SDF specification, a second syntax, the

validation syntax, is defined that does not include the extension

points. The validation syntax can be generated from the framework

syntax by leaving out all lines containing the string EXTENSION-

POINT; as this is trivial, the result is not shown here.

This appendix makes use of CDDL "features" as defined in Section 4

of [I-D.ietf-cbor-cddl-control]. A feature named "1.0" is used to

indicate parts of the syntax being deprecated towards SDF 1.1, and a

feature named "1.1" is used to indicate new syntax intended for SDF

1.1. Features whose names end in "-ext" indicate extension points

for further evolution.

¶

¶

start = sdf-syntax

sdf-syntax = {

 info: sdfinfo ; don't *require* this in flexible syntax, though

 ? namespace: named<text>

 ? defaultNamespace: text

 ? sdfThing: named<thingqualities> ; Thing is a composition of objects that work together in some way

 ? sdfProduct: named<productqualities> ; Product is a composition of things and objects that can model a SKU-level instance of a product

 ? sdfObject: named<objectqualities> ; Object is a set of Properties, Actions, and Events that together perform a particular function

 ? sdfProperty: named<propertyqualities> ; Property represents the state of an instance of an object

 ? sdfAction: named<actionqualities> ; Action is a directive to invoke an application layer verb associated with an object

 ? sdfEvent: named<eventqualities> ; Event represents an occurence of something associated with an object

 ? sdfData: named<dataqualities> ; Data represents a piece of information that can be the state of a property or a parameter to an action or a signal in an event

 EXTENSION-POINT<"top-ext">

}

sdfinfo = {

 title: text

 version: text

 copyright: text

 license: text

 EXTENSION-POINT<"info-ext">

}

; Shortcut for a map that gives names to instances of X (has text keys and values of type X)

named<X> = { * text => X }

EXTENSION-POINT<f> = (* (text .feature f) => any) ; only used in framework syntax

sdf-pointer = text ; .regexp curie-regexp -- TO DO!

pointer-list = [* sdf-pointer] ; ISSUE: no point in having an empty list, no? but used for sdfRequired in odmobject-multiple_axis_joystick.sdf.json

commonqualities = (

 ? description: text ; long text (no constraints)

 ? label: text ; short text (no constraints); default to key

 ? $comment: text ; source code comments only, no semantics

 ? sdfRef: sdf-pointer

 ? sdfRequired: pointer-list ; applies to qualities of properties, of data

)

; for building hierarchy

thingqualities = {

 commonqualities,

 ? sdfObject: named<objectqualities>

 ? sdfThing: named<thingqualities>

 EXTENSION-POINT<"thing-ext">

}

productqualities = thingqualities ; ISSUE: get rid of sdfProduct?

; for single objects

objectqualities = {

 commonqualities,

 ? sdfProperty: named<propertyqualities>

 ? sdfAction: named<actionqualities>

 ? sdfEvent: named<eventqualities>

 ? sdfData: named<dataqualities>

 EXTENSION-POINT<"object-ext">

}

propertyqualities = dataqualities ; the definitions in sdfData are declarations in sdfProperty

parameter-list =

 pointer-list .feature (["1.0", "pointerlist-as-parameter"]) /

 dataqualities .feature (["1.1", "dataqualities-as-parameter"])

actionqualities = {

 commonqualities,

 ? sdfInputData: parameter-list ; sdfRequiredInputData applies here (a bit redundant)

 ? sdfRequiredInputData: pointer-list

 ? sdfOutputData: parameter-list ; sdfRequired applies here

 ? sdfData: named<dataqualities> ; zero or more named data type definitions that might be used in the above

 EXTENSION-POINT<"action-ext">

}

eventqualities = {

 commonqualities

 ? sdfOutputData: parameter-list ; sdfRequired applies here

 ? sdfData: named<dataqualities> ; zero or more named data type definitions that might be used in the above

 EXTENSION-POINT<"event-ext">

}

dataqualities = { ; also propertyqualities

 commonqualities,

 jsonschema,

 ? ("units" .feature "1.0") => text

 ? ("unit" .feature "1.1") => text

 ? scaleMinimum: number

 ? scaleMaximum: number

 ? observable: bool

 ? readable: bool

 ? writable: bool

 ? nullable: bool

 ? subtype: "byte-string" / "unix-time"

 / (text .feature "subtype-ext") ; EXTENSION-POINT

 ? contentFormat: text

 EXTENSION-POINT<"data-ext">

}

allowed-types = number / text / bool / null

 / [* number] / [* text] / [* bool]

 / {* text => any}

 / (any .feature "allowed-ext") ; EXTENSION-POINT

compound-type = (

 "type" => ("object" .feature "1.1"),

 ? required: [+text],

 ? properties: named<dataqualities>,

)

jsonschema = (

 ? (("type" => "number" / "string" / "boolean" / "integer" / "array")

 // compound-type

 // (type: text .feature "type-ext") ; EXTENSION-POINT

)

 ? enum: [+ allowed-types] ; should validate against type

 ? const: allowed-types

 ? default: allowed-types

 ; number/integer constraints

 ? minimum: number

 ? maximum: number

 ? exclusiveMinimum: bool / number ; jso draft 4/7

 ? exclusiveMaximum: bool / number ; jso draft 4/7

 ? multipleOf: number ; ISSUE: Do we need this?

 ; text string constraints

 ? minLength: number

 ? maxLength: number

 ? pattern: text ; regexp

 ? format: "date-time" / "date" / "time"

 / "uri" / "uri-reference" / "uuid"

 / (text .feature "format-ext") ; EXTENSION-POINT

 ; array constraints

 ? minItems: number

 ? maxItems: number

 ? uniqueItems: bool

 ? items: { ;;; ultimately, this will be mostly recursive, but, for now

 ;;; let's find out what we actually need

 ? sdfRef: sdf-pointer ; import limited to the subset that we allow here...

 ? description: text ; long text (no constraints)

 ? $comment: text ; source code comments only, no semantics

 ; commonqualities, ; -- ISSUE: should leave this out for non-complex data types, but need the above three

 ? ((type: "number" / "string" / "boolean" / "integer") ; no "array"

 // compound-type

 // (type: text .feature "itemtype-ext") ; EXTENSION-POINT

)

 ; jso subset

 ? minimum: number

 ? maximum: number

 ? enum: [+ any]

 ? format: text

 ? minLength: number

 ? maxLength: number

 EXTENSION-POINT<"items-ext">

 }

)

¶

Appendix B. json-schema.org Rendition of SDF Syntax

This appendix describes the syntax of SDF defined in Appendix A, but

using a version of the description techniques advertised on json-

schema.org [I-D.handrews-json-schema-validation].

The appendix shows both the validation and the framework syntax.

Since most of the lines are the same between these two files, those

lines are shown only once, with a leading space, in the form of a

unified diff. Lines leading with a - are part of the validation

syntax, and lines leading with a + are part of the framework syntax.

(The json-schema.org descriptions need to be regenerated after the

converter has been upgraded to handle the group choices introduced

in the latest CDDL.)

Acknowledgements

This draft is based on sdf.md and sdf-schema.json in the old one-

data-model language repository, as well as Ari Keranen's "alt-

schema" from the Ericsson Research ipso-odm repository (which is now

under subdirectory sdflint in the one-data model tools repository).

Contributors

Ari Keränen

Ericsson

FI-02420 Jorvas

Finland

Email: ari.keranen@ericsson.com

Wouter van der Beek

Cisco Systems

Eastpoint Business Park

Alfie Byrne Road

Dublin 3

Ireland

Email: wovander@cisco.com

Authors' Addresses

Michael Koster (editor)

SmartThings

665 Clyde Avenue

Mountain View, 94043

United States of America

Phone: +1-707-502-5136

¶

¶

¶

¶

mailto:ari.keranen@ericsson.com
mailto:wovander@cisco.com
tel:+1-707-502-5136

Email: Michael.Koster@smartthings.com

Carsten Bormann (editor)

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

mailto:Michael.Koster@smartthings.com
tel:+49-421-218-63921
mailto:cabo@tzi.org

	Semantic Definition Format (SDF) for Data and Interactions of Things
	Abstract
	Contributing
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology and Conventions

	2. Overview
	2.1. Example Definition
	2.2. Elements of an SDF model
	2.2.1. sdfObject
	2.2.2. sdfProperty
	2.2.3. sdfAction
	2.2.4. sdfEvent
	2.2.5. sdfData
	2.2.6. sdfThing
	2.2.7. sdfProduct

	3. SDF structure
	3.1. Information block
	3.2. Namespaces section
	3.3. Definitions section

	4. Names and namespaces
	4.1. Structure
	4.2. Contributing global names
	4.3. Referencing global names
	4.4. sdfRef
	4.5. sdfRequired
	4.5.1. Optionality using the keyword "sdfRequired"

	4.6. Common Qualities
	4.7. Data Qualities

	5. Keywords for definition groups
	5.1. sdfObject
	5.2. sdfProperty
	5.3. sdfAction
	5.4. sdfEvent
	5.5. sdfData

	6. High Level Composition
	6.1. Paths in the model namespaces
	6.2. Modular Composition
	6.2.1. Use of the "sdfRef" keyword to re-use a definition

	6.3. sdfThing
	6.4. sdfProduct

	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Formal Syntax of SDF
	Appendix B. json-schema.org Rendition of SDF Syntax
	Acknowledgements
	Contributors
	Authors' Addresses

